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Abstract 12 

In this paper we investigate spatial-temporal associations of fire weather danger and fire regime features from 1979 to 13 
2013. We analyze monthly time series of fire activity (number of fires and burned area) and fire weather danger rating 14 
indices (Fire Weather Index, Burning Index and Forest Fire Danger Index) at two spatial scales: (i) regionally, splitting 15 
the Spanish mainland into Northwest, Hinterland and Mediterranean regions; and (ii) locally, using the EMCWF grid. 16 
All analyses are based on decomposing time series to retrieve differential indicators of seasonal cycles, temporal 17 
evolution and anomalies. At regional scale we apply lagged cross-correlation analysis (4 lags or months before fire) to 18 
explore seasonal associations; and trend detection tests on the temporal evolution component. At the local scale, we 19 
calculate Pearson correlation coefficients between each individual index and the 18 possible fire-activity subsets 20 
according to fire size (all sizes, >1 ha and >100 ha) and source of ignition (natural, unintended and arson); this analysis 21 
is applied to both cycles, temporal and anomalies series.  22 

Results suggest that weather controls seasonal fire activity although it has limited influence on temporal evolution, i.e. 23 
trends. Stronger associations are detected in the number of fires in the Northwest and Hinterland regions compared to 24 
the Mediterranean, which has desynchronized from weather since 1994. Cross-correlation analysis revealed significant 25 
fire-weather associations in the Hinterland and Mediterranean, extending up to two months prior fire ignition. On the 26 
other hand, the association between temporal trends and weather is weaker, being negative along the Mediterranean and 27 
even significant in the case of burned area. The spatial disaggregation into grid cells reveals different spatial patterns 28 
across fire-activity subsets. Again, the connection at seasonal level is noticeable, especially in natural-caused fires. In 29 
turn, human-related wildfires are occasionally found independent from weather in some areas along the northern coast 30 
or the Ebro basin. In any case, this effect diminishes as the size of the fire increases. Our work suggests that for some 31 
regions of mainland Spain, these fire danger indices could provide useful information about upcoming fire activity up to 32 
two months ahead of time and this information could be used to better inform wildland fire prevention and suppression 33 
activities.  34 

Keywords: wildfire, time series, seasonal cycles, trend, weather, fire regime 35 

 36 

1. Introduction 37 

Understanding the complexity and dynamics of fire regimes is growing in importance as the size and severity of 38 
wildfires increase in many regions (Falk et al., 2011). Many factors are involved when defining fire regimes; it is widely 39 
recognized the crucial role humans play in wildfire incidence (San-Miguel-Ayanz and Camiá, 2009) but it is also 40 
indisputable the remarkable influence exerted by weather and climate. Generally speaking, wildfires are the result of 41 
complex human–environment interactions and synergies (Koutsias et al., 2012; Krebs et al., 2010; Liu et al., 2012; Liu 42 
and Wimberly, 2016). The final affected area depends on the fire conducive weather, fuel availability and topography 43 
(Drobyshev et al., 2012; Parisien et al., 2011; Whitman et al., 2018), but also on fire suppression and site accessibility, 44 
thus shaping the resulting fire perimeter (Flannigan et al., 2009; Krebs et al., 2010; Papadopoulos et al., 2013; Shakesby 45 
and Doerr, 2006). Notwithstanding, weather factors influence both fire ignition and spread (Thompson et al., 2011). For 46 

*Manuscript 2º review
Click here to view linked References

mailto:jimenez@unizar.es
http://ees.elsevier.com/jema/viewRCResults.aspx?pdf=1&docID=54773&rev=2&fileID=1197560&msid={4863E2B3-0DF8-434F-856D-20D698AB3565}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

 

instance, coincident high temperatures and extended drought circumstances may promote larger fires (Camia and 1 
Amatulli, 2009; Piñol et al., 1998; Trigo et al., 2016; Turco et al., 2014; Urbieta et al., 2015).  2 

In Spain, several works report an overall decrease of wildfire frequency along the Mediterranean coastlands but an 3 
intensification in the remaining territory (Turco et al., 2016). Likewise, a recent paper by Jiménez-Ruano et al. (2017b) 4 
reported increased fire activity in the Northwest area of Spain, one of the most fire-affected regions in Europe (Koutsias 5 
et al., 2016; Pausas and Fernández-Muñoz, 2012). Furthermore, winter fires and large fires are more frequently 6 
observed, partially induced by human activities (Jiménez-Ruano et al., 2017a) but also related to the lengthening of the 7 
fire season (Jolly et al., 2015). Therefore, we can safely assume fire dynamics are, to some extent, linked to climate 8 
variability. As a matter of fact, some studies already suggest a transition towards more climate-driven fire regimes at a 9 
global scale (Pechony and Shindell, 2010) and an increased role of climate factors in fire occurrence (Rodrigues et al., 10 
2016). 11 

