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Summary

In this paper we provide a bidiagonal decomposition of the Wronskian matrices of Bernstein bases of polynomials

and other related bases such as the Bernstein basis of negative degree or the negative binomial basis. The mentioned

bidiagonal decompositions are used to achieve algebraic computations with high relative accuracy for these

Wronskian matrices. The numerical experiments illustrate the accuracy obtained using the proposed decomposition

when computing inverse matrices, eigenvalues or singular values and the solution of some related linear systems.
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1 Introduction

Bernstein polynomials have many useful properties and consequently, enjoy a great practical relevance not only in

the field of computer-aided geometric design (CAGD), but also in many other fields of mathematics (see 13, 14, 3,

4 and the references therein). The Bernstein basis of polynomials allows the definition of Bézier curves and surfaces

that can be used to approximate any curve or surface to a high degree of accuracy. Therefore, the Bernstein basis is

the polynomial basis most used in computer-aided geometric design (CAGD) (see 13, 14). In fact, Bernstein bases

on a compact interval are totally positive on their natural domain and have optimal shape preserving 7 and stability

15 properties.

However, Bernstein bases also have numerous and important applications aside from CAGD. For instance, Bernstein

bases have been considered in Galerkin methods and collocation methods for the resolution of elliptic and hyperbolic

partial differential equations (cf. 3, 4). They are also useful for applications in optimal control theory (cf. 34), and in
†This work was partially supported through the Spanish research grant PGC2018-096321-B-I00 (MCIU/AEI) and by Gobierno de

Aragón (E41_20R).
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stochastic dynamics (cf. 21). Moreover, in the modeling of chemical reactions, Bézier curves can be used to represent

the most probable reaction path in high dimensional configuration space (cf. 5). In addition, Bernstein polynomials

play a fundamental role in approximation theory as they allow to prove the Weierstrass approximation theorem (see

2, 14).

In 19, Bernstein bases of a negative degree are introduced. These bases are formed by rational functions sharing

many properties of their polynomial counterpart. For instance, they form a partition of unity, satisfy Descartes’

Rule of Signs and possess recurrence relations as well as two-term formulas for differentiation and degree elevation.

Furthermore, negative degree Bernstein bases are also totally positive on their natural domain (see 27). In contrast

with polynomial Bernstein bases, Bernstein bases of negative degree can exactly represent arbitrary functions which

are analytic in a neighborhood of zero and uniformly approximate all continuous functions that vanish at minus

infinity.

The binomial distribution is frequently used to model the number of successes in a sample of size n. The binomial

functions coincide with the Bernstein polynomials of degree n. On the other hand, the negative binomial distribution

is an appropriate model to treat those processes in which a certain trial is repeated until a certain number of favorable

results are achieved for the first time (see 19, 26). An (n + 1)-dimensional negative binomial basis can be obtained

by multiplying the polynomials of a n-degree Bernstein basis by a linear factor.

It is well known that many fundamental problems in interpolation and approximation require linear algebra

computations related to collocation matrices. Wronskian matrices arise when solving Hermite interpolation problems,

in particular Taylor interpolation problems. In CAGD, the resolution of systems of equations with Wronskian matrices

is also important for the definition of bases with good properties in interactive curve design (cf. 6). Furthermore, in

other applications of matrix theory, for example in spectral theory, Wronskian matrices of fundamental solution sets

to linear differential equations play a relevant role (cf. 20).

Despite the nice properties of Bernstein polynomials, the corresponding collocation or Wronskian matrices are

ill-conditioned. This fact can produce substantial errors when numerically performing algebraic computations with

these matrices.

The accurate computation with structured classes of matrices is an important issue in numerical linear algebra.

This subject is receiving increasing attention in the recent years (cf. 10). It usually requires finding an adequate

parameterization of the matrices, adapted to their structure. In this case, the parameterizations of the matrices are

given by their bidiagonal factorization. The bidiagonal factorization of a nonsingular totally positive (TP) matrix A

is the starting point to compute with high relative accuracy (HRA) its eigenvalues and singular values, the matrix

A−1 and even the solution of Ax = b for vectors b with alternating signs. In fact, if we achieve the computation of

this factorization with high relative accuracy (HRA), then we can apply the algorithms presented in 22–24 to solve
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with HRA the aforementioned algebraic problems. In 30, it was shown that, using a bidiagonal decomposition of the

TP collocation matrices of the polynomial Bernstein basis, many algebraic computations related to these matrices

can be performed with high relative accuracy (HRA). In 26, it was proved that negative binomial bases are strictly

totally positive on (0, 1). Moreover, using the bidiagonal decomposition of the collocation matrix of the Bernstein

bases, the corresponding bidiagonal factorization of the collocation matrix of negative binomial bases was deduced.

On the other hand, as far as the authors know, the bidiagonal factorization of the collocation matrix of Bernstein

bases of negative degree has not been provided in the literature and will be presented in Section 3.

In 28, the bidiagonal decomposition of the Wronskian matrix of the monomial basis of the space of polynomials

of a given degree and the bidiagonal factorization of the Wronskian matrix of the basis of exponential polynomials

were obtained. Furthermore, in 29 a procedure to accurately compute the bidiagonal decomposition of collocation

and Wronskian matrices of the wide family of Jacobi polynomials is proposed. The obtained results are used to get

accurate computations using collocation and Wronskian matrices of well-known types of Jacobi polynomials.

In this paper we consider the Wronskian matrices of Bernstein polynomials and other related bases, including

interesting bases such as the Bernstein basis of negative degree (see 19) or the negative binomial basis. An initial

difficulty is that some our Wronskian matrices are not TP. Nevertheless, as it will be seen in Section 4, they are

shown to be closely related to totally positive matrices whose bidiagonal decomposition can be computed with HRA

and so, the algorithms of references 22–24 can be applied to them and from the corresponding results, the results

related to the original Wronskian matrices can be obtained.

We now describe the layout of the paper. Section 2 presents basic definitions and results that will be used in the

paper. Section 3 provides the bidiagonal decomposition of the collocation matrix of the general class of functions

related with the Bernstein basis. As a particular case, the bidiagonal decomposition of the collocation matrix of

Bernstein bases of negative degree is obtained. Section 4 deals with the accurate computations with the corresponding

Wronskian matrices. We obtain a bidiagonal factorization of these matrices, we characterize when they are TP and we

show the algebraic computations that can be performed with HRA in the cases of the Bernstein basis, the Bernstein

basis of negative degree and the negative binomial basis. Section 5 presents the complexity of the algorithms in the

numerical experiments and confirm the accuracy of the proposed methods for the computation of all eigenvalues, all

singular values, the inverses and the solution of some systems of linear equations. Our experiments use matrices whose

condition numbers considerably increase with their dimension. Due to this ill conditioning, traditional methods do

not achieve accurate solutions when solving the mentioned algebraic problems, in contrast to our proposed methods.
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2 Notations and preliminary results

We are going to use the following generalization of combinatorial numbers. Given α ∈ R and n ∈ N,

(
α

n

)
:=

α(α− 1) · · · (α− n+ 1)

n!
,

(
α

α− n

)
:=

(
α

n

)
.

Given a basis (u0, . . . , un) of a space of functions defined on a real interval I, the corresponding collocation matrix

at the sequence x1 < · · · < xn+1 on I is

Mn+1,x1,...,xn+1 :=
(
uj−1(xi)

)
1≤i,j≤n+1

.

