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Discrete Hölder spaces and their characterization via semigroups
associated with the discrete Laplacian and kernel estimates

Luciano Abadias and Marta De León- Contreras

Abstract. In this paper, we characterize the discrete Hölder spaces by means of the heat and Poisson semi-
groups associated with the discrete Laplacian. These characterizations allow us to get regularity properties
of fractional powers of the discrete Laplacian and the Bessel potentials along these spaces and also in
the discrete Zygmund spaces in a more direct way than using the pointwise definition of the spaces. To
obtain our results, it has been crucial to get boundedness properties of the heat and Poisson kernels and
their derivatives in both space and time variables. We believe that these estimates are also of independent
interest.

1. Introduction

Classical Hölder spaces Cα(Rn), α > 0, α �∈ N (also denoted by Ck,β(Rn) or
Ck+β(Rn), being k+β = α, k ∈ N0, and 0 < β < 1) are classes of smooth functions
that are very important in partial differential equations, harmonic analysis and function
theory. When 0 < α < 1, they are defined as the set of (bounded) functions f such
that

| f (x + z) − f (x)| ≤ C |z|α x, z ∈ R
n . (1.1)

These spaces are in between of the space of bounded continuous functions, C0(Rn),
and the one of bounded differentiable functions with bounded continuous derivative,
C1(Rn). These spaces are usually called either Lipschitz or Hölder classes. For α = 1,
the natural space was introduced by Zygmund [39, Chapter II] and it is the set of
continuous and bounded functions f such that

| f (x + z) + f (x − z) − 2 f (x)| ≤ C |z|, x, z ∈ R
n .
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This space is commonly known as the Zygmund’s space, and we shall denote it by Z .
It can be shown that if we denote by Lip the space of functions satisfying (1.1) for
α = 1, then C1(Rn)� Lip� Z , see [17]. Given α > 1, Cα(Rn) is the set of functions
such that all the derivatives of order less or equal than [α] are continuous and bounded
and the derivatives of order [α] belong to Cα−[α](Rn).

In the 1960s, Stein and Taibleson, see [28,33–35], characterized bounded Hölder
functions via some integral estimates of the Poisson semigroup, {e−y

√−�}y>0, and
of the Gauss semigroup, {eτ�}τ>0. The advantage of this kind of results is that the
semigroup descriptions allow to obtain regularity results in these spaces in a more
direct way, avoiding the long, tedious and sometimes cumbersome computations that
are needed when the pointwise expressions are handled. The works of Taibleson and
Stein raise the question of analysing Hölder spaces adapted to different “Laplacians”
and to find their pointwise and semigroup characterizations.

In [12], Lipschitz spaces adapted to the Ornstein–Uhlenbeck operator,O = − 1
2�+

x · ∇, were defined by means of its Poisson semigroup, {e−y
√O}y>0, and in [20] a

pointwise characterization was obtained for 0 < α < 1.

In the case of Schrödinger operators, −� + V on R
n, n ≥ 3, where V satisfies a

reverse Hölder inequality for some q > n/2, adapted Lipschitz classes were pointwise
defined in [6] for 0 < α < 1. In [22], the authors characterized these spaces by means
of the Poisson semigroup {e−y

√−�+V }y>0 and they got boundedness of fractional
powers of −� + V in these spaces for 0 < α < 1. Recently, in [10] it was extended
the pointwise and semigroup (heat and Poisson) characterizations to the range 0 < α ≤
2 − n/q. In addition, the authors used those semigroups definitions to get regularity
results regarding fractional operators related to −� + V . Moreover, in the particular
case of the Hermite operator, −� + |x |2, in [9] the authors got, for every α > 0, a
characterization by means of the heat and Poisson semigroups of the adapted Hölder
spaces defined in [31] and also of the adapted parabolic Hölder spaces introduced in
[9].

Regarding the heat operator, ∂t − �, in [32] the parabolic Hölder spaces intro-
duced by Krylov, see [18], were characterized by means of the Poisson semigroup
{e−y

√
∂t−�}y>0 and the authors used this semigroup characterization to show regular-

ity properties for fractional powers (∂t − �x )
±σ .

In [4], it is proved that, in a general metric measure space (M, d, μ) where μ is
doubling, if L is an operator such that the heat semigroup {etL}t>0 is conservative,
i.e. etL1 = 1, and the associated heat kernel satisfies Gaussian bounds and a Lipschitz
condition in the spatial variable, then the Hölder spaces adapted to L (defined by
increments) can be characterized by means of the heat semigroup, for 0 < α < 1.

In this paper, we shall deal with the discrete Hölder spaces, Cα(Z), α > 0, α �∈ N,
whose definition we are going to recall in the following lines, and also we will intro-
duce new discrete Zygmund classes, Zα, α ∈ N. Our first aim is to prove semigroup
characterizations of these spaces by using the heat and Poisson semigroups associ-
ated with the discrete Laplacian, −�d . The heat kernel associated with the discrete
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Laplacian neither has Gaussian control at zero, see [14,23], nor satisfies a Lipschitz
condition, see Remark 2.5. Therefore, our results are not covered by the ones in [4]
and the kernels have not the same kind of good estimates and homogeneity properties
than in the works in the literature we cited above. These are the first main difficulties
we have faced in this problem, and we have been able to sort them out by obtaining
new estimates for the kernels and their derivatives, see Sect. 2.
For f : Z → R, consider the discrete derivatives “from the right” and “from the

left”,

δright f (n) := f (n) − f (n + 1), δleft f (n) := f (n) − f (n − 1).

Observe that δrightδleft f = δleftδright f and this implies that every combination of these
operators is not affected by the order when they are applied. For more properties of
these operators see [1,2].

Now, we recall the definition of discrete Hölder spaces introduced in [8]. For 0 <

α < 1,

Cα(Z) :=
{
f : Z → R : sup

n �=m

| f (n) − f (m)|
|n − m|α < ∞

}
.

In general, for α = k + β > 0, where k ∈ N0 := N ∪ {0} and 0 < β < 1,

Cα(Z) :=
{
f : Z → R : sup

n �=m

|δl,sright/left f (n) − δ
l,s
right/left f (m)|

|n − m|β < ∞,

∀l, s ∈ N0 s.t. l + s = k

}
,

where δ
l,s
right/left := δlrightδ

s
left (or any other combination of these operators such that in

the end we apply l times δright and s times δleft), and δ0right f = δ0left f = f .
Observe that 	∞(Z) functions are trivially in Cα(Z). Furthermore, we will prove,

see Lemma 3.1, that for every f ∈ Cα(Z), α > 0, there exists C > 0 such that

| f (n)| ≤ C(1 + |n|α), n ∈ Z.

Moreover, when α ∈ N, we define the discrete Zygmund classes, Zα , as

Z1 :=
{
f : Z → R : f

1 + | · | ∈ 	∞(Z) and

sup
n �=0

‖ f (· + n) + f (· − n) − 2 f (·)‖∞
|n| < ∞

}
and for α ∈ N \ {1},
Zα :=

{
f : Z → R : f

1 + | · |α ∈ 	∞(Z) and δ
l,s
right/left f ∈ Z1, l + s = α − 1.

}
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Both definitions of Cα(Z) and Zα involve pointwise estimates of the functions. Our
first aim will be to get their characterizations by means of semigroups.
Let �d denote the discrete Laplacian on Z, that is, for each f : Z → R,

(�d f )(n) := f (n + 1) − 2 f (n) + f (n − 1), n ∈ Z.

The solution of the discrete heat problem{
∂t u(t, n) − �du(t, n) = 0, n ∈ Z, t ≥ 0,
u(0, n) = f (n), n ∈ Z,

(1.2)

is given by the convolution u(t, n) = et�d f (n) := ∑
j∈Z G(t, n − j) f ( j) =∑

j∈Z G(t, j) f (n − j), where the discrete heat kernel is

G(t, n) = e−2t In(2t), n ∈ Z, t > 0,

being In the modified Bessel function of the first kind and order n ∈ Z, see Sect. 2 for
more details.
It seems that H. Bateman in [5] was the first author dealingwith the solution of (1.2).

Moreover, he studied a broad set of differential-difference equations (heat and wave
equations), whose solutions are given in terms of special functions: the Bessel function
Jn , the Bessel function of imaginary argument In , the Hermite polynomial Hn and the
exponential function. In the past years,manymathematicians have beenworking in this
discrete heat setting. For example, in [15,16], the author studies large time behaviour
for et�d f in 	p(Z) spaces by using the semidiscrete Fourier transform. In [7], the
authors do a deep harmonic analysis study of this problem. In [21], the authors study the
spectrum of �d on 	p(Z), the associated wave problem, and holomorphic properties
of ez�d f . In [27] the author proves that the solution of (1.2) behaves asymptotically
as the mean of the initial value, and in [3] the authors study large time behaviour in
	p(Z) for the solutions of (1.2) with a non-homogeneous linear forcing term.
On the other hand, the solution of the discrete Poisson problem{

∂2yv(y, n) − �dv(y, n) = 0, n ∈ Z, y ≥ 0,
v(0, n) = f (n), n ∈ Z,

is denoted by v(y, n) = e−y
√−�d f (n), y > 0, n ∈ Z. Moreover, Bochner’s subordi-

nation formula (see [38, Chapter IX, Section 11]) allows us to write

e−y
√−�d f (n) = y

2
√

π

∫ ∞

0

e− y2

4t

t3/2
et�d f (n)dt

=
∑
j∈Z

⎛
⎝ y

2
√

π

∫ ∞

0

e− y2

4t

t3/2
G(t, j)dt

⎞
⎠ f (n − j)

=:
∑
j∈Z

P(y, j) f (n − j), y > 0, n ∈ Z.
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To the best of our knowledge, an explicit expression of the Poisson kernel P(y, j) is
not known. However, by using the subordination formula and our new estimates for
the heat kernel, we will be able to obtain useful bounds for P(y, j), see Sect. 2.

Now, we consider the following spaces associated with the discrete Laplacian. Let
α > 0. We define

�α
H :=

{
f : Z → R : f

1 + | · |α ∈ 	∞(Z) and ∃Cα > 0 such that

‖∂kt et�d f ‖∞ ≤ Cαt
−k+α/2, k = [α/2] + 1, t > 0

}
.

�α
P :=

{
f : Z → C :

∑
j∈Z

| f ( j)|
1 + | j |2 < ∞ and ∃ C̃α > 0 such that

‖∂ lye−y
√−�d f ‖∞ ≤ C̃α y

−l+α, l = [α] + 1, y > 0
}
.

The condition on the functions f
1+|·|α ∈ 	∞(Z), α > 0, will be enough to have the

heat semigroup and its derivatives well defined. However, for the case of the Poisson
semigroup, we need a more restrictive condition,

∑
j∈Z

| f ( j)|
1+| j |2 < ∞, see Sect. 2 for

the details.
Now, we present our main results. The first main theorem we prove is the charac-

terization, for every α > 0, of the pointwise spaces Cα(Z) and Zα , by means of the
heat and Poisson semigroups.

Theorem 1.1. (A) Let α > 0.
(A.1) If α �∈ N, then �α

H = Cα(Z).
(A.2) If α ∈ N, then �α

H = Zα .

(B) Let f : Z → R such that
∑

j∈Z
| f ( j)|
1+| j |2 < ∞.

(B.1) For every α > 0, α �∈ N,

f ∈ Cα(Z) ⇐⇒ f ∈ �α
H ⇐⇒ f ∈ �α

P .

(B.2) For every α ∈ N,

f ∈ Zα ⇐⇒ f ∈ �α
H ⇐⇒ f ∈ �α

P .

To prove previous theorem, some estimates about the discrete heat and Poisson
kernels and their derivatives are crucial (see Lemmas 2.3, 2.4, 2.6, 2.8, 2.9). These
results complement, extend and improve some of the ones obtained in [3,15,16]. We
believe that ours results are also of independent interest because we give general
pointwise and 	1-estimates for the difference and derivatives of any order of the heat
and Poisson discrete kernels.
Once the semigroup characterization is obtained, we have been able to get regularity

results for fractional operators related to �d , such as Bessel potentials, (I − �d)
−β ,

β > 0, and the fractional powers (−�d)
±β. For the definitions of these operators, see

Sect. 4.
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Theorem 1.2. Let α, β > 0.

