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Bayesian neural networks to analyse hyperspectral
datasets using uncertainty metrics
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Abstract—Machine learning techniques, and specifically neural
networks, have proved to be very useful tools for image classi-
fication tasks. Nevertheless, measuring the reliability of these
networks and calibrating them accurately is very complex. This
is even more complex in a field like hyperspectral imaging, where
labelled data are scarce and difficult to generate. Bayesian neural
networks (BNNs) allow to obtain uncertainty metrics related to
the data processed (aleatoric), and to the uncertainty generated
by the model selected (epistemic). On this work we will demon-
strate the utility of BNNs by analysing the uncertainty metrics
obtained by a BNN over five of the most used hyperspectral
images datasets. In addition we will illustrate how these metrics
can be used for several practical applications such as identifying
predictions that do not reach the required level of accuracy,
detecting mislabelling in the dataset, or identifying when the
predictions are affected by the increase of the level of noise in
the input data.

Index Terms—Bayesian networks, uncertainty, aleatoric uncer-
tainty, epistemic uncertainty, hyperspectral images.

I. INTRODUCTION

MACHINE Learning techniques have made spectacular
advances in recent years. The improvements and refine-

ment of the models used, together with hardware platforms
that allow the exploration of increasingly complex models,
trained on larger data sets, have enabled a vast improvement
in the accuracy of the models, and opened up new fields of
application.

In remote sensing, neural networks (NNs) and convolutional
neural networks (CNNs) [1] have demonstrated to be one of
the most useful tools for hyperspectral image classification,
with many recent relevant publications [2], [3], [4], [5]. They
provide state-of-the-art results, but they have some limitations.
A NN model will provide very good results if it is trained with
data similar to the data that it will process when deployed.
However, if the training set includes data with high noise
level, or it includes mislabelled data, or it is unbalanced, or
the model, once in operation, receives inputs with different
features, or different formats from those used in training, the
predictions will not be reliable. This problem is not easy to
solve since Machine Learning is based on the learn-from-data
paradigm. Hence, the quality of the results of a NN model
relies on the quality of the training data. However, we can
deal with this problem in a more efficient way by enriching
the models based on NNs or CNNs so that, together with their
predictions, they report uncertainty metrics that can be used
to identify these issues.
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In this manuscript, we will evaluate these possibilities for
the problem of pixel classification of hyperspectral images.
For this purpose, we will use a simple model based on NNs
and upgrade it into a bayesian neural network (BNN), i.e. a
model that combines neural network with Bayesian inference.
BNNs use distributions to model weights and outputs. Hence,
they will not generate a constant output for a given input, but
a distribution, that can be analysed to measure the prediction
uncertainty. Moreover, it allows to differentiate between the
uncertainty generated by the model itself, and the uncertainty
generated by the input data. This approach can be applied to
NNs and CNNs in a similar way. We will use a simple NN
model, instead of a large CNN because our goal is not to
achieve the maximum accuracy, but to explore the utility of
using BNNs instead of conventional NNs. This is orthogonal to
the size of the model, hence, following the recommendations
of the Green AI paradigm [6], we selected a model that can be
trained fast with low energy consumption (we trained hundreds
of different models during this research), and provides results
that can be easily replicated by any researcher, without the
need for specific hardware platforms to train the model. We
will demonstrate the utility of our approach, with several
experiments applied to some of the most frequently used
hyperspectral data sets. First, we will propose a scheme to
test if the model is properly calibrated. Second, we will show
how the uncertainty metric can be used to achieve a requested
level of accuracy by discarding inputs that have very high
levels of uncertainty. The goal is not to artificially increase the
accuracy, but to allow our model to answer ”I don’t know”.
In fact, there are many situations in which saying, ”I don’t
know,” is the correct answer. For example, the network may
receive a pixel that do not belong to any of the categories,
or a pixel which include a mix of them. It is critical to be
able to identify such cases, either to simply ignore those
outputs, mark them as unreliable outputs, use an alternative
method to classify them, or to try to understand why our model
fails in these situations. These situations occur in the data
sets analysed, because neither the labelling, nor our models,
nor the training process are perfect, but they will be more
frequent if the models are used in the real world, because
all kinds of new spectral signatures will appear in the input
that will not belong to any of the trained categories, and
therefore should not be classified.. Third, we will analyse the
uncertainty of the different categories of each data set. Finally,
we will test the model response to two different experiments:
training a new network mixing the labels of two classes, and
the introduction of white noise during inference. The code
used for the experiments and the trained models are available
in a public repository so that they can serve as a baseline for
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applying this technique to other problems [7].

