
2023 2

Laura Elena Rubio Anguiano

Control techniques for
thermal-aware energy-

efficient real time
multiprocessor scheduling

Director/es
Briz Velasco, José Luis
Ramírez Treviño,, Antonio

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Laura Elena Rubio Anguiano

CONTROL TECHNIQUES FOR THERMAL-AWARE
ENERGY-EFFICIENT REAL TIME

MULTIPROCESSOR SCHEDULING

Director/es

Briz Velasco, José Luis
Ramírez Treviño,, Antonio

Tesis Doctoral

Autor

2022

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Control techniques for thermal-aware

energy-efficient real time multiprocessor scheduling

Laura Elena Rubio Anguiano

September, 2022

estavvCin

A thesis submitted in total fulfillment for the degree of Doctor of Philosophy
in the Department of Systems and Computer Engineering

Control techniques for thermal-aware
energy-efficient real time multiprocessor

scheduling

Laura Elena Rubio Anguiano

Supervisors Antonio Ramírez Treviño
José Luis Briz Velasco

September, 2022

Laura Elena Rubio Anguiano
Control techniques for thermal-aware energy-efficient real time multiprocessor scheduling
A thesis submitted in total fulfillment for the degree of Doctor of Philosophy in the Depart-
ment of Systems and Computer Engineering, September, 2022
Scholarship granted by CONACYT, No. CVU 778073
Supervisors: Antonio Ramírez Treviño and José Luis Briz Velasco

Centro de Investigación y de Estudios Avanzados del I.P.N.
Unidad Guadalajara
Departamento de Control Automático
Avenida del Bosque 1145
45019
Zapopan, México

Universidad de Zaragoza
Grupo de Arquitectura de Computadores
Instituto de Investigación es Ingeniería de Aragón
Departamento de Informática e Ingeniería de sistemas
Calle Maria de Luna
50018
Zaragoza, España

Abstract

The use of multicore microprocessors is not only attractive to industry, but in many
areas it is the only option. Real-time scheduling on these platforms is much more
complex than on uniprocessors and generally worsens the over-design problem,
leading to the use of more processors/cores than necessary. Algorithms based on
fluid scheduling have been proposed to optimize the use of processors, but so far
they have general drawbacks that distance them from their practical application, not
the least of which is the high number of context switches and migrations.

This thesis is based on the hypothesis that it is possible to design algorithms inspired
on fluid scheduling, which optimize the use of processors, complying with temporal,
thermal and energy restrictions, with a low number of context switches and migra-
tions, and compatible with both the off-line generation of cyclic executives attractive
to the industry, as well as schedulers that integrate control techniques in execution
time that allow the efficient management of both aperiodic tasks and parametric
deviations or small disturbances.

In this regard, this thesis contributes with several solutions. First, it improves a
model methodology that represents all the dimensions of the problem under a
single formalism (Timed Continuous Petri Nets). Second, it proposes a method
for generating a cyclic executive, calculated in processor cycles, for a set of hard
real-time tasks on multiprocessors that optimizes the utilization of processing cores
while also respecting thermal and energy constraints.

Considering the overhead due to the number of context switches and migrations in
a cyclic executive calculated with a preemptive scheduler poses a causality dilemma:
the number of context switches (and thus their overhead) is only known after the
cyclic executive is calculated, but to properly calculate such cyclic executive, that
number should be known. The thesis proposes a solution to this dilemma by means
of an iterative method, with proven convergence, that manages to minimize the
mentioned overload.

Specifically, the thesis manages to exploit the idea of fluid scheduling to maximize
utilization (where maximizing utilization is a major issue in the industry) generat-
ing a simple cyclic executive with minimum overhead (overhead represents a big
problem for schedules based on fluid scheduling).

v

Finally, a method is proposed to use the offline schedule as reference, i.e the
cyclic executive, by an online frequency controller, so that small disturbances and
parametric variations can be faced, integrating the management of aperiodic tasks
(soft real time) while ensuring the integrity of the execution of the hard real time
set.

These contributions constitute a novelty in the field, endorsed by the publications
derived from this thesis work.

vi

Resumen

La utilización de microprocesadores multinúcleo no sólo es atractiva para la industria
sino que en muchos ámbitos es la única opción. La planificación tiempo real
sobre estas plataformas es mucho más compleja que sobre monoprocesadores y
en general empeoran el problema de sobre-diseño, llevando a la utilización de
muchos más procesadores /núcleos de los necesarios. Se han propuesto algoritmos
basados en planificación fluida que optimizan la utilización de los procesadores,
pero hasta el momento presentan en general inconvenientes que los alejan de su
aplicación práctica, no siendo el menor el elevado número de cambios de contexto y
migraciones.

Esta tesis parte de la hipótesis de que es posible diseñar algoritmos basados en
planificación fluida, que optimizan la utilización de los procesadores, cumpliendo
restricciones temporales, térmicas y energéticas, con un bajo número de cambios
de contexto y migraciones, y compatibles tanto con la generación fuera de línea de
ejecutivos cíclicos atractivos para la industria, como de planificadores que integran
técnicas de control en tiempo de ejecución que permiten la gestión eficiente tanto de
tareas aperiódicas como de desviaciones paramétricas o pequeñas perturbaciones.

A este respecto, esta tesis contribuye con varias soluciones. En primer lugar mejora
una metodología de modelo que representa todas las dimensiones del problema bajo
un único formalismo (Redes de Petri Continuas Temporizadas). En segundo lugar,
propone un método de generación de un ejecutivo cíclico, calculado en ciclos de
procesador, para un conjunto de tareas tiempo real duro sobre multiprocesadores
que optimiza la utilización de los núcleos de procesamiento respetando también
restricciones térmicas y de energía, sobre la base de una planificación fluida.

Considerar la sobrecarga derivada del número de cambios de contexto y migraciones
en un ejecutivo cíclico plantea un dilema de causalidad: el número de cambios de
contexto (y en consecuencia su sobrecarga) no se conoce hasta generar el ejecutivo
cíclico, pero dicho número no se puede minimizar hasta que se ha calculado. La tesis
propone una solución a esta dilema mediante un método iterativo de convergencia
demostrada que logra minimizar la sobrecarga mencionada.

En definitiva, la tesis consigue explotar la idea de planificación fluida para maximizar
el utilización (donde maximizar la utilización es un gran problema en la industria)

vii

generando un sencillo ejecutivo cíclico de mínima sobrecarga (ya que la sobrecarga
implica un gran problema de los planificadores basados en planificación fluida).