(i) If f ∈ �α
H , then (I − �d)

−β/2 f ∈ �
α+β
H .

(ii) If f ∈ 	∞(Z), then (I − �d)
−β/2 f ∈ �

β
H .

To define the fractional powers of �d , it is necessary to define auxiliary spaces of
sequences 	γ , γ > −1/2, γ �= 0,

	γ :=
{
u : Z → R :

∑
m∈Z

|u(m)|
(1 + |m|)1+2γ < ∞

}
.

These spaces are the discrete analogue of the spaces needed in the case of the Laplacian
in R

n, see [26], and they were introduced in [8] for γ ∈ (−1/2, 1), γ �= 0 and, for
sequences f ∈ 	γ , the authors got a pointwise convolution expression for (−�d)

γ f.
We consider these spaces 	γ for any γ > −1/2, γ �= 0, and we are able to complete
the results in [8] and extend the pointwise expression of (−�d)

γ f , for γ ≥ 1, see
Lemma 4.1 and Remark 4.2.

The following theorems were proved in [8, Theorems 1.5 and 1.6] for nonzero
powers between −1/2 and 1 in the discrete Hölder classes depending on α > 0
(observe that, when α ∈ N, the spaces considered in [8] are not the discrete Zygmund
classes). In [8], the authors obtained their results by using the pointwise definition of
the fractional powers of the Laplacian. Our results cover all nonzero powers bigger
than −1/2, and our proofs will be more direct and systematic.

Theorem 1.3. (Schauder estimates) Let α > 0 and 0 < β < 1/2.

(i) If f ∈ �α
H ∩ 	−β , then (−�d)

−β f ∈ �
α+2β
H .

(ii) If f ∈ 	∞(Z) ∩ 	−β, then (−�d)
−β f ∈ �

2β
H .

Since theoperator−�d consists of secondorder differences, (−�d) ◦ · · · ◦ (−�d)︸ ︷︷ ︸
m times

f ,

m ∈ N, is well defined for any f : Z → R. Thus, the fractional powers of −� of
order β > 1 can be defined as

(−�d) ◦ · · · ◦ (−�d)︸ ︷︷ ︸
[β] times

((−�d)
β−[β] f ), for f ∈ 	β−[β],

where (−�d)
0 f = f. However, we will use the definition of (−�d)

β f , β > 1,
given by formula (4.1) because it is valid for f ∈ 	β , which is a larger class of
functions than 	β−[β]. In fact, for β ∈ N and f ∈ 	β , we have that (−�d)

β f =
(−�d) ◦ · · · ◦ (−�d)︸ ︷︷ ︸

β times

f , see Remark 4.2.

Theorem 1.4. (Hölder estimates) Let α, β > 0 such that 0 < 2β < α.

(i) If f ∈ �α
H ∩ 	β , then (−�d)

β f ∈ �
α−2β
H .

(ii) If f ∈ �α
H and β ∈ N, then (−�d) ◦ · · · ◦ (−�d)︸ ︷︷ ︸

β times

f ∈ �
α−2β
H .
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Discrete Hölder classes can be defined in the mesh of step h > 0, Zh := {nh : n ∈
Z}, see [8]. All our results also hold in this setting, and the proofs can be obtained
following step-by-step procedures that we are presenting in this paper. However, for
simplicity we have written the results when h = 1. Moreover, doing a tedious work
component to component, one can repeat the results in the multidimensional case Z

N
h .

The paper is organized as follows. In Sect. 2, we prove all the results concerning
pointwise and norm estimates of the discrete heat and Poisson kernels and semigroups.
In Sect. 3, we prove Theorem 1.1 and all the properties related to these spaces. Finally,
in Sect. 4we prove the results regarding the applications andTheorems 1.2, 1.3 and 1.4.

Throughout this article, C and c always denote positive constants that can change
in each occurrence.

2. Discrete Gaussian and Poisson semigroups

2.1. Bessel functions

2.1.1. Some known results

Along the paper, next estimates for the Euler’s gamma function will be applied in
some results. Recall that for every α, z ∈ C,

(z + α)

(z)
= zα(1 + α(α + 1)

2z
+ O(|z|−2)), |z| → ∞,

whenever z �= 0,−1,−2, . . . and z �= −α,−α−1, . . . , see [36, Eq. (1)]. In particular,

(z + α)

(z)
= zα

(
1 + O

(
1

|z|
))

, z ∈ C+, Reα > 0.

We denote by In the modified Bessel function of the first kind and order n ∈ Z,

given by

In(t) =
∞∑

m=0

1

m!(m + n + 1)

(
t

2

)2m+n

, n ∈ N0, t ∈ C,

and I−n = In for n ∈ N.

Now, we give some known properties about Bessel functions In which can be found
in [19,Chapter 5] and [37], andwewill use along the paper. They satisfy that I0(0) = 1,
In(0) = 0 for n �= 0, and In(t) ≥ 0 for n ∈ Z and t ≥ 0. Also, the function In has the
semigroup property (also called Neumann’s identity) for the convolution on Z, that
is,

In(t + s) =
∑
m∈Z

Im(t)In−m(s) =
∑
m∈Z

Im(t)Im−n(s), t, s ≥ 0,
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see [11, Chapter II], and it satisfies the following differential-difference equation:

∂

∂t
In(t) = 1

2

(
In−1(t) + In+1(t)

)
, t ∈ C. (2.1)

Furthermore, for each n ∈ Z and N ∈ N0

In(t) = et√
2π t

( N∑
k=0

(−1)kan,k

(2t)k
+ O

(
1

t N+1

))
, | arg t | < π/2, (2.2)

with an,0 = 1 and for k ≥ 1 an,k = (4n2−1)(4n2−3)···(4n2−(2k−1)2)
k!22k , see [19, (5.11.10)].

The previous big “o” function satisfies

∣∣∣∣O
(

1
t N+1

)∣∣∣∣ ≤ Cn,N

t N+1 , being Cn,N a positive

constant depending on n, N . In particular, see [19], we have that

In(t) = C
et

t1/2
+ Rn(t), (2.3)

where |Rn(t)| ≤ Cnet t−3/2, for t → ∞.

The generating function of the Bessel function In is given by

e
t (x+x−1)

2 =
∑
n∈Z

xn In(t), x �= 0, t ∈ C. (2.4)

From the generating function (2.4), it was proved in [3, Theorem 3.3] that, for every
k ∈ N0, ∑

n∈Z
n2k In(t) = et pk(t),

∑
n∈Z

n2k+1 In(t) = 0, t > 0, (2.5)

where each pk(t) is a polynomial of degree k with positive coefficients, p0(t) = 1,
and pk(0) = 0 for all k ∈ N.

The following identities will be useful to define fractional powers of the discrete
Laplacian:

∫ ∞

0

e−ct In(ct)

tγ+1 dt = (2c)γ√
π

(1/2 + γ )(n − γ )

(n + 1 + γ )
, c > 0, −1/2 < γ < n,

(2.6)

see [25, Section 2.15.3, formula 3, p.305], and

In(t) = et

2π

∫ π

−π

e−inθe−2t sin2 θ/2 dθ, (2.7)

see [7, Proof of Proposition 1].
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2.1.2. A new important property of Bessel functions

The Bessel function In has the following useful integral representation:

In(t) = tn√
π2n(n + 1/2)

∫ 1

−1
e−ts(1 − s2)n−1/2 ds, n ∈ N0, t ≥ 0, (2.8)

that we generalize in the following lemma.

Lemma 2.1. Let n ∈ N0. Then, for all j ∈ N such that n − j ∈ N0 one can write

In(t) = (−1) j tn− j

√
π2n− j(n + 1/2 − j)

∫ 1

−1
e−tss

Q j−1(s, t)

t j−1 (1 − s2)n−1/2− j ds, (2.9)

with Q j−1(s, t) =∑ j−1
k=0 c j−1−k, j−1(st)k .

Proof. By (2.8), it follows easily integrating by parts that (2.9) holds for j = 1 and
Q0(s, t) = 1, where we have differentiated (1 − s2)n−1/2 and integrated e−st . Doing
the same procedure, differentiating (1− s2)n−1/2− j , integrating e−st sQ j−1(s, t) and
denoting

Q j (s, t) := −t2ets
(∫

e−wtwQ j−1(w, t) dw

)∣∣∣
s

(2.10)

one gets Q1(s, t) = st+1, Q2(s, t) = s2t2+3st+3,which satisfy (2.9) for j = 2, 3.
Thus, by iterating the previous arguments we get, for j ≥ 3, n− ( j +1) ∈ N0, that

In(t) = (−1) j tn−( j+1)
√

π2n−( j+1)(n − 1/2 − j)

∫ 1

−1

s

t j−2

(∫
e−wtwQ j−1(w, t) dw

)∣∣∣
s

(1 − s2)n−1/2−( j+1) ds

= (−1) j+1tn−( j+1)
√

π2n−( j+1)(n − 1/2 − j)

∫ 1

−1

e−ts s

t j
(−t2ets )

(∫
e−wtwQ j−1(w, t) dw

)∣∣∣
s

(1 − s2)n−1/2−( j+1) ds

= (−1) j+1tn−( j+1)
√

π2n−( j+1)(n − 1/2 − j)

∫ 1

−1

e−ts s

t j
Q j (s, t)(1 − s2)n−1/2−( j+1) ds.

Moreover, if for some j ∈ N we can write Q j−1(s, t) := ∑ j−1
k=0 c j−1−k, j−1(st)k for

certain coefficients c j−1−k, j−1 ≥ 0, then by [24, Section 1.3.2, formula 6, p.137] it
follows that

Q j (s, t) = −est
j∑

k=1

c j−k, j−1t
k+1
(∫

e−wtwk dw

)∣∣∣
s

=
j∑

k=1

c j−k, j−1k!
k∑

m=0

(st)k−m

(k − m)! =
j∑

k=1

c j−k, j−1k!
k∑

m=0

(st)m

m!
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=
j∑

k=1

c j−k, j−1k! +
j∑

m=1

(st)m

m!
j∑

k=m

c j−k, j−1k!

=
j∑

m=0

⎛
⎝ j∑

k=max{1,m}

k!
m!c j−k, j−1

⎞
⎠ (sz)m

:=
j∑

m=0

c j−m, j (sz)
m, (2.11)

and the proof is over. �

Remark 2.2. Note that, by (2.11), if Q j (s, t) = ∑ j
k=0 c j−k, j (st)k, being c j−k, j =

j∑
m=max{1,k}

m!
k! c j−m, j−1, it follows that c0, j = j !

j !c0, j−1 = ( j−1)!
( j−1)!c0, j−2 = . . . =

c0,0 = 1, and also c j, j = c j−1, j , for all j ∈ N.

Also, note that since (2.10) holds, then

t Q j (s, t) − d
ds Q j (s, t)

t2
= sQ j−1(s, t),

and therefore a few calculations give

ck, j = ck, j−1 + ck−1, j ( j − k + 1), k = 1, . . . , j − 1. (2.12)

Note that by the recurrence formula (2.12), one gets

c1, j = c1, j−1 + jc0, j = c1, j−1 + j = c1, j−2 + ( j − 1) + j = · · ·
= c0,1 + 2 + · · · + j = j ( j + 1)

2
,

and

c2, j = c2, j−1 + ( j − 1)c1, j = c2, j−1 + ( j − 1) j ( j + 1)

2
= · · ·

= c2,2 + 2 · 3 · 4
2

+ · · · + ( j − 1) j ( j + 1)

2
= 1

2 · 4 ( j − 1) j ( j + 1)( j + 2),

where we have applied c2,2 = c1,2 = 2·3
2 . In general, it follows by induction that

ck, j = 1∏k
v=1(2v)

( j − k + 1) · · · ( j + k), k = 1, . . . , j − 1. (2.13)

2.2. Discrete heat kernel

As we have said, G(t, n) = e−2t In(2t) is the fundamental solution of the heat
problem on Z, (1.2) (it is a straightforward consequence of (2.1)). In the following,
we present some key properties for this heat kernel.