If the functions are n-times continuously differentiable at x ∈ I, the Wronskian matrix at x is

W (u0, . . . , un)(x) := (u
(i−1)
j−1 (x))i,j=1,...,n+1.

where u(i)(x) denotes the i-th derivative of u at x.

A matrix is totally positive (TP) if all its minors are nonnegative. A matrix is strictly totally positive (STP) if all

its minors are positive. Some references with many applications of TP matrices are 1, 12, 33.

By Theorem 4.2 and the arguments of p.116 of 18, we have the following result.

Theorem 1. A nonsingular TP matrix A = (ai,j)1≤i,j≤n+1 admits a factorization of the form

A = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn, (1)

where Fi and Gi are the TP, lower and upper triangular bidiagonal matrices given by

Fi =



1

. . .

1

mi+1,1 1

. . . . . .

mn+1,n+1−i 1


, GT

i =



1

. . .

1

m̃i+1,1 1

. . . . . .

m̃n+1,n+1−i 1


, (2)
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and D = diag (p1,1, . . . ,pn+1,n+1) has positive diagonal entries. If, in addition, the entries mij, m̃ij satisfy

mij = 0 ⇒ mhj = 0, ∀h > i, and m̃ij = 0 ⇒ m̃ik = 0, ∀ k > j,

then the decomposition (1) is unique. The diagonal entries pi,i of D are the diagonal pivots of the Neville elimination

of A and the elements mi,j, m̃i,j are nonnegative and coincide with the multipliers of the Neville elimination of A and

AT, respectively.

In 24, the bidiagonal factorization (1) of an (n+1)× (n+1) nonsingular and TP matrix A is represented by means

of a matrix BD(A) = (BD(A)i,j)1≤i,j≤n+1 such that

BD(A)i,j :=



mi,j , if i > j,

pi,i, if i = j,

m̃j,i, if i < j.

(3)

Remark 1. By Theorem 4.3 of 18, if mi,j > 0, m̃i,j > 0, 1 ≤ j < i ≤ n+1, and pi,i > 0, 1 ≤ i ≤ n+1, then A is STP.

The following result can be easily checked and will be useful in next sections.

Lemma 1. Let d1, . . . ,dn+1 be real values and A an (n+1)×(n+1) TP matrix whose bidiagonal factorization (1) is

A = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn.

Then, the bidiagonal factorization (1) of Ã := A∆ with ∆ = diag(d1, . . . ,dn+1) is

Ã = FnFn−1 · · ·F1D̃G̃1 · · · G̃n−1G̃n,

where D̃ = diag (d1p1,1,d2p2,2, . . . ,dn+1pn+1,n+1) and G̃i, i = 1, . . . ,n, are the upper triangular bidiagonal matrices

described in (2) whose off-diagonal entries are

r̃i,j =
di

di−1
m̃i,j, 1 ≤ j < i ≤ n + 1.

Proof. Taking into account that Gi∆ = ∆G̃i, i = 1, . . . , n, the result follows.
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We say that a real x is computed with high relative accuracy (HRA) whenever the computed value x̃ satisfies

∥x− x̃∥
∥x∥

< Ku,

where u is the unit round-off and K > 0 is a constant independent of the arithmetic precision. Clearly, HRA implies

that the relative errors in the computations have the same order as the machine precision. It is well known that a

sufficient condition to assure that an algorithm can be computed with HRA is the no inaccurate cancellation (NIC)

condition and it is satisfied if it only evaluates products, quotients, sums of numbers of the same sign, subtractions

of numbers of opposite sign or subtraction of initial data (cf. 10, 11, 24).

If the bidiagonal factorization (1) of a nonsingular and TP matrix A can be computed with HRA, then the

computation of its eigenvalues and singular values, the computation of A−1 and even the resolution of Ax = b for

vectors b with alternating signs can be also computed with HRA using the algorithms provided in 22.

In 25, we can find algorithms for computing the bidiagonal decomposition (1) of the collocation matrices of a

general class of bases (un
0 , . . . , u

n
n) with

un
i (x) :=

(
n

i

)
f i(x)gn−i(x), x ∈ [a, b], i = 0, . . . , n,

where f, g : I → R are functions such that f(x) ̸= 0, g(x) ̸= 0 for all x ∈ (a, b) and f/g is strictly increasing. These

bases are of interesest in CAGD and also in Approximation Theory. In particular, Theorem 2 of 25 proves that their

collocation matrices,

Mn+1,x1,...,xn+1
:=
((

n
j−1

)
f j−1(xi)g

n−j+1(xi)
)
1≤i,j≤n+1

,

are STP at x1 < · · · < xn+1 on (a, b). Moreover, Theorem 3 of 25 deduces their bidiagonal factorization (1). Using

this factorization, in 25 accurate computations with collocation matrices of bases with algebraic, trigonometric, or

hyperbolic polynomials are illustrated.

It can be checked that, following the proof of Theorem 3 of 25, and Lemma 1, the bidiagonal factorization (1) of

systems (uα
0 , . . . , u

α
n) with α ∈ R and

uα
i (x) := f i(x)gα−i(x), i = 0, . . . , n, (4)

can be obtained. The following result describes this factorization.
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Theorem 2. The collocation matrix Mn+1,x1,...,xn+1
of the basis (4) at x1 < · · · < xn+1 in its domain admits the

following factorization

Mn+1,x1,...,xn+1
= FnFn−1 · · ·F1DG1 · · ·Gn−1Gn,

where the entries mi,j, m̃i,j and pi,i of Fi and Gi, i = 1, . . . ,n, and D are given by

mi,j =
gα−j+1(xi)g(xi−j)

gα−j+2(xi−1)

∏j−1
k=1

(
f(xi)g(xi−k)− f(xi−k)g(xi)

)∏j
k=2

(
f(xi−1)g(xi−k)− f(xi−k)g(xi−1)

) ,
m̃i,j =

f(xj)

g(xj)
, 1 ≤ j < i ≤ n + 1,

pi,i =
gα−i+1(xi)∏i−1

k=1 g(xk)

i−1∏
k=1

(
f(xi)g(xk)− f(xk)g(xi)

)
, 1 ≤ i ≤ n + 1.

Let us denote by Pn the space of polynomials of degree less than or equal to n and (p0, . . . , pn) the monomial

basis of Pn i.e.

pi(x) := xi, i = 0, . . . , n. (5)

The following result will be used in the sequel and restates Corollary 1 of 28, providing the bidiagonal factorization

(1) of the Wronskian matrix W (p0, . . . , pn)(x), x ∈ R.

Proposition 1. Let (p0, . . . ,pn) be the monomial basis given in (5). For any x ∈ R, the Wronskian matrix

W(p0, . . . ,pn)(x) is nonsingular and can be factorized as follows,

W (p0, . . . , pn)(x) = DG1,n · · ·Gn−1,n−1Gn,n, (6)

where D = diag{0!, 1!, . . . ,n!} and Gi,n, i = 1, . . . ,n, are the upper triangular bidiagonal matrices in (2) with

m̃k,k−i = x, i+ 1 ≤ k ≤ n+ 1. (7)

Moreover, if x > 0 then W(p0, . . . ,pn)(x) is nonsingular and TP, its bidiagonal decomposition (1) is given by (6)

and (7) and it can be computed with HRA.