Finalmente, se propone un método para utilizar las referencias de la planificación
fuera de línea establecida en el ejecutivo cíclico para su seguimiento por parte de un
controlador de frecuencia en línea, de modo que se pueden afrontar pequeñas per-
turbaciones y variaciones paramétricas, integrando la gestión de tareas aperiódicas
(tiempo real blando) mientras se asegura la integridad de la ejecución del conjunto
de tiempo real duro.

Estos aportaciones constituyen una novedad en el campo, refrendada por las publi-
caciones derivadas de este trabajo de tesis.

viii

Acknowledgments

I would like to thank my advisors Antonio Ramírez Treviño and José Luis Briz Velasco

for their patience, time, and guidance along this work.

This thesis was developed under a co-tutelage program between CINVESTAV and

Universidad de Zaragoza, this could have not been possible without the aid of my

advisor Dr. José Luis Briz, to whom I am deeply grateful.

In addition, thanks to CONACYT for the economic support provided during my

PhD. To the GaZ (Group of Computer Architecture of the University of Zaragoza),

which provided partial economic support through the Aragón Government T5820R

research group funds, and grant PID2019-105660RB-C21, MCIN/ AEI /10.13039/

501100011033 in which project I was invited to collaborate.

I also thank the Department of Computing and Systems Engineering of the University

of Zaragoza for their support during my stay at the institution.

ix

Contents

1. Introduction 1

1.1. Rationale . 1

1.2. Thesis Objectives . 3

1.3. Contributions . 3

1.3.1. Summary of publications . 4

1.4. Structure of this document . 7

2. Background and prior work 9

2.1. Hardware Foundations . 9

2.2. Real time systems . 11

2.2.1. Task model . 11

2.2.2. Scheduling concepts . 13

2.2.3. Scheduling: from Uniprocessor to Multiprocessors 15

2.2.4. RT Multiprocessor scheduling 18

2.2.5. Control strategies in RT scheduling 25

2.2.6. Thermal and energy aware strategies in RT scheduling 26

2.3. System Model . 27

2.3.1. Background on Petri Nets . 28

2.3.2. TCPN global model . 33

2.3.3. Global model . 39

2.4. Tertimuss . 40

3. Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling 41

3.1. Problem definition . 41

3.2. Off-line stage . 43

3.2.1. Set of working frequencies . 43

3.2.2. Workload computation . 46

3.3. On-line stage . 53

3.3.1. Scheduler . 53

3.3.2. Aperiodic tasks and Adaptive Scheduler 55

xi

3.4. Experimental Results . 57

3.4.1. Temperature control and utilization 59

3.4.2. Handling aperiodic tasks . 59

3.5. Conclusions . 60

4. RT Multiprocessor Scheduling based on continuous control 65

4.1. Problem definition . 66

4.2. Overview of the AlECS scheduling system 67

4.3. Task set conditioner . 68

4.4. Pre-scheduler . 68

4.4.1. Workload Assignment: ILP definition 68

4.5. Compute references . 77

4.6. On-line controller ALECS . 80

4.6.1. Allocation control . 81

4.6.2. Execution control . 83

4.6.3. Online Aperiodic Manager . 85

4.7. Conclusions . 87

5. Maximizing utilization and minimizing migration 89

5.1. Problem definition . 90

5.2. Overview of the CAlECS scheduling system 91

5.3. Off-line stage . 92

5.3.1. Task set Conditioner and base example 93

5.3.2. Task clustering . 94

5.3.3. Pre-schedule . 99

5.3.4. Get-reference . 100

5.4. On-line controller . 101

5.4.1. TCPN equations in scalar form 102

5.4.2. Allocation control . 103

5.4.3. Frequency control . 104

5.4.4. Aperiodic Manager . 107

5.5. Comparison with RUN . 109

5.5.1. Simulation environment and setup 110

5.5.2. Migrations per job . 111

5.5.3. Preemptions per job . 114

5.6. Computational complexity . 114

5.7. Conclusions . 116

xii

6. Accounting for preemption and migration costs on CE 119

6.1. The AdWECT algorithm . 122

6.1.1. Convergence of AdWCET algorithm 126

6.2. DP-U, an approach based on the utilization 127

6.3. Experimental results . 129

6.3.1. Experimental setup . 130

6.3.2. Methodology for task generation 130

6.3.3. Results . 132

6.4. Comparison between AdWCET and DP-U 135

6.5. Conclusion . 136

7. Conclusion 139

7.1. Summary of contributions . 139

7.2. Complexity . 141

7.3. Conclusions . 141

7.4. Future work . 142

8. Conclusiones 143

Bibliography 149

A. Tertimuss 157

B. Modeling methodology using TCPNs 159

C. Notes on preliminary comparison between RUN and AlECS 175

D. Unimodularity 177

List of Figures 179

List of Tables 183

Acronyms 185

xiii

Introduction 1
1.1 Rationale

Multiprocessor architectures are becoming increasingly common in embedded sys-

tems. One reason of their spread usage is that such platforms now constitute a

significant share of the cost-efficient components-of-the-shelf (COTS). Besides, the

usage of multicore systems on chip (MPSoCs) helps to consolidate components into

single miniaturized solutions. Also, they are allowing major improvements for some

demanding applications such as engine controllers, RT image processing or advance

driving assistance systems (ADAS).

Current automotive and aerospace systems encompass a large and increasing number

of electronic control units (ECUs). For example, mid-size sedans can reach 125 ECUs

as of this writing, a number which is expected to grow as more and more features

are incorporated and the transition to hybrid and electric cars unfolds [82][43]. For

this reason, ECU consolidation is a desirable objective to reduce size, weight, power

and cost (SWaP-C factor). The cellphone market and edge computing designs subject

to RT constraints in IoT (Internet of Things) ecosystems also benefit from powerful,

compact multiprocessor systems on a chip (MPSoCs).

However, ensuring the accomplishment of Hard Real Time (HRT) and safety con-

straints on multicores can easily lead to overprovisioning, requiring more cores,

and more powerful, than the ones actually demanded. This problem comes out

from a variety of sources, with two of them standing out: worst-case execution time

(WCET) estimation for each task, and task scheduling.