J. Evol. Equ. Discrete Hölder spaces, their characterization via semigroups Page 11 of 42 91

From the theory of confluent hypergeometric functions, see [19, Section 9.11], we
have ∫ 1

0
e−4tssγ−α−1(1 − s)α−1 ds

= (γ − α)e−4t
∞∑
k=0

(4t)k

k!
(α + k)

(γ + k)
, Re γ > Reα > 0 (2.14)

and therefore by (2.8) and a change of variable, one gets, for n ∈ N0, and t ≥ 0,

G(t, n) = tn4n√
π(n + 1/2)

∫ 1

0
e−4tssn−1/2(1 − s)n−1/2 ds

= 1√
4π t(n + 1/2)

∫ 4t

0
e−uun−1/2

(
1 − u

4t

)n−1/2
du

= tn4n√
π
e−4t

∞∑
k=0

(4t)k

k!
(n + 1/2 + k)

(2n + 1 + k)
. (2.15)

In the following, two lemmata we prove new pointwise estimates for the difference of
any order of G(t, n).

Lemma 2.3. Let l ∈ N0, and n ∈ Z, then

|δlrightG(t, n)| ≤ Cn

t [(l+1)/2]+1/2
, t > 0.

Proof. Note that for l = 0 the result follows by (2.2) taking N = 0. If l ∈ N, take
N = [(l + 1)/2], then

δlrightG(n, t) = 1

2
√

π t

l∑
j=0

(
l

j

)
(−1) j

( N∑
k=0

(−1)kan+ j,k

(4t)k
+ O

(
1

t N+1

))

= 1

2
√

π t

N∑
k=0

(−1)k

(4t)k

l∑
j=0

(
l

j

)
(−1) j an+ j,k + O

(
1

t N+3/2

)
.

Note that for k = 0, . . . , N , an+ j,k is a polynomial in j of order 2k, so we can write
an+ j,k = ∑2k

p=0 γp,n,k j ( j − 1) · · · ( j − p + 1), being γp,n,k real coefficients (for
p = 0 we have the constant term γ0,n,k). Then,

l∑
j=0

(
l

j

)
(−1) j an+ j,k =

l∑
j=0

(
l

j

)
(−1) j

min{2k, j}∑
p=0

γp,n,k j ( j − 1) · · · ( j − p + 1)

=
min{2k,l}∑

p=0

γp,n,k

l∑
j=p

(
l

j

)
(−1) j j ( j − 1) · · · ( j − p + 1)

=
min{2k,l}∑

p=0

βp,n,k,l

l−p∑
j=0

(
l − p

j

)
(−1) j ,
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with βp,n,k,l real coefficients. Since k = 0, . . . , N , with N = [(l + 1)/2], it is not
difficult to see that previous expression is null whenever k = 0, . . . , N − 1, and it is
not null when k = N . Therefore,

δlrightG(n, t) = Cn

t1/2+[(l+1)/2] + O

(
1

t3/2+[(l+1)/2]

)
,

and the result follows. �

Lemma 2.4. Let l ∈ N, and n ∈ N0. Then,

|δlrightG(t, n)| ≤ Cl

tl/2

[l/2]∑
u=0

(
(n + 1/2)2

t

)l/2−u

G(t, n + l − 2u)

+ClG(t, n)

l−1∑
u=[l/2]+1

1

tu
,

being Cl a positive constant which is independent on t and n.

Proof. Let n ∈ N0, t ≥ 0. Note that by Lemma 2.1 we have

δlright In(t) =
l∑

j=0

(
l

j

)
(−1) j In+ j (t)

= tn√
π2n(n + 1/2)

∫ 1

−1
e−ts(1 − s2)n−1/2

(
1 +

l∑
j=1

(
l

j

)
sQ j−1(s, t)

t j−1

)
ds.

Now, by Remark 2.2, we write

1 +
l∑

j=1

(
l

j

)
sQ j−1(s, t)

t j−1 = 1 +
l∑

j=1

(
l

j

) j−1∑
k=0

c j−k−1, j−1s
k+1tk+1− j

= 1 +
l∑

j=1

(
l

j

) j−1∑
u=0

cu, j−1
s j−u

tu

= 1 +
l∑

j=1

(
l

j

)
s j +

l−1∑
u=1

1

tu

l∑
j=u+1

(
l

j

)
cu, j−1s

j−u

= (s + 1)l +
l−1∑
u=1

s

tu

l−u−1∑
k=0

(
l

u + k + 1

)
cu,k+us

k .

Observe that c1,k+1 = (k+1)(k+2)
2 and therefore

l−2∑
k=0

(
l

k + 2

)
c1,k+1s

k = l(l − 1)
l−2∑
k=0

(
l − 2

k

)
sk = l(l − 1)(1 + s)l−2.
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Now consider the case u = 2, . . . , l − 1. Taking into account (2.13), we have

l−u−1∑
k=0

(
l

u + k + 1

)
cu,k+us

k

= 1∏u
v=1(2v)

l(l − 1) · · · (l − u)

l−u−1∑
k=0

(
l − u − 1

k

)
(k + u + 2) · · · (k + 2u)sk .

Since (k + u + 2) · · · (k + 2u) is a polynomial in k of order u − 1, we can write
(k + u + 2) · · · (k + 2u) = ∑u−1

p=0 bp,uk(k − 1) . . . (k − p + 1), being bp,u real
coefficients (for p = 0, we have the constant term b0,u). Then,

l−u−1∑
k=0

(
l − u − 1

k

)
(k + u + 2) · · · (k + 2u)sk

=
l−u−1∑
k=0

(
l − u − 1

k

)min{u−1,k}∑
p=0

bp,uk(k − 1) . . . (k − p + 1)sk

=
min{u−1,l−u−1}∑

p=0

bp,u

l−u−1∑
k=p

(
l − u − 1

k

)
k(k − 1) . . . (k − p + 1)sk

=
min{u−1,l−u−1}∑

p=0

bp,u(l − u − 1) · · · (l − u − p)
l−u−1∑
k=p

(
l − u − 1 − p

k − p

)
sk

=
min{u,l−u}∑

p=1

dp,u,l s
p−1(s + 1)l−u−p,

with dp,u,l ∈ R. Therefore, we have that

δlright In(t) = tn√
π2n(n + 1/2)

∫ 1

−1
e−ts(1 − s2)n−1/2

(
(s + 1)l

+
l−1∑
u=1

1

tu

min{u,l−u}∑
p=1

dp,u,l s
p(s + 1)l−u−p

)
ds.

Taking into account that |s| ≤ 1 for s ∈ [−1, 1], by a change of variable we have

|δlrightG(t, n)|

≤ Cl
tn4n√

π(n + 1/2)

∫ 1

0
e−4ts sn−1/2(1 − s)n−1/2

(
sl +

l−1∑
u=1

1

tu

min{u,l−u}∑
p=1

sl−u−p
)
ds

≤ Cl

[l/2]∑
u=0

tn−u4n√
π(n + 1/2)

∫ 1

0
e−4ts sn−1/2+l−2u(1 − s)n−1/2 ds

+ Cl

l−1∑
u=[l/2]+1

tn−u4n√
π(n + 1/2)

∫ 1

0
e−4ts sn−1/2(1 − s)n−1/2 ds
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≤ Cl

[l/2]∑
u=0

tn−u4n(n + l − 2u + 1/2)√
π(n + 1/2)

e−4t
∞∑
k=0

(4t)k(n + 1/2 + k)

k!(2n + l + 1 − 2u + k)

+ ClG(t, n)

l−1∑
u=[l/2]+1

1

tu
,

where in the last inequality we have used (2.14). Now take u = 0, . . . , [l/2], and note
that m := l − 2u is positive. An easy computation shows that

(n + 1/2 + k)

(2n + l + 1 − 2u + k)
≤ Cl

(n + m + 1/2 + k)

(2n + 2m + 1 + k)
,

for all n, k ∈ N0. Also,
(n+l−2u+1/2)

(n+1/2) ≤ Cl(n + 1/2)m . Then, by (2.15) we have

|δlrightG(t, n)| ≤ Cl

[l/2]∑
u=0

tn−u4n(n + 1/2)l−2u

√
π

e−4t
∞∑
k=0

(4t)k(n + l − 2u + 1/2 + k)

k!(2(n + l − 2u) + 1 + k)

+Cl

l−1∑
u=[l/2]+1

G(t, n)

tu

≤ Cl

tl/2

[l/2]∑
u=0

(
(n + 1/2)2

t

)l/2−u

G(t, n + l − 2u) + ClG(t, n)

l−1∑
u=[l/2]+1

1

tu
.

�

Remark 2.5. Let l, n ∈ N, and t > 1. From the previous lemma, if 1 ≤ n ≤ √
t−1/2,

then

|δlrightG(t, n)| ≤ C
G(t, n)

t l/2
,

and if n ≥ √
t − 1/2, then

|δlrightG(t, n)| ≤ C
G(t, n)(n + 1/2)l

t l
.

In particular, the previous bounds are also valid when t ∈ (0, 1]. Since G(t, j)
is decreasing for j ∈ N0, then |δlrightG(t, n)| ≤ CG(t, n), G(t, n) ≤ G(t,n)

tl/2
and

G(t, n) ≤ C G(t,n)(n+1/2)l

t l
for all t ∈ (0, 1] and n ∈ N.

Moreover, by using Lemma 2.1 with n + 1 and j = 1, we have that

δrightG(t, n) = e−2t tn√
π(n + 1/2)

∫ 1

−1
e−2ts(1 + s)(1 − s2)n−1/2dx

≥ 1

2

e−2t tn√
π(n + 1/2)

∫ 1

−1
e−2ts(1 − s2)n+1/2dx = n + 1/2

2t
G(t, n + 1).

Therefore, since the kernel G(t, n) does not satisfy a Gaussian control, it will not
fulfil a Lipschitz condition as in [4].
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The following result shows decay rates for the 	1-norm of the differences of any
order. The first difference was proved in [3, Theorem 4.3]. One should keep in mind
that

∑
j∈Z G(t, j) = 1.

Lemma 2.6. Let l ∈ N and t > 0, then

‖δlrightG(t, ·)‖1 :=
∑
j∈Z

|δlrightG(t, j)| ≤ C min{1, 1

t l/2
}.

Proof. Let t > 0. If t ∈ (0, 1], then it is clear that∑ j∈Z |δlrightG(t, j)| ≤ C. Now let
t > 1. Then,

∑
j∈Z

|δlrightG(t, j)| =
(∑

| j |≤l

+
∑
| j |>l

)
|δlrightG(t, j)| := I + I I.

On the one hand, by Lemma 2.3 we have that

I ≤ C

t1/2+[(l+1)/2] ≤ C

t1/2+l/2 ≤ C

tl/2
.

On the other hand, since |δlrightG(t, j)| = |δlrightG(t, | j | − l)| for j ≤ −l, we have
that

I I =
∑
| j |>l

|δlrightG(t, j)| ≤ 2
∑
j≥1

|δlrightG(t, j)| ≤ 2

( ∑
1≤ j≤√

t−1/2

+
∑

j>
√
t−1/2

j≥1

)
|δlrightG(t, j)|

=:I I.1 + I I.2.

Let now k be the least natural number such that 2k ≥ l. Then, by Lemma 2.4 and
Remark 2.5 we have

I I.1 ≤ C

tl/2
∑

1≤ j≤√
t−1/2

G(t, j) ≤ C

tl/2
,

and

I I.2 ≤ C

tl
∑

j>
√
t−1/2

j≥1

G(t, j)(| j | + 1/2)l

≤ C

tl/2+k

∑
j>

√
t−1/2

j≥1

G(t, j) j2k ≤ Cpk(2t)

t l/2+k
≤ C

tl/2
.

�

Remark 2.7. Note that the 	1-norm of the even differences 2l of G(t, n) can be seen
as the 	1-norm of the derivative or order l in time. In this case, our result coincides
with the ones proved in [15,16].
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2.3. Discrete Poisson kernel

The discrete Poisson kernel is defined as

P(y, j) := y

2
√

π

∫ ∞

0

e− y2

4t

t3/2
G(t, j) dt, j ∈ Z, y > 0.

Since we do not have an explicit expression in terms of known functions for P(y, j),
wewill take advantage of the subordination formula and the properties we have proved
for the heat kernel, G(t, j), to get some estimates of the Poisson kernel.