However, one of the main undefeated challenges of fire science is to ascertain the extent to which climate and human 12 
factors are influencing fire regime dynamics. In other words, what role does weather play in the evolution and temporal 13 
behavior of fire incidence? Does it depend on the source of ignition? A number of studies on wildfire incidence have 14 
focused on current climate (Abatzoglou and Williams, 2016; Bedia et al., 2013; Parente et al., 2016; Pausas, 2004; 15 
Turco et al., 2014) as well as future scenarios (Boulanger et al., 2014; Mori and Johnson, 2013; Perera and Cui, 2010); 16 
but studies examining the temporal weather-fire interactions still has room for improvement. 17 

In this sense, a widespread approach to measure the influence of weather on wildfires has been the use of fire weather 18 
danger rating indices. The Canadian Fire Weather Index (FWI) is the most established index being applied worldwide 19 
(Van Wagner, 1987); without being exhaustive, we find examples of use of FWI in North America (Jain et al., 2017; 20 
Turetsky et al., 2004; Wang et al., 2015; Wotton et al., 2017), Europe (Dupire et al., 2017; Viegas et al., 2006), and also 21 
in Iberian Peninsula (Bedia et al., 2012). Likewise, other rating indices have been explored such as the United States 22 
Burning Index (BI) (Schoenberg et al., 2007) or the McActhur’s Forest Fire Danger Index (FFDI) in Australia (Sanabria 23 
et al., 2013). However, few works compare (i.e., Nolasco and Viegas, 2006; Pérez-Sánchez et al., 2017) the 24 
performance of different fire weather indices. 25 

In this study, we investigate the temporal association between weather factors and fire incidence, using fire weather 26 
rating indices as a proxy of short-term weather conditions. We analyze temporal correlations between monthly time 27 
series of fire weather danger indices (FWI, BI and FFDI) and fire regime features (fire frequency and burned area) in 28 
the period 1979 to 2013. Analyses were carried out at two different spatial levels; regions, splitting mainland Spain into 29 
three homogenous areas in terms of fire activity (i.e. term that refers to two variables: number of fires and total burnt 30 
area combination) and climate conditions; and at a local level, using the European Centre for Medium-Range Weather 31 
Forecasts (ECMWF) grid (0.75ºx0.75º, roughly 82x82 km). Time series of weather indices and fire data were 32 
decomposed (season, trend and remainder), analyzed and compared using a combination of correlation and trend 33 
detection procedures. Our main goals are (1) to determine the extent to which weather controls intra and inter-annual 34 
fluctuations of number of fires and burned area at a regional scale, and (2) to detect spatial patterns according to fire 35 
size and ignition source.  36 

 37 

2. Materials and methods 38 

 39 

2.1. Study area 40 

The study area is mainland Spain (thus excluding both the Balearic and Canary archipelagos and the autonomous cities 41 
of Ceuta and Melilla). Spain is very biophysically diverse, presenting a wide variety of climatic, topographical, and 42 
environmental conditions. Mainland Spain is dominated by two biogeographical regions. The Eurosiberian region 43 
covers most of the northern area of the country. It is characterized by an Oceanic climate (according to Koeppen’s 44 
climate classification - Cfb), mostly covered by various types of vegetation from deciduous oak (Quercus robur, 45 
Fraxinus excelsior or Fagus sylvatica) and ash to evergreen oak woodlands, but this region is also heavily dominated by 46 
forest plantations such as Pinus radiata and Eucalyptus globulus. The Mediterranean region covers the remaining 47 
territory. Hot-summer Mediterranean (Csa) and cold semi-arid (BSk) climates characterize this area, which therefore has 48 
notably drier and warmer conditions than the Eurosiberian region. These conditions, coupled to human activity, favour 49 
complex mosaics of agricultural systems and plant communities. Sclerophyllous and evergreen vegetation, such as 50 
Quercus ilex and thermophilous scrublands (maquis and garrigues formations), dominate the region, and forest areas 51 
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mainly consist of pines (Pinus halepensis, Pinus sylvestris, Pinus pinea or Pinus pinaster). Furthermore, bioclimatic 1 
(altitudinal) belts exist within each region in mountain areas such as the Pyrenees along the French border or Sierra 2 
Nevada on the southern Mediterranean coast.  3 

Due to the variety of conditions the Spanish Ministry of Agriculture and Environment outlined 3 major regions (Figure 4 
1) portraying homogenous fire regimes: Northwest (NW), Hinterland (HL) and Mediterranean (MED). The NW region 5 
includes the autonomous communities of Galicia, Asturias, Cantabria and the Basque Country, as well as the provinces 6 
of León and Zamora. This region is located broadly within the Eurosiberian region, excluding the Pyrenees mountain 7 
ranges. The HL region includes all of the autonomous communities without coastline, except for the provinces of León 8 
and Zamora (which belong to NW). HL is located in the transition inland between the Mediterranean and Eurosiberian 9 
regions, thus sharing climate influence and plant species from both of them. Finally, the MED region, situated 10 
completely within the Mediterranean biogeographical region, includes all the autonomous communities along the 11 
Mediterranean coastlands, as well as the western provinces of Andalusia. 12 

 13 

 14 

Figure 1. Spatial distribution of the three regions considered (Northwest, Hinterland and Mediterranean), also NUTS3 and NUTS2 15 
units in mainland Spain (left) and generalized land cover from Corine Land Cover 2006 (right). 16 

