A new approach to dating the reference cycle
Resumen: This article proposes a new approach to the analysis of the reference cycle turning points, defined on the basis of the specific turning points of a broad set of coincident economic indicators. Each individual pair of specific peaks and troughs from these indicators is viewed as a realization of a mixture of an unspecified number of separate bivariate Gaussian distributions whose different means are the reference turning points. These dates break the sample into separate reference cycle phases, whose shifts are modeled by a hidden Markov chain. The transition probability matrix is constrained so that the specification is equivalent to a multiple change-point model. Bayesian estimation of finite Markov mixture modeling techniques is suggested to estimate the model. Several Monte Carlo experiments are used to show the accuracy of the model to date reference cycles that suffer from short phases, uncertain turning points, small samples, and asymmetric cycles. In the empirical section, we show the high performance of our approach to identifying the US reference cycle, with little difference from the timing of the turning point dates established by the NBER. In a pseudo real-time analysis, we also show the good performance of this methodology in terms of accuracy and speed of detection of turning point dates.
Idioma: Inglés
DOI: 10.1080/07350015.2020.1773834
Año: 2022
Publicado en: JOURNAL OF BUSINESS & ECONOMIC STATISTICS 40, 1 (2022), 66-81
ISSN: 0735-0015

Factor impacto JCR: 3.0 (2022)
Categ. JCR: STATISTICS & PROBABILITY rank: 17 / 125 = 0.136 (2022) - Q1 - T1
Categ. JCR: SOCIAL SCIENCES, MATHEMATICAL METHODS rank: 16 / 53 = 0.302 (2022) - Q2 - T1
Categ. JCR: ECONOMICS rank: 130 / 380 = 0.342 (2022) - Q2 - T2

Factor impacto CITESCORE: 7.6 - Social Sciences (Q1) - Economics, Econometrics and Finance (Q1) - Mathematics (Q1) - Decision Sciences (Q1)

Factor impacto SCIMAGO: 6.15 - Economics and Econometrics (Q1) - Statistics, Probability and Uncertainty (Q1) - Statistics and Probability (Q1) - Social Sciences (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/ECO2017-83255-C3-1-P
Financiación: info:eu-repo/grantAgreement/ES/MICINN/ECO2017-83255-C3-3-P
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Economía Aplicada (Dpto. Economía Aplicada)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial.


Exportado de SIDERAL (2024-03-18-12:33:16)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-01-11, última modificación el 2024-03-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)