A. Motivational example

Using a simple neuron as an example we can easily illustrate
the impact of bayesian models in our prediction abilities. For
that, we are going to train a neuron using the training data
represented on Table I that includes two different datasets, each
of which has three training data for the same input (0.5, 0.5).
In both cases, for that input, a trained neuron will generate
a function with an output about 0.7. A possible solution, is
presented in Equation 1, where both weights are 0.7 and bias
is 0, since it is the output that minimise the error for both data
sets. But the inputs of datasets 1 and 2 are very different. In
the first case, the training data is consistent, and the outputs
are very similar for the input (0.5, 0.5), while in the second
case the outputs have a large variance. If the models generate
the same output in both cases we will lose that information.

TABLE I
BAYESIAN NEURON EXAMPLE INPUTS.

Dataset 1 Dataset 2

Data Input1 Input2 Output Input1 Input2 Output

First 0.5 0.5 0.6 0.5 0.5 0.2
Second 0.5 0.5 0.7 0.5 0.5 0.7
Third 0.5 0.5 0.8 0.5 0.5 1.2

O(I1, I2) = ReLU(I1 × 0.7 + I2 × 0.7 + 0) (1)

The weights and bias of a bayesian neuron are not constant
values, but distributions, as shown in Figure 1, so every time
we call the function we will receive a different weight value
according with that distribution. If we train this bayesian
neuron for datasets 1 and 2, the mean value of the distributions
on both models will be similar, and with the same value that
in the previous cases, 0.7, but the deviation will be higher
for case 2, because the distribution is wider, therefore, if we
perform several inference passes over the two models, the
output average will be around 0.7 on both of them, but we
will be able to observe an important difference on the deviation
of the outputs. For the first data set, all the inference passes
will provide similar results, while for the second case, the
output distribution will be wider, and the results will have
larger divergence. Uncertainty metrics make it possible to
differentiate between these two situations.

II. RELATED WORK

As explained in the introduction, NNs have demonstrated
to be one of the most accurate techniques for hyperspectral
image classification. CNNs can exploit both the spectral and
the spatial information of hyperspectral image applying convo-
lution filters and pooling operations to the input data. Based on
the output of the previous layer, each new layer generate more
complex feature vectors, which are finally processed by one or
several layers of fully connected neurons. Deep CNNs achieve
state of the art classification accuracy in general for image
classification, and in particular for hyperspectral images. In

Fig. 1. weights of normal neuron for both datasets (top) versus bayesian
neuron on dataset 1 (centre) and dataset 2 (bottom).

[2] the authors analyse different machine learning methods
evaluating its accuracy, its size, and the computations required.
In this analysis CNNs achieve the best accuracy. The works
described in [3], [8], [4], [5] are examples of state-of-the-art
results using CNNs.

However, using deep CNNs for hyperspectral is very com-
plex, as it requires a great amount of labelled training data for
tuning their large number of parameters, and in remote sensing
labelled samples are very difficult and expensive to collect.
Moreover, the high dimensionality of the hyperspectral data
further complicates the setting of the deep model parameters.
This may lead to overfitting in many networks. These networks
will provide good results for the training data, and for the test
data if it is very similar, but their results are not generalisable
for new data. This is a very complex issue, the training
data can be improved by adding more samples, or by using
data augmentation techniques to generate additional training
samples by performing several transformation to the original
data set [9].

In this context, BNNs can provide added value with their
ability to generate uncertainty estimations. However, very few
works have explored the possibilities of using BNNs for
hyperspectral pixel classification. The most representative is
the work presented in [10]. Their objective is to achieve higher
classification accuracies for situations with scarce labelled
data. To this end, they propose to combine BNNs with active
learning for the problem of hyperspectral pixel classification.
They start the training process with very few labelled pixels
and then use a BNN model to select and introduce in the train-
ing set some of the unlabelled pixels in order to improve the
results. Their Bayesian approach is dropout based, following
the main idea described in [11].

Another work that uses BNNs for hyperspectral images
was presented in [12], although in this case, they are not
used to classify pixels, but to monitor water quality from an
unmanned aerial vehicle. In this case, they use a BNN because
it allows using a single model to generate multiple outputs,
thus emulating an ensemble of models working together, but
they do not measure uncertainty.