In 28, using this result, accurate computations with Wronskian matrices of monomial bases are achieved.

In the following sections we shall obtain the bidiagonal factorization (1) of collocation and Wronskian matrices

associated to a general class of functions that includes, as particular cases, polynomial Bernstein bases, negative
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binomial bases or Bernstein bases of negative degree. For all considered cases, we are going to achieve algebraic

computations with HRA.

3 Bidiagonal decomposition of the collocation matrix of a general class

of functions

Let us consider the system of functions (fα
0 , . . . , f

α
n ), α ∈ R, defined by

fα
i (x) := xi(1− x)α−i, i = 0, . . . , n, (8)

on their natural domain. Let us observe that the Bernstein basis of the space Pn, given by (Bn
0 , . . . , B

n
n) and

Bn
i (x) :=

(
n

i

)
xi (1− x)

n−i
, i = 0, . . . , n, (9)

is (c0f
n
0 , . . . , cnf

n
n ) with ci =

(
n
i

)
, i = 0, . . . , n. Moreover, there are other interesting bases which can be obtained by

scaling the systems (8). For example, if α = −n and ci =
(−n

i

)
= (−1)i

(
n+i−1

i

)
, i = 0, . . . , n, then (c0f

−n
0 , . . . , cnf

−n
n )

is the Bernstein basis of negative degree (B−n
0 , . . . , B−n

n ) with

B−n
i (x) :=

(
−n

i

)
xi(1− x)−n−i =

(
n+ i− 1

i

)
(−x)i(1− x)−n−i, i = 0, . . . , n, (10)

(cf. 19).

On the other hand, if α = n + 1 and ci =
(
n
i

)
, i = 0, . . . , n, then (c0f

n+1
0 , . . . , cnf

n+1
n ) is the negative binomial

basis (bn+1
0 , . . . , bn+1

n ) with

bn+1
i (x) :=

(
n

i

)
xi(1− x)n−i+1, i = 0, . . . , n, (11)

(cf. 19, 26).

Using Theorem 2, with f(x) = x and g(x) = 1− x, it can be checked that the collocation matrix

Mn+1,x1,...,xn+1 :=
(
xj−1
i (1− xi)

α−j+1
)
1≤i,j≤n+1

,
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admits the following factorization:

Mn+1,x1,...,xn+1
= FnFn−1 · · ·F1DG1 · · ·Gn−1Gn, (12)

where Fi and Gi, i = 1, . . . , n, are the lower and upper triangular bidiagonal matrices described in (2) and D =

diag (p1,1, . . . , pn+1,n+1). The entries mi,j , m̃i,j and pi,i are given by

mi,j =
(1− xi)

α−j+1(1− xi−j)

(1− xi−1)α−j+2

∏j−1
k=1

(
xi − xi−k

)∏j
k=2

(
xi−1 − xi−k

) , 1 ≤ j < i ≤ n+ 1,

m̃i,j =
xj

1− xj
, 1 ≤ j < i ≤ n+ 1, pi,i = (1− xi)

α−i+1
i−1∏
k=1

xi − xk

1− xk
, 1 ≤ i ≤ n+ 1.

Then, analyzing the sign of mi,j , m̃i,j and pi,i and using Remark 1, it can be easily deduced that Mn+1,x1,...,xn+1
is

STP for any α ∈ R and any sequence of parameters such that 0 < x1 < · · · < xn+1 < 1.

Using Lemma 1 and the decomposition (12) of the collocation matrix of (fα
0 , . . . , f

α
n ), the bidiagonal factorization

(1) of the collocation matrices of any system (c0f
α
0 , . . . , cnf

α
n ), ci ∈ R, i = 0, . . . , n, can be obtained.

In particular, the bidiagonal factorization (1) of the collocation matrices of Bernstein polynomial bases and negative

binomial bases can be deduced. By means of this factorization, accurate computations with these matrices have been

already achieved (see 25, 26, 30 and the references therein).

Furthermore, we can also deduce that the collocation matrix of the Bernstein basis of degree −n satisfies

(
B−n

j−1(xi)
)
1≤i,j≤n+1

= FnFn−1 · · ·F1DG1 · · ·Gn−1Gn,

and the entries mi,j , m̃i,j and pi,i of Fi, Gi, i = 1, . . . , n, and D, respectively, are given by

mi,j =
(1− xi)

−n−j+1(1− xi−j)

(1− xi−1)−n−j+2

∏j−1
k=1

(
xi − xi−k

)∏j
k=2

(
xi−1 − xi−k

) , 1 ≤ j < i ≤ n+ 1,

m̃i,j = −n+ i− 2

i− 1

xj

1− xj
, 1 ≤ j < i ≤ n+ 1,

pi,i = (−1)i−1

(
n+ i− 2

i− 1

)
(1− xi)

−n−i+1
i−1∏
k=1

xi − xk

1− xk
, 1 ≤ i ≤ n+ 1. (13)

Analyzing the sign of the entries in (13), we can deduce that the collocation matrix of the Bernstein basis of negative

degree defined in (10) is TP for xn+1 < · · · < x1 < 0.
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4 Accurate computations with Wronskian matrices of a general class of

functions including Bernstein polynomials

In the following results we analyze the total positivity of the Wronskian matrices of the systems (fα
0 , . . . , f

α
n ), α ∈ R,

with

fα
i (x) := xi(1− x)α−i, x < 1, i = 0, . . . , n, (14)

through their bidiagonal decomposition (1). First, we prove some auxiliary results.

Lemma 2. For given α, t ∈ R and n ∈ N, let Lk,n = (l
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, be the (n + 1) × (n + 1) lower

triangular bidiagonal matrix with unit diagonal entries, such that

l
(k,n)
i,i−1 = 0, i = 2, . . . , k, l

(k,n)
i,i−1 = (α+ 2− i)t, i = k + 1, . . . , n+ 1.

Then, Ln := Ln,n · · ·L1,n, is a lower triangular matrix and

Ln = (l
(n)
i,j )1≤i,j≤n+1, l

(n)
i,j =

(i− 1)!

(j − 1)!

(
α+ 1− j

α+ 1− i

)
ti−j , 1 ≤ j ≤ i ≤ n+ 1. (15)

Proof. Clearly, Ln is a lower triangular matrix since it is the product of lower triangular bidiagonal matrices. Let

us prove (15) by induction on n. For n = 1,

L1 = L1,1 =

 1

αt 1

 ,

and (15) clearly holds. Now, let us suppose that (15) holds for n ≥ 1 and consider the (n+2)× (n+2) product matrix

Ln+1 := Ln+1,n+1Ln,n+1 · · ·L1,n+1.

It can be checked that L̃n+1 := Ln+1,n+1 · · ·L2,n+1 satisfies L̃n+1 = (l̃
(n+1)
i,j )1≤i,j≤n+2, with l̃

(n+1)
i,1 = δi,1, l̃

(n+1)
1,i = δ1,i

and the submatrix of L̃n+1 containing rows and columns of places {2, . . . , n + 2}, denoted by L̃n+1[2, . . . , n + 2],

satisfies L̃n+1[2, . . . , n+ 2] = Ln,n · · ·L1,n.
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Therefore, applying the induction hypothesis to L̃n+1[2, . . . , n + 2], we can deduce from (15) that the entries of

L̃n+1 satisfy the following equalities

l̃
(n+1)
i,j :=

(i− 2)!

(j − 2)!