Algorithms for RT multiprocessor scheduling can be broadly classified into parti-

tioned, global, and hybrid schemes (semipartitioned, clustered) [13, 67]. Partitioned

schedulers [14, 54] statically allocate tasks to processors. They can leverage well-

known RT uniprocessor schedulers such as RM, which limits CPU utilization to a

69.3% in uniprocessors [50], or EDF which is optimal on uniprocessors. Unfortu-

nately, a partitioned approach on multiprocessors decreases utilization to 50% [59]

under a sufficient schedulability condition.

1

Global schedulers allocate tasks to any CPU. They are mostly preemptive and allow

task migration among CPUs. A well-known example is gEDF, which guarantees

soft real-time (SRT) schedulability for implicit-deadline task sets [10] but is not

HRT optimal [38, 11]. Aiming to achieve maximum CPU utilization, fluid global

schedulers leverage the theoretical principle of instantly sharing all CPUs among

all active jobs. In this vein, pfair algorithms [8] achieve HRT optimal schedula-

bility for implicit-deadline tasks sets, but they incur in an unfeasible number of

context switches. Approaches like deadline partitioning can notably reduce such

overhead [36]. Howbeit, global schedulers are considered too complex to be practi-

cal, whereas hybrid approaches combined with ad-hoc heuristics can achieve similar

optimality [15].

Meanwhile, the industry is reluctant to adopt these state-of-the-art algorithms in

critical systems, where the use of static scheduling is pervasive [31, 2]. Particularly,

a cyclic executive (CE) is defined as a deterministic scheme of repeated execution of

a series of minor frames. Each minor frame define a sequence of jobs, that execute

within the frame. The collection of minor frames is referred as a major frame (MAF).

CEs are usually implemented as tables with invocation times for each job. A CE

offers two significant advantages: its predictability and low run-time overhead.

Automotive (AUTOSAR) and aerospatial (ARINC) specifications are already contem-

plating multiprocessor systems, based on partitioned scheduling techniques. But

the generation of CEs both on single-core processors and on MPSoCs with parti-

tion algorithms wastes a lot of the available cores: it implies low utilization and

overprovisioning, i.e, require more elements than necessary (cores/processors/E-

CUs), the previous without even taking into account redundancy systems. Recent

research shows that we can get best of two worlds by calculating a predictable,

low-overhead CE while obtaining the optimal utilization provided by global or clus-

tered schemes [31]. However, there are quite a few open issues to consider, such as

accounting for the context switching and migration overhead when calculating the

CE leveraging effective but complex preemptive multiprocessor schedulers. Finally,

today’s multiprocessors provide flexibility and scalability in many different ways.

For example, they are amenable to implement dynamic control strategies that can

cope with unexpected parametric variations, limited disturbances and the arrival

of aperiodic events, while ensuring the correct execution of a HRT task set and the

thermal integrity of the whole system and minimizing energy consumption. This

2 Chapter 1 Introduction

has also been an open venue for the past few decades, all the more promising now

because of the existent technological opportunities.

1.2 Thesis Objectives

The avenue taken in the Thesis has been that of studying, proposing and leveraging

state-of-the-art multiprocessor RT schedulers suitable for the industry, holding the

following traits and benefits:

• Maximum processor utilization so as to minimize the number of required cores

and help avoid overprovisioning.

• Low number of context switches and job migrations with respect to previous

proposals, to help reduce the scheduling overhead.

• Ability to compute a multiprocessor CE or, alternatively, to provide runtime

support to manage parametric variations, CPU failures and aperiodic task

arrivals.

• Compliance with HRT, thermal and energy constraints.

1.3 Contributions

In pursuing the objectives exposed above, the work on this Thesis results in the

following contributions.

• A modeling methodology that represents all the dimensions of the problem

under a single formalism (TCPN): task arrival, their allocation to CPUs and

subsequent execution, and the energy consumption and thermal behavior

of the system. It improves previous work, which required different tools

making integration harder. For example, in [77] they only model processor

scheduling and power consumption, in [57] only temperature and frequency

are modeled but not their relationship with tasks. The work [28], models all

the above aspects in TCPN, but does not consider a power dissipation model

but energy consumption parameters per task. This contribution has been

reported in [63], [62], [64], and [67].

1.2 Thesis Objectives 3

• A CE for multiprocessors that meets thermal, minimum power, and maximum

utilization constraints. Its novelty lies in that it solves these problems all to-

gether. The performance of this CE schedule is compared against other schemes

to see its performance in terms of context switches and migrations, [61]

and [31], exhibiting promising results. This contribution has been reported

in [62], [64], and [67].

• An iterative methodology to compute a CE on a multicore processor considering

the overhead costs introduced by preemptions and migrations ensuring no

deadline misses. Up to our knowledge, this is the first proposal to pose and

solve this problem, accepted and published in [66]

• An online frequency controller, which ensures compliance with a CE, also

allowing limited disturbances to be rejected, such as limited CPU failures,

parameter variations or the arrival of aperiodic tasks. The latter constitutes a

novel approach concerning previous proposals, which often relies on periodic

servers as in [55], which entails a number of inconveniences. This contribution

is reported in [64] and [67].

1.3.1 Summary of publications

Journals

A Flexible Framework for Real-Time Thermal-Aware Schedulers using Timed

Continuous Petri Nets, published on journal Computación y Sistemas

It was developed in collaboration with Desirena-López, G., Ramírez-Treviño,

A., and Briz, J. L. This work presents TCPN-ThermalSim the predecessor of

Tertimuss [21], the current and improved simulation tool used in this thesis.

TCPN-ThermalSim is a software tool for testing Real-Time Thermal-Aware Schedulers.

This framework consists of four main modules. The first one helps the user to define

the problem: task set with periods, deadlines and worst case execution times in CPU

cycles, along with the CPU characteristics, temperature and energy consumption. The

second module is the Kernel simulation, which builds up a global simulation model

according to the configuration module. In the third module, the user selects the

scheduler algorithm. Finally the last module allows the execution of the simulation

and present the results. The framework encompasses two modes: manual and

automatic. In manual mode the simulator uses the task set data provided in the first

4 Chapter 1 Introduction

section. In automatic mode the task set is generated by parameterizing the integrated

UUniFast algorithm.