These previous works focus on increasing accuracy, which
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is, of course, an important goal. However, if we only look at
accuracy, the advantages of using BNNs are not clear, since
any result obtained with a BNN could also be obtained with
an ensemble of NNs that carries out the same computations.
Nevertheless, in order to use NNs for real-world problems, the
reliability of the predictions is as important as accuracy itself
[13], and the uncertainty metrics offered by BNNs can be the
way to improve reliability [14], [15]. Therefore, we believe
that it is very important to analyse the possibilities offered by
BNNs to achieve more reliable neural networks in this field.
Sometimes, for classification problems, softmax layers results,
i.e. the output of the last layer of the NN, have been wrongly
interpreted as a measure of the uncertainty of the output, but
as explained in [16], [17], they cannot be interpreted in such
way because their probabilities distribution are not relative to
the uncertainty of the model on their predictions. Therefore,
specific uncertainty metrics are needed. A good example of the
utility of these metrics is [17]. In this work, the authors use
the uncertainty metrics of a BNN to prove that multi-spectral
images offer better reliability on classification problems than
RGB images.

In this paper, we want to analyse the opportunities offered
by the uncertainty metrics provided by BNNs for the problem
of hyperspectral image pixel classification. To illustrate them,
we developed some experiments that demonstrate their added
value.

III. BAYESIAN NETWORKS AND UNCERTAINTY
QUANTIFICATION

Neural networks (NNs) have proved to be very powerful
techniques to perform image classification tasks, and they
also achieved great results with hyperspectral images as we
exposed in last section. Nevertheless, there are still some
generalisation issues, such as overfitting, that could specially
affect those areas where the datasets are scarce and difficult
to generate, as remote sensing hyperspectral imaging. Proba-
bilistic models such as bayesian neural networks allow us to
analyse the model uncertainty for a given prediction due to
their stochastic behaviour.

Bayesian approaches model probability distributions to ex-
press the uncertainty over the unobserved data. For that, the
model starts with a prior distribution of probabilities that
updates according to the observed data. After training, the
generated model should represent the uncertainty about each
parameter value. So, instead of weights, the calculated values
to represent the network are random variables initialised with
a prior distribution p (w), and the training will consist on
calculating the posterior p (w|D), where D represents the
observed data D = {y,x} [18], [19], [20].

However, computing the exact posterior p (w|D) for big and
complicated models as NNs is intractable. Hence, bayesian
neural networks are based in approximate models. During
the training phase, variational Bayesian methods are used to
approximate intractable integrals. One of the most commonly
used is variational inference (VI), which tries to approxi-
mate the parameters φ of a variational distribution qφ (w)
to minimise its Kullback-Leibler (KL) with p (w|D) [18],

[20]. Theoretically, distributions could have any shape, but
it is impossible to analyse the search space for that case. To
solve this issue, only symmetric and tractable distributions are
used. Gaussian functions are typically used for this purpose
because they are defined with only two parameters, which
simplifies the training process, and allows BNNs to be more
compact. Therefore, compared to regular NNs, BNNs based on
Gaussian functions will have twice as many parameters. This
is an important overhead for large models, but, as explained
in the previous section, a BNN can be seen as an ensemble of
models, since each inference will generate a different output.
Large NN ensembles are frequently used to reduce the variance
and improve the accuracy of the output. Hence, a single BNN
can replace the complete ensemble and lead to important
reductions in the size of the model.

In this paper we want to analyse the uncertainty of the
predictions. Since BNNs are probabilistic models, executing T
stochastic inferences over the same test dataset, will provide
T different output predictions. This allows to measure the
model uncertainty, but also to separately quantify aleatoric
uncertainty, which is related to the quality of the dataset
itself, and epistemic uncertainty, which is related to our trained
model. For that analysis we will use the predictive entropy (H),
expected entropy (Ep) and mutual information (MI) of the T
resultant predictions.

Let K be the number of classes of the dataset and {ck}Kk=1

the set of class labels. Predictive entropy (H) represents the
overall uncertainty of the model within the range [0, log (K)].
We already defined D as the observed data, w as the calculated
variables of the model and T as the number of stochastic
forward passes. The value of H is given by Eq. 2, where
at = p (y = ck|x,wt) [13].

H (y|x,D) := −
K∑
k=1

(
1

T

T∑
t=1

at

)
log

(
1

T

T∑
t=1

at

)
(2)

Expected entropy (Ep), given by Eq. 3, represents the
aleatoric uncertainty. This variable can be used to analyse
the dataset characteristics and will be a baseline to determine
how training data alterations can affect the model [13]. High
aleatoric uncertainty values indicate ambiguities in the data
that can be caused by noise, mislabelled or misrepresented
data, overlapping categories, or any other issues that make the
dataset difficult to learn.