(
α+ 2− j

α+ 2− i

)
ti−j , 2 ≤ j ≤ i ≤ n+ 2. (16)

Moreover, we can write

Ln+1 = L̃n+1L1,n+1 = L̃n+1



1

αt 1

. . . . . .

(α− n)t 1


. (17)

Now, taking into account equalities (16), (17) and the fact that

(
α+ 2− j

α+ 2− i

)
+

α+ 2− j

j − 1

(
α+ 1− j

α+ 2− i

)
=

i− 1

j − 1

(
α+ 2− j

α+ 2− i

)
,

we deduce that Ln+1 = (l
(n+1)
i,j )1≤i,j≤n+2 satisfies

l
(n+1)
i,j = l̃

(n+1)
i,j + l̃

(n+1)
i,j+1 (α+ 2− j) t

=
(i− 2)!

(j − 2)!

(
α+ 2− j

α+ 2− i

)
ti−j +

(i− 2)!

(j − 1)!

(
α+ 1− j

α+ 2− i

)
(α+ 2− j)ti−j

=
(i− 2)!

(j − 2)!

((
α+ 2− j

α+ 2− i

)
+

α+ 2− j

j − 1

(
α+ 1− j

α+ 2− i

))
ti−j =

(i− 1)!

(j − 1)!

(
α+ 2− j

α+ 2− i

)
ti−j ,

for 1 ≤ j ≤ i ≤ n+ 2. Consequently, (15) holds for all n ∈ N.

Lemma 3. For a given t ∈ R and n ∈ N, let Uk,n = (u
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, be the (n + 1) × (n + 1), upper

triangular bidiagonal matrix with unit diagonal entries, such that

u
(k,n)
i−1,i := 0, i = 2, . . . , k, u

(k,n)
i−1,i := t, i = k + 1, . . . , n+ 1.

Then, Un := U1,n · · ·Un,n, is an upper triangular matrix and

Un = (u
(n)
i,j )1≤i,j≤n+1, u

(n)
i,j =

(
j − 1

i− 1

)
tj−i, 1 ≤ i ≤ j ≤ n+ 1. (18)
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Proof. Clearly, Un is an upper triangular matrix since it is the product of upper triangular bidiagonal matrices.

Taking into account formula (6) of Proposition 1, we can deduce that Un = diag{0!, 1!, . . . , n!}−1W (p0, . . . , pn)(x)

where pj(t) := tj, j = 0, . . . , n. Then,

Un =

(
1

(i− 1)!
(pj−1(t))

(i−1)

)
i,j=1,...,n+1

.

Finally, taking into account that
1

i!
(pj(t))

(i) =

(
j

i

)
tj−i, 0 ≤ i ≤ j ≤ n,

equalities (18) are immediately obtained.

Now, using Lemma 2 and Lemma 3, we can derive the bidiagonal decomposition (1) of the Wronskian matrix of a

system (14).

Theorem 3. Let n ∈ N, α ∈ R and (fα0 , . . . , f
α
n ) the system defined in (14). The Wronskian matrix W :=

W(fα0 , . . . , f
α
n )(x) admits a factorization of the form

W = Ln,nLn−1,n · · ·L1,nDU1,n · · ·Un−1,nUn,n, (19)

where Lk,n = (l
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the lower triangular bidiagonal matrices with unit diagonal entries,

such that

l
(k,n)
i,i−1 = 0, i = 2, . . . , k, l

(k,n)
i,i−1 = (α+ 2− i)

−1

1− x
, i = k + 1, . . . , n+ 1, (20)

Uk,n = (u
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the upper triangular bidiagonal matrices with unit diagonal entries, such

that

u
(k,n)
i−1,i := 0, i = 2, . . . , k, u

(k,n)
i−1,i =

x

1− x
, i = k + 1, . . . , n+ 1, (21)

and D is the diagonal matrix D = diag (d1, . . . ,dn+1) with

di = (i− 1)!(1− x)α+2−2i, i = 1, . . . , n+ 1. (22)
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Proof. Let us observe that, by considering t = −1/(1− x) in Lemma 2, we deduce that Ln := Ln,nLn−1,n · · ·L1,n is

a lower triangular matrix satisfying

Ln = (l
(n)
i,j )1≤i,j≤n+1, l

(n)
i,j =

(i− 1)!

(j − 1)!

(
α+ 1− j

i− j

)(
−1

1− x

)i−j

, 1 ≤ j ≤ i ≤ n+ 1. (23)

On the other hand, using Lemma 3 with t = x/(1 − x), we conclude that Un := U1,n · · ·Un,n is an upper triangular

matrix with

Un = (u
(n)
i,j )1≤i,j≤n+1, u

(n)
i,j =

(
j − 1

i− 1

)(
x

1− x

)j−i

, 1 ≤ i ≤ j ≤ n+ 1. (24)

In order to prove the result, taking into account (19), (22), (23) and (24), we have to check that

(fα
j−1)

(i−1)(x) = (i− 1)!

min{i,j}∑
k=1

(−1)i−k

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k

 (1− x)α+2−i−j , (25)

for 1 ≤ i, j ≤ n+ 1. Let us prove (25) by induction on i. Let i = 1, then

1∑
k=1

(−1)1−k

(
α+ 1− k

1− k

)(
j − 1

k − 1

)
xj−k(1− x)α−1−j+2 = xj−1(1− x)α+1−j = fα

j−1(x),

for j = 1, . . . , n+1, and (25) follows. Now, let us assume that (25) holds for i ≥ 1. Then, for any i ≤ j ≤ n+1, we

have

(fα
j−1)

(i)(x) =
(
(fα

j−1)
(i−1)

)′
=

(
(i− 1)!

i∑
k=1

(−1)i−k

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k(1− x)α+2−i−j

)′

= (i− 1)!(1− x)α+1−i−j

(
i∑

k=1

(−1)i−k+1(α+ 2− i− j)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k

+ (1− x)

i∑
k=1

(−1)i−k(j − k)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k−1

)

= (i− 1)!(1− x)α+1−i−j

(
i∑

k=1

(−1)i−k+1(α+ 2− i− j)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k

+

i+1∑
k=2

(−1)i−k+1(j − k + 1)

(
α+ 2− k

i− k + 1

)(
j − 1

k − 2

)
xj−k

+

i∑
k=1

(−1)i−k+1(j − k)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k

)

= (i− 1)!(1− x)α+1−i−j

(
i+1∑
k=1

(−1)i−k+1ckx
j−k

)
,
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where

c1 = (α+ 1− i)

(
α

i− 1

)(
j − 1

0

)
= i

(
α

i

)
,

ck = (α+ 2− i− k)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
+ (j − k + 1)

(
α+ 2− k

i− k + 1

)(
j − 1

k − 2

)
= i

(
α+ 1− k

i+ 1− k

)(
j − 1

k − 1

)
, k = 2, . . . , i

ci+1 = (j − i)

(
α+ 1− i

0

)(
j − 1

i− 1

)
= i

(
j − 1

i

)
.

Then, we can write

(fα
j−1)

(i)(x) = i!

