000121201 001__ 121201
000121201 005__ 20240319081020.0
000121201 0247_ $$2doi$$a10.1016/j.jcis.2021.10.130
000121201 0248_ $$2sideral$$a131492
000121201 037__ $$aART-2022-131492
000121201 041__ $$aeng
000121201 100__ $$aHuang, Z.
000121201 245__ $$aPickering emulsions stabilized by carboxylated nanodiamonds over a broad pH range
000121201 260__ $$c2022
000121201 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121201 5203_ $$aHypothesis: Surfactants in emulsions sometimes do not provide adequate stability against coalescence, whereas Pickering emulsions often offer greater stability. In a search for stabilizers offering biocompatibility, we hypothesized that carboxylated nanodiamonds (ND) would impart stability to Pickering emulsions. Experiments: We successfully prepared Pickering emulsions of sunflower oil in water via two different methods: membrane emulsification and probe sonication. The first method was only possible when the pH of the aqueous ND suspension was ≤ 4. Findings: Pendant-drop tensiometry confirmed that carboxylated ND is adsorbed at the oil/water interface, with a greater decrease in interfacial tension found with increasing ND concentrations in the aqueous phase. The carboxylated ND become more hydrophilic with increasing pH, according to three-phase contact angle analysis, because of deprotonation of the carboxylic acid groups. Membrane emulsification yielded larger (about 30 µm) oil droplets, probe sonication produced smaller (sub-μm) oil droplets. The Pickering emulsions show high stability against mechanical vibration and long-term storage for one year. They remain stable against coalescence across a wide range of pH values. Sonicated emulsions show stability against creaming. In this first-ever systematic study of carboxylated ND-stabilized Pickering emulsions, we demonstrate a promising application in the delivery of β-carotene, as a model active ingredient.
000121201 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E25-20R
000121201 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000121201 590__ $$a9.9$$b2022
000121201 592__ $$a1.604$$b2022
000121201 591__ $$aCHEMISTRY, PHYSICAL$$b29 / 161 = 0.18$$c2022$$dQ1$$eT1
000121201 593__ $$aBiomaterials$$c2022$$dQ1
000121201 593__ $$aSurfaces, Coatings and Films$$c2022$$dQ1
000121201 593__ $$aElectronic, Optical and Magnetic Materials$$c2022$$dQ1
000121201 593__ $$aColloid and Surface Chemistry$$c2022$$dQ1
000121201 594__ $$a15.5$$b2022
000121201 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000121201 700__ $$aJurewicz, I.
000121201 700__ $$aMuñoz, E.
000121201 700__ $$0(orcid)0000-0003-2607-7834$$aGarriga, R.$$uUniversidad de Zaragoza
000121201 700__ $$aKeddie, J. L.
000121201 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000121201 773__ $$g608, Part. 2 (2022), 2025-2038$$pJ. colloid interface sci.$$tJournal of Colloid and Interface Science$$x0021-9797
000121201 8564_ $$s2421902$$uhttps://zaguan.unizar.es/record/121201/files/texto_completo.pdf$$yPostprint
000121201 8564_ $$s2559417$$uhttps://zaguan.unizar.es/record/121201/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000121201 909CO $$ooai:zaguan.unizar.es:121201$$particulos$$pdriver
000121201 951__ $$a2024-03-18-16:03:11
000121201 980__ $$aARTICLE