Ep(w|D) [H (y|x,w)] :=
1

T

T∑
t=1

(
−

K∑
k=1

at log (at)

)
(3)

Mutual information (MI) captures the epistemic uncertainty
of the model and will give us information about uncertainty
generated by model. The MI value is given by Eq. 4 and we
will often refer to it as H−Ep [13]. High epistemic uncertainty
values indicate that the model is not properly trained or that
it is not the right model.

MI (y,w|x,D) := H (y|x,D)− Ep(w|D) [H (y|x,w)] (4)
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IV. DATASETS AND MODEL CHARACTERISTICS

A. Datasets

We selected for our tests five of the most used hyperspectral
datasets, Botswana (BO) [21], Indian Pines (IP) [21], Kennedy
Space Center (KSC) [21], Pavia University (PU) [21] and
Salinas Valley (SV) [21]. Table II shows the number of classes,
labelled pixels of each class and spectral bands of every
dataset. For a visual idea of the classes distribution on the
images, the ground truth of all of them is represented in
Section V, in Figures 9 to 13.

TABLE II
IMAGES CHARACTERISTICS.

BO IP KSC PU SV

Number of classes 14 16 13 9 16

Class 0 px. 270 46 761 6631 2009
Class 1 px. 101 1428 243 18649 3726
Class 2 px. 251 830 256 2099 1976
Class 3 px. 215 237 252 3064 1394
Class 4 px. 269 483 161 1345 2678
Class 5 px. 269 730 229 5029 3959
Class 6 px. 259 28 105 1330 3579
Class 7 px. 203 478 431 3682 11271
Class 8 px. 314 20 520 947 6203
Class 9 px. 248 972 404 - 3278
Class 10 px. 305 2455 419 - 1068
Class 11 px. 181 593 503 - 1927
Class 12 px. 268 205 927 - 916
Class 13 px. 95 1265 - - 1070
Class 14 px. - 386 - - 7268
Class 15 px. - 93 - - 1807

Total labelled px. 3248 10249 5211 42776 56975

Spectral bands 145 200 176 103 204

B. Model Training

For the purposes of this research we trained for every
image a NN model: a Multilayer Perceptron (MLP) with two
hidden layers, the first one with 32 nodes and the second one
with 16 nodes. The framework used to generate and train the
networks is TensorFlow [22] with DenseFlipout layers, which
implement bayesian variational inference with Flipout estima-
tor, and we used as kd function parameter the kl divergence
function divided by the number of labelled pixels on the
dataset and ReLU as the activation function [23], [24]. In a
previous work [2], we performed a grid search to identify
the optimal size of a neural network, among other models,
for each different hyperspectral image, and we found that the
best results, without overfitting, ranged from 80 neurons to
140 depending on the image. However, since the goal of this
research is not to identify the optimal NN configuration, but
to explore the additional possibilities offered by a Bayesian
network, we selected a smaller model, with only 48 neurons
because it achieved results almost as good as a model with
twice as many neurons, but it can be trained much faster. We
used the 50% of the pixels of each class for training, with 10%
reserved for validation to detect overfitting, and the other 50%
for testing. We used an initial learning rate of 0.01 for every

dataset. We trained the models for 50000 epochs storing the
intermediate states every 100 epochs. At the end, we analysed
the accuracy obtained in each of those intermediate states with
the validation set, and chosen the ones with the best accuracy
results. Among them, we chose those with the lowest average
uncertainty. And among those with similar uncertainties, we
chose the model that had been trained the least number of
epochs. The training information is summarised in Table III.
We used categorical crossentropy loss function on an Adam
optimiser. During inference, we execute 100 bayesian passes
to extract the uncertainty information and to average the
predictions. The entire code is available on [7].

TABLE III
TRAINING DATA.