 17 

2.2. Fire weather danger rating indices 18 

We have explored 3 of the most widespread fire weather danger rating indices in the literature: the Canadian Fire 19 
Weather Index (FWI), the US Burning Index (BI) and Australian Forest Fire Danger Index (FFDI). These indices 20 
summarize weather conditions related to the ‘burning potential’; nonetheless FWI and BI also reflect fuel moisture 21 
whereas FFDI is a pure meteorological index.  22 

FWI was computed following the Van Wagner and Pickett (1985) specifications, using an specifically-written C++ 23 
library. We used noon weather (either 12.00 or 13.00 local standard time) daily gridded data from the ECMWF Interim 24 
Reanalysis (Dee et al., 2011). The US BI parameters (fuel moistures and indices) were computed following Bradshaw et 25 
al. (1983). The final BI index represents the expected rate of spread and heat release of a given fire. Again, gridded data 26 
from the ECMWF was employed to build the index. To ensure spatial-temporal homogeneity, FWI and BI calculations 27 
were constrained to fuel model G (short needle, heavy dead), because this heavily weights long time-lag fuels, thus 28 
better representing seasonal wetting-drying cycles (Jolly et al., 2015). Finally, FFDI was calculated following the steps 29 
established by McArthur and expressed as equations by Noble et al. (1980). The Drought factor for these equations was 30 
calculated using the improved formula presented by Griffiths driven by the Keetch-Byram Drought Index, which was 31 
calculated using daily maximum temperature and precipitation from each ECMWF reanalysis dataset and mean annual 32 
precipitation values from the WorldClim climate dataset (Hijmans et al., 2005). See Jolly et al. (2015) for deeper 33 
insights on the calculation of the indices. Figure 2 shows the overall workflow followed to calculate every index. 34 

 35 
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 1 

Figure 2. Overall workflow to obtain the Fire Danger Weather Rating Indices employed in the study (see Jolly et al., 2015, for more 2 
details). 3 

 4 

2.3. Fire data and fire-activity subsets 5 

Wildfire information in the period 1979-2013 was retrieved from fire reports in the Spanish General Statistics Forest 6 
Fires database (EGIF), compiled by the Spanish Department of Defense Against Forest Fires The EGIF database stands 7 
out for its precision and completeness, since is one of the oldest wildfire databases in Europe, beginning in 1968 (Vélez, 8 
2001). Among other valuable information, fire reports provide the starting point of each fire event –recorded on a 10x10 9 
km reference grid–, the ignition source, the affected burned area size, and detection date.  10 

 11 

Table 1. Number of fires and burned area summary per ignition cause and fire size globally and regionally for the period 1979-2013. 12 

 Fire frequency Burned area (ha) 

 Spanish mainland (whole study area) 

Size Natural Unintended Arson Natural Unintended Arson 

All 20,336 95,607 273,043 373,971 1,175,281 2,734,781 

>1 ha 4,923 39,706 124,316 372,225 1,163,028 2,700,633 

>100 ha 348 1,521 4,601 333,684 867,602 1,628,286 

 Northwest 

Size Natural Unintended Arson Natural Unintended Arson 

All 3,848 26,408 223,149 38,122 190,636 1,777,329 

>1 ha 1,308 12,142 101,116 37,673 187,120 1,748,864 

>100 ha 74 345 3,208 26,405 88,565 879,687 

 Hinterland 

Size Natural Unintended Arson Natural Unintended  Arson 

All 10,785 38,104 29,554 177,672 429,890 453,538 

>1 ha 2,474 15,791 14,226 176,800 425,030 450,019 

>100 ha 193 621 762 157,617 311,510 327,553 

 Mediterranean 

Size Natural Unintended Arson Natural Unintended  Arson 

All 5,703 31,095 20,340 158,177 554,755 503,913 

>1 ha 1,141 11,773 8,974 157,751 550,878 501,750 

>100 ha 81 555 631 149,662 467,527 421,047 
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Two sets of fire-related time series were constructed at a monthly level: the overall fire frequency (N -number of fires) 1 
and burned area (BA - total affected area in has) were summarized at a regional level (Table 1); additionally fires were 2 
assign to its corresponding ECMWF-grid (Figure 3). Fire data was then split into several fire-activity subsets of ignition 3 
source (natural, negligence/accident and arson) and fire size (All sizes, >1 ha and >100 ha). Negligence and accidental 4 
fires will be further referred to as ‘unintended’. 5 

 6 

1.1. Methods 7 

Fire-weather relationships were analyzed in 3 stages: (1) first we decompose time series of weather data and fire 8 
features; (2) then we investigate spatial-temporal associations at a regional level; finally, (3) we try to identify spatial 9 
patterns in fire-weather associations at grid level. The whole process involves several statistical procedures. We use 10 
time series decomposition to split temporal observations into its main components, cross-correlation to investigate 11 
seasonal cycles, Mann-Kendall and Sen’s slope for trend detection and Pearson’s correlation coefficient to explore 12 
spatial patterns of association at local level. 13 

