000121087 001__ 121087
000121087 005__ 20230519145554.0
000121087 0247_ $$2doi$$a10.1021/acs.jafc.1c05880
000121087 0248_ $$2sideral$$a128029
000121087 037__ $$aART-2021-128029
000121087 041__ $$aeng
000121087 100__ $$aBueno-Aventín, Elena$$uUniversidad de Zaragoza
000121087 245__ $$aRole of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation
000121087 260__ $$c2021
000121087 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121087 5203_ $$aPolyphenolic fractions from Garnacha, Tempranillo, and Moristel grapes were reconstituted to form model wines of identical pH, ethanol, amino acid, metal, and varietal polyfunctional mercaptan (PFM) contents. Models were subjected to a forced oxidation procedure at 35 °C and to an equivalent treatment under strict anoxia. Polyphenolic profiles significantly determined oxygen consumption rates (5.6-13.6 mg L-1 day-1), Strecker aldehyde (SA) accumulation (ratios max/min around 2.5), and levels of PFMs remaining (ratio max/min between 1.93 and 4.53). By contrast, acetaldehyde accumulated in small amounts and homogeneously (11-15 mg L-1). Tempranillo samples, with highest delphinidin and prodelphinidins and smallest catechin, consume O2 faster but accumulate less SA and retain smallest amounts of PFMs under anoxic conditions. Overall, SA accumulation may be related to polyphenols, producing stable quinones. The ability to protect PFMs as disulfides may be negatively related to the increase in tannin activity, while pigmented tannins could be related to 4-methyl-4-mercaptopentanone decrease. © 2021 The Authors. Published by American Chemical Society.
000121087 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121087 590__ $$a5.895$$b2021
000121087 591__ $$aAGRICULTURE, MULTIDISCIPLINARY$$b6 / 60 = 0.1$$c2021$$dQ1$$eT1
000121087 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b32 / 144 = 0.222$$c2021$$dQ1$$eT1
000121087 591__ $$aCHEMISTRY, APPLIED$$b14 / 73 = 0.192$$c2021$$dQ1$$eT1
000121087 592__ $$a1.018$$b2021
000121087 593__ $$aChemistry (miscellaneous)$$c2021$$dQ1
000121087 593__ $$aAgricultural and Biological Sciences (miscellaneous)$$c2021$$dQ1
000121087 594__ $$a8.6$$b2021
000121087 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121087 700__ $$0(orcid)0000-0003-1658-1770$$aEscudero, Ana$$uUniversidad de Zaragoza
000121087 700__ $$aFernández-Zurbano, Purificación
000121087 700__ $$0(orcid)0000-0002-4353-2483$$aFerreira, Vicente$$uUniversidad de Zaragoza
000121087 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000121087 773__ $$g69 (2021), 15290-15300$$pJ. agric. food chem.$$tJOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY$$x0021-8561
000121087 8564_ $$s1573368$$uhttps://zaguan.unizar.es/record/121087/files/texto_completo.pdf$$yVersión publicada
000121087 8564_ $$s3230924$$uhttps://zaguan.unizar.es/record/121087/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121087 909CO $$ooai:zaguan.unizar.es:121087$$particulos$$pdriver
000121087 951__ $$a2023-05-18-15:53:17
000121087 980__ $$aARTICLE