Accuracy Uncertainty

Image Train % LR Epochs Train Test Train Test

BO 50% 0.01 17000 0.94 0.91 0.24 0.26
IP 50% 0.01 22000 0.90 0.86 0.33 0.35

KSC 50% 0.01 41000 0.93 0.92 0.24 0.26
PU 50% 0.01 1800 0.95 0.95 0.16 0.17
SV 50% 0.01 4000 0.93 0.93 0.17 0.17

C. Model Calibration

Before using a model, it is necessary to evaluate its quality.
Typically, this is done by analysing the accuracy of the test
results. However, accuracy should not be the only concern. If
we want a reliable model, we must also verify that it is well
calibrated, this can be evaluated using a Reliability Diagram
[14], [25], [26]. To construct a diagram for the test results of a
BNN we propose a simple scheme based on defining a bin for
each range of output values (from 0 to 1). For example we can
define 10 bins, to store values ranging from [0%, 10%), from
[10%, 20%), and so on. The output values will be interpreted
as probabilities, and the diagram provides feedback about the
accuracy of theses values. For example, a value of 0.25 would
indicate that there is a 25% chance that the class is correct.
What our diagram tries to check is whether, on average, these
probabilities correspond to what is observed when verifying
the data obtained with the test data set. What we expect for
a well calibrated model is that there will be a correspondence
between the average accuracy of the elements assigned to a
bin, and the range of values assigned to that bin. For example,
the outputs assigned to the bin ranging from [0%, 10%) should
correspond to the correct class between 0% and 10% of the
time.

On every stochastic pass, the network output for each pixel
will be a distribution of K probabilities, one for each class. We
then calculate the average value of the T stochastic passes, so
we will have one final prediction of K probabilities for each
pixel. These probabilities are grouped in bins. After that, each
of them is evaluated, and we compute the accuracy of each bin
as the number of correct predictions divided by the number of
total predictions assigned to the bin.

Figure 2 shows the results of the calibration of our model
for the five datasets. We can observe that the curve of every
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Fig. 2. Reliability Diagram.

image is very close to a perfect calibration. From these results
we can infer that the result of averaging the T stochastic passes
generates a well calibrated model.

V. EXPERIMENTAL RESULTS

A. Accuracy vs uncertainty

BNNs can be used to generate a stronger, and properly cal-
ibrated model, using the average of several stochastic passes,
in the same way that ensembles of NNs are used for the same
purpose. This is important, but it does not use one of the most
interesting features of BNNs, the uncertainty information. In
this experiment, we want to explore the relationship between
uncertainty and accuracy. If there is correlation between them,
once our network is already trained and tested, it will be
possible to define an uncertainty threshold in order to filter out
predictions with very high uncertainty values. As explained in
the introduction, the objective is not to artificially increase the
accuracy, but to allow our model to answer ”I don’t know”.
If the level of uncertainty exceeds the set threshold, it means
that our network is not able to provide an output with the
required quality. This can be due to many reasons. A clear
example would be that the input does not belong to any of the
trained categories, or is a mixture of several of them. Other
more complex cases will be discussed later.

The upper part of Figure 3 depicts the relationship between
accuracy and uncertainty for the five datasets. As we can
observe in the chart, those outputs with less than 0.1 of
uncertainty achieve almost 100% of accuracy, and those with
uncertainty values between 0.3 and 0.4 still maintain an
accuracy of more than 90% on every image. Therefore, we
can adjust the uncertainty threshold to obtain the precision we
need.

The distribution of pixels with respect to the uncertainty
values is also very important because setting an uncertainty
threshold that optimises the accuracy will not be useful if we
discard most of the pixels. At the bottom of Figure 3 can be
seen that most of the pixels have an uncertainty value of less
than 0.1 and the distribution is clearly decreasing. It can also
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be seen that the distribution of pixels is quite different in each
dataset. In the following experiment we want to analyse this
in detail, examining each of its classes separately.

B. Class uncertainty

Figures 4 to 8 represent the uncertainty values (H) on
a comfortable scale divided into two categories: Ep, the
aleatoric uncertainty that measures the uncertainty for the input
data, and H − Ep, the epistemic uncertainty that measures
the uncertainty of the model. The average (H) values are
between 0.2 and 0.4, which is between 7.5% and 14.5% of
their theoretical maximum, as explained in Section III, the
uncertainty range is [0, log (K)], where K is the number of
classes. We can also observe that in all the cases most of the
uncertainty is due to the data. This information can be used
to determine whether the selected model should be improved,
either by changing it, or by training it for a longer period, or
whether the results are constrained by the quality of the dataset
itself. In this case using a deeper model, or training the model
longer may improve the results, but only marginally, as the
main source of uncertainty is the data used.