All statistical procedures, maps and plots were obtained using the R statistical programming language (R Core Team 14 
and R Development Team Core, 2017), packages astsa for cross-correlation and trend and Mann-Kendall and Sen’s 15 
slope tests; raster and rgdal for spatial data manipulation; stats for Pearson’s correlation analysis; and ggplot2 for 16 
mapping and plotting. 17 

 18 

1.1.1. Decomposing monthly time series 19 

Time series of fire activity and weather indices were decomposed using Seasonal-Trend Decomposition (STL; 20 
Cleveland et al. 1990). STL is a very versatile and robust method to divide time series allowing the detection of both 21 
gradual changes (trend) and cycles (season). More importantly, decomposing enables further analysis such as cross-22 
correlation (CC) whose performance is affected by underlying temporal structures; hence it is strongly recommended 23 
that time series were de-trended beforehand. 24 

STL consists in a sequence of Locally Weighted Regression Smoother (LOESS) procedures that split a time series into 25 
three components: trend, season and remainder. For a detailed description of the algorithm see Cleveland et al. (1990). 26 
For the sake of comprehension, hereafter we will refer to season, trend and remainder assuming the following meaning: 27 

 “Season” as the component obtained that represents exclusively the positive and negative peaks of the 28 
detected seasonal cycles within the year. 29 

 “Trend” as the component extracted from the time period that only takes into account the inter-annual 30 
evolution throughout the same, disregarding seasonal cycles. 31 

  “Remainder” as the component that is left over from the two previous ones, and which therefore can be 32 
understood as anomalies or extreme events (both exceptionally high and low values) that are outside the 33 
average values of the trend and seasonal time series. 34 

 35 

1.1.2. Spatial-temporal associations at regional level 36 

Our first objective was to determine the extent to which weather controls intra-annual (seasonal) fluctuations of fire 37 
activity. To answer this question we conducted a cross-correlation (CC) analysis at a regional level using the season 38 
component from STL. Cross-correlation is a standard method that estimates the degree of similarity between two 39 
discrete time sequences (x and y) as a function of the displacement (lagged or the delay in the synchrony of two 40 
temporal events) of one relative to the other (Venables and Ripley, 2002). We followed the formula (1 and 2) about the 41 
definitions of the lags established by Venables and Ripley (2002) who extended to several time series observed over the 42 
same interval:  43 

                             )                                           (1) 44 

       
 

 
     

          
                                                   (2) 45 
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Where are Xi and Xj are the two different time series, t is a particular observation, T is the whole time series, s is the 1 
scale estimator, c is the correlation or covariance of these observed pairs. In this case, autocorrelation is not symmetric 2 

in t for i ≠ j. 3 
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 5 
Figure 3. Spatial distribution of total number of fires (top) and total burned area (bottom) across size-and-cause subsets. 6 

 7 

In our context, we were seeking the association between time series of fire activity (y) related to past lags in each fire 8 
danger index (x). A set of 4 lags (0, 1, 2 and 3 months) was established as the maximum time window of weather 9 
influence. 10 

With the purpose of assessing inter-annual dynamics of fire activity and FWI, BI and FFDI, we applied the Mann-11 
Kendall test (MK) coupled with Sen’s slope (SS); this combination allows us to identify statistical significant trends and 12 
quantify the magnitude of the change. MK is a non-parametric statistical test suitable for identifying trends in times 13 
series (Kendall, 1975; Mann, 1945). This test contrasts the null hypothesis (H0) and alternative hypothesis (H1) of non-14 
existence or existence of trend, respectively. MK outputs are the Ʈ value, whose value determine the sign of the trend 15 
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(upward: Ʈ >0; downward Ʈ < 0); in turn the significance level of the test identifies significant trends (p-value <0.05). 1 
Then, we evaluated the magnitude of the changes by means of SS (Sen, 1968). SS is also a non-parametric procedure 2 
that estimates the median slope by joining all pair-wise combinations of observations.  3 

 4 

1.1.1. Local correlation analysis and mapping 5 

To identify spatial patterns in fire-weather associations, we applied correlation analysis at pixel level by means of the 6 
Pearson’s R correlation coefficient (Best and Roberts, 1975; Hollander and Douglas, 1973). Pearson’s R is a parametric 7 
statistical test that indicates the extent to which two variables are linearly related. The test requires at least one of the 8 
variables to be normally distributed; in our case, the three fire danger indexes (FWI, BI and FFDI) fulfil this 9 
requirement. Pearson’s R ranges between +1 and −1, where 1 is perfect positive linear correlation, 0 is no linear 10 
correlation, and −1 is negative linear correlation. We calculated and mapped Pearson’s R at grid level for each fire-11 
activity subset (Figure 3) reporting the R correlation coefficient and its statistical significance (p<0.05). The process 12 
was repeated using each weather index. 13 

 14 

2. Results 15 

 16 

2.1. Relationships between fire weather danger and fire activity 17 

Figures 4 and S1-S2 (Appendix) show the temporal evolution of the FWI-BI-FFDI (respectively) and fire features at 18 
regional level. Generally speaking, the connection between fire danger indices and fire features is noticeable. For 19 
instance, fire frequency in the Hinterland and Northwest region closely follows the temporal fluctuation of fire danger 20 
whereas the Mediterranean greatly differs since the mid-90s. 21 