Lemma 2.8. Let y, c > 0 and l ∈ N0. The following estimates hold:

(i)
∣∣∣∂ ly P(y, j)

∣∣∣ ≤ C
yl (1+| j |) , j ∈ Z.

(ii)
∣∣∣∂ ly P(y, j)

∣∣∣ ≤ Cy
yl | j |2 , j �= 0.

(iii)
∣∣∣∂ lyδrightP(y, j)

∣∣∣ ≤ C
yl+2 , j ∈ Z.

(iv)
∣∣∣∂ lyδrightP(y, j)

∣∣∣ ≤ C
yl | j |2 , j �= 0

Proof. First, we prove epigraphs (i) and (ii). Observe that, from [3, Lemma 4.1 (i)]
we have that, for 0 < t ≤ | j |2, |G(t, j)| ≤ C t

| j |3 , and for t > 0, G(t, j) ≤ G(t, 0) ≤
C
t1/2

, for j ∈ Z. Since for every l ∈ N, y, c, t > 0

∣∣∣∣∂ ly
(
ye− cy2

t

t3/2

)∣∣∣∣ ≤ C
e− cy2

t

t l/2+1 ≤ C

yl−1

yl−1e− cy2

t

t
l−1
2 t3/2

≤ Cy

yl
e− cy2

t

t3/2
, (2.16)

and
∫ ∞

0
y
e− cy2

t

t3/2
dt = C < ∞, it follows that, for j �= 0,

∣∣∣∂ ly P(y, j)
∣∣∣ ≤ C

yl

(∫ | j |2

0
y
e− cy2

t

t3/2
t

| j |3 dt +
∫ ∞

| j |2
y
e− cy2

t

t3/2
1

t1/2
dt

)

≤ C
C

yl | j |
∫ ∞

0
y
e− cy2

t

t3/2
dt ≤ C

yl(1 + | j |) ,

and

∣∣∣∂ ly P(y, j)
∣∣∣ ≤ Cy

yl

(∫ | j |2

0

1

t3/2
t

| j |3 dt +
∫ ∞

| j |2
1

t2
dt

)
≤ C

y

yl | j |2 .

The case j = 0 in part (i) follows from (2.16) and the fact that G(t, 0) ≤ C for t > 0.
Now, we prove epigraphs (iii) and (iv). Since G(t, j) = G(t − j) for j ∈ N, and

G(t, j + 1) ≤ G(t, j) for j ∈ N0, from Lemma 2.4 we get that

|δrightG(t, j)| ≤ C
j + 1/2

t
G(t, j + 1) ≤ C

j + 1/2

t
G(t, j), for j ∈ N0
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and

|δrightG(t, j)| = |G(t, | j |) − G(t, | j | − 1)| ≤ C
| j | + 1/2

t
G(t, | j |), for j ≤ −1.

Therefore, we have that

|δrightG(t, j)| ≤ C
(| j | + 1/2)

t
G(t, | j |), for every j ∈ Z and t > 0.

Also, we have for t > 0 and j �= 0,

|δrightG(t, j)| ≤ C

{ | j |
t3/2

, if | j |2 ≤ t,
t

| j |4 , if | j |2 ≥ t,

see [3, Lemma 4.1 (ii)]. Thus, by using (2.16) and the estimates above we get that, for
j ∈ Z,

∣∣∣∂ lyδrightP(y, j)
∣∣∣ ≤ C

yl

∫ ∞

0
y
e− cy2

t

t3/2
| j | + 1/2

t
G(t, j) dt

≤ C(| j | + 1/2)

yl+2

∫ ∞

0
y
e− cy2

t

t3/2
y2

t
G(t, j) dt ≤ C(| j | + 1/2)

yl+2

∫ ∞

0
y
e− cy2

t

t3/2
G(t, j) dt

≤ C

yl+2 ,

where in the last inequality we have proceeded as in epigraph (i), and for j �= 0

∣∣∣∂ lyδrightP(y, j)
∣∣∣ ≤ C

yl

(∫ | j |2

0
y
e− cy2

t

t3/2
t

| j |4 dt +
∫ ∞

| j |2
y
e− cy2

t

t3/2
| j |
t3/2

dt

)

≤ C

yl | j |2
∫ ∞

0
y
e− cy2

t

t3/2
dt = C

yl | j |2 .

�

The previous lemma also holds when we substitute P(y, j) by
∫ ∞

0
y
e− cy2

t

t3/2
dt,

being c > 0 an arbitrary constant.
From Lemma 2.6, we can get the 	1-norm estimates for the Poisson semigroup.

Lemma 2.9. Let y > 0.

(1) ‖∂my P(y, ·)‖1 =
∑
j∈Z

|∂my P(y, j)| ≤ Cy−m, for every m ∈ N0.

(2) ‖δlrightP(y, ·)‖1 =
∑
j∈Z

|δlrightP(y, j)| ≤ Cy−l , for every l ∈ N0.
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Proof. Let y > 0 and m ∈ N0. By (2.16) we have that

∑
j∈Z

|∂my P(y, j)| ≤ C

ym

∫ ∞

0
y
e− cy2

t

t3/2
∑
j∈Z

G(t, j)dt = C

ym
.

On the other hand, Lemma 2.6 implies that

∑
j∈Z

|δlrightP(y, j)| ≤ y

2
√

π

∫ ∞

0

e− y2

4t

t3/2
∑
j∈Z

|δlrightG(t, j)| dt ≤ Cy
∫ ∞

0

e− y2

4t

t3/2+l/2 dt ≤ C

yl
.

�
Remark 2.10. Taking into account that P(y, j) satisfies the Poisson equation, the
results in Lemma 2.9 imply that

‖δ2rightP(y, ·)‖1 = ‖∂2y P(y, ·)‖1 ≤ Cy−2, y > 0.

2.4. Heat and Poisson semigroups

The following lemma contains crucial observations to get our results.

Lemma 2.11. • Let f : Z → R be a function such that the semigroup et�d f is
well defined for every t > 0. Then, δrightet�d f and ∂ lt e

t�d f , l ∈ N, are well
defined. Moreover,

δrighte
t�d f (n) =

∑
j∈Z

(δrightG(t, n − j)) f ( j) =
∑
j∈Z

G(t, j)δright f (n − j),

(analogously for δleft)

and, for t = t1 + t2, where t, t1, t2 > 0,

∂t e
t�d f (n)|t=t1+t2 =

∑
j∈Z

∂t1G(t1, j)e
t2�d f (n − j)

=
∑
j∈Z

G(t1, j)∂t2e
t2�d f (n − j).

• Let f : Z → R be a function such that e−y
√−�d f is well defined for every

y > 0. Then, δrighte−y
√−�d f is well defined. In addition, if

∑
j∈Z

y

(∫ ∞

0

e− cy2

t

t3/2
G(t, j)

)
| f (n − j)| < ∞, y > 0, n ∈ Z and c > 0,

then ∂ lye
−y

√−�d f is well defined for every l ∈ N and the properties above-stated
for the discrete heat semigroup are also fulfilled for the Poisson semigroup.

Proof. Suppose that f : Z → R is a function such that et�d f is well defined for
every t > 0. Then, it is clear that δrightet�d f and ∂ lt e

t�d f are also well defined for
every l ∈ N. Moreover,
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δrighte
t�d f (n) = et�d f (n) − et�d f (n + 1)

=
∑
j∈Z

G(t, n − j) f ( j) −
∑
j∈Z

G(t, n + 1 − j) f ( j)

=
∑
j∈Z

(δrightG(t, n − j)) f ( j)

and, by performing a change of variables, we get that

δrighte
t�d f (n) =

∑
j∈Z

G(t, j) f (n − j) −
∑
j∈Z

G(t, j) f (n + 1 − j)

=
∑
j∈Z

G(t, j)δright f (n − j).

On the other hand, for t = t1 + t2, where t, t1, t2 > 0, the semigroup property gives

et�d f (n) = et1�d (et2�d f )(n) =
∑
j∈Z

G(t1, j)e
t2�d f (n − j).

Furthermore, since

∂t e
t�d f (n)|t=t1+t2 = ∂t1e

(t1+t2)�d f (n) = ∂t2e
(t1+t2)�d f (n),

we obtain that

∂t e
t�d f (n)|t=t1+t2 =

∑
j∈Z

∂t1G(t1, j)e
t2�d f (n − j) =

∑
j∈Z

G(t1, j)∂t2e
t2�d f (n − j).

Now assume that f : Z → R is a function such that e−y
√−�d f is well defined for

every y > 0. Then, it is clear that δrighte−y
√−�d f is well defined. Also, if

∑
j∈Z

y

(∫ ∞

0

e− cy2

t

t3/2
G(t, j)

)
| f (n − j)| < ∞

for each y > 0, n ∈ Z, and c > 0, then, by (2.16), ∂ lye
−y

√−�d f is well defined for
every l ∈ N. The remaining properties can be obtained analogously to the heat kernel
case. �

Next, we study functions for which the semigroups are well defined.

Lemma 2.12. Let f : Z → R.

A. Suppose that for certain α > 0, | f |
1+|·|α ∈ 	∞(Z). Then,

(i) For every t > 0, et�d f is well defined and

|et�d f (n)| ≤ C(1 + |n|α + tα/2), n ∈ Z.
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(ii) For every l ∈ N, and t > 0,

|δlrightet�d f (n)| ≤ C

(
(1 + |n|α)min

{
1,

1

t l/2

}
+ tα/2−l/2

)
, n ∈ Z.

(iii) lim
t→0

et�d f (n) = f (n), for every n ∈ Z.

B. Suppose that f satisfies
∑

j∈Z
| f ( j)|
1+| j |2 < ∞. Then, e−y

√−�d f is well defined for

every y > 0 and lim
y→0

e−y
√−�d f (n) = f (n), for every n ∈ Z.

Proof. We start proving A.(i). Let t > 0, n ∈ Z and m be the smallest natural number
such that 2m ≥ α. By using (2.5), we have that

|et�d f (n)| ≤ C
∑
j∈Z

G(t, j)(1 + |n − j |α) ≤ C
∑
j∈Z

G(t, j)(1 + |n|α + | j |α)

≤ C

⎛
⎝1 + |n|α +

∑
| j |≤√

t

G(t, j)| j |α +
∑

| j |>√
t

G(t, j)| j |α min

{ | j |√
t
, | j |

}2m−α
⎞
⎠

= C

(
1 + |n|α + tα/2 + pm(2t)min

{
1

tm−α/2 , 1

})
≤ C(1 + |n|α + tα/2).

In the last inequality, we have used that |pm(2t)| ≤ C, if 0 < t < 1, and |pm(2t)| ≤
Ctm whenever t > 1.

Next, we prove (ii). Let t > 0, n ∈ Z and m be the smallest natural number such
that 2m ≥ l + α. Then, since

∑
j∈Z |δlrightG(t, j)| ≤ C min{1, 1

tl/2
} (see Lemma 2.6),

we have that

|δlrightet�d f (n)| ≤ C
∑
j∈Z

|δlrightG(t, j)|(1 + |n|α + | j |α)

≤ C(1 + |n|α)
∑
| j |≤l

|δlrightG(t, j)| + C
∑
| j |>l

|δlrightG(t, j)|(1 + |n|α + | j |α)

≤ C((1 + |n|α)min

{
1,

1

t l/2

}
+ C

∑
| j |>l

|δlrightG(t, j)|| j |α.

Recall that if j < −l, one can write |δlrightG(t, j)| = |δlrightG(t, | j | − l)|, with
| j | − l ≥ 1, so by Remark 2.5 and Lemma 2.6, it follows that∑
| j |>l

|δlrightG(t, j)|| j |α

≤
∑
j≥1

|δlrightG(t, j)|(| j + l|α + | j |α) ≤ C
∑
j≥1

|δlrightG(t, j)|| j |α

≤ C

(
tα/2

∑
1≤ j≤√

t

|δlrightG(t, j)| + 1

t l
∑

j>
√
t≥1

G(t, j)| j |α+l +
∑
j>

√
t

0<t<1

G(t, j)| j |α
)

≤ C

(
tα/2−l/2 + pm(2t)min

{
1

t l+m−α/2−l/2 , 1

})
≤ C(1 + tα/2−l/2).
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In the last inequality, we have used that |pm(2t)| ≤ C, if 0 < t < 1, and |pm(2t)| ≤
Ctm whenever t > 1.