We can also observe that, on every image, there are sig-
nificant differences between classes, meaning that some of
them are more difficult to identify. That could be caused
because there are classes with similar features, mislabelled
pixels, or because the labelled pixels of a particular class are
not enough to determine all their characteristics. For example,
the uncertainty of class 8 of IP is 3.5 times higher than
average, indicating that there is a very clear problem with
the data in that class. In KSC several classes duplicate the
average entropy. In the description of the dataset they already
warned of this problem since they have identified that certain
vegetation types have similar spectral signatures. In SV classes
7 and 14 are clearly harder to identify for the BNN than the
rest of the classes, and the same applies to PU classes 2 and
4. This analysis also identifies which classes work particularly
well, reporting small values in the uncertainty metrics. An
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intensive analysis of a particular image, their classes and
characteristics is out of the scope of this paper, but here we
can see how bayesian networks can help to identify problems
in the dataset itself.

C. Uncertainty maps

A very interesting use of the information given by bayesian
networks is the possibility of studying the uncertainty maps of
the entire image. That give us very valuable information about
how well our labelled data represents the entire scene, i.e.,
our prediction capabilities across the entire scene. Figures 9
to 13 show for each dataset the graphical representation of the
averaged bayesian prediction for the entire scene, the uncer-
tainty map and the ground truth to compare with the labelled
classes. For better visualisation, the colours codification for all
the images is shown in Table IV.
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Fig. 9. From left to right: BO ground truth, prediction and uncertainty maps.

TABLE IV
COLOURS CODIFICATION.

Classes Ranges of uncertainty

class 0 0.0 - 0.1

class 1 0.1 - 0.2

class 2 0.2 - 0.3

class 3 0.3 - 0.4

class 4 0.4 - 0.5

class 5 0.5 - 0.6

class 6 0.6 - 0.7

class 7 0.7 - 0.8

class 8 0.8 - 0.9

class 9 0.9 - 1.0

class 10 1.0 - 1.1

class 11 1.1 - 1.2

class 12 1.2 - 1.3

class 13 1.3 - 1.4

class 14 1.4 - 1.5

class 15

One of the first things to notice looking at the uncertainty
maps is that borders and limits are well defined an differ-
entiated from the rest of the scene. That is expected and

Fig. 10. From left to right: IP ground truth, prediction and uncertainty maps.

Fig. 11. From left to right: KSC ground truth, prediction and uncertainty
maps.

perfectly understandable, as this borders can imply zones with
mixed classes, due to the great size of the surface that each
pixel represents, or even paths or other adjacent non-labelled
elements. This not only gives information about the terrain,
but, being an expected behaviour, serves as a proof of the
capability of this uncertainty metrics to show us whether the
network is being capable of recognise some pixels or not.

Comparing with the ground truth, we can also appreciate
how some of the classes are easier to recognise for the network
than others. A clear example is shown in Figure 13. In SV,
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Fig. 12. From left to right: PU ground truth, prediction and uncertainty maps.

Fig. 13. From left to right: SV ground truth, prediction and uncertainty maps.

for most of the classes the accuracy is very high and the
uncertainty very low. However, as previously mentioned, the
model has problems in identifying class 14. As can be seen
in the prediction map, it often confuses it with class 7. In
these situations the uncertainty metric warns us by increasing
its value as can be seen in the uncertainty map. It is also
interesting to analyse the results of the non-labelled regions. In
some cases, the model clearly identifies that they belong to one
of the trained classes, whereas for other regions, it provides
a prediction with a high value of uncertainty, indicating that
its output is not reliable. This is a useful feature in order to
use the model in real-world applications, since it may receive
inputs that do not belong to any of the the trained categories.

D. Mixed classes

As a proof of concept, we are going to perform two
particular tests with our datasets, the first one will be to
train new networks after mixing the pixels of two classes on
each training dataset in order to measure its effect on the
aleatoric uncertainty for these two classes. The second one
will be to feed the initial BNNs with data with an increasing
level of random noise and to analyse analyse its effect on the
uncertainty metrics. For the first experiment we selected two
classes with a similar number of pixels for each image, shown
in Table V, and we aleatory mixed their labels in the training
set. For example in BO, half of the 269 pixels of class 4 and
half of the 269 pixels of class 5 were selected for training,
but before training their labels were randomly mixed up in

such a way that half of the training pixels labelled with a 4
belonged to class 5 and vice versa. Since the categories are
completely mixed, the model will not be able to distinguish
between them. The objective of the experiment is to test if
the model identifies this problem by increasing the aleatoric
uncertainty.

TABLE V
SELECTED CLASSES AND NUMBER OF PIXELS.