Energy efficient thermal-aware multiprocessor scheduling for real-time tasks using

TCPN [62]. This work was developed in collaboration with Desirena-López, G.,

Ramírez-Treviño, A., and Briz, J. L, and published on Discrete Event Dynamic

Systems Journal,

This work provides the baseline of the thesis, and is extended on chapter 3. Herein,

we present an energy-efficient thermal-aware real-time global scheduler for a set

of hard real-time (HRT) tasks running on a multiprocessor system. This global

scheduler fulfills the thermal and temporal constraints by handling two independent

variables, the task allocation time and the selection of clock frequency. To achieve its

goal, the proposed scheduler is split into two stages. An off-line stage, based on a

deadline partitioning scheme, computes the cycles that the HRT tasks must run per

deadline interval at the minimum clock frequency to save energy while honoring the

temporal and thermal constraints, and computes the maximum frequency at which

the system can run below the maximum temperature. Then, an on-line, event-driven

stage performs global task allocation applying a Fixed-Priority Zero-Laxity policy,

reducing the overhead of quantum-based or interval-based global schedulers. The

on-line stage embodies an adaptive scheduler that accepts or rejects soft RT aperiodic

tasks throttling CPU frequency to the upper lowest available one to minimize power

consumption while meeting time and thermal constraints. This approach leverages the

best of two worlds: the off-line stage computes an ideal discrete HRT multiprocessor

schedule, while the on-line stage manage soft real-time aperiodic tasks with minimum

power consumption and maximum CPU utilization.

Maximizing utilization and minimizing migration in thermal-aware energy-

efficient real-time multiprocessor scheduling [67], This work was developed in

collaboration with Ramírez-Treviño, A., and Briz, J. L, and L. E., Chils, and

published on IEEE Access journal,

This articles builds over the previous results from the conference paper in WODES

2020, chapter 3. This work proposes CAlECs, a clustered scheduling system for

MPSoCs subject to thermal and energy constraints. It calculates off-line a cyclic

executive honoring temporal and thermal constraints, for a hard real-time (HRT) task

set at minimum frequency to reduce consumed energy, minimizing context switches

and migrations. It also provides an on-line controller able to manage system and task

parametric variations and soft real-time (SRT) tasks, always meeting the HRT task

1.3 Contributions 5

set constraints and the system thermal bound. CAlECS maximizes CPU utilization to

help avoid overprovisioning contributing to a low SWaP factor. Its modular design

allows the utilization of different modeling and scheduling approaches, and makes

the off-line and on-line components independent from each other to better suit the

requirements of a specific system. We experimentally show that the cyclic executive

provided by CAlECS for HRT task sets outperforms RUN, a reference off-line algorithm

in terms of optimal number of context switches.

Accounting for preemption and migration costs in the calculation of hard real-

time cyclic executives for MPSoCs, published on IEEE Robotics and Automation

Letters,

Based on our previous results on the computation of a compelling preemptive CE.

This work introduces a methodology to consider preemption and migration overhead

in hard real-time cyclic executives on multicore architectures. The approach performs

two iterative stages. The first stage takes a cyclic executive, from which the number

and timing of all preemptions and migrations for every task is known. Then, it includes

this overhead by updating the worst-case execution time (WCET) of the tasks. The

second stage calculates a new cyclic executive considering the new WCET of tasks.

The stages iterate until the preemption and migration overhead keeps constant.

Conferences

Real time scheduler for multiprocessor systems based on continuous control using

Timed Continuous Petri Nets, presented on the 15th IFAC Workshop on Discrete

Event Systems WODES 2020 — Rio de Janeiro, Brazil, 11-13 November 2020

[64]

This work exploits Timed Continuous Petri Nets (TCPN) to design and test a novel

energy-efficient thermal-aware real-time global scheduler for a hard real-time (HRT)

task set running on a multiprocessor system. The TCPN model encompasses both

the system and task set, including thermal features. In previous work we calculated

the share of each task that must be executed per time interval by solving off-line an

Integer Programming Problem Problem (ILP). A subsequent on-line stage allocated

jobs to processors. We now perform the allocation off-line too, including an allocation

controller and an execution controller in the on-line stage. This adds robustness by

ensuring that both task allocation and runtime execution honor the safe schedule

provided off-line. Last, the on-line controllers allow the design of an improved soft RT

6 Chapter 1 Introduction

aperiodic task manager. Also, we experimentally prove that our scheduler yields fewer

context switches and migrations on the HRT task set than RUN, a reference algorithm.

Accounting for preemption and migration costs in the calculation of hard real-

time cyclic executives for MPSoCs. presented on the 18th IEEE International

Conference on Automation Science and Engineering IEEE CASE 2022 [65].

This is the conference paper for the journal article that shares the same

name [66].

1.4 Structure of this document

The remainder of this thesis is organized as follows. We review hardware founda-

tions, an introduction on Real Time (RT) systems and prior work in Chapter 2. Also

in that chapter we introduce the Timed Continuous Petri Net (TCPN) model that

describes the interactions among task arrival, task execution in processors, energy

consumption and heat generation.

Chapter 3 introduces a scheduling algorithm proposal that minimizes energy con-

sumption and satisfies a thermal bound. In this chapter, we present the thermal

analysis based on the TCPN model from Chapter 2.

Chapters 4-5 present our control strategies in RT scheduling. Chapter 4, details our

first control contribution which is an scheduler named Allocation and Execution

Control Scheduler (AlECS), it applies a control strategy to honor an offline scheduler,

in the presence of runtime overheads and aperiodic task arrivals. Chapter 5 improves

several aspects of its predecessor, it implements a clustering stage to minimize

migrations, furthermore we propose a small, but key, change on the model in order

to simplify the execution controller and the aperiodic task management. The scheme

from this chapter is called Clustered Allocation and Execution Control Scheduler

(CAlECS).

Chapter 6 takes the cyclic executive computed from the offline stages of CAlECS and

re-computes a cyclic executive that considers the overhead due to preemptions and

migrations.

Finally, Chapter 7 summarizes our results, raises open questions, and discusses

future work.

1.4 Structure of this document 7

Background and prior work 2
In this chapter we briefly review key concepts on RT, the underlying hardware

architecture and relevant scheduling algorithms which are assumed to be known

throughout this dissertation.

2.1 Hardware Foundations

The RT multiprocessor scheduling problem addressed in this work assumes the

baseline hardware described in this section. Also, we refer the reader to [14] for a

good complementary introduction to the subject.