Now, we prove (iii). Note that

|et�d f (n) − f (n)| =
∣∣∣∣∣∣
∑
j �=0

G(t, j)( f (n − j) − f (n))

∣∣∣∣∣∣ ≤ C
∑
j �=0

G(t, j)(1 + |n|α + | j |α).

On the one hand,∑
j �=0

G(t, j)(1 + |n|α) = (1 + |n|α)(1 − G(t, 0)) → 0, t → 0+,

since G(t, 0) → 1 as t → 0+. On the other hand,∑
j �=0

G(t, j)| j |α ≤ pm(2t) → 0, t → 0+,

being now 2m ≥ α. Then, the result follows.
Finally, we prove B. Let |n| ≤ A, A ∈ N. We can write

f = f χ{| j |≤2A} + f χ{| j |>2A} := f1 + f2.

Note that when | j | > 2A one gets | j | ≤ 2|n − j |. Then, by Lemma 2.8 (ii) we have

|e−y
√−�d f2(n)| ≤

∑
| j |>2A

P(y, n − j)| f ( j)| ≤ C
∑

| j |>2A

y

|n − j |2 | f ( j)|

≤ Cy
∑

| j |>2A

| f ( j)|
| j |2 → 0,

as y → 0.
On the other hand, we have that f1 ∈ 	p(Z) for each p ≥ 1, and et�d is C0-

semigroup on 	p(Z), see [7]. In particular, it is strongly continuous at the origin in
	p(Z), and therefore pointwise, that is,

lim
y→0

e−y
√−�d f1(n) = f1(n) = f (n).

Weconclude that e−y
√−�d f iswell defined for every y > 0 and limy→0 e−y

√−�d f (n) =
f (n), for every n ∈ Z. �

Lemma 2.13. Let f : Z → R.

1. If f satisfies | f |
1+|·|α ∈ 	∞(Z), for certain α > 0, then, for every n ∈ Z, m :=

m1 + m2, with m1,m2 ∈ N0 and l ∈ N0, such that m
2 + l > α/2, we have that

∂ lt δ
m1,m2
right/lefte

t�d f (n) → 0, as t → ∞.
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2. If f satisfies
∑

j∈Z
| f ( j)|
1+| j |2 < ∞, then, for every n ∈ Z, m := m1 + m2, with

m1,m2 ∈ N0 and l ∈ N0, such that m + l ≥ 1, we have that

∂ lyδ
m1,m2
right/lefte

−y
√−�d f (n) → 0, as y → ∞.

Proof. Suppose that f satisfies | f |
1+|·|α ∈ 	∞(Z), for certain α > 0, and let n ∈ Z and

m1,m2, l ∈ N0 such that m
2 + l > α/2. There exists n′ ∈ Z (n′ is comparable to n)

and q = 2l + m1 + m2 ∈ N with q > α such that

|∂ lt δm1,m2
right/lefte

t�d f (n)| = |δqrightet�d f (n′)|.

Then, it follows from Lemma 2.12 A (ii) that δqrighte
t�d f (n′) → 0, t → ∞.

Now, we prove 2. Suppose that f satisfies
∑

j∈Z
| f ( j)|
1+| j |2 < ∞ and let n ∈ Z and

m1,m2, l ∈ N0 such that m + l ≥ 1.
Suppose first that m = 0, and l ∈ N. By (2.16) we have that, for every y > 0 and

n ∈ Z,

|∂ lye−y
√−�d f (n)| ≤

( ∑
| j |≤√

y

+
∑

| j |≥√
y

)
|∂ ly P(y, j)|| f (n − j)|dt =: A1 + B1.

Note that by Lemma 2.8 (i) we have that

A1 ≤ C(1 + √
y)

yl
∑

| j |≤√
y

1

(1 + | j |)2 | f (n − j)| → 0, y → ∞,

and by Lemma 2.8 (ii),

B1 ≤ C

yl−1

∑
| j |≥√

y

1

| j |2 | f (n − j)| → 0, y → ∞.

Secondly, since δ2righte
−y

√−�d f (n) = �de−y
√−�d f (n + 1) = ∂2y e

−y
√−�d f (n +

1), the case when m is even follows from the previous one.
Finally, it remains to prove that, for l ∈ N0 and n ∈ Z, ∂ lyδrighte

−y
√−�d f (n) → 0,

as y → ∞. Let l ∈ N0, n ∈ Z and y > 0. We write

|∂ lyδrighte−y
√−�d f (n)| ≤

⎛
⎝ ∑

| j |≤√
y

+
∑

| j |≥√
y

⎞
⎠ |∂ lyδrightP(y, j)|| f (n − j)|dt

= A2 + B2.

On the one hand, by Lemma 2.8 (iii)

A2 ≤ C

yl+2

∑
| j |≤√

y

| f (n − j)| ≤ C(1 + y)

yl+2

∑
| j |≤√

y

1

1 + | j |2 | f (n − j)| → 0, y → ∞,
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and by Lemma 2.8 (iv)

B2 ≤ C

yl
∑

| j |≥√
y

| f (n − j)|
| j |2 → 0, y → ∞.

The case including δleft is analogous. �

Lemma 2.14. 1. Let f : Z → R satisfying | f |
1+|·|α ∈ 	∞(Z), for certain α > 0.

For every k, l ∈ N such that l > k ≥ [α/2] + 1 and t > 0, the following are
equivalent:

(i) ‖∂kt et�d f ‖∞ ≤ Ct−k+α/2, (i i) ‖∂ lt et�d f ‖∞ ≤ Ct−l+α/2.

2. Let f : Z → R satisfying
∑

j∈Z
| f ( j)|
1+| j |2 < ∞. For every p, q ∈ N such that

p > q ≥ [α] + 1, α > 0 and y > 0, the following are equivalent:

(i) ‖∂qy e−y
√−�d f ‖∞ ≤ Cy−q+α, (i i) ‖∂ p

y e
−y

√−�d f ‖∞ ≤ Cy−p+α.

Proof. We only do the proof for the heat kernel and the case k = [α/2] + 1 and
l = k + 1. The rest of the cases are analogous.

Suppose that f satisfies (i). Then, by the semigroup property and Lemma 2.6, we
have that

|∂ lt et�d f (n)| = C

∣∣∣∣∣∣
∑
j∈Z

∂uG(u, j)|u=t/2∂
k
v e

v�d f (n − j)|v=t/2

∣∣∣∣∣∣
≤ C‖∂kv ev�d f |v=t/2‖∞

∑
j∈Z

|∂uGu( j)|u=t/2|

≤ Ct−k+α/2t−1 = Ct−l+α/2.

Conversely, suppose that (ii) holds. Since for each n ∈ Z, ∂kt e
t�d f (n) → 0 as t → ∞,

see Lemma 2.13, we have that

|∂kt et�d f (n)| =
∣∣∣∣
∫ ∞

t
∂k+1
u eu�d f (n)du

∣∣∣∣ ≤ Ct−k+α/2.

�

Lemma 2.15. Let f : Z → R.

• Suppose that f ∈ �α
H , for some α > 0. Then, for every l ∈ N0 and m ∈ {1, 2}

such that m
2 + l ≥ [α/2] + 1, we have that

‖∂ lt δm1,m2
right/lefte

t�d f ‖∞ ≤ Ct−(l+m
2 )+ α

2 ,

m1,m2 ∈ N0, m1 + m2 = m, t > 0.



91 Page 24 of 42 L. Abadias and M. De León- Contreras J. Evol. Equ.

• Suppose that f ∈ �α
P , for some α > 0. Then, for every l ∈ N0 and m ∈ {1, 2}

such that m + l ≥ [α] + 1, we have that

‖∂ lyδm1,m2
right/lefte

−y
√−�d f ‖∞ ≤ Cy−(l+m)+α,

m1,m2 ∈ N0, m1 + m2 = m, y > 0.

Proof. We only do the proof for the heat semigroup. For the Poisson is completely
analogous. Suppose that f ∈ �α

H , for some α > 0. We consider first the case l ≥
[α/2]+1,m ∈ {1, 2}.From the semigroupproperty, Lemmas2.6, 2.14 andRemark2.7,
we have that

|∂ lt δm1,m2
right/lefte

t�d f (n)| = C

∣∣∣∣∣∣
∑
j∈Z

δ
m1,m2
right/leftG(u, j)|u=t/2∂

l
ve

v�d f (n − j)|v=t/2

∣∣∣∣∣∣
≤ C‖∂ lvev�d f |v=t/2‖∞

∣∣∣∣∣∣
∑
j∈Z

δ
m1,m2
right/leftG(u, j)|u=t/2

∣∣∣∣∣∣
≤ Ct−l+α/2t−m/2. (2.17)

Now assume that l < [α/2] + 1 and m ∈ {1, 2} so that m
2 + l ≥ [α/2] + 1. Then,

l = [α/2] and m = 2. Then, by using (2.17) with [α/2]+ 1 derivatives in the variable
t and the fact that ∂

[α/2]
t δ

m1,m2
right/lefte

t�d f (n) → 0 as t → ∞ for each n ∈ Z (see
Lemma 2.13), we get that

|∂ lt δm1,m2
right/lefte

t�d f (n)| =
∣∣∣∣
∫ ∞

t
∂

[α/2]+1
u δ

m1,m2
right/lefte

t�d f (n)du

∣∣∣∣ ≤ Ct−l+α/2t−m/2.

�

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For that aim, we need to prove
some results that are important to understand the classes Cα(Z), �α

H , and �α
P .

Lemma 3.1. Let α > 0, α �∈ N, and f ∈ Cα(Z). Then, there exists a constant C > 0
such that

| f (n)| ≤ C(1 + |n|α), n ∈ Z.

Proof. Assume first that 0 < α < 1. Then, | f (n)| ≤ | f (n) − f (0)| + | f (0)| ≤
C(1 + |n|α).

Now, assume that 1 < α < 2. By definition, this means that δright f, δleft f ∈
Cα−1(Z) and, from the previous case, we have that

|δright f (n)| ≤ C(1 + |n|α−1)

and the same inequality holds for δleft f .
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Therefore, for n ∈ N,

| f (n)| ≤ | f (n) − f (n − 1)| + · · · + | f (1) − f (0)| + | f (0)|

=
n∑
j=1

|δleft f ( j)| + | f (0)|

≤ C n(1 + |n|α−1) + | f (0)| ≤ C(1 + |n|α).

Similarly, for n ∈ Z− = Z\N0,

| f (n)| ≤ | f (n) − f (n + 1)| + · · · + | f (−1) − f (0)| + | f (0)|

=
−1∑
j=n

|δright f ( j)| + | f (0)|

≤ C |n|(1 + |n|α−1) + | f (0)| ≤ C(1 + |n|α).

By iterating the previous arguments, we get the result for α > 2. �

The following theorem was proved in [9, Theorem 4.1] for the Hermite operator
and [10, Theorem 5.6] for general Schrödinger operators satisfying a reverse Hölder
inequality. The proof for the discrete Lipschitz spaces is the same, so we omit the
details.

Theorem 3.2. Let α > 0 and f : Z → R such that
∑

j∈Z
| f ( j)|
1+| j |2 < ∞. If f ∈ �α

H ,

then f ∈ �α
P .

Theorem 3.3. For 0 < α < 1, Cα(Z) = �α
H = �α

P .

Proof. Let f ∈ Cα(Z), 0 < α < 1. From Lemma 3.1, we have that | f |
1+|·|α ∈ 	∞(Z).

Since the total mass
∑

j∈Z G(t, j) = 1, we can write

|∂t et�d f (n)| =
∣∣∣∣∣∣
∑
j∈Z

∂tG(t, n − j)( f ( j) − f (n))

∣∣∣∣∣∣ ≤ C
∑
j∈Z

|∂tG(t, j)|| j |α.

