000121180 001__ 121180
000121180 005__ 20240319081018.0
000121180 0247_ $$2doi$$a10.1364/OE.467692
000121180 0248_ $$2sideral$$a131544
000121180 037__ $$aART-2022-131544
000121180 041__ $$aeng
000121180 100__ $$aYi, Juemin
000121180 245__ $$aOrigin of Zenneck-like waves excited by optical nanoantennas in non-plasmonic transition metals
000121180 260__ $$c2022
000121180 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121180 5203_ $$aThe scattering properties of metallic optical antennas are typically examined through the lens of their plasmonic resonances. However, non-plasmonic transition metals also sustain surface waves in the visible. We experimentally investigate in this work the far-field diffraction properties of apertured optical antennas milled on non-plasmonic W films and compare the results with plasmonic references in Ag and Au. The polarization-dependent diffraction patterns and the leakage signal emerging from apertured antennas in both kinds of metals are recorded and analyzed. This thorough comparison with surface plasmon waves reveals that surface waves are launched on W and that they have the common abilities to confine the visible light at metal-dielectric interfaces offering the possibility to tailor the far-field emission. The results have been analyzed through theoretical models accounting for the propagation of a long range surface mode launched by subwavelength apertures, that is scattered in free space by the antenna. This surface mode on W can be qualitatively described as an analogy in the visible of the Zenneck wave in the radio regime. The nature of the new surface waves have been elucidated from a careful analysis of the asymptotic expansion of the electromagnetic propagators, which provides a convenient representation for explaining the Zenneck-like character of the excited waves and opens new ways to fundamental studies of surface waves at the nanoscale beyond plasmonics.
000121180 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/MAT2017-88358-C3-2-R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41
000121180 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121180 590__ $$a3.8$$b2022
000121180 592__ $$a1.138$$b2022
000121180 591__ $$aOPTICS$$b30 / 99 = 0.303$$c2022$$dQ2$$eT1
000121180 593__ $$aAtomic and Molecular Physics, and Optics$$c2022$$dQ1
000121180 594__ $$a6.9$$b2022
000121180 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121180 700__ $$0(orcid)0000-0003-0381-3448$$ade León-Pérez, Fernando$$uUniversidad de Zaragoza
000121180 700__ $$aCuche, Aurélien
000121180 700__ $$aDevaux, Eloïse
000121180 700__ $$aGenet, Cyriaque
000121180 700__ $$0(orcid)0000-0001-9273-8165$$aMartín-Moreno, Luis
000121180 700__ $$aEbbesen, Thomas W.
000121180 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000121180 773__ $$g30, 19 (2022), 34984-34997$$pOpt. express$$tOPTICS EXPRESS$$x1094-4087
000121180 8564_ $$s2854578$$uhttps://zaguan.unizar.es/record/121180/files/texto_completo.pdf$$yVersión publicada
000121180 8564_ $$s2344642$$uhttps://zaguan.unizar.es/record/121180/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121180 909CO $$ooai:zaguan.unizar.es:121180$$particulos$$pdriver
000121180 951__ $$a2024-03-18-15:51:05
000121180 980__ $$aARTICLE