We use the terms processor, CPU and (processor) core interchangeably to denote

an entity capable of executing instructions according to a given Instruction Set

Architecture (ISA), specifically one that executes the scheduled tasks.

The term multiprocessor encompasses a wide range of system architectures. This

works assumes homogeneous Symmetric Multiprocessor (SMP)s with variable fre-

quency, with a simple memory hierarchy with no cache memories.

A multiprocessor consists of multiple, interconnected CPUs. They can be arranged as

multiple processor cores integrated on a single (multicore) chip and interconnected

through a bus or Network on Chip (NoC), or as multiple uni-core processor chips in-

terconnected through an on-board bus. A Multiprocessor System on a Chip (MPSoC)

is a particular but widespread case of chip multicore, common in embedded systems.

MPSoCs integrate different sets of processor cores, such as general-purpose cores,

specific cores for RT systems — the ones, if present, to be managed by the scheduling

algorithms exposed in this work— and other specialized computational units often

known as accelerators such as cryptographic units, Graphic Processing Unit (GPU) or

units supporting algorithms to solve neural networks for AI applications. We refer to

all these systems indistinctly, always considering the specific set of cores devoted to

the execution of RT tasks.

9

There are two classes of multiprocessors according to the nature of their interconnec-

tions: SMPs and Distributed Shared Memory (DSM) multiprocessors. SMPs share a

centralized (commonly banked) memory connected through a bus or crossbar. In

the absence of caches (per-core or per cluster of cores), all processors access such

shared memory in similar conditions (Uniform Memory Access (UMA). In contrast,

DSM configurations physically distribute the memory banks on different nodes, so

that accessing a memory address located at a memory bank in the local node is

faster than reaching it when located in other nodes (Non-Uniform Memory Access

(NUMA)).

As far as RT scheduling is concerned, those memory models have a dramatic impact

on the migration of jobs. Thus, the tough chore of establishing reasonable safe upper

bounds for memory access times and inter-core job migration in SMPs, becomes

unrealistic in the case of DSM machines. Current RT multiprocessor systems are

most implemented on SMP organizations, either on general-purpose multicore chips,

or leveraging the general-purpose cores or the RT specific cores available in MPSoCs.

Therefore, we assume this later approach as the underlying hardware organization

throughout this Thesis.

Finally, multiprocessor systems are also classified according to the ISA of the pro-

cessors and their computing capabilities. Thus, we talk of identical multiprocessors

when there are no differences among the processors, and therefore the execution

time of a given task does not depend on the processor. In contrast, in uniform hetero-

geneous multiprocessors the execution time of a task can be different upon the type

of processor, as long as we can establish a speed ratio for each processor type with

respect to a reference, e.g. the slower type of processor. All processors implement

the same ISA, but they can differ in their Cycles per Instruction (CPI) or in the

range of their operating frequencies. Finally, in the case of unrelated heterogeneous

multiprocessors, processors can show important differences in their mechanisms to

hide memory latency, or even implement different ISAs, making difficult well nigh

impossible to establish fixed speed ratios among them. In this case, a task executing

on a processor cannot migrate to another processor because of the difficulty to asses

the actual progress of the task in the current processor and the point to resume its

execution in the destination processor.

In this work we focus on identical multiprocessors, yet the TCPN model (Sec. 2.3) is

able to represent all of this cases with minimum changes.

10 Chapter 2 Background and prior work

Summarizing, in this dissertation we consider a platform of SMP identical multipro-

cessors with Dinamyc Voltage and Frequency Scaling (DVFS), defined as follows:

Definition 2.1 Let P = {cpu1, . . . , cpum} be a the set of m constituent processors of

an identical SMP multiprocessor, where all processor cores support DVFS and run at the

same given clock frequency, which can dynamically vary among a discrete set of values

f ∈ F = {f1, . . . , fmax}.

2.2 Real time systems

A RT system is often defined as a computer system whose outcome is only correct if

logically (mathematically) correct, and temporally correct (produced in due time).

According with the consequences of violating the temporal constraint, RT systems

are broadly classified into Hard Real Time (HRT)), Firm Real Time (FRT) and

Soft Real Time (SRT). A deadline violation leads to a complete system failure in a

HRT systems, with potentially catastrophic consequences. FRT systems tolerate a

number of deadline misses, and the value of results after the missed deadline is zero.

Deadline misses in SRT systems do not lead to a complete system failure, but degrade

system performance or cause the system to run awkwardly. Life-support, control

flight or assisted driving systems are examples of HRT systems. Conference video

streaming is often cited as a FRT system although most audio and video systems are

considered SRT. Core systems in network routers and switches usually fall into the

SRT category.

2.2.1 Task model

Processes on a RT system are named tasks, and they are typically recurrent. The

periodic task model of Liu and Layland [50] presents the classic notion of a recurrent

task. Each task τ is characterized by its request period ω and an execution require-

ment c, such that the task must complete its execution before its next activation

(c ≤ ω). Every instance of a task is referred as job, therefore a periodic task can

produce an infinite number of jobs.

Based on [50], Al Monk [56] provides the notion of sporadic task model, also known

as the three-parameter model. In this model, each task τ is defined by a deadline

d, a period ω and an execution requirement c, such that task τ must complete its

2.2 Real time systems 11

execution before its deadline (c ≤ d). If d = ω, then the deadline is called implicit, if

d ≤ ω then the deadline is constrained. Otherwise, when there are not restrictions

on the deadline with respect to the period it is called arbitrary deadline. The period

of a task is commonly denoted p, however we use ω in this dissertation to avoid

confusion when introducing the concept of place p on a Petri Net (Sec. 2.3.1).

An alternative way of understanding the difference between periodic and sporadic

tasks is considering their activation pattern [42]. Thus, the period defines the fixed

interval of time at which a periodic task activates, whereas it stands for the minimum

(and different from zero) interarrival time of an sporadic task —the sporadic task

can arrive later but not sooner than its period.

The execution requirement c of a task is selected as an upper bound on the greatest

time that it will take to perform its execution when it has sole access to all computa-

tional resources and under the complete set of all possible environmental conditions.

This upper bound is known as the Worst Case Execution Time (WCET), and this

dissertation assumes it is given in CPU cycles, such that a task τ executed on a

processor P at frequency f , requires c = cc
f processor time at every ω interval.