Since ∂tG(t, j) = �dG(t, j) = δ2rightG(t, j − 1), and δ2rightG(t, j − 1) = δ2right
G(t, | j | − 1) for j ≤ −1, we can write for every t > 0,∑

j∈Z
|∂tG(t, j)|| j |α = 2

∑
j≥1

|δ2rightG(t, j − 1)|| j |α

= 2

( ∑
1≤ j≤√

t

+
∑
j>

√
t

)
|δ2rightG(t, j − 1)|| j |α

≤ C

(
t−1+α/2 +

∑
j>

√
t

|δ2rightG(t, j − 1)|| j |α
)

,
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where in the last inequality we have applied Lemma 2.6. Assume first that t ≤ 1.
Then, j >

√
t if and only if j ≥ 1, so we have, by (2.5), that

∑
j≥1

|δ2rightG(t, j − 1)|| j |α ≤ C
∑
j≥0

G(t, j)( j + 1)2 ≤ C(1 + p1(2t)) ≤ Ct−1+α/2.

Now assume that t > 1. If j >
√
t , then j ≥ 2 and therefore, j ≤ 2( j − 1). Thus, by

using Lemma 2.4, the fact that G(t, j) is decreasing in j ∈ N0 and (2.5), we get that

∑
j>

√
t

|δ2rightG(t, j − 1)|| j |α ≤ C

t

∑
j>

√
t

G(t, j − 1)

(
( j − 1/2)2

t
+ 1

)
| j |α

≤ C

t3−α/2

∑
j≥2

G(t, j − 1)| j − 1|4 ≤ C
p2(2t)

t3−α/2

≤ Ct−1+α/2.

Since for 0 < α < 1a function such that | f |
1+|·|α ∈ 	∞(Z) also satisfies

∑
j∈Z

| f ( j)|
1+| j |2 <

∞, from Theorem 3.2 we know that �α
H ⊆ �α

P .
Now, we prove that �α

P ⊆ Cα(Z). Let f ∈ �α
P and n �= m integer numbers. We

assume without loss of generality that m > n. We fix y = |n − m| > 0. Then,

| f (n) − f (m)| ≤ | f (n) − e−y
√−�d f (n)| + |e−y

√−�d f (n)

− e−y
√−�d f (m)| + |e−y

√−�d f (m) − f (m)|
= (I ) + (I I ) + (I I I ).

From Lemma 2.12 B and the hypothesis, we have that

(I ) =
∣∣∣∣
∫ y

0
∂ue

−u
√−�d f (n) du

∣∣∣∣ ≤ C
∫ y

0
u−1+α du = Cyα = C |n − m|α.

The same computation works for (I I I ).
On the other hand, by using Lemma 2.15, we get that

|e−y
√−�d f (n) − e−y

√−�d f (m)| ≤ |n − m| sup
n′∈[n,m−1]

∣∣∣δrighte−y
√−�d f (n′)

∣∣∣
≤ C |n − m|y−1+α = C |n − m|α.

We conclude that f ∈ Cα(Z). �

Theorem 3.4. Let 0 < α < 2 and f : Z → C be a function such that f
1+|·|α ∈ 	∞(Z)

and
∑

j∈Z
| f ( j)|
1+| j |2 < ∞. The following are equivalent:

(1) f ∈ �α
H .

(2) f ∈ �α
P .
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(3) f satisfies

sup
n �=0

‖ f (· + n) + f (· − n) − 2 f (·)‖∞
|n|α < ∞. (3.1)

Proof. From Theorem 3.2, we know that (1) �⇒ (2). Let f ∈ �α
P . If 0 < α < 1,

then from Theorem 3.3 we have that

| f (n + m) + f (n − m) − 2 f (n)| ≤ | f (n + m) − f (n)| + | f (n − m) − f (n)|
≤ C |m|α, n,m ∈ Z.

Now assume that 1 ≤ α < 2 and, without loss of generality, that m ∈ N. Then, for
y = m and n ∈ Z we have

| f (n + m) + f (n − m) − 2 f (n)|
≤ | f (n + m) − e−y

√−�d f (n + m) + f (n − m) − e−y
√−�d f (n − m) − 2 f (n)

+ 2e−y
√−�d f (n)|

+ |e−y
√−�d f (n + m) + e−y

√−�d f (n − m) − 2e−y
√−�d f (n)| = I + I I.

If 1 < α < 2, Lemmas 2.12B and 2.15 gives that

I =
∣∣∣∣
∫ y

0
(∂ue

−u
√−�d f (n + m) + ∂ue

−u
√−�d f (n − m) − 2∂ue

−u
√−�d f (n))du

∣∣∣∣
≤ C m

∫ y

0

(
sup

n′∈[n,n+m−1]
|δright∂ue−u

√−�d f (n′)|

+ sup
n′′∈[n−m,n−1]

|δright∂ue−u
√−�d f (n′′)|

)
du

≤ C m
∫ y

0
u−2+αdu = Cmα.

If α = 1, by using that ∂ue−u
√−�d f (n) = − ∫ y

u ∂2we
−w

√−�d f (n)dw + ∂ye−y
√−�d

f (n), we have that

I ≤ C
∫ y

0

∫ y

u
w−1dwdu +

∣∣∣∣
∫ y

0
(∂ye

−y
√−�d f (n + m) + ∂ye

−y
√−�d f (n − m)

−2∂ye
−y

√−�d f (n))du
∣∣∣

≤ C

(
y log(y) −

∫ y

0
log(u)du

)
+ |y||m|( sup

n′∈[n,n+m−1]
|δright∂ye−y

√−�d f (n′)|

+ sup
n′′∈[n−m,n−1]

|δright∂ye−y
√−�d f (n′′)|)

≤ C(y + y m y−1) = C m.
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On the other hand, we have that

I I = |(e−y
√−�d f (n + m) − e−y

√−�d f (n + m − 1)) + · · · + (e−y
√−�d f (n + 1)

− e−y
√−�d f (n))

− (e−y
√−�d f (n) − e−y

√−�d f (n − 1)) − · · · − (e−y
√−�d f (n − m + 1)

− e−y
√−�d f (n − m))|

=
∣∣∣∣∣∣
m∑
j=1

(δrighte
−y

√−�d f (n − j) − δrighte
−y

√−�d f (n + j − 1))

∣∣∣∣∣∣
≤

m∑
j=1

|2 j − 1|
∣∣∣ sup
n′∈[n− j,n+ j−2]

δright(δrighte
−y

√−�d f (n′))
∣∣∣ ≤ Cmα.

Finally, we prove (3) �⇒ (1). Suppose that f satisfies (3.1). Since G(t, j) =
G(t,− j), j ∈ N, and ∂t et�s1 = 0, we have for t > 0 that

|∂t et�d f (n)| =
∣∣∣∣∣∣
1

2

∑
j∈Z

∂tG(t, j)( f (n − j) + f (n + j) − 2 f (n))

∣∣∣∣∣∣
≤ C

∑
j∈Z

|∂tG(t, j)|| j |α.

The rest of the argument follows as in the proof of Theorem 3.3. �

Remark 3.5. Notice that in the previous theorem, the assumption
∑

j∈Z
| f ( j)|
1+| j |2 < ∞ is

only needed in the implications inwhich�α
P appears. It can be proved that (1) ⇐⇒ (3)

only assuming that the function satisfies f
1+|·|α ∈ 	∞(Z).

Theorem 3.6. Let α > 1 and f : Z → R. Then, f ∈ �α
H if, and only if δright f ∈

�α−1
H .

Proof. Suppose that f ∈ �α
H and let k = [α/2] + 1.

We prove first that
|δright f |
1+|·|α−1 ∈ 	∞(Z). Take n �= 0. From Lemma 2.12 A (iii), we

have that

|δright f (n)| ≤ sup
0<t<|n|2

|et�d δright f (n)|

≤ sup
0<t<|n|2

|et�d δright f (n) − e|n|2�d δright f (n)|

+ |e|n|2�d δright f (n)| = A + B.

Regarding B, by using Lemma 2.12 A (ii) we get that

|B| = |δrighte|n|2�d f (n)| ≤ C(1 + |n|α−1).
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To deal with A, we have to distinguish cases. If 1 < α < 2, then

|A| = sup
0<t<|n|2

∣∣∣∣∣
∫ |n|2

t
∂uδrighte

u�d f (n)du

∣∣∣∣∣
≤ C sup

0<t<|n|2
(|n|−1+α + t−1/2+α/2) ≤ C(1 + |n|α−1).

Now consider the case 2 ≤ α < 4, α �= 3. Then, [α/2]+1 = 2 and from Lemma 2.15
we have that

|A| = sup
0<t<|n|2

∣∣∣∣∣
∫ |n|2

t

(∫ |n|2

u
∂2wδrighte

w�d f (n)dw + ∂vδrighte
v�d f (n)

∣∣∣
v=|n|2

)
du

∣∣∣∣∣
≤ C sup

0<t<|n|2

(∫ |n|2

t

∫ |n|2

u
w−5/2+α/2dwdu + (|n|2 − t)∂vδrighte

v�d f (n)

∣∣∣
v=|n|2

)

≤ C sup
0<t<|n|2

(∫ |n|2

t
(|n|−3+α − u−3/2+α/2)du + (|n|2 − t)∂vδrighte

v�d f (n)

∣∣∣
v=|n|2

)

≤ C sup
0<t<|n|2

(|n|−3+α(|n|2 − t) + (|n|−1+α − t−1/2+α/2)

+(|n|2 − t)∂vδrighte
v�d f (n)

∣∣∣
v=|n|2

)

≤ C |n|α−1 + C |n|2∂vδrighte
v�d f (n)

∣∣∣
v=|n|2 . (3.2)

Now, we use Lemma 2.12 A (ii) to get

∣∣∣∂vδrighte
v�d f (n)

∣∣∣
v=|n|2

∣∣∣ = |δ3righte|n|2�d f (n − 1)| ≤ C
1 + |n|α

n3
.

Therefore, |A| ≤ C(1 + |n|α−1).

In general, if α is not an odd number we can proceed as in (3.2), but writing [α/2]+ 1
integrals, such that inside the inner integral will be ∂

[α/2]+1
w δrightew�d f (n).

If α is odd, we have to proceed similarly, but now it will appear some logarithms in
the integrals. We do the case α = 3 to illustrate the computation, but the rest of the
cases are analogous.

|A| = sup
0<t<|n|2

∣∣∣∣∣
∫ |n|2

t

(∫ |n|2

u
∂2wδrighte

w�d f (n)dw + ∂vδrighte
v�d f (n)

∣∣∣
v=|n|2

)
du

∣∣∣∣∣
≤ sup

0<t<|n|2

(∫ |n|2

t

∫ |n|2

u
w−1dwdu + (|n|2 − t)∂vδrighte

v�d f (n)

∣∣∣
v=|n|2

)

≤ C sup
0<t<|n|2

(∫ |n|2

t
(log(|n|2) − log u)du + |n|2∂vδrighte

v�d f (n)

∣∣∣
v=|n|2

)

= C sup
0<t<|n|2

[log |n|2(|n|2 − t) − (|n|2 log |n|2) + |n|2



91 Page 30 of 42 L. Abadias and M. De León- Contreras J. Evol. Equ.

+ t log t − t + |n|2∂vδrighte
v�d f (n)

∣∣∣
v=|n|2 ]

≤ C |n|2 + C |n|2∂vδrighte
v�d f (n)

∣∣∣
v=|n|2 ≤ C(1 + |n|2).

Now, we prove the condition on the semigroup. Lemma 2.15 implies that

‖∂kt δrighte
t�d f ‖∞ ≤ Ct−(k+1/2)+α/2 = Ct−k+ α−1

2 .

Since ∂kt δrightet�d f = ∂kt e
t�d (δright f ), see Lemma 2.11, from Lemma 2.14 we get

that δright f ∈ �α−1
H .

Assume now that δright f ∈ �α−1
H . By definition, we have that

|δright f |
(1+|·|α−1)

∈ 	∞(Z).

Thus, the proof of Lemma 3.1 gives that | f |
(1+|·|α)

∈ 	∞(Z).

Let k = [(α − 1)/2] + 1. From Lemma 2.15 we have that

‖∂kt δlefte
t�d (δright f )‖∞ ≤ Ct−(k+1/2)+ α−1

2 = Ct−(k+1)+ α
2 .

Since ∂kt δleftet�d (δright f ) = ∂kt δleftδrightet�d f , we have that

‖∂kt �de
t�d f ‖∞ ≤ Ct−(k+1)+ α

2 .