(
i+1∑
k=1

(−1)i−k+1

(
α+ 1− k

i+ 1− k

)(
j − 1

k − 1

)
xj−k

)
(1− x)α+1−i−j ,

and check that (25) holds for j = i, . . . , n+ 1. Now, for 1 ≤ j < i, we can follow a similar reasoning,

(fα
j−1)

(i)(x) =
(
(fα

j−1)
(i−1)(x)

)′
=

(
(i− 1)!

j∑
k=1

(−1)i−k

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k(1− x)α+2−i−j

)′

= (i− 1)!(1− x)α+1−i−j

(
j∑

k=1

(−1)i−k+1(α+ 2− i− j)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k

+ (1− x)

j−1∑
k=1

(−1)i−k(j − k)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k−1

)

= (i− 1)!(1− x)α+1−i−j

(
j∑

k=1

(−1)i−k+1(α+ 2− i− j)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k

+

j∑
k=2

(−1)i−k+1(j − k + 1)

(
α+ 2− k

i− k + 1

)(
j − 1

k − 2

)
xj−k

+

j∑
k=1

(−1)i−k+1(j − k)

(
α+ 1− k

i− k

)(
j − 1

k − 1

)
xj−k

)

= (i− 1)!(1− x)α+1−i−j

(
j∑

k=1

(−1)i−k+1ckx
j−k

)
,

and, again, ck = i
(
α+1−k
i+1−k

)(
j−1
k−1

)
, k = 1, . . . , j. Then, we can write

(fα
j−1)

(i)(x) = i!

(
j∑

k=1

(−1)i−k+1

(
α+ 1− k

i+ 1− k

)(
j − 1

k − 1

)
xj−k

)
(1− x)α+1−i−j ,

for j = i, . . . , n+ 1, and (25) also follows for j = 1, . . . , i− 1.
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Theorem 1 and the analysis of the sign of the entries (20), (21) and (22) provides the following characterization of

the total positivity of W (fα
0 , . . . , f

α
n )(x).

Corollary 1. Given α ∈ R, let (fα0 , . . . , f
α
n ) be the system defined in (14). The Wronskian matrix W(fα0 , . . . , f

α
n )(x)

is TP if and only if α ≤ 0 and 0 ≤ x < 1.

Proof. Let us observe that the coefficient x/(1 − x) in (21) is nonnegative for 0 ≤ x < 1. For 0 ≤ x < 1, the

diagonal entries in (22) are also nonnegative. Finally, the nonnegativity of the coefficients (20) is satisfied if and

only if α+ 2− i ≤ 0 for i = 2, . . . , n+ 1 that is, α ≤ 0.

Example 1. Let us illustrate with some examples the bidiagonal factorization (19), described by (20), (21) and (22),

of the Wronskian matrix of (fα0 , . . . , fαn ) For the particular case n = 2 and α = n, the Wronskian matrix of the system

((1− x)2, x(1− x), x2) can be decomposed as follows

W (f2
0 , f

2
1 , f

2
2 )(x) =


1 0 0

0 1 0

0 −1
1−x 1




1 0 0

−2
1−x 1 0

0 −1
1−x 1




(1− x)2 0 0

0 1 0

0 0 2
(1−x)2




1 x

1−x 0

0 1 x
1−x

0 0 1




1 0 0

0 1 x
1−x

0 0 1

 .

Clearly, W(f20 , f
2
1 , f

2
2 )(x) is not a TP matrix at any x ∈ R.

For the particular case n = 2 and α = −n, the Wronskian matrix of the system (1/(1−x)2, x/(1−x)3, x2/(1−x)4)

can be decomposed as follows

W (f−2
0 , f−2

1 , f−2
2 )(x) =


1 0 0

0 1 0

0 3
1−x 1




1 0 0

2
1−x 1 0

0 3
1−x 1




1

(1−x)2 0 0

0 1
(1−x)4 0

0 0 2
(1−x)6




1 x

1−x 0

0 1 x
1−x

0 0 1




1 0 0

0 1 x
1−x

0 0 1

 .

Clearly, the Wronskian matrix W(f−2
0 , f−2

1 , f−2
2 )(x) is TP for x ∈ (0, 1).

For the particular case n = 2 and α = −5/2, the Wronskian matrix of the system (1/(1−x)5/2, x/(1−x)7/2, x2/(1−

x)9/2) can be decomposed as follows

W (f
−5/2
0 , f

−5/2
1 , f

−5/2
2 )(x) =


1 0 0

0 1 0

0 7/2
1−x 1




1 0 0

5/2
1−x 1 0

0 7/2
1−x 1




d1 0 0

0 d2 0

0 0 d3




1 x

1−x 0

0 1 x
1−x

0 0 1




1 0 0

0 1 x
1−x

0 0 1

 ,
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where d1 = (1 − x)−5/2, d2 = (1 − x)−9/2 and d3 = 2(1 − x)−13/2. Clearly, W(f
−5/2
0 , f

−5/2
1 , f

−5/2
2 )(x) is TP for

x ∈ (0, 1).

Now, using Lemma 1 and taking into account that the bidiagonal decomposition of the Wronskian matrix of the

polynomial basis (fn
0 , . . . , f

n
n ), provided by Theorem 3 with α = n, can be extended for all x ̸= 1, we can derive the

bidiagonal factorization of the Wronskian matrix of the Bernstein basis (9) using that

W (Bn
0 , . . . , B

n
n)(x) = W (fn

0 , . . . , f
n
n )(x)∆, ∆ := diag

((
n

i− 1

))
1≤i≤n+1

and the identity
(

n
i−1

)
/
(

n
i−2

)
= (n+ 2− i)/(i− 1), i = 2, . . . , n+ 1.

Theorem 4. Let n ∈ N and (Bn
0 , . . . ,B

n
n) the Bernstein basis of Pn defined in (9). For a given x ∈ R, x ̸= 1, the

Wronskian matrix W := W(Bn
0 , . . . ,B

n
n)(x) admits a factorization of the form

W = Ln,nLn−1,n · · ·L1,nDU1,n · · ·Un−1,nUn,n, (26)

where Lk,n = (l
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the lower triangular bidiagonal matrices, with unit diagonal entries,

such that

l
(k,n)
i,i−1 = 0, i = 2, . . . , k, l

(k,n)
i,i−1 = (n+ 2− i)

−1

1− x
, i = k + 1, . . . , n+ 1, (27)

Uk,n = (u
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the upper triangular bidiagonal matrices, with unit diagonal entries, such

that

u
(k,n)
i−1,i := 0, i = 2, . . . , k, u

(k,n)
i−1,i =

(
n+ 2− i

i− 1

)
x

1− x
, i = k + 1, . . . , n+ 1, (28)

and D is the diagonal matrix D = diag (d1, . . . ,dn+1) with

di =

(
n

i− 1

)
(i− 1)!(1− x)n+2−2i, i = 1, . . . , n+ 1. (29)

Example 2. Let us illustrate the bidiagonal factorization (26), described by (27), (28) and (29), of the Wronskian

matrix of the Bernstein polynomial basis. For the particular case n = 2, the Wronskian matrix of ((1−x)2, 2(1−x)x, x2)
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can be decomposed as follows

W (B2
0 , B

2
1 , B

2
2)(x) =


1 0 0

0 1 0

0 −1
1−x 1




1 0 0

−2
1−x 1 0

0 −1
1−x 1




(1− x)2 0 0

0 2 0

0 0 2
(1−x)2




1 2x

1−x 0

0 1 x/2
1−x

0 0 1




1 0 0

0 1 x/2
1−x

0 0 1

 .