First class Second class

Image Class number Pixels Class number Pixels

BO 4 269 5 269
IP 2 830 5 730

KSC 8 520 11 503
PU 3 3064 7 3682
SV 1 3726 6 3579

Table VI shows the values of the aleatoric uncertainty of
the BNN trainings with the mixed data (Ep mixed) compared
to the same network trained with the initial data (Ep). As it
was expected, the increase in the aleatoric uncertainty of the
modified classes is very important. This behaviour tell us about
how the expected entropy values of the different classes can
be used to analyse the datasets characteristics and determine
a possible lack of information for some of them.

TABLE VI
MIXED CLASSES ALEATORIC UNCERTAINTY (EP).

First class Second class All classes average

Image Ep Ep mixed Ep Ep mixed Ep Ep mixed

BO 0.23 0.81 0.53 0.89 0.19 0.28
IP 0.28 0.98 0.14 0.83 0.29 0.50

KSC 0.17 0.93 0.23 0.92 0.19 0.41
PU 0.15 0.83 0.45 1.02 0.15 0.29
SV 0.07 1.12 0.00 0.70 0.16 0.34

E. Uncertainty with Noise

Another interesting application of the bayesian networks is
the detection of degradation in the quality of the input data,
that can be generated due to an increase in the level of noise
generated during the data acquisition or the communications.
The idea is that if the level of noise in the inputs increases,
the uncertainty metrics should be able to detect it.

For simulating this possible situations we progressively
introduced random noise on the test bench and observe
the uncertainty values. To generate the noise we added to
each feature of each pixel a random 16 bits signed integer
value multiplied by a noise factor, which we progressively
incremented by 0.01 until the uncertainty converge to high
values. The values of the uncertainty are shown in Figures
14 to 18, where each coloured line corresponds to each of the
dataset classes, and the dashed lines corresponds to the average
uncertainty value and the theoretical maximum uncertainty
value of the dataset.

As we can observe, while we increment the noise factor
the uncertainty value grows. It is not our intention here to
try to determine a measure of the noise, as this will depend
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Fig. 14. BO uncertainty with noise.
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Fig. 15. IP uncertainty with noise.
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Fig. 16. KSC uncertainty with noise.

on the noise source and the sensor and image characteristics,
while we just used random generic noise added to the data.
Analysing the figures, we can see that BO, IP, KSC and SV
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Fig. 17. PU uncertainty with noise.
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Fig. 18. SV uncertainty with noise.

exhibit a similar behaviour and its uncertainty grows very fast
from the beginning until it stabilises at around 0.04 noise
factor. On the contrary, Pavia University (PU) dataset seems to
be much more resistant to noise than the rest of datasets, with
constant slower growth (note that the noise factor of Figure
17 has a different scale than the others). Being robust to noise
depends on many factors such as data structure (number of
observations, number of predictors, number of classes) and
model complexity [27].

The results illustrate the utility of the uncertainty metrics to
verify the quality of the input data. In the context of Remote
Sensing, this is a very important feature, as the sensors and the
data received are exposed to many external variations, such as
climatic ones.

VI. CONCLUSION

In this work we wanted to evaluate how BNN models
can help us to obtain calibrated and reliable solutions for a
relevant problem: pixel classification of hyperspectral images.
To this end, we trained a simple BNN for five of the most
used hyperspectral images datasets and then explored the
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additional information that BNNs provide. First, we analysed
the calibration of our model, which is an orthogonal task that
can be done with any NN model, but is usually neglected. In
the case of BNNs, using several stochastic passes contributes
to achieve a good calibration. If network outputs are going to
be used for decision-making, checking that the network is well
calibrated should be a mandatory step. Next, we analysed the
reliability of our models using the uncertainty metrics given
by the probabilistic nature of the BNNs. The clear correlation
between accuracy and uncertainty makes it possible to identify
the outputs that provide a requested level of accuracy by
selecting an appropriate uncertainty threshold. The output
of the BNNs allows the uncertainty to be decomposed into
two categories: aleatoric, caused by the data, and epistemic,
caused by the model. Analysing the epistemic uncertainty
we can verify that our model is appropriate for the given
problem and is well trained, and with the aleatoric uncertainty
we can analyse the quality of the dataset themselves, and
also the quality of the data received during inference. A
close exploration of the data sets showed that these datasets
have important uncertainty differences between classes, which
indicates that some of the classes are either miss-represented
on the dataset, or they are too similar, or mislabelled. This
can be helpful to identify that some data classes need more
samples, or that two very similar categories should be unified,
since their features are indistinguishable.