The task τi = (ci, ωi, di) is a process that invokes a sequence of jobs jh. Each job

arrives at time ah, has its execution requirement ci and a deadline at ah + di. Thus,

job jh should be allocated to a processor during the time interval [ah, ah + di). If τi

is a periodic task, then it invokes its first job at time 0 and all its remaining jobs are

invoked exactly ωi time units apart, i.e., ah = (h − 1)ωi.

The utilization of a task, u, is the ratio of its execution requirement to its period,

u = cc

fω
(2.1)

since c ≤ ω, u is always 0 ≤ u ≤ 1. The utilization of a task determines the share

of CPU that it requires. Since constrained-deadline tasks (d < ω) need to execute

at a higher rate than u, this urgency is best represented by the execution density δ,

defined as the rate of the execution time to the deadline. However, if d > ω, then

the density should be computed using the period, and is defined as δ = c
min(d,ω) .

Based on the previous concepts, a RT workload consists of the set of n sequential

tasks T = {τ1, ..., τn}.

This work assumes an implicit deadline model, with a task set formally defined in

Def. 2.2

12 Chapter 2 Background and prior work

Definition 2.2 Let T = {τ1, ..., τn} be a set of n independent periodic tasks under

hard real time (HRT) constraints. Each task is defined by the 3 − tuple τi = (cci, di, ωi),
where cci is the WCET in cycles which takes to complete any job, ωi the period and di is

the relative implicit deadline (di = ωi)

A task set with implicit deadlines is feasible if the following (sufficient) condition

holds:

U =
n∑

i=1

ci

ωi
≤ m (2.2)

where U is the system utilization and m is the number of processors. Condition 2.2

is also necessary in the case of HRT task sets.

Besides the recurrent tasks, aperiodic and sporadic tasks are defined by its WCET

cc, a deadline d, and its arrival time r, which is unknown beforehand. The inter-

arrival time can take any value in the case of aperiodic tasks, whereas a minimum

interarrival time, different from zero is established in the case of sporadic tasks.

Definition 2.3 Let Ta = {τa
1 , ..., τa

p } be a set of p independent aperiodic tasks. Each

task is identified by the 3 − tuple τa
i = (cca

i , da
i , ra

i), in which cca
i (WCET) and da

i

(deadline) are known, but the arrival time ra
i is unknown.

The hyperperiod (H) of a task set T is denoted as the least common divisor (lcm) of

the periods of all the tasks in T and the quantum (q) as the greatest common divisor

(gcd) of the periods of all tasks in T .

2.2.2 Scheduling concepts

One of the most important aspects while designing a RT system is selecting appro-

priate methods for task scheduling, to ensure that timing constraints are meet. The

result of an scheduling method is a sequence or schedule of the assignment between

processor time (resources) and tasks (activities).

Feasibility and schedulability A task set T is said to be feasible upon an specified

platform if there exists a correct schedule for which every job released by each task

meets its deadline. Let A be an scheduling algorithm, then a task set T is said to be

schedulable by A if algorithm A guarantees the deadlines of all job of each task in

T .

2.2 Real time systems 13

Notation Description Definition

P Set of processor P = {CPU1, . . . , CPUm}
CPUj The jth processor 1 ≤ j ≤ m

F Set of discrete clock frequencies of P F = {f1, . . . , fmax}
T Set of sporadic implicit-deadline tasks T = {τ1, ..., τn}
τi The ith sporadic implicit-deadline task 1 ≤ i ≤ n

ji,j The jth job of τi j ≥ 1
cci The worst-case execution in CPU cycles of τi

ci The worst-case execution time of τi at f ci = cci
f

di The relative deadline of τi di = ωi

ωi The period of τi di = ωi

ui The utilization of task τi ui = cci
f ωi

U System utilization
∑

τi∈T ui

H Hyperperiod of T lcm(ω1, . . . , ωn)
Table 2.1.: Summary of the notation used for tasks and processors

An A-schedulability test accepts as input the specifications of a sporadic task system

and a platform, and determines whether the task system is A-schedulable. An A-

schedulability test is said to be exact if it identifies all A-schedulable systems, and

sufficient if it identifies only some A-schedulable systems [31].

Optimality A scheduling algorithm is defined as optimal for a class of task systems if its

schedulability condition is identical to the feasibility condition for that class [76].

Capacity loss Ideally, any task set T should be feasible as long as the utilization of

the system never exceed the number of processors, i.e U ≤ m. However, in practice it

may not be possible to allocate all processor capacity to the RTtask set. Such capacity

loss has primarily two causes: the scheduling policy and runtime overheads [14].

The first cause corresponds to an algorithmic capacity loss; if the scheduling policy

in non-optimal then a feasible task set many not be schedulable. The second cause is

due to hardware inefficiencies and system management activities, such as scheduling

decisions and context switches.

Non-preemtive vs Preemptive A scheduler or system is considered non-preemptive

if jobs are allocated on a processor up to completion. Alternatively, it is considered

preemptive if a job’s execution can be preempted, i.e. interrupted before completion

such that a higher priority task can be allocated to the same processor instead.

14 Chapter 2 Background and prior work

Overheads

A context switch is the process of storing the state of a outgoing job (either finished

or preempted), and loading the state of an incoming job (which either starts or

resume execution). There is a compulsory context switch whenever a job is first

released or terminates. The cost of these compulsory context switches is therefore

independent of the scheduling algorithm, and can be easily added to the WCET, to

analyze schedulabilty and for scheduling purposes.

Preemptive schedulers introduce additional context switches at preemption points,

in a number that largely varies with the scheduling algorithm. Accounting for the

overall cost of such context switches may not be trivial and is just the problem

addressed in Chapter 6.

A migration is a particular case of context switch such that the context is saved in

the current processor but restored in a different processor once the job is scheduled

to resume execution.

2.2.3 Scheduling: from Uniprocessor to Multiprocessors

For many years, RT system have only been deployed on uniprocessor systems.

The theory for uniprocessor RT systems is mature and most results on scheduling

algorithms are optimal for this type of hardware. Nevertheless, by the reasons

discussed in Sec. 1.1, multiprocessor platforms are now becoming increasingly

common in embedded RT systems, with such platforms often available even as

COTS.

Uniprocessor RT scheduling

Fig. 2.1 shows an overarching classic classification of scheduling algorithms. On the

one hand, there is static scheduling, which are schemes where the sequence of tasks

to be executed is obtained offline. Cyclic executives (CEs) are a common example,

on which we will extend later on. On the other hand, there is dynamic scheduling,

in which scheduling decisions are made at run time, triggered upon specific events

other than the clock interruption, and always selecting the highest priority task for

execution.