Let us observe, that from Theorem 4, it can be deduced that the bidiagonal factorization (1) of the (n+1)×(n+1)

dimensional Wronskian matrix W of the Bernstein basis of Pn can be represented by means of the (n+ 1)× (n+ 1)

matrix BD(W ) = (BD(W )i,j)1≤i,j≤n+1 such that

BD(W )i,j :=



(n+ 2− i) −1
1−x , if i > j,(

n
i−1

)
(i− 1)!(1− x)n+2−2i, if i = j,(

n+2−j
j−1

)
x

1−x , if i < j.

(30)

Let us observe that, analyzing the sign of the entries of (30), we can deduce that the Wronskian matrix of the

Bernstein basis of Pn is not TP at any x ∈ R. However, the following result shows that the solution of several

algebraic problems related to these matrices can be obtained with HRA using the bidiagonal decomposition (26).

Corollary 2. Let W := W(Bn
0 , . . . ,B

n
n)(x) be the Wronskian matrix of the Bernstein basis defined in (9) and J the

diagonal matrix J := diag((−1)i−1)1≤i≤n+1. Then, for any x < 0,

WJ := JWJ (31)

is an STP matrix and its bidiagonal factorization (1) can be computed with HRA. Consequently, the computation of

the eigenvalues, singular values of W, the matrix W−1, as well as the solution c = (c1, . . . , cn+1)
T of linear systems

Wc = b, where the entries of b = (b1, . . . ,bn+1)
T have the same sign, can be performed with HRA.

Proof. Using Theorem 4 and the fact that J2 is the identity matrix, by (26) we can write

WJ = (JLn,nJ) · · · (JL1,nJ)(JDJ)(JU1,nJ) · · · (JUn,nJ), (32)
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which gives its bidiagonal factorization (1). Now, it can be easily checked that the multipliers and diagonal pivots of

the bidiagonal factorization (32) of WJ are positive if

1

1− x
> 0,

−x

1− x
> 0, 1− x > 0.

Therefore, by Remark 1, WJ is STP and its bidiagonal decomposition (32) can be computed with HRA at any x < 0.

This fact guarantees the computation with HRA of the eigenvalues and singular values of WJ , the inverse matrix

W−1
J and the solution of the linear systems WJc = d, where d = (d1, . . . , dn+1)

T has alternating signs (see Section 3

of 11).

Let us observe that, since J is a unitary matrix, the eigenvalues and singular values of W coincide with those of

WJ and therefore, using the bidiagonal decomposition (32) of WJ , their computation for x < 0 can be performed with

HRA.

For the accurate computation of W−1, we can take into account that

W−1 = JW−1
J J. (33)

Since, for x < 0, W−1
J = (w̃i,j)1≤i,j≤+1 can be computed with HRA and, by (33), the inverse of the Wronskian matrix

W satisfies W−1 = ((−1)i+jw̃i,j)1≤i,j≤+1, we can also accurately compute W−1 by means of a suitable change of

sign of the accurate computed entries of W−1
J .

Finally, if we have a linear system of equations Wc = b, where the elements of b = (b1, . . . , bn+1)
T have the same

sign, we can compute with HRA the solution d ∈ Rn+1 of WJd = Jb and, consequently, the solution c ∈ Rn+1 of the

initial system since c = Jd.

Now, the following result describes the bidiagonal factorization (1) of Bernstein bases of negative degree (10). This

decomposition can be deduced from Theorem 3 with α = −n and Lemma 1, taking into account that

W (B−n
0 , . . . , B−n

n )(x) = W (f−n
0 , . . . , f−n

n )(x)∆, (34)

with ∆ := diag
(
(−1)i−1

(
n+i−2
i−1

))
1≤i≤n+1

and the identity
(
n+i−2
i−1

)
/
(
n+i−3
i−2

)
= (n+ i− 2)/(i− 1), i = 2, . . . , n+ 1.



19

Theorem 5. Let n ∈ N and (B−n
0 , . . . ,B−n

n ) the Bernstein basis of degree −n, defined in (10). For a given x ∈ R,

x ̸= 1, the Wronskian matrix W := W(B−n
0 , . . . ,B−n

n )(x) admits a factorization of the form

W = Ln,nLn−1,n · · ·L1,nDU1,n · · ·Un−1,nUn,n, (35)

where Lk,n = (l
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the lower triangular bidiagonal matrices, with unit diagonal entries,

such that

l
(k,n)
i,i−1 = 0, i = 2, . . . , k, l

(k,n)
i,i−1 = (n+ i− 2)

1

1− x
, i = k + 1, . . . , n+ 1, (36)

Uk,n = (u
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the upper triangular bidiagonal matrices, with unit diagonal entries, such

that

u
(k,n)
i−1,i := 0, i = 2, . . . , k, u

(k,n)
i−1,i = −

(
n+ i− 2

i− 1

)
x

1− x
, i = k + 1, . . . , n+ 1, (37)

and D is the diagonal matrix D = diag (d1, . . . ,dn+1) with

di = (−1)i−1 (n+ i− 2)!

(n− 1)!
(1− x)−n+2−2i, i = 1, . . . , n+ 1. (38)

Example 3. Let us illustrate the bidiagonal factorization (35), described by (36), (37) and (38), of the Wron-

skian matrix of Bernstein bases of negative degree. For the particular case n = 2, the Wronskian matrix of

(1/(1− x)2,−2x/(1− x)3, 3x2/(1− x)4) can be decomposed as follows

W (B−2
0 , B−2

1 , B−2
2 )(x) =


1 0 0

0 1 0

0 3
1−x 1




1 0 0

2
1−x 1 0

0 3
1−x 1




1

(1−x)2 0 0

0 −2
(1−x)4 0

0 0 3!
(1−x)6




1 −2x

1−x 0

0 1 −3/2x
1−x

0 0 1




1 0 0

0 1 −3/2x
1−x

0 0 1

 ,

Now, from Theorem 5, the bidiagonal factorization (1) of the (n+ 1)× (n+ 1) dimensional Wronskian matrix W

of the Bernstein basis of negative degree can be represented by means of the (n + 1) × (n + 1) matrix BD(W ) =
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(BD(W )i,j)1≤i,j≤n+1, such that

BD(W )i,j :=



(n+ i− 2) 1
1−x , if i > j,

(−1)i−1
(
n+i−2
i−1

)
(i− 1)!(1− x)−n+2−2i, if i = j,

−
(

n+j−2
j−1

)
x

1−x , if i < j.

(39)

Let us observe that the off-diagonal entries of the matrix BD(W ) in (39) are all positive only if x < 0. On the other

hand, the diagonal entries of BD(W ) have alternating sign. Then, taking into account the sign of these entries, it

can be deduced that W (B−n
0 , . . . , B−n

n )(x) is not TP at any x ∈ R. Nevertheless, the following result shows that the

bidiagonal decomposition (35) provides accurate computations with these matrices.

Corollary 3. Let W := W(B−n
0 , . . . ,B−n

n )(x) be the Wronskian matrix of the Bernstein basis of degree −n defined

in (10) and J the diagonal matrix J := diag((−1)i−1)1≤i≤n+1. Then, for 0 < x < 1,

W̃J := WJ (40)

is an STP matrix and its bidiagonal factorization (1) can be computed with HRA. Consequently, the computation

of the singular values of W, the matrix W−1, as well as the solution c = (c1, . . . , cn+1)
T of linear systems Wc = b,

where the entries of b = (b1, . . . ,bn+1)
T have alternating signs, can be performed with HRA.