Therefore, (1.2) gives that ‖∂k+1
t et�d f ‖∞ ≤ Ct−(k+1)+α/2, so from Lemma 2.14 we

conclude that f ∈ �α
H . �

Theorem 3.7. Let α > 1 and f : Z → R. If f ∈ �α
P , then δright f ∈ �α−1

P .

Proof. Let k = [α]. Suppose that f ∈ �α
P . Then,

∑
j∈Z

| f ( j)|
1+| j |2 < ∞ and Lemma 2.15

implies that

‖∂kyδrighte−y
√−�d f ‖∞ ≤ Cy−(k+1)+α = Cy−k+α−1.

It is clear that
∑

j∈Z
|δright f ( j)|
1+| j |2 < ∞. Moreover, since ∂kyδrighte

−y
√−�d f = ∂ky

e−y
√−�d (δright f ), see Lemma 2.11, from Lemma 2.14 we get that δright

f ∈ �α−1
P . �

Remark 3.8. Since δleft f (n) = −δright f (n−1),n ∈ Z, it is clear thatTheorems3.6, 3.7
hold for δleft.

Finally, we can prove Theorem 1.1.

Theorem 1.1. (A) Let α > 0.
(A.1) If α �∈ N, then �α

H = Cα(Z).
(A.2) If α ∈ N, then �α

H = Zα .

(B) Let f : Z → R such that
∑

j∈Z
| f ( j)|
1+| j |2 < ∞.

(B.1) For every α > 0, α �∈ N,

f ∈ Cα(Z) ⇐⇒ f ∈ �α
H ⇐⇒ f ∈ �α

P .
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(B.2) For every α ∈ N,

f ∈ Zα ⇐⇒ f ∈ �α
H ⇐⇒ f ∈ �α

P .

Proof. We prove first (A.1). In Theorem 3.3, we have proved the result for 0 < α < 1.
Let k < α < k +1, for certain k ∈ N. Assume first that f ∈ �α

H . Then, by applying k

times Theorem 3.6 we get that δl,sright/left f ∈ �α−k
H , l + s = k, and from Theorem 3.3

and the definition of Cα−k(Z) we get that

sup
n �=m

|δl,sright/left f (n) − δ
l,s
right/left f (m)|

|n − m|α−k
< ∞, whenever l + s = k,

so f ∈ Cα(Z).

Conversely, suppose that f ∈ Cα(Z). From Lemma 3.1 we know that | f |
1+|·|α ∈

	∞(Z).Moreover, the definition of the space gives that δl,sright/left f ∈ Cα−k(Z), l+s =
k. Therefore, Theorem 3.3 implies that δ

l,s
right/left f ∈ �α−k

H , l + s = k. Applying k
times Theorem 3.6, we conclude that f ∈ �α

H .

Regarding the proof of (A.2), we proceed as in the proof of (A.1), but now we use
Theorem 3.4 (see Remark 3.5) instead of Theorem 3.3.

In virtue of Theorem 3.2 and (A.1), to establish (B) we only need to prove that
f ∈ �α

P �⇒ f ∈ Cα(Z). Let f ∈ �α
P . Then, by applying k times Theorem 3.7 we

get that δ
l,s
right/left f ∈ �α−k

P , l + s = k, and from Theorem 3.3 and the definition of

Cα−k(Z) we get that

sup
n �=m

|δl,sright/left f (n) − δ
l,s
right/left f (m)|

|n − m|α−k
< ∞, whenever l + s = k,

so f ∈ Cα(Z).

Regarding the proof of (B.2), we proceed as in the proof of (B.1), but now we use
Theorem 3.4 instead of Theorem 3.3. �

4. Applications

In this section, we shall prove regularity results for fractional powers of the discrete
Laplacian in the Lipschitz spaces defined through the heat semigroup. To this aim, we
recall the definition of the fractional powers of the discrete Laplacian, by using the
semigroup method, see [8,29,30]. For other works considering fractional powers of
the discrete Laplacian, see for instance [13,21].
Let I denote the identity operator. For good enough functions, we define the fol-

lowing operators:

• The Bessel potential of order β > 0,

(I − �d)
−β/2 f (n) = 1

(β/2)

∫ ∞

0
e−τ(I−�d ) f (n)τβ/2 dτ

τ
, n ∈ Z.
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• The positive fractional power of the Laplacian,

(−�d)
β f (n) = 1

cβ

∫ ∞

0

(
eτ�d − I

)[β]+1
f (n)

dτ

τ 1+β
, n ∈ Z, β > 0, (4.1)

where cβ = ∫∞
0

(
e−τ − 1

)[β]+1 dτ
τ 1+β .

• The negative fractional power of the Laplacian,

(−�d)
−β f (n) = 1

(β)

∫ ∞

0
eτ�d f (n)

dτ

τ 1−β
, n ∈ Z, 0 < β < 1/2.

The previous formulae come from the following Gamma formulae, see [8],

λ−β = 1

(β)

∫ ∞

0
e−λt tβ

dt

t
, and λβ = 1

cβ

∫ ∞

0
(e−λt − 1)[β]+1 dt

t1+β
, (4.2)

where β > 0 and λ is a complex number with Re λ ≥ 0.
As shown in Theorem 1.2, Bessel potentials of order β > 0 are well defined for

f ∈ �α
H , α > 0. However, the fractional powers of the Laplacian, (−�d)

±β , are not
well defined in general for�α

H functions and an additional condition is needed. In [8],
the authors assumed that the functions belongs to the space

	±β :=
{
u : Z → R :

∑
m∈Z

|u(m)|
(1 + |m|)1±2β < ∞

}
,

in order to define (−�d)
±β f, where 0 < β < 1 in the case of the positive powers

and 0 < β < 1/2 for the negative ones. Note that such spaces are the analogues in the
discrete setting of the ones considered in [26] for the Laplacian in R

n . The choice of
these spaces is justified since the discrete kernel in the pointwise formula

(−�d)
±β f (n) =

∑
m∈Z

K±β(n − m) f (m), n ∈ Z, (4.3)

satisfies Kβ(m) ∼ 1
|m|1+2β , whenever 0 < β < 1 and K−β(m) ∼ 1

|m|1−2β , for 0 <

β < 1/2, see [8]. Observe that the negative powers of the Laplacian are only well
defined for 0 < β < 1/2, since the integral that defines it is not absolutely convergent
for β ≥ 1/2, see (2.3).

In this section, we also want to prove regularity results for positive powers which
can be larger than 1. For that purpose, we extend the definition above of 	β for any
β > 0. Let β > −1/2 and n ∈ Z, we define the discrete kernel

Kβ(n) :=

⎧⎪⎪⎨
⎪⎪⎩
0, |n| − β − 1 ∈ N0,

(−1)|n|(2β + 1)

(1 + β + |n|)(1 + β − |n|) , otherwise.
(4.4)

Note that when β ∈ N0, then Kβ(n) = 0 for all |n| ≥ β + 1.
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Lemma 4.1. Let f ∈ 	β , β > 0. Then, (−�d)
β f is well defined and

(−�d)
β f (n) =

∑
j∈Z

Kβ( j)( f (n − j) − f (n)), n ∈ Z.

Moreover, in that case,

|(−�d)
β f (n)| ≤ C

∑
j∈Z

| f ( j)|
1 + |n − j |1+2β , n ∈ Z.

Proof. First note that since f ∈ 	β, f has polynomial growth and then et�d f is well
defined. Let k ∈ N such that k − 1 ≤ β < k (so k = [β] + 1). Then,

(et�d − I )k f (n) =
k∑

l=0

(−1)k−l
(
k

l

)
etl�d f (n)

=
k∑

l=1

(−1)k−l
(
k

l

)(∑
j∈N

G(lt, j)( f (n + j) + f (n − j))

+ G(lt, 0) f (n)

)
+ (−1)k f (n).

Since −1 = ∑k
l=1(−1)l

(k
l

)
and G(lt, 0) − 1 = −2

∑
j∈N G(lt, j), one obtains

that

(−1)k f (n)

(
k∑

l=1

(−1)l
(
k

l

)
G(lt, 0) −

k∑
l=1

(−1)l
(
k

l

))

= (−1)k f (n)

k∑
l=1

(−1)l
(
k

l

)
(−2

∑
j∈N

G(lt, j))

and therefore

(et�d − I )k f (n) =
∑
j∈N

( f (n + j) + f (n − j) − 2 f (n))

k∑
l=1

(−1)k−l
(
k

l

)
G(lt, j)

=
∑
j∈Z

( f (n − j) − f (n))

k∑
l=1

(−1)k−l
(
k

l

)
G(lt, j)

=
∑

j∈Z\{0}
( f (n − j) − f (n))

k∑
l=1

(−1)k−l
(
k

l

)
G(lt, j).

Now, we denote

T (t, j) :=
k∑

l=1

(−1)k−l
(
k

l

)
G(lt, j) =

k∑
l=0

(−1)k−l
(
k

l

)
G(lt, j), j ∈ Z \ {0},
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where in the last identity we have used that G(0, j) = 0 for j �= 0.

From (2.7) and the fact that
∑k

l=0

∫ π

−π

∣∣∣(kl )e−i jθe−4lt sin2 θ/2
∣∣∣ dθ < ∞, we can apply

Fubini’s theorem to get that

T (t, j) = 1

2π

∫ π

−π

e−i jθ (e−4t sin2 θ/2 − 1)k dθ.

By (4.2), observe that for all j �= 0∫ ∞

0
|T (t, j)| dt

t1+β
≤ C

∫ π

−π

∫ ∞

0
(1 − e−4t sin2 θ/2)k

dt

t1+β
dθ

≤ C
∫ π

−π

(sin2 θ/2)β dθ < ∞,

and therefore

1

cβ

∞∫
0

T (t, j)
dt

t1+β
= 4β

2π

∫ π

−π

e−i jθ (sin2 θ/2)β dθ = 4β

π

∫ 0

−π

cos( jθ)(sin2 θ/2)β dθ

= 2

π
4β

0∫
−π/2

cos(2 jθ)(sin2 θ)β dθ

= 2

π
4β(−1) j

∫ π/2

0
cos(2 jθ) cos2β θ dθ

= Kβ( j),

see [24, Section 2.5.12, formula (22)].
Finally, for | j | ≥ k we have by (2.6) that

∞∫
0

|T (t, j)| dt

t1+β
≤ C

k∑
l=1

∫ ∞

0
G(lt, j)

dt

t1+β
≤ C

1 + | j |1+2β .

Therefore, we have proved that (−�d)
β f is well defined that

|(−�d)
β f (n)| ≤ C

∑
j∈Z

| f (n − j) − f (n)| 1

1 + | j |1+2β ≤ C
∑
j∈Z

| f ( j)|
1 + |n − j |1+2β ,

and that (−�d)
β f (n) =∑ j∈Z( f (n − j) − f (n))Kβ( j). �

Remark 4.2. Some observations are now in order:

• Note that if β ∈ N0, the definition of Kβ [see (4.4)] implies that Kβ is a
sequence of compact support, so Kβ belongs to 	1(Z). Also, if β > 0 is not
a natural number, then the proof above gives that |Kβ( j)| ≤ C

1+| j |1+2β for all

j ∈ Z. So Kβ ∈ 	1(Z) for all β ≥ 0. Moreover, in the previous proof one also

have that Kβ(0) = 4β

2π

∫ π

−π
(sin2 θ/2)β dθ, so Kβ( j) are the Fourier coefficients
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of the function (2 − z − 1/z)β = (4 sin2 θ/2)β, z = eiθ ∈ T. Taking z = 1, we
get ∑

j∈Z
Kβ( j) = 0,

so if f ∈ 	β , then

(−�d)
β f (n) =

∑
j∈Z

Kβ( j) f (n − j).

• Lemma 4.1 extends and complements [8, Theorem 1.1 (i) and Theorem 1.3 (i)].
• When β is a natural number, the expression (−�d)

β f (n) = 1
cβ

∫∞
0(

eτ�d − I
)[β]+1

f (n) dτ
τ 1+β given at the beginning of this section coincides with

(−�d) ◦ · · · ◦ (−�d)︸ ︷︷ ︸
β times

f whenever f ∈ 	β (recall that any iteration of �d f is

defined for every sequence f ).