 22 

23 
 24 

Figure 4. Time series of FWI (yellow line), fire frequency (red line) and burned area (green line). All variables are normalized into a 25 
0-1 range. 26 
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 1 

 2 

Figure 5. Time series of seasonal component of FWI (yellow line), fire frequency (red line) and burned area (green line). All 3 
variables are normalized into a 0-1 range. 4 

 5 

 6 

Figure 6. Time series of trend component of FWI (yellow line), fire frequency (red line) and burned area (green line). All variables 7 
are normalized into a 0-1 range. 8 
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The seasonal decomposition of fire activity reveals a secondary peak in late winter-early spring particularly noticeably 1 
in the Northwest region for fire frequency (Figures 5 and S3-S4 Appendix). However, as we move towards the 2 
Mediterranean region, the magnitude of this secondary peak decreases. In turn, the trend component of fire danger has 3 
been progressively increasing in all regions (Figures 6 and S5-S6 Appendix). Nonetheless, fire activity shows different 4 
tendencies depending on the region. The Northwest region is the most stationary, although during the last decade fire 5 
features depict a downward trend. The Hinterland region showed an increase until 2010, decreasing afterwards. In the 6 
case of Mediterranean, this decline is also present since 2000. 7 

 8 

Table 2. Cross-correlation coefficients between seasonal plus random effects components of FWI, BI and FFDI by monthly lags (-3, 9 
-2, -1 and 0) and fire frequency and burned area by region (NW: Northwest, HL: Hinterland and MED: Mediterranean).Fire features 10 
were log-transformed and normalized before the analysis.  11 

  FWI BI FFDI 

Region Fire feature Lag -3 Lag -2 Lag -1 Lag 0 Lag -3 Lag -2 Lag -1 Lag 0 Lag -3 Lag -2 Lag -1 Lag 0 

NW 
Frequency -0.27 0.10 0.36 0.38 -0.29 0.02 0.33 0.40 -0.27 0.05 0.32 0.41 

Burned area -0.25 0.10 0.36 0.38 -0.28 0.01 0.31 0.39 -0.24 0.06 0.32 0.40 

HL 
Frequency -0.26 0.20 0.55 0.64 -0.28 0.15 0.50 0.61 -0.24 0.20 0.55 0.65 

Burned area -0.23 0.11 0.36 0.35 -0.26 0.10 0.38 0.38 -0.22 0.10 0.35 0.36 

MED 
Frequency -0.15 0.29 0.63 0.73 -0.21 0.22 0.57 0.64 -0.19 0.24 0.62 0.75 

Burned area -0.08 0.30 0.62 0.70 -0.17 0.21 0.55 0.64 -0.12 0.26 0.61 0.72 

 12 

Results from cross-correlation support and complement the aforementioned seasonal performance. We detect a 13 
generalized and strong positive association between seasonal fire activity and fire danger indices (Table 2). Overall, 14 
correlations are statistically significant in lags 0 and -1, decreasing and losing significance as lag increases. Correlations 15 
in N are usually greater than in BA, and higher in FWI than in BI-FFDI; although regional dissimilarities do exist. The 16 
MED region shows the highest correlations for FFDI (Nlag=0=0.75, Nlag=-1=0.62; BAlag=0=0.72, BAlag=-1=0.61) followed 17 
by HL (Nl=0=0.65, Nl=-1=0.55; BAl=0=0.36, Bal=-1=0.35). The most streaking result from this analyses is the moderate 18 
correlation values observed in the NW region for FWI (Nl=0=0.38, Nl=-1=0.36; BAl=0=0.38, BAl=-1=0.36). This fits the 19 
expected behavior of the region given its secondary occurrence peak in fire incidence during winter related to 20 
agricultural burnings.  21 

One of the most remarkable findings is the consistent positive trend of FWI-BI-FFDI across regions, thus mainland 22 
Spain experiences increased fire weather potential over time. Nonetheless, fire activity performs differently across 23 
regions (Table 3). Fire frequency shows significant and positive trends only in NW and HL, more intense in the NW 24 
region (SS 0.49 vs. 0.20). On the contrary, fire occurrence in the MED region tends to decay. Burned area displays non-25 
significant trends in all the study regions excluding MED, with a significant negative trend. Hence, it is obvious that the 26 
evolution of fire activity differs from the one by FWI-BI-FFDI in most of the study area. This is noticeable in the 27 
disconnection of fire danger indices and fire activity in the Mediterranean after the 90s (Figures 4 and S1-S2 Appendix). 28 
Therefore, short-term weather conditions have limited ability to control dynamics in fire activity other than seasonal 29 
cycles, at least at global/regional level. In general, fire danger seems to be more related to intra-annual cycles of fire 30 
activity while has a limited influence on long-term trends. 31 

 32 

Table 3. Mann-Kendall coefficients Tau and Sen’s slope output of trend component of the decomposed time series of FWI, BI and 33 
FFDI, fire frequency and burned area in each region. Significant cases (p value < 0.05) are denoted by an asterisk. Only burned area 34 
was log-transformed and normalized before analyses.  35 
 36 
 37 