In order to further illustrate the added value of using BNNs,
we performed two different experiments. First, we trained new
BNNs after mixing the pixels of two classes on each training
dataset. This leads to a large increase in uncertainty. Hence,
the BNN was able to identify that there were problems with
these classes. Second, we used the original BNNs and feed
them with data with an increasing level of random noise. In
the experiments, we observed that uncertainty works as an
excellent measure of the input data quality during inference,
giving us important information about possible noise factors
or communication interference.

After these experiments, we believe that the benefits of
upgrading models from NNs to BNNs are very clear. BNNs
provide uncertainty metrics that can be used to identify
problems in their outputs, or to evaluate the quality of the
training data. The tools for designing BNNs have improved
a lot in recent years, and some of the most widely used
design environments, such as Tensorflow or Pytorch, include
them. On the downside, the models used need twice as many
parameters as an equivalent NN model. This can make it
difficult to train very large models. This issue is interesting,
and we would like to study it in the future, but in any case, we
believe it is better to have a smaller but very reliable model,
than a very large deep model that slightly improves the results,
but does not provide uncertainty metrics.
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G. Melançon, R. Krishnan, J. Stanley, O. Tickoo, L. Nachman,
R. Chunara, M. Srikumar, A. Weller, and A. Xiang, “Uncertainty
as a form of transparency: Measuring, communicating, and using
uncertainty,” in Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, ser. AIES ’21. Association for
Computing Machinery, 2021, p. 401–413. [Online]. Available: https:
//doi.org/10.1145/3461702.3462571

[14] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
PMLR, 06–11 Aug 2017, pp. 1321–1330. [Online]. Available:
https://proceedings.mlr.press/v70/guo17a.html

[15] B. Song, S. Sunny, S. Li, K. Gurushanth, P. Mendonca, N. Mukhia,
S. Patrick, S. Gurudath, S. Raghavan, I. Tsusennaro, S. T. Leivon,
T. Kolur, V. Shetty, V. R. Bushan, R. Ramesh, T. Peterson, V. Pillai,
P. Wilder-Smith, A. Sigamani, A. Suresh, moni Abraham Kuriakose,
P. Birur, and R. Liang, “Bayesian deep learning for reliable
oral cancer image classification,” Biomed. Opt. Express, vol. 12,
no. 10, pp. 6422–6430, Oct 2021. [Online]. Available: http:
//opg.optica.org/boe/abstract.cfm?URI=boe-12-10-6422

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://www.mdpi.com/2072-4292/12/3/534
https://www.sciencedirect.com/science/article/pii/S0924271617303660
https://github.com/universidad-zaragoza/BNN_for_hyperspectral_datasets_analysis
https://github.com/universidad-zaragoza/BNN_for_hyperspectral_datasets_analysis
https://www.mdpi.com/2072-4292/12/10/1567
https://doi.org/10.1145/3461702.3462571
https://doi.org/10.1145/3461702.3462571
https://proceedings.mlr.press/v70/guo17a.html
http://opg.optica.org/boe/abstract.cfm?URI=boe-12-10-6422
http://opg.optica.org/boe/abstract.cfm?URI=boe-12-10-6422


BAYESIAN NEURAL NETWORKS TO ANALYSE HYPERSPECTRAL DATASETS USING UNCERTAINTY METRICS 11

[16] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning
to quantify classification uncertainty,” arXiv preprint arXiv:1806.01768,
2018.

[17] J. J. Senecal, J. W. Sheppard, and J. A. Shaw, “Efficient convolutional
neural networks for multi-spectral image classification,” in 2019 Inter-
national Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.

[18] R. M. Neal, Bayesian Learning for Neural Networks. Berlin, Heidel-
berg: Springer-Verlag, 1996.

[19] Z. Ghahramani, “Probabilistic machine learning and artificial intelli-
gence,” Nature, vol. 521, pp. 452–459, 05 2015.

[20] J. Antorán Cabiscol, “Understanding uncertainty in bayesian neural
networks,” Master of Philosophy (University of Cambridge), 2019.

[21] GIC, “Hyperspectral remote sensing scenes, grupo de inteligencia
computacional de la universidad del paı́s vasco,” [online] http://www.
ehu.eus/ccwintco/index.php/Hyperspectral Remote Sensing Scenes,
accessed January 2022.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
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