Proof. Taking into account Theorem 5, (34) and Lemma 1, it can be easily checked that the multipliers and diagonal

pivots of the bidiagonal factorization (1) of W̃J are positive if

1

1− x
> 0,

x

1− x
> 0, 1− x > 0,

that is, if 0 < x < 1. This fact guarantees, by Remark 1, that W̃J is STP and the computation with HRA of its

bidiagonal decomposition (1) and so, the computation with HRA of its eigenvalues and singular values, the inverse

matrix W̃−1
J and the solution of the linear systems W̃Jc = b, where b = (b0, . . . , bn)

T has alternating signs (see

Section 3 of 11).

On the other hand, since J is a unitary matrix, the singular values of W̃J coincide with those of W and so, their

computation for 0 < x < 1 can be performed with HRA. Similarly, taking into account that

W−1 = JW̃−1
J ,
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we can compute W−1 accurately. Finally, if we have a linear system of equations Wc = b, where the elements of

b = (b1, . . . , bn)
T have alternating signs, we can solve with HRA the system W̃Jd = b and then obtain c = Jd.

Finally, using Lemma 1 and Theorem 3 with α = n+1, we can derive the bidiagonal factorization of the Wronskian

matrices of negative binomial bases (11), taking into account that

W (bn0 , . . . , b
n
n)(x) = W (fn+1

0 , . . . , fn+1
n )(x)∆, ∆ := diag

((
n

i− 1

))
1≤i≤n+1

and the identity
(

n
i−1

)
/
(

n
i−2

)
= (n+ 2− i)/(i− 1), i = 2, . . . , n+ 1.

Theorem 6. Let n ∈ N and (bn0 , . . . ,b
n
n) the negative binomial basis of Pn defined in (11). For a given x ∈ R, x ̸= 1,

the Wronskian matrix W := W(bn0 , . . . ,b
n
n)(x) admits a factorization of the form

W = Ln,nLn−1,n · · ·L1,nDU1,n · · ·Un−1,nUn,n, (41)

where Lk,n = (l
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the lower triangular bidiagonal matrices, with unit diagonal entries,

such that

l
(k,n)
i,i−1 = 0, i = 2, . . . , k, l

(k,n)
i,i−1 = (n+ 3− i)

−1

1− x
, i = k + 1, . . . , n+ 1, (42)

Uk,n = (u
(k,n)
i,j )1≤j,i≤n+1, k = 1, . . . ,n, are the upper triangular bidiagonal matrices, with unit diagonal entries, such

that

u
(k,n)
i−1,i := 0, i = 2, . . . , k, u

(k,n)
i−1,i =

(
n+ 2− i

i− 1

)
x

1− x
, i = k + 1, . . . , n+ 1, (43)

and D is the diagonal matrix D = diag (d1, . . . ,dn+1) with

di =

(
n

i− 1

)
(i− 1)!(1− x)n+3−2i, i = 1, . . . , n+ 1. (44)

Example 4. Let us illustrate the bidiagonal factorization (41), described by (42), (43) and (44), of the Wronskian

matrix of the negative binomial polynomial basis. For the particular case n = 2, the Wronskian matrix of ((1 −
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x)3, 2(1− x)2x, (1− x)x2) can be decomposed as follows

W (b20, b
2
1, b

2
2)(x) =


1 0 0

0 1 0

0 −2
1−x 1




1 0 0

−3
1−x 1 0

0 −2
1−x 1




(1− x)3 0 0

0 2(1− x) 0

0 0 2
(1−x)




1 2x

1−x 0

0 1 x/2
1−x

0 0 1




1 0 0

0 1 x/2
1−x

0 0 1

 .

Now, from Theorem 6, the bidiagonal factorization (1) of the Wronskian matrix W of the negative binomial basis

of Pn defined in (11) can be represented by BD(W ) = (BD(W )i,j)1≤i,j≤n+1, such that

BD(W )i,j :=



(n+ 3− i) −1
1−x , if i > j,(

n
i−1

)
(i− 1)!(1− x)n+3−2i, if i = j,(

n+2−j
j−1

)
x

1−x , if i < j.

(45)

Using formula (45), it can be deduced that the Wronskian matrix of the negative binomial basis (11) is not TP at

any x ∈ R. However, following the reasoning in the proof of Corollary 2, we can guarantee that the solution of several

algebraic problems related to these Wronskian matrices can be computed with HRA.

Corollary 4. Let W := W(bn0 , . . . ,b
n
n)(x) be the Wronskian matrix of the negative binomial basis defined in (11)

and J := diag((−1)i−1)1≤i≤n+1. Then, for any x < 0,

WJ := JWJ (46)

is TP and its bidiagonal factorization (1) can be computed with HRA. Consequently, the computation of the eigen-

values, singular values of W, the matrix W−1, as well as the solution of linear systems Wx = b, where the entries of

b = (b1, . . . ,bn+1)
T have the same sign, can be performed with HRA.

Section 5 will show accurate computations with the Wronskian matrices of Bernstein bases, Bernstein bases of

negative degree and negative binomial bases obtained by using the bidiagonal decomposition (1) and the algorithms

in 23.

5 Numerical experiments

Let us suppose that A is an (n + 1) × (n + 1) nonsingular, TP matrix, whose bidiagonal decomposition (1) is

represented by means of the matrix BD(A) given in (3). If BD(A) can be computed with HRA, then the Matlab
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functions TNEigenValues, TNSingularValues, TNInverseExpand and TNSolve of the library TNTool in 23 take as

input argument BD(A) and compute with HRA the eigenvalues of A, the singular values of A, its inverse matrix

A−1 and the solution of systems of linear equations Ax = b, for vectors b whose entries have alternating signs. The

computational cost of the function TNSolve is O(n2) elementary operations. On the other hand, as it can be checked

in page 303 of reference 32, the function TNInverseExpand has a computational cost of O(n2) and then improves

the computational cost of the computation of the inverse matrix by solving linear systems with TNSolve, taking the

columns of the identity matrix as data (O(n3)). The computational cost of the other mentioned functions is O(n3).

For the Bernstein basis (Bn
0 , . . . , B

n
n), n ∈ N, using Theorem 4 and Corollary 2, we have implemented a Matlab

function that computes BD(WJ), where WJ is the scaled Wronskian matrix at x < 0, WJ := JWJ described in (31).

For the Bernstein basis of negative degree (B−n
0 , . . . , B−n

n ), n ∈ N, considering Theorem 5 and Corollary 3, we

have also implemented a Matlab function, which computes BD(W̃J) for the matrix W̃J := WJ , obtained from its

Wronskian matrix W at 0 < x < 1 (see (40)).

Finally, for the negative binomial basis (bn+1
0 , . . . , bn+1

n ), using Theorem 6 and Corollary 4, we have also imple-

mented a Matlab function for computing BD(WJ) for the matrix WJ := JWJ obtained from its Wronskian matrix

W at x < 0 (see (46)).

Observe that, in all cases, the computational complexity in the computation of the entries mi,j , m̃i,j , 1 ≤ j < i ≤

n+ 1, is O(n2) and in the computation of pi,i, 1 ≤ i ≤ n+ 1, is O(n).

