000121089 001__ 121089
000121089 005__ 20240319080956.0
000121089 0247_ $$2doi$$a10.1039/d2na00602b
000121089 0248_ $$2sideral$$a131542
000121089 037__ $$aART-2022-131542
000121089 041__ $$aeng
000121089 100__ $$aSigloch, Fabian
000121089 245__ $$aDirect-write of tungsten-carbide nanoSQUIDs based on focused ion beam induced deposition
000121089 260__ $$c2022
000121089 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121089 5203_ $$aNanoSQUIDs are quantum sensors that excel in detecting a small change in magnetic flux with high sensitivity and high spatial resolution. Here, we employ resist-free direct-write Ga+ Focused Ion Beam Induced Deposition (FIBID) techniques to grow W–C nanoSQUIDs, and we investigate their electrical response to changes in the magnetic flux. Remarkably, FIBID allows the fast (3 min) growth of 700 nm × 300 nm nanoSQUIDs based on narrow nanobridges (50 nm wide) that act as Josephson junctions. Albeit the SQUIDs exhibit a comparatively low modulation depth and obtain a high inductance, the observed transfer coefficient (output voltage to magnetic flux change) is comparable to other SQUIDs (up to 1300 μV/Φ0), which correlates with the high resistivity of W–C in the normal state. We discuss here the potential of this approach to reduce the active area of the nanoSQUIDs to gain spatial resolution as well as their integration on cantilevers for scanning-SQUID applications.
000121089 536__ $$9info:eu-repo/grantAgreement/EUR/COST/CA19140 FIT4NANO$$9info:eu-repo/grantAgreement/ES/CSIC/PTI-001$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E13-20R$$9info:eu-repo/grantAgreement/EC/H2020/892427/EU/Focused Ion Beam fabrication of superconducting scanning Probes/FIBsuperProbes$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 892427-FIBsuperProbes$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2020-112914RB-I00
000121089 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121089 590__ $$a4.7$$b2022
000121089 592__ $$a1.063$$b2022
000121089 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b123 / 343 = 0.359$$c2022$$dQ2$$eT2
000121089 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b61 / 178 = 0.343$$c2022$$dQ2$$eT2
000121089 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b55 / 107 = 0.514$$c2022$$dQ3$$eT2
000121089 593__ $$aAtomic and Molecular Physics, and Optics$$c2022$$dQ1
000121089 593__ $$aBioengineering$$c2022$$dQ1
000121089 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ1
000121089 593__ $$aEngineering (miscellaneous)$$c2022$$dQ1
000121089 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000121089 594__ $$a8.6$$b2022
000121089 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121089 700__ $$0(orcid)0000-0002-4123-487X$$aSangiao, Soraya$$uUniversidad de Zaragoza
000121089 700__ $$0(orcid)0000-0002-6087-7467$$aOrús, Pablo
000121089 700__ $$0(orcid)0000-0001-9566-0738$$ade Teresa, José M.$$uUniversidad de Zaragoza
000121089 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000121089 773__ $$g4, 21 (2022), 4628-4634$$tNanoscale Advances$$x2516-0230
000121089 8564_ $$s659506$$uhttps://zaguan.unizar.es/record/121089/files/texto_completo.pdf$$yVersión publicada
000121089 8564_ $$s2954608$$uhttps://zaguan.unizar.es/record/121089/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121089 909CO $$ooai:zaguan.unizar.es:121089$$particulos$$pdriver
000121089 951__ $$a2024-03-18-13:41:32
000121089 980__ $$aARTICLE