Lemma 4.3. Let f : Z → R.

• If f ∈ 	−β , 0 < β < 1/2, then for every s > 0, es�d f ∈ 	−β.

• If f ∈ 	β , β > 0, then for every s > 0, es�d f ∈ 	β.

Proof. Suppose that f ∈ 	−β , for some 0 < β < 1/2 and let s > 0. Then,

∑
m∈Z

|es�d f (m)|
1 + |m|1−2β ≤

∑
m∈Z

∑
j∈Z G(s,m − j)| f ( j)|

1 + |m|1−2β =
∑

j∈Z | f ( j)|∑u∈Z G(s, u)

1 + | j + u|1−2β

≤
∑
j∈N

⎛
⎝−( j+1)∑

u=−∞
+

−1∑
u=− j

+
∞∑
u=0

⎞
⎠ G(s, u)

1 + | j + u|1−2β | f ( j)|

+
∑
j∈Z−

∑
u∈Z

G(s, u)

1 + | j + u|1−2β | f ( j)| +
∑
u∈Z

G(s, u)

1 + |u|1−2β | f (0)|.

Observe that the last sum is clearly bounded. On the other hand,

∑
j∈N

∞∑
u=0

G(s, u)

1 + | j + u|1−2β | f ( j)| ≤
∑
j∈N

| f ( j)|
1 + | j |1−2β

∞∑
u=0

G(s, u) ≤ C < ∞.

Now, we split the sum in j ∈ N into two, obtaining

[√s]+1∑
j=1

| f ( j)|
∞∑

u= j+1

G(s, u)

1 + (u − j)1−2β +
[√s]+1∑
j=1

| f ( j)|
j∑

u=1

G(s, u)

1 + ( j − u)1−2β

≤
[√s]+1∑
j=1

| f ( j)|
∞∑
u=1

G(s, u) ≤ Cs
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and, by using (2.5),

∞∑
j=[√s]+1

∞∑
u= j+1

G(s, u)| f ( j)|
1 + (u − j)1−2β +

∞∑
j=[√s]+1

[ j/2]∑
u=1

G(s, u)| f ( j)|
1 + ( j − u)1−2β

+
∞∑

j=[√s]+1

j∑
u=[ j/2]+1

G(s, u)| f ( j)|
1 + ( j − u)1−2β

≤
∞∑

j=[√s]+1

| f ( j)|
∞∑

u= j+1

G(s, u)

1 + u1−2β (1 + u1−2β) +
∞∑

j=[√s]+1

[ j/2]∑
u=1

G(s, u)| f ( j)|
1 + ( j/2)1−2β

+
∞∑

j=[√s]+1

| f ( j)|( 1
2

)1−2β +
(

j
2

)1−2β

j∑
u=[ j/2]+1

G(s, u)

((
1

2

)1−2β

+
(
j

2

)1−2β
)

≤ C
∞∑

j=[√s]+1

| f ( j)|
1 + j1−2β

∞∑
u=1

G(s, u)(1 + u1−2β) ≤ C(1 + pk(2s)),

where k is the least natural number such that 1− 2β < 2k. For the sum with j ∈ Z−,
we can proceed similarly. We left the details to the interested reader.

Now assume that f ∈ 	β , for some β > 0. Then, we can proceed in a completely
analogous way as in the previous case, but now the power will be 1 + 2β, instead of
1 − 2β. �

Now, we prove our main results of this section.

Theorem 1.2. Let α, β > 0.

(i) If f ∈ �α
H , then (I − �d)

−β/2 f ∈ �
α+β
H .

(ii) If f ∈ 	∞(Z), then (I − �d)
−β/2 f ∈ �

β
H .

Proof. Let f ∈ �α
H and 	 = [α+β

2 ] + 1. From Lemma 2.12, we have that

|(I − �)−β/2 f (n)| ≤ C
∫ ∞

0
e−τ (1 + |n|α + τα/2)τβ/2 dτ

τ

≤ C(1 + |n|α)

∫ ∞

0
e−τ (1 + τα/2)τβ/2 dτ

τ
≤ C(1 + |n|α+β), n ∈ Z.

Now,we prove the condition on the semigroup. By using again Lemma 2.12, we obtain
that

|∂t et�d f (n)| = |�de
t�d f (n)| = |et�d f (n + 1) + et�d f (n − 1) − 2et�d f (n)|

≤ C(1 + |n|α + tα/2), n ∈ Z, t > 0.
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Thus,

|∂2t et�d f (n)| = |∂t (�de
t�d f (n))| = |∂t et�d f (n + 1) + ∂t e

t�d f (n − 1) − 2∂t e
t�d f (n)|

≤ C(1 + |n|α + tα/2), n ∈ Z, t > 0.

By iterating the arguments, we have that |∂	
t e

t�d f (n)| ≤ C(1 + |n|α + tα/2), n ∈
Z, t > 0.
Therefore, by introducing the derivatives inside the integral and by using Lem-

mas 2.11 and 2.14 we have that

|∂	
ye

y�d ((I − �)−β/2 f )(n)| =
∣∣∣∣ 1

(β/2)

∫ ∞

0
e−τ ∂	

ye
y�d (eτ�d f )(n)τβ/2 dτ

τ

∣∣∣∣
≤ Cβ

∫ ∞

0
e−τ |(∂	

we
w�d f (n)

∣∣∣
w=y+τ

)|τβ/2 dτ

τ

≤ Cβ

∫ ∞

0
e−τ (y + τ)−	+α/2τβ/2 dτ

τ
τ
y =u

≤ Cβ y
α/2+β/2−	

∫ ∞

0

uβ/2e−yu

(1 + u)	−α/2

du

u

≤ Cβ y
α/2+β/2−	.

When f ∈ 	∞(Z), we proceed analogously by using that, for 	 = [β/2] + 1,

‖∂	
ue

u�d f ‖∞ ≤ sup
n∈Z

∑
j∈Z

|∂	
uG(u, j)|| f (n − j)| ≤ C

‖ f ‖∞
u	

, u > 0,

see Lemma 2.6 and Remark 2.7. �
Theorem 1.3. (Schauder estimates) Let α > 0 and 0 < β < 1/2.

(i) If f ∈ �α
H ∩ 	−β , then (−�d)

−β f ∈ �
α+2β
H .

(ii) If f ∈ 	∞(Z) ∩ 	−β, then (−�d)
−β f ∈ �

2β
H .

Proof. We shall prove that if f ∈ �α
H ∩ 	−β , then

|(−�)−β f |
1 + | · |α+2β ∈ 	∞(Z).

Let f ∈ �α
H ∩ 	−β . Since (4.3) holds, from we have that

|(−�)−β f (n)| ≤
∑
j∈Z

| f ( j)|
1 + |n − j |1−2β

=
∑

|n− j |>2|n|

| f ( j)|
1 + |n − j |1−2β +

∑
|n− j |≤2|n|

| f ( j)|
1 + |n − j |1−2β .

Since |n − j | ≥ | j |
2 when |n − j | > 2|n|, by using that f ∈ 	−β , we get that the first

summand is bounded.
On the other hand, by using that | f |

1+|·|α ∈ 	∞(Z) and | j | ≤ 3|n|when |n− j | ≤ 2|n|,
we have that
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∑
|n− j |≤2|n|

| f ( j)|
1 + |n − j |1−2β ≤ C(1 + |n|α)

∑
|n− j |≤2|n|

1

1 + |n − j |1−2β ≤ C(1 + |n|α+2β).

Following the same steps, it can be proved that for f ∈ 	∞(Z) ∩ 	−β , we have that
|(−�)−β f |
1+|·|2β ∈ 	∞(Z).

Let n ∈ Z. From Lemma 4.3, we know that, for every y > 0, ey�d f ∈ 	−β .
Moreover, since ∂yey�d g(n) = �dey�d g(n) we can introduce the derivatives inside
the integral and apply Fubini’s theorem so that, for every 	 ∈ N,

|∂	
ye

y�d ((−�)−β f )(n)| =
∣∣∣∣ 1

(β)

∫ ∞

0
�	

de
τ�d (ey�d f )(n)τβ dτ

τ

∣∣∣∣ < ∞.

The rest of the proof of ‖∂	
ye

y�d ((−�)−β f )‖∞ ≤ Cy−	+α+2β , 	 = [α + 2β] + 1,
follows the same steps as the corresponding proof on Theorem 1.2. �

Theorem 1.4. (Hölder estimates) Let α, β > 0 such that 0 < 2β < α.

(i) If f ∈ �α
H ∩ 	β , then (−�d)

β f ∈ �
α−2β
H .

(ii) If f ∈ �α
H and β ∈ N, then (−�d) ◦ · · · ◦ (−�d)︸ ︷︷ ︸

β times

f ∈ �
α−2β
H .

Proof. We prove first (i). Let f ∈ �α
H ∩ 	β , α > 2β. Then, by proceeding in a

completely analogous way as in Theorem 1.3 and using Lemma 4.1, but now the
power will be 2β, instead of −2β, we get that

|(−�)β f |
1 + | · |α−2β ∈ 	∞(Z).

Now, we prove the condition on the semigroup.

Let n ∈ Z and 	 = [β] + 1. From Lemma 4.3, we know that, for every y > 0,
ey�d f ∈ 	β . Moreover, since ∂yey�d g(n) = �dey�d g(n) we can introduce the
derivatives inside the integral and apply Fubini’s theorem so that, for every m ∈ N,

∣∣∣∂my ey�d ((−�d)
β f )(n)

∣∣∣
=
∣∣∣ 1
cβ

∂my e
y�d
( ∫ ∞

0

∫
[0,t]	

∂	
νe

ν�d |ν=s1+···+s	 f (n)d(s1, . . . , s	)
dt

t1+β

)∣∣∣
=
∣∣∣C ∫ ∞

0

(∫
[0,t]	

∂m+	
ν eν�d |ν=y+s1+···+s	 f (n)d(s1, . . . , s	)

) dt

t1+β

∣∣∣
=
∣∣∣C ∫ ∞

0

(∫
[0,t]	

�m+	
d eν�d |ν=y+s1+···+s	 f (n)d(s1, . . . , s	)

) dt

t1+β

∣∣∣ < ∞.
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Let m = [α2 − β
]+ 1. Then, m + 	 = [α2 − β

]+ 1+[β]+ 1 > α/2−β +β = α/2.
As m + 	 ∈ N we get m + 	 ≥ [α/2] + 1. Therefore, by using Lemma 2.14, we get
that

∣∣∣∂my ey�d ((−�d)
β f )(n)

∣∣∣
=
∣∣∣C ∫ ∞

0

(∫
[0,t]	

∂m+	
ν eν�d |ν=y+s1+···+s	 f (n)d(s1, . . . , s	)

) dt

t1+β

∣∣∣
≤ C

∫ ∞

0

(∫
[0,t]	

(y + s1 + . . . s	)
−(m+	)+α/2d(s1, . . . , s	)

) dt

t1+β

= C
∫ y

0
(. . . )

dt

t1+β
+ C

∫ ∞

y
(. . . )

dt

t1+β
= C [(I ) + (I I )].

Now, we shall estimate (I ) and (I I ).

(I ) = Cy−m+α/2
∫ y

0

∫
[0,t/y]	

(1 + s1 + . . . s	)
−(m+	)+α/2d(s1, . . . , s	)

dt

t1+β

≤ C y−m+α/2
∫ y

0

( t
y

)	 dt

t1+β
= C y−m+α/2−β.

On the other hand,

(I I ) ≤
∫ ∞

y

	∑
j=0

C j

(y + j t)m−α/2

dt

t1+β
=

	∑
j=0

∫ ∞

y

C j

(y + j t)m−α/2

dt

t1+β

≤
	∑

j=0

C j y
−m+α/2−β.

The last inequality is obtained by observing that y ≤ y + j t ≤ (1 + 	)t inside the
integrals together with the discussion about the sign of m − α/2.

Finally, we prove (ii). Assume that β ∈ N and f ∈ �α
H . Understanding now

(−�d)
β f as the β-times iteration of (−�d), and taking into account that−�d f (n) =

δ2right f (n − 1), the result follows from applying 2β times Theorem 3.6. �
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