000121042 001__ 121042
000121042 005__ 20240319081009.0
000121042 0247_ $$2doi$$a10.1007/s00028-022-00851-1
000121042 0248_ $$2sideral$$a131368
000121042 037__ $$aART-2022-131368
000121042 041__ $$aeng
000121042 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, Luciano$$uUniversidad de Zaragoza
000121042 245__ $$aDiscrete Hölder spaces and their characterization via semigroups associated with the discrete Laplacian and kernel estimates
000121042 260__ $$c2022
000121042 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121042 5203_ $$aIn this paper, we characterize the discrete Hölder spaces by means of the heat and Poisson semigroups associated with the discrete Laplacian. These characterizations allow us to get regularity properties of fractional powers of the discrete Laplacian and the Bessel potentials along these spaces and also in the discrete Zygmund spaces in a more direct way than using the pointwise definition of the spaces. To obtain our results, it has been crucial to get boundedness properties of the heat and Poisson kernels and their derivatives in both space and time variables. We believe that these estimates are also of independent interest.
000121042 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E26-17R$$9info:eu-repo/grantAgreement/ES/MCYTS-DGI-FEDER/PID2019-105979GB-I00$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2019-CIE-01
000121042 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121042 590__ $$a1.4$$b2022
000121042 592__ $$a1.19$$b2022
000121042 591__ $$aMATHEMATICS$$b71 / 329 = 0.216$$c2022$$dQ1$$eT1
000121042 593__ $$aMathematics (miscellaneous)$$c2022$$dQ1
000121042 591__ $$aMATHEMATICS, APPLIED$$b121 / 267 = 0.453$$c2022$$dQ2$$eT2
000121042 594__ $$a1.9$$b2022
000121042 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121042 700__ $$aDe León-Contreras, Marta
000121042 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000121042 773__ $$g22, 4 (2022), 91 [42 pp.]$$pJ. Evol. Equ.$$tJOURNAL OF EVOLUTION EQUATIONS$$x1424-3199
000121042 8564_ $$s580804$$uhttps://zaguan.unizar.es/record/121042/files/texto_completo.pdf$$yVersión publicada
000121042 8564_ $$s1245516$$uhttps://zaguan.unizar.es/record/121042/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121042 909CO $$ooai:zaguan.unizar.es:121042$$particulos$$pdriver
000121042 951__ $$a2024-03-18-14:57:00
000121042 980__ $$aARTICLE