In the numerical experimentation, we have considered different (n+1)× (n+1) Wronskian matrices corresponding

to Bernstein bases, Bernstein bases of negative degree and negative binomial bases. The numerical results illustrate

the accuracy of the computations for dimensions n + 1 = 10, 15, 20, 25. The authors will provide upon request the

software with the implementation of the above mentioned routines.

The 2-norm condition number of the considered Wronskian matrices has been obtained by means of the Mathemat-

ica command Norm[A,2]· Norm[Inverse[A],2] and is shown in Table 1. We can clearly observe that the condition

numbers significantly increase with the dimension of the matrices. This explains that traditional methods do not

obtain accurate solutions when solving the aforementioned algebraic problems. In contrast, the numerical results

will illustrate the high accuracy obtained when using the bidiagonal decompositions deduced in this paper with the

Matlab functions available in 23.

The eigenvalues and singular values of the considered Wronskian matrices have been computed with the Matlab

functions TNEigenValues and TNSingularValues, respectively, taking as argument the matrix representation (3) of

the corresponding deduced bidiagonal decomposition (1). Additionally, they have also been obtained by using the

Matlab commands eig and svd, respectively. To analyze the accuracy of the approximations, the eigenvalues and

singular values of the considered matrices have been calculated in Mathematica using a 100-digit arithmetic. The
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Table 1: Condition number of Wronskian matrices of Bernstein bases at x0 = −1, Wronskian matrices of Bernstein
bases of negative degree at x0 = 1/7 and Wronskian matrices of negative binomial bases at x0 = −2.

Bernstein bases Bernstein bases of negative degree Negative binomial bases
n+1 κ2(W) κ2(W) κ2(W)

10 1.3× 109 1.7× 1015 1.4× 1011

15 1.3× 1016 4.3× 1023 1.0× 1018

20 1.6× 1021 2.6× 1031 2.3× 1023

25 9.9× 1025 3.4× 1037 3.3× 1026

values provided by Mathematica have been considered as the exact solution of the algebraic problem and the relative

error e of each approximation has been computed as e := |a− ã|/|a|, where a denotes the eigenvalue or singular value

computed with Mathematica and ã the eigenvalue or singular value computed with Matlab.

In Tables 2 and 3, the relative errors of the approximation to the lowest eigenvalue and the lowest singular value

of the considered matrices are shown. We can observe that our methods provide very accurate results in contrast to

the not accurate results provided by the Matlab commands eig and svd.

Table 2: Relative errors when computing the lowest eigenvalue of the Wronskian matrices of Bernstein bases at
x0 = −1 (left) and negative binomial bases at x0 = −2 (right).

n+1 eig(W) TNEV(BD(WJ)) eig(W) TNEV(BD(WJ))

10 3.0× 10−10 6.9× 10−16 1.9× 10−6 8.0× 10−16

15 1.9× 10−4 9.9× 10−17 3.1× 10−7 1.0× 10−17

20 2.8× 101 4.4× 10−16 1.9× 104 6.5× 10−17

25 8.8× 106 4.9× 10−16 1.5× 108 5.2× 10−16

Table 3: Relative errors when computing the lowest singular value of Wronskian matrices of Bernstein bases at
x0 = −1 (left), Bernstein bases of negative degree at x0 = 1/7 (middle) and negative binomial bases at x0 = −2

(right).

n+1 svd(W) TNSV(BD(WJ)) svd(W) TNSV(BD(W̃J)) svd(W) TNSV(BD(WJ))

10 2.4× 10−8 3.6× 10−19 2.1× 10−2 1.2× 10−15 3.0× 10−6 1.2× 10−15

15 1.5× 10−1 3.0× 10−16 7.8× 103 1.3× 10−15 5.4× 10−7 5.8× 10−16

20 3.2× 103 5.2× 10−16 1.6× 107 1.1× 10−15 8.8× 102 8.6× 10−16

25 9.1× 105 1.0× 10−16 5.6× 1013 4.3× 10−15 3.7× 109 5.7× 10−16

On the other hand, two approximations to the inverse matrix of the considered Wronskian matrices have also

been calculated with Matlab. One of them, has been calculated using the function TNInverseExpand, with the

corresponding matrix representation of the bidiagonal decomposition (1) as argument, and the other one, using the

Matlab command inv. To look over the errors we have compared both Matlab approximations with the inverse matrix

A−1 computed by Mathematica using 100-digit arithmetic, taking into account the formula e = ∥A−1−Ã−1∥2/∥A−1∥2
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for the corresponding relative error. The obtained relative errors are shown in Table 4. Observe that the relative

errors achieved through the bidiagonal decompositions obtained in this paper are much smaller than those obtained

with the Matlab command inv.

Table 4: Relative errors when computing the inverse of Wronskian matrices of Bernstein bases at x0 = −1 (left),
Bernstein bases of negative degree at x0 = 1/7 (middle) and negative binomial bases at x0 = −2 (right).

n+1 inv(W) TNIE(BD(WJ)) inv(W) TNIE(BD(W̃J)) inv(W) TNIE(BD(WJ))

10 6.6× 10−11 3.2× 10−17 6.8× 10−11 8.2× 10−15 1.5× 10−8 3.7× 10−17

15 1.3× 10−6 3.6× 10−17 1.2× 10−6 1.5× 10−15 2.2× 10−2 6.9× 10−17

20 3× 10−1 3.8× 10−17 6.5× 10−2 1.8× 10−15 2.3 1.8× 10−16

25 1.2 3.5× 10−17 5.7× 10−1 2.4× 10−15 1.0 1.3× 10−16

At last, given random nonnegative integer values di, i = 1, . . . , n + 1, we have considered linear systems Wc = d

where, in the case of Bernstein bases and negative binomial bases, d = ((−1)i+1di)1≤i≤n+1 and, in the case of

Bernstein bases of negative degree, d = (di)1≤i≤n+1. We have computed in Matlab two approximations of the vector

solution. An approximation has been computed by using the proposed bidiagonal decomposition (1) with the function

TNSolve, and the other using the Matlab command \. We have also calculated the solution of the mentioned linear

systems using 100-digit arithmetic in Mathematica. The vector provided by Mathematica has been considered as

the exact solution c. Then, we have computed in Mathematica the relative error of the computed approximation c̃,

taking into account the formula e = ∥c− c̃∥2/∥c∥2.

In Table 5, the relative errors when solving the aforementioned linear systems for different values of n are shown.

Notice that the proposed methods preserve the accuracy, which does not considerably increases with the dimension

of the system in contrast with the results obtained with the Matlab command \.

Table 5: Relative errors when solving Wc = d with Wronskian matrices of Bernstein bases at x0 = −1 (left),
Bernstein bases of negative degree at x0 = 1/7 (middle) and negative binomial bases at x0 = −2 (right).

n+1 W \ d TNS (BD(WJ) ,d) W \ d TNS(BD(W̃J),d) W \ d TNS(BD(WJ),d)

10 6.7× 10−14 1.4× 10−16 8.9× 10−11 9.2× 10−16 1.5× 10−8 4.4× 10−17

15 3.1× 10−11 1.5× 10−16 1.6× 10−6 1.6× 10−16 2.2× 10−2 5.9× 10−17

20 1.9× 10−10 3.7× 10−15 8.4× 10−2 2.0× 10−15 2.0 3.1× 10−17

25 1.3× 10−8 1.5× 10−15 7.1× 10−1 2.6× 10−15 1.0 7.7× 10−17
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