000121159 001__ 121159
000121159 005__ 20240319081014.0
000121159 0247_ $$2doi$$a10.1111/tpj.15650
000121159 0248_ $$2sideral$$a131593
000121159 037__ $$aART-2022-131593
000121159 041__ $$aeng
000121159 100__ $$0(orcid)0000-0002-4845-4242$$aSancho, Rubén$$uUniversidad de Zaragoza
000121159 245__ $$aTracking the ancestry of known and ‘ghost’ homeologous subgenomes in model grass Brachypodium polyploids
000121159 260__ $$c2022
000121159 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121159 5203_ $$aUnraveling the evolution of plant polyploids is a challenge when their diploid progenitor species are extinctor unknown or when genome sequences of known progenitors are unavailable. Existing subgenome identi-fication methods cannot adequately infer the homeologous genomes that are present in the allopolyploidsif they do not take into account the potential existence of unknown progenitors. We addressed this chal-lenge in the widely distributed dysploid grass genusBrachypodium, which is a model genus for temperatecereals and biofuel grasses. We used a transcriptome-based phylogeny and newly designed subgenomedetection algorithms coupled with a comparative chromosome barcoding analysis. Our phylogenomic sub-genome detection pipeline was validated inTriticumallopolyploids, which have known progenitor geno-mes, and then used to infer the identities of three subgenomes derived from extant diploid species and foursubgenomes derived from unknown diploid progenitors (ghost subgenomes) in sixBrachypodiumpolyplo-ids (B. mexicanum, B. boissieri, B. retusum, B. phoenicoides, B. rupestreandB. hybridum), of which fivecontain undescribed homeologous subgenomes. The existence of the sevenBrachypodiumprogenitor geno-mes in the polyploids was confirmed by their karyotypic barcode profiles. Comparative phylogenomics ofnuclear versus plastid trees allowed us to formulate hypothetical homoploid hybridizations and allo- andautopolyploidization scenarios that could have generated the sixBrachypodiumpolyploids.
000121159 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/A01-17$$9info:eu-repo/grantAgreement/ES/DGA-FSE/A01-20R$$9info:eu-repo/grantAgreement/ES/MICINN/CGL2016-79790-P$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108195GB-I00$$9info:eu-repo/grantAgreement/ES/UZ/UZ2016-TEC-02
000121159 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000121159 590__ $$a7.2$$b2022
000121159 592__ $$a2.118$$b2022
000121159 591__ $$aPLANT SCIENCES$$b17 / 239 = 0.071$$c2022$$dQ1$$eT1
000121159 593__ $$aCell Biology$$c2022$$dQ1
000121159 593__ $$aPlant Science$$c2022$$dQ1
000121159 593__ $$aGenetics$$c2022$$dQ1
000121159 594__ $$a11.6$$b2022
000121159 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121159 700__ $$0(orcid)0000-0002-1214-375X$$aInda, Luis A.$$uUniversidad de Zaragoza
000121159 700__ $$aDíaz-Pérez, Antonio
000121159 700__ $$aDes Marais, David L.
000121159 700__ $$aGordon, Sean
000121159 700__ $$aVogel, John P.
000121159 700__ $$aLusinska, Joanna
000121159 700__ $$aHasterok, Robert
000121159 700__ $$0(orcid)0000-0002-5462-907X$$aContreras-Moreira, Bruno$$uUniversidad de Zaragoza
000121159 700__ $$0(orcid)0000-0001-7793-5259$$aCatalán, Pilar$$uUniversidad de Zaragoza
000121159 7102_ $$15011$$2063$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cÁrea Botánica
000121159 773__ $$g109, 6 (2022), 1535-1558$$pPlant j.$$tPLANT JOURNAL$$x0960-7412
000121159 8564_ $$s6380785$$uhttps://zaguan.unizar.es/record/121159/files/texto_completo.pdf$$yVersión publicada
000121159 8564_ $$s2800218$$uhttps://zaguan.unizar.es/record/121159/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121159 909CO $$ooai:zaguan.unizar.es:121159$$particulos$$pdriver
000121159 951__ $$a2024-03-18-15:28:58
000121159 980__ $$aARTICLE