 38 

 Northwest Hinterland Mediterranean 

Fire feature Tau Sen’s slope Tau Sen’s slope Tau Sen’s slope 

FWI 0.31* 0.001 0.49*  0.001  0.39* 0.001 

BI 0.36* 0.001 0.52*  0.001  0.39* 0.001 

FFDI 0.40* 0.001 0.58*  0.001  0.46* 0.001* 

Frequency 0.24* 0.49* 0.36* 0.20* -0.28* -0.13* 

Burned area 0.01  0.00 0.02  0.00 -0.39* -0.01* 
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2.2. Differences between fire danger indices by fire feature and fire-activity subset 1 

At a first glance, regarding local level, the association of fire activity with weather indices is greater in the seasonal 2 
component and, in general, stronger for fire frequency than for burned area. This is inferable from the higher value of 3 
the correlation coefficients and the larger number of significant locations we found. Overall, fire danger indexes are 4 
better linked to fire ignition source than fire size; however, differences were detected in terms of spatial patterns and 5 
also depending on the ignition source or the final area of the fires. Additionally, the remainder component is usually 6 
more correlated with human caused fires above 1 ha. In turn, the spatial patterns observed across fire weather danger 7 
rating indices resemble one another, depicting a similar picture when comparing either components of time series or 8 
fire-activity subsets (Figures from S7 and S8 Appendix). In any case, BI (Figures 7 and 8) seems to provide more 9 
insightful outputs in terms of Pearson’s coefficients and spatial patterns, not only in the seasonal component as well as 10 
in the trend component. On the other hand, the others fire danger indices (FWI and FFDI) show similar average 11 
Pearson’s R (Figures S9 and S10 Appendix).  12 

 13 

 14 

Figure 7. Statistical distribution of the Pearson’s R between total number of fires-burned area and BI. Blue gradient categories show 15 
the average of Pearson’s R of pixels in each fire size-cause subset and component (season and trend).  16 

 17 

At a seasonal level, significant correlations were found in the whole study area regardless of the fire-activity subset or 18 
fire feature. However, natural-caused fires portray a more homogenous pattern compared to those triggered by a human-19 
related source. R’s values in natural fires are consistently higher and positive, whereas we observe spatial gaps of low 20 
(and even negative) correlation values in the central North and East area in the case of anthropogenic fires, especially in 21 
arson fires. This pattern is not observed in large fires, which tend to be positively related at seasonal level irrespective to 22 
the source of ignition. 23 
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 1 

Figure 8. Spatial pattern of Pearson coefficients between BI vs. seasonal, trend and remainder components of fire frequency (left) 2 
and burned area (right). Green to yellow values indicate negative association; yellow to red indicate positive association. Points mark 3 
significant relationships (p<0.05). Blank pixels indicate no-fire activity in the subset. 4 
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The trend component performs differently, displaying contrasting situations across fire-activity subsets. Overall, burned 1 
area shows weak association with fire weather indices, even though significant values area detected. In that regard, 2 
more than 40% of the significant locations display negative associations, suggesting poor influence of weather over 3 
burned area trends. The yearly evolution of natural fires seems to be slightly linked to weather trends in the 4 
Northeastern end but only in the case of the number of small fires. Correlation values in the remaining fire-activity 5 
subsets of natural fires are, on average, below the 0.46 threshold in the case of fire frequency and 0.17 in burned area. 6 
Nonetheless, locations within the Hinterland and Mediterranean regions display significant and positive correlations in 7 
the case of frequency of small-to-medium human-caused fires. The effect of size over trend correlations is fairly sturdier 8 
than in the seasonal component; correlation values decrease as fire size increases, as is noticeable in both unintended 9 
and arson fires.  10 

Finally, the remainder component –which maybe ultimately linked to extreme events or anomalies – shows moderate to 11 
low correlation values no matter the subset. However, the most outstanding result is the occasional existence of positive 12 
and significant associations in some fire-activity subsets. These are more noticeable and widespread in fire frequency 13 
than in burned area. If we focus on all fires or those above 1 ha burned, the association is found significant elsewhere in 14 
terms of number of fires. If we only account for large fires, then significant relationships are limited to the Northwest 15 
region. This pattern is also observed in the case of burned area, but in this case significant locations are only observed in 16 
central and Northwest Spain. 17 

 18 

3. Discussion 19 

In this study we explored time-based associations among fire weather danger rating indices and two of the most 20 
important fire regime features (i.e. fire frequency and burned area) at regional and local level. This enabled us to 21 
understand the diverse contribution of weather conditions to fire incidence by regions, whereas we delve into the detail 22 
of the spatial-local distribution of associations depending on fire size and ignition cause. 23 

Our results underline a desynchronize of fire-weather and fire regime in the Mediterranean region since 1994. The 24 
reasons that might be explain this aspect is to be linked to a change in firefighting policy such France (Curt and 25 
Frejaville, 2018; Fréjaville and Curt, 2015). At the same time, fire danger conditions show a general growth, which has 26 
been reported over large forest areas over European Mediterranean countries (Moriondo et al., 2006), due to the rising 27 
frequency of years with high fire risk, the longer fire danger season and the greater likelihood of extreme events. 28 