Algorithms can be also classified according to their priority allocation policy:

2.2 Real time systems 15

Scheduling Algorithms

Static scheduling

Cyclic executives

Dynamic
scheduling

Fixed priorities

RM, DM

Dynamic priority

EDF,LLF

Figure 2.1.: Classification of scheduling algorithms

• Fixed task priority (FTP). Priority is statically assigned to tasks and is fixed for

every job of a task.

• Fixed job priority (FJP). Different jobs of the same task may be assigned

different priorities. However, the job priority, once assigned, may not change.

• Dynamic job priority (DJP). The priority of a job may change arbitrarily while

it is alive.

Definition 2.4 (Priority driven algorithms) A scheduling algorithm is said to be a

priority driven scheduling algorithm if and only if it satisfies that for every pair of jobs

ji and jj , if ji has higher priority than jj at some instant in time, then ji always has

higher priority than jj .

Static priorities are assigned before execution and are not changed at runtime. Tasks

with higher priority are executed first. If the system allows preemption, a higher

priority task will cause the preemption of a lower priority task, overtaking the CPU of

the latter. Rate Monotonic (RM) and Deadline Monotonic(DM) are two well-known

preemptive scheduling algorithms with static priorities.

Rate Monotonic (RM) It assigns priorities according to the task periods: the shorter

the period of the task, the higher its priority. Deadlines are assumed to be implicit

(Sec. 2.2.1). The schedulability condition was derived for the first time in [50], for

n tasks U(n) ≤ ln 2 must be met, this is deduced from U =
∑n

i=1
ci
pi

≤ n(21/n − 1) =
U(n), when n grows limn→∞ U(n) = ln 2.

Deadline Monotonic (DM) It assigns priorities according to the relative deadlines:

the closer to activation the deadline is, the higher the priority of the task. Deadlines

are assumed to be constrained (Sec. 2.2.1). The schedulability condition was given

16 Chapter 2 Background and prior work

by [49]. It says that for any initial lag of the tasks all deadlines are meet of the if

and only if ∀i, 1 ≤ i ≤ n, min
(∑i

j=1
Cj

t ⌈ t
pj

⌉
)

≤ 1.

Earliest Deadline First (EDF) In contrast with RM and DM, under EDF scheduling

the task priorities are assigned at runtime. Jobs are scheduled in order of urgency

(first the ones with the earliest deadline) i.e, different jobs of the same task may

have different priorities, still once the job is assigned a priority it will not change

until its completion. Its schedulability condition is U ≤ 1 [50].

Note that the EDF schedulability condition is equal to the its feasibility condition,

therefore this algorithm has not capacity loss. On the other hand, RM and DM are

unable to schedule every feasible task set, therefore they suffer from algorithmic

capacity loss.

Least Laxity First (LLF) Each job under LLF receives a priority according with their

laxity, Li(t) = di − t − Ei(t), where Ei(t) is the pending execution of the ith job

at time t. LLF recalculates laxity every time an instance finishes executing or on

every activation. Therefore, a job can have different priorities while it is active.

This algorithm schedules all sets of tasks with utilization U ≤ 1 just like EDF on

uniprocessors, but it is more computational expensive.

Cyclic executives

A Cyclic Executive (CE) is a schedule determined prior to run-time, which describes

a sequence of jobs to be performed on a fixed period of time called major cycle or

major frame. This approach to scheduling is applicable only when the system is

highly deterministic, except for a few aperiodic tasks that can be scheduled under

deterministic frameworks.

This structure implies that scheduling decisions are made periodically, at the begin-

ning of each time interval, referred as a minor frame.

Generally, there are three restrictions in the definition of the minor frame:

1. Ideally, the minor frame size ϕ should be long enough to accommodate each

job up to completion

ϕ ≥ max
1≤i≤n

(ci) (2.3)

2.2 Real time systems 17

2. The minor frame should divide the hyperperiod H of the task set. This

condition is met when ϕ divides the period ωi of at least one task τi ∈ T

⌊ωi/ϕ⌋ − ωi/ϕ = 0 (2.4)

3. In order to ensure that deadlines are met, the frame size should be sufficiently

small so that between the release time and deadline of every job, there is at

least one frame:

2ϕ − gcd(ωi, ϕ) ≤ di (2.5)

2.2.4 RT Multiprocessor scheduling

The classification provided in Fig. 2.1 also applies for multiprocessor scheduling, yet

the inclusion/increment on system capacity poses new challenges. Thus, scheduling

algorithms in multiprocessor architectures are frequently distinguished according to

their migration constraints:

• No migration. Tasks are statically allocated to processors and never migrate

(e.g. partitioned scheduling).

• Partial migration. Tasks can only perform a limited number of migrations, only

some tasks are allowed to migrate or tasks can only migrate on a subset of

processors (e.g. Semi-partitioned and clustered scheduling)

• Full migration. Tasks are dynamically allocated to processors and can migrate

at any time on any processor (Global scheduling).

Partitioned scheduling

Partitioned scheduling boils down to finding disjoint subsets Qj in a task set, such

that the utilization sj of each subset is s ≤ 1. It is widely known that such partition

is equivalent to the bin-packing problem, hence it is highly intractable NP-hard in

the strong sense. Once the partitions are computed, each subset of tasks can be

scheduled with any well-known uniprocessor scheduling algorithm. Since migration

is forbidden, processors may be underutilized.

18 Chapter 2 Background and prior work

Figure 2.2.: Classification of RT multiprocessor scheduling

The bin-packing problem

The Bin packing problem (BPP) states the following: Pack n objects of different sizes

s1, s2, . . . , sn into the minimum number of bins (containers) of fixed capacity c. The

total volume V of the items is then V = sumn
i=1si.

This problems appears in many practical cases, e.g. how to cut pieces of beams form

beams of a given length to minimize waste, or how to fit luggage in a flight. Various

heuristics exist to approximate solutions for the bin-packing problem:

• Next Fit (NF). Place each item in the same bin as the last item. If it does not

fit, start a new bin.

• First Fit (FF). Place each item in the first bin that can contain it.

