000121092 001__ 121092
000121092 005__ 20240319080957.0
000121092 0247_ $$2doi$$a10.3390/nano12030449
000121092 0248_ $$2sideral$$a131657
000121092 037__ $$aART-2022-131657
000121092 041__ $$aeng
000121092 100__ $$aCastro, C.
000121092 245__ $$aAnalysis of the continuous feeding of catalyst particles during the growth of vertically aligned carbon nanotubes by aerosol-assisted CCVD
000121092 260__ $$c2022
000121092 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121092 5203_ $$aAerosol-assisted catalytic chemical vapor deposition (AACCVD) is a powerful one-step process to produce vertically aligned carbon nanotubes (VACNTs), characterized by the continuous supply of the catalyst precursor (metallocene). The behavior of catalyst species all along the synthesis is essential for the continuous growth of VACNTs. It is there investigated through detailed observations and elemental analyses at scales of VACNT carpets and of individual CNTs. Our approach is based on two complementary experiments: quenching of the sample cooling, and sequential injection of two distinct metallocenes. Metal-based nanoparticles nucleated in the gas-phase during the whole synthesis duration are shown to diffuse in between the growing VACNTs from the top of the CNT carpet towards the substrate. They are much smaller than the catalyst particles formed on the substrate in the initial steps of the process and evidences are given that they continuously feed these catalyst particles at the VACNT roots. Particularly, the electron energy-loss spectroscopy (EELS) analyses of metal-based segments found into a single CNT show that the second injected metal is very gradually incorporated in the particle initially formed from the metal firstly injected. The feeding of the catalyst particles by the nanoparticles continuously nucleated in the gas-phase is therefore an essential feature of the base-growth of CNTs by AACCVD.
000121092 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121092 590__ $$a5.3$$b2022
000121092 592__ $$a0.811$$b2022
000121092 591__ $$aPHYSICS, APPLIED$$b39 / 160 = 0.244$$c2022$$dQ1$$eT1
000121092 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000121092 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b51 / 107 = 0.477$$c2022$$dQ2$$eT2
000121092 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ2
000121092 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b58 / 178 = 0.326$$c2022$$dQ2$$eT1
000121092 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b110 / 343 = 0.321$$c2022$$dQ2$$eT1
000121092 594__ $$a7.4$$b2022
000121092 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121092 700__ $$0(orcid)0000-0002-6813-780X$$aFernández Pacheco, R.
000121092 700__ $$aPinault, M.
000121092 700__ $$aStephan, O.
000121092 700__ $$aReynaud, C.
000121092 700__ $$aMayne-L’Hermite, M.
000121092 773__ $$g12, 3 (2022), 449[10 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000121092 8564_ $$s3470054$$uhttps://zaguan.unizar.es/record/121092/files/texto_completo.pdf$$yVersión publicada
000121092 8564_ $$s2799522$$uhttps://zaguan.unizar.es/record/121092/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121092 909CO $$ooai:zaguan.unizar.es:121092$$particulos$$pdriver
000121092 951__ $$a2024-03-18-13:42:01
000121092 980__ $$aARTICLE