Generally speaking, we observe a close association between short-term (up to 2 months) weather conditions and 29 
seasonal cycles of fire activity. The association is stronger in fire frequency than burned area and in the case of BI than 30 
in the rest of indexes, although with slight regional differences (Figures S1 and S2, Appendix). For instance, in the case 31 
of fire frequency the correlation is higher in the Hinterland and Mediterranean regions (Jiménez-Ruano et al., 2017b) 32 
while the Northwest displays moderate seasonal correlations; likely due to the secondary peak of fire incidence during 33 
winter months linked to human activities in the last (Moreno et al., 2014; Sousa et al., 2015). It is worth noting that this 34 
region accounts for 75 % of arson fires, especially to remove scrub for obtaining pasture for livestock or to reduce 35 
stubble (Moreno, 2016). As we expected, CC outputs (Table 2) pointed out that fire weather danger conditions have a 36 
remarkable association during the ignition month –lag 0– that weakens towards a month before –lag -1–, although 37 
remaining statistically significant.  38 

On the other hand, the temporal evolution expressed as the trend component performs differently. Fire weather indices 39 
display significant increasing trends all over the study area (Jolly et al., 2015). In the same line, increased fire 40 
occurrence in the Northwest region of mainland Spain (Jiménez-Ruano et al., 2017a) and growing tendency towards 41 
severe fire-prone situations in the inland region have already been documented (Martínez et al., 2009; Trigo et al., 42 
2016). Thus, we may conclude that fire frequency tends to increase over time, both in areas where there was already a 43 
high incidence and in areas where there was less, so that fire activity becomes spatially more extensive (Moreno, 2016). 44 
However, the Mediterranean region seems to behave otherwise, with an overall decrease both in fire ignitions and 45 
affected area (Jiménez-Ruano et al., 2017a; Turco et al., 2016). Our findings suggest that, to some extent, trends in fire 46 
frequency in the central and north regions are connected with the inter-annual evolution of fire weather indices, except 47 
in the case of large fires. On the other hand, the Mediterranean region is somewhat desynchronized from the overall 48 
increasing trend of fire weather indices, particularly clear since the 90s (Figure 4). Furthermore, dynamics in burned 49 
area do not appear to be as strongly linked to weather as ignition does. In this sense, it is well-known that fire activity in 50 
the Mediterranean region is controlled by longer periods of high temperatures and/or lower fuel moisture (Rivas 51 
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Soriano et al., 2013). In fact, fire weather conditions represent around 25% of the influence over the spatial distribution 1 
of fires in other Mediterranean environments such as the south of France (Ruffault et al., 2017). In contrast, in the south 2 
Alps, in the late 20

th
 century the climate influence is decreasing in favor of human activities and fuel availability 3 

(Zumbrunnen et al., 2009). According to our findings, this effect is limited to the intra-annual (seasonal) cycles of fire 4 
activity but not connected to the inter-annual evolution, i.e., warm and dry periods during summer promote fire 5 
incidence but warmer conditions along the years do not favor further fire activity. 6 

The spatial disaggregation of correlation exposed local underlying patterns of association. Again, the link is stronger in 7 
seasonal cycles than in temporal evolution, and weaker in burned area compared to fire frequency. Overall, weather 8 
conditions influence fire ignition to a higher extent than burned area size. Fire propagation is a more convoluted process 9 
involving a number of factors both environmental –fuel load or landscape structure– or anthropogenic –fire suppression 10 
(Koutsias et al., 2012; Krebs et al., 2010; Liu et al., 2012; Liu and Wimberly, 2016). On the other hand, accounting for 11 
the ignition source or the final size of the fire allows more insightful analyses. In fact, the proportion of small fires has 12 
been increasing from the period 1974-1993 and today they remain stable at these high percentages, around 70% 13 
(Jiménez-Ruano et al., 2017a; Moreno, 2016). Furthermore, addressing human-related fires separately allowed us to 14 
identify spatial gaps of correlation with fire weather indices such as those in fire frequency in the central north area of 15 
the country. In this sense, it is well-known that in some locations of the NW, fires are triggered by arsonists taking 16 
advantage of dry-warm weather situations (Prestemon et al., 2012), which can ultimately become uncontrolled 17 
depending on the fire-fighting capability and availability (Fuentes-Santos et al., 2013).  18 

Seasonal variations in burned area from human-related fires are greatly related to weather conditions, more markedly in 19 
the Northwest of mainland Spain. This result is consistent with the work by Trigo et al. (2016), who highlighted the 20 
western half of the Iberian Peninsula as more susceptible to large wildfires. Furthermore, unintended fires are also 21 
significantly associated to fire weather danger in the north-central and east region. In this sense, Badia et al. (2011) have 22 
detected an increase in fire danger in Catalonia explained by mean maximum temperature in July in both scrublands and 23 
coniferous forests. In that regard, those indices accounting for fuel moisture (BI and FWI) produce higher correlations 24 
and more contrasted spatial patterns than those purely meteorological (FFDI). In contrast, Jiménez-Ruano et al. (2017b) 25 
reported a decrease in frequency and burned area for wildfires above 500 ha, likely explained by the improvement in 26 
fire suppression investment over the years.  27 

