000121118 001__ 121118 000121118 005__ 20250619084224.0 000121118 0247_ $$2doi$$a10.1063/5.0084972 000121118 0248_ $$2sideral$$a130869 000121118 037__ $$aART-2022-130869 000121118 041__ $$aeng 000121118 100__ $$0(orcid)0000-0001-5959-6724$$aPérez-Martínez, H.$$uUniversidad de Zaragoza 000121118 245__ $$aEmergence, survival, and segregation of competing gangs 000121118 260__ $$c2022 000121118 5060_ $$aAccess copy available to the general public$$fUnrestricted 000121118 5203_ $$aIn this paper, we approach the phenomenon of criminal activity from an infectious perspective by using tailored compartmental agent-based models that include the social flavor of the mechanisms governing the evolution of crime in society. Specifically, we focus on addressing how the existence of competing gangs shapes the penetration of crime. The mean-field analysis of the model proves that the introduction of dynamical rules favoring the simultaneous survival of both gangs reduces the overall number of criminals across the population as a result of the competition between them. The implementation of the model in networked populations with homogeneous contact patterns reveals that the evolution of crime substantially differs from that predicted by the mean-field equations. We prove that the system evolves toward a segregated configuration where, depending on the features of the underlying network, both gangs can form spatially separated clusters. In this scenario, we show that the beneficial effect of the coexistence of two gangs is hindered, resulting in a higher penetration of crime in the population. 000121118 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113582GB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-094684-B-C22$$9info:eu-repo/grantAgreement/ES/DGA/E36-20R$$9info:eu-repo/grantAgreement/ES/DGA/E30-20R 000121118 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000121118 590__ $$a2.9$$b2022 000121118 592__ $$a0.82$$b2022 000121118 591__ $$aPHYSICS, MATHEMATICAL$$b8 / 56 = 0.143$$c2022$$dQ1$$eT1 000121118 593__ $$aPhysics and Astronomy (miscellaneous)$$c2022$$dQ1 000121118 591__ $$aMATHEMATICS, APPLIED$$b29 / 267 = 0.109$$c2022$$dQ1$$eT1 000121118 593__ $$aMathematical Physics$$c2022$$dQ1 000121118 593__ $$aStatistical and Nonlinear Physics$$c2022$$dQ2 000121118 593__ $$aApplied Mathematics$$c2022$$dQ2 000121118 593__ $$aMedicine (miscellaneous)$$c2022$$dQ2 000121118 594__ $$a5.9$$b2022 000121118 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000121118 700__ $$0(orcid)0000-0002-8306-221X$$aBauzá, F.J.$$uUniversidad de Zaragoza 000121118 700__ $$0(orcid)0000-0002-6388-4056$$aSoriano-Paños, D. 000121118 700__ $$0(orcid)0000-0001-5204-1937$$aGómez-Gardeñes, J.$$uUniversidad de Zaragoza 000121118 700__ $$0(orcid)0000-0002-1406-8810$$aFloría, L.M.$$uUniversidad de Zaragoza 000121118 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica 000121118 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000121118 773__ $$g32, 8 (2022), 083114$$pChaos$$tCHAOS$$x1054-1500 000121118 8564_ $$s2072918$$uhttps://zaguan.unizar.es/record/121118/files/texto_completo.pdf$$yPostprint 000121118 8564_ $$s3586367$$uhttps://zaguan.unizar.es/record/121118/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000121118 909CO $$ooai:zaguan.unizar.es:121118$$particulos$$pdriver 000121118 951__ $$a2025-06-19-08:41:28 000121118 980__ $$aARTICLE