000121154 001__ 121154
000121154 005__ 20240319081010.0
000121154 0247_ $$2doi$$a10.3390/catal12121609
000121154 0248_ $$2sideral$$a131357
000121154 037__ $$aART-2022-131357
000121154 041__ $$aeng
000121154 100__ $$0(orcid)0000-0002-6762-0971$$aSanz Martínez, Andrés$$uUniversidad de Zaragoza
000121154 245__ $$aBiogas Upgrading by CO2 Methanation with Ni-, Ni–Fe-, and Ru-Based Catalysts
000121154 260__ $$c2022
000121154 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121154 5203_ $$aThis piece of work dealt with the concept of ‘biogas upgrading’ or enrichment of the CH4 contained in a sweetened biogas to proportions and features comparable to those of synthetic natural gas (SNG). For this, the behavior of three lab made catalysts (Ni/Al2O3, Ru/Al2O3, and Ni–Fe/Al2O3) was tested in a CO2 methanation reaction (Sabatier reaction) under different feeding conditions (with and without methane). In the first set of experiments (without methane), the good catalytic behavior of the solids was validated. All three catalysts offered similar and increasing CO2 conversions with increasing temperature (range studied from 250 to 400 °C) at a constant WHSV of 30 × 103 STPmL·gcat−1·h−1. The CH4 selectivity remained close to one in all cases. Considering their total metallic load, the Ru (3.7 wt%)-based catalyst stood out remarkably, with TOF values that reached up to 5.1 min−1, this being six or three times higher, than those obtained with the Ni (10.3 wt%) and Ni–Fe (7.4–2.1 wt%) catalysts, respectively. In the second set (cofeeding methane), and also for the three catalysts, a high correspondence between the conversions (and selectivities) obtained with both types of feeds was observed. This indicated that the addition of CH4 to the system did not severely modify the reaction mechanism, resulting in the possibility of taking advantage of the ‘biogas upgrading’ process by using H2 produced off-peak by electrolysis. In order to maximize the CH4 yield, temperatures in the range from 350–375 °C and a H2:CO2 molar ratio of 6:1 were determined as the optimal reaction conditions.
000121154 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104866RB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-77277-R
000121154 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121154 590__ $$a3.9$$b2022
000121154 592__ $$a0.69$$b2022
000121154 591__ $$aCHEMISTRY, PHYSICAL$$b71 / 161 = 0.441$$c2022$$dQ2$$eT2
000121154 593__ $$aPhysical and Theoretical Chemistry$$c2022$$dQ2
000121154 593__ $$aCatalysis$$c2022$$dQ2
000121154 594__ $$a6.3$$b2022
000121154 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121154 700__ $$0(orcid)0000-0003-2898-1085$$aDurán, Paul
000121154 700__ $$0(orcid)0000-0003-0395-0143$$aMercader, Víctor D.$$uUniversidad de Zaragoza
000121154 700__ $$0(orcid)0000-0003-3181-195X$$aFrancés, Eva$$uUniversidad de Zaragoza
000121154 700__ $$0(orcid)0000-0002-8383-4996$$aPeña, José Ángel$$uUniversidad de Zaragoza
000121154 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, Javier$$uUniversidad de Zaragoza
000121154 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000121154 773__ $$g12, 12 (2022), 1609 [15 pp]$$pCatalysts$$tCatalysts$$x2073-4344
000121154 8564_ $$s2654258$$uhttps://zaguan.unizar.es/record/121154/files/texto_completo.pdf$$yVersión publicada
000121154 8564_ $$s2795893$$uhttps://zaguan.unizar.es/record/121154/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121154 909CO $$ooai:zaguan.unizar.es:121154$$particulos$$pdriver
000121154 951__ $$a2024-03-18-15:02:18
000121154 980__ $$aARTICLE