Different local associations were detected in the trend component. The most interesting outcome was found in locations 28 
with negative associations between fire weather and fire activity, especially in a number of locations along the 29 
Mediterranean coast. Overall, positive associations are expected, i.e., higher fire danger should lead to more fire 30 
activity; but the existence of such negative associations suggests that the inter-annual evolution of fire incidence is not 31 
fully controlled by weather. This was already observed at regional level in the Mediterranean and also locally in the 32 
Northeastern region. However, the HL region brings together some positive correlations with fire weather trends 33 
regardless of the cause.  34 

Finally, analyses on the remainder component revealed a certain degree of association between anomalies in fire activity 35 
and fire weather indices. This is particularly interesting since these relationships are consistently positive. Thus, there 36 
appears to be some connection between random anomalies or extreme events. 37 

However, our work has some shortcomings that should be mentioned. Firstly, the quality of the dataset used in the 38 
analysis could be improved in terms of resolution spatial. Secondly, it would be interesting to combine meteorological 39 
variables and fire indices to build better models, while improving their predictive power. In this sense, we can find some 40 
examples in De Angelis et al., (2015) who have been able to enhance the performance with a Maxent approach. On the 41 
other hand, care should be taken with the indiscriminate use of FWI, since in some areas of Italy it has been observed 42 
that FWI probably overestimates fire danger, especially during early spring and autumn (Giannakopoulos et al., 2012). 43 
Thus, it seems reasonable to move towards a fine tuning of the existing indices, depending on the analyzed 44 
environment. 45 

5. Conclusions 46 

In this work we investigate the association between fire danger indices and two of the most common fire regime 47 
features, such as number of fires and burned area, in mainland Spain. We have accounted for all fire records in the 48 
period 1979-2013 in order to explore the joint influence of FWI, BI and FFDI at regional level, as well as analyzing 49 
their own contribution separately at local level. 50 
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Our findings suggest that weather conditions control intra-annual (seasonal) cycles of fire activity but have a limited 1 
influence on long-term trends. Overall, fire danger is better linked to fire ignition than burned area size, although 2 
differences were detected in terms of spatial patterns and also depending on the ignition source or the ultimate size of 3 
the fires.  4 

According to cross-correlation outputs, the seasonal influence of weather is stronger during the first two months before 5 
the fire, although in some regions such as the Hinterlands it remains statistically significant up to three months. 6 
Seasonal burned area correlation outputs seem to be more associated to arson cause in the Northwest, the most fire 7 
affected and arson-related region. The assessment of the trend component points towards the independence of fire 8 
activity in the Mediterranean losing synchronicity with fire weather danger since 1994. Altogether, it suggests that 9 
human factors have taken over weather conditions. In cross-correlations analysis, both FWI and FFDI were considered 10 
useful fire indices due to its good performance at regional level while FWI is widely used in the bibliography.  11 

At local level, the comparison of fire weather indices promotes BI as the best suited to analyze fire-weather 12 
relationships in the context of mainland Spain due to its higher correlations values. In addition, it seems to work quite 13 
well for the seasonal and trend components of burned area.  14 
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Figure S1. Time series of BI (yellow line), fire frequency (red line) and burned area (green line). All variables are normalized into a 0-1 

range. 

 

 
Figure S2. Time series of FFDI (yellow line), fire frequency (red line) and burned area (green line). All variables are normalized into 

a 0-1 range. 
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Figure S3 Time series of seasonal component of BI (yellow line), fire frequency (red line) and burned area (green line). All variables 

are normalized into a 0-1 range. 

 

 

 
Figure S4. Time series of seasonal component of FFDI (yellow line), fire frequency (red line) and burned area (green line). All 

variables are normalized into a 0-1 range. 



 

Figure S5. Time series of trend component of BI (yellow line), fire frequency (red line) and burned area (green line). All variables 

are normalized into a 0-1 range. 

 

 

 

Figure S6. Time series of trend component of FFDI (yellow line), fire frequency (red line) and burned area (green line). All variables 

are normalized into a 0-1 range. 
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Figure S7. Spatial pattern of Pearson coefficients between FWI vs. seasonal, trend and remainder components of fire frequency (left) 

and burned area (right). Green to yellow values indicate negative association; yellow to red indicate positive association. Points mark 

significant relationships (p<0.05). Blank pixels indicate no-fire activity in the subset. 
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Figure S8. Spatial pattern of Pearson coefficients between seasonality, trend and remainder components of fire frequency-burned 

area vs. FFDI. Green to red gradient indicates relationships from negative to positive. Points indicate significant relationships for p 

value <0.05. Blank pixels indicate no contribution to the scenario. 



 

Figure S9. Statistical distribution of the Pearson’s R between total number of fires-burned area and FWI. Blue gradient categories 

show the average of Pearson’s R of pixels in each fire size-cause subset and component (season and trend). 

 
Figure S10. Statistical distribution of the Pearson’s R between total number of fires-burned area and FFDI. Blue gradient categories 

show the average of Pearson’s R of pixels in each fire size-cause subset and component (season and trend).  