• Best Fit (BF). Place each item in the bin with the smallest empty space

• Worst Fit (WF). Places each item in the used bin with the largest empty space,

otherwise start a new bin

BPP algorithms are said to be online if items arrive one at the time, and the must be

served before the next one arrives. Alternatively, they are said to be offline when all

items are known beforehand, such that they can be grouped into bins in any order.

The heuristics performance can be evaluated through a performance ratio ρ =
BA/B0, where BA stands for the number of bins used by algorithm A, and B0 the

minimum number of bins used by the optimal algorithm.

2.2 Real time systems 19

If all items are known, sorting them first usually improves performance on the

heuristics. First Fit Descending (FFD) is the heuristic that employs a FF algorithm

with items sorted in descending order.

The formulation of the task allocation problem as a BPP is straightforward. The

tasks are considered as items with size equal to its utilization ui, and each processor

(container) has a capacity of 1, or a speedup factor. Instead of comparing heuristics

upon a performance ratio, we define the worst-case achievable utilization Uwc,S−A for

a given scheduler S and a given algorithm A, such that any task set with utilization

U ≤ Uwc,S−A is shedulable by S using A.

The worst-case achievable utilization on m processors with any of the past heuristics

is at most (m + 1)/2.

Utilization bound for EDF Lopez et.al [51] showed that any task system with

utilization at most (m + 1)/2 can be correctly scheduled on m processor with EDF

as scheduling policy and FF or BF as heuristics algorithms.

EDF partitioned schedulability can be improved imposing restrictions on the maxi-

mum utilization per task.

Disadvantages of partitioning The major disadvantage of partitioned approaches

is a low bound on utilization 50%, even when relying on optimal schedulers for

uniprocessors, like EDF [59, 53].

Global scheduling

In contrast to partitioned scheduling, global scheduling allow task migration among

all processors. From a queue theory point of view this is advantageous, because the

response time of a task can be reduced. Nevertheless, Dhall and Liu [32] showed

that classic algorithms, like RM and EDF, performed poorly for global scheduling.

Dhall’s effect. The schedulability bound of global-EDF and global-RM is equal to 1,

independently of the number m of available processors. This means that given a

platform of m identical processors, there exist task sets with U > 1 that are not

schedulable by global-EDF and global-RM. To prove this result it suffices to identify

a task set T with utilization U = 1 + ϵ, where ϵ is an arbitrarily small constant, that

is not schedulable by global-EDF and global-RM. This is exemplified on Fig. 2.3.

20 Chapter 2 Background and prior work

ci ωi ui

τ1 1 T-1 ϵ
...

...
τm 1 T-1 ϵ

τm+1 T T 1
0 T

P1

P2

Pm

...

Figure 2.3.: Dhall’s effect. Example with m processors and m + 1 tasks where EDF and RM
produce an unfeasible schedule with a total utilization arbitrarily close to 1

Proportional fairness

The concept of proportional fairness applied to mutiprocessor RT scheduling was

first proposed to improve the under-utilization shown by partitioned schemes [8].

Conceptually, the execution of each task could be represented through a fluid rate

curve, as in Fig. 2.4. If each task could be executed according to its fluid curve at

every instance of time, then a feasible schedule should always exist for systems

U ≤ m. This implies sharing all processors among all tasks at each time instant,

which is unrealistic.

Instant sharing is just a theoretical concept, so in practice we can allocated processor

time in discrete time units, or quanta. The utilization ui of a task defines the rate

at which it has to be scheduled. A fair scheduler closely tracking the fluid curves

would provide each task with a share of ui · t during a time interval [0, t). The closer

the algorithm becomes to the fluid curves (the fairer it is), the more preemptions

and context switches it triggers, getting the idea unpractical.

Pfair [8] was a seminal algorithm leveraging the principle of proportionate schedul-

ing to design practical RT multiprocessor schedulers. It creates a scheduling event

and recomputes the set of running tasks at every multiple of a discrete time quantum.

The notion of proportional fairness used in Pfair is very strict, requiring that the

actual work completed by every task is within 1 unit of its fluid rate curve at each

time quantum. The result of this policy is a large number of scheduling calculations

and context switches, with correspondingly high overhead.

Most variations on the Pfair algorithm aim to solve the problem of priority ties

(PD [7] and PD2 [4], [76]).

2.2 Real time systems 21

work
remaining

Time

cci

ai ai+di

fluid rate curve

actual work remaining curve

Figure 2.4.: Fluid versus practical schedules. The actual remaining work decreases at a rate
of 1 or the processor frequency f when task is executing, and is horizontal
when idle. The fluid rate curve decreases at a constant rate of ui

Deadline partitioning

Deadline partitioning fairness (DP-fair) was proposed to avoid the overhead intro-

duced by Pfair algorithms [36]. Intuitively, it seems unnecessary to adhere so closely

to the fluid schedule: performance could be improved by a more judicious choice of

scheduling events. Thus, any given job really only needs to match its fluid rate curve

at its own deadline, which is the original problem to solve. A sufficient (although

not necessary) compromise is to require all tasks to match their fluid rate curves at

the deadline of each task. This new requirement over-constrains the system, but

greatly simplifies the scheduling process.

DP-fair is a technique of partitioning time into slices/frames, demarcated by all the

deadlines of all tasks in the system. All jobs are allocated a workload within each

frame , and all workloads within each frame share the same deadline.

Deadline partitioning deals with two aspects: allocating the workloads for all tasks

for each time slice, and scheduling within a time slice. We say that an algorithm

using this approach is DP-correct if (i) The time slice scheduler executes the allocated

workload of all jobs by the end of the time slice whenever it is possible to do so,

and (ii) Jobs are allocated workloads at each slice so that such workloads complete

within the slice, and the completion of these workloads makes the actual deadlines

of all tasks to be eventually met. In other words, any DP-correct scheduler is

optimal [36].

22 Chapter 2 Background and prior work

Dual scheduler

DP-fair scheduling was designed upon the observation that tracking the fluid curve as

strictly as in P-fair methods is unnecessarily over-constraining, even though the fluid

curve is the most precise way to indicate how a task must be executed in order to

fulfil the timing constraints. This over-constriction not only happens when meeting

the fluid constraint at each quantum or time-window as in P-fair, though. Ensuring

the accomplishment at the deadline level as deadline partitioning approaches is also

over-constraining. The clue lies on the following theorem in Funk’s et al. seminal

paper of DP-Fair [36]:

Theorem 2.1 When the total utilization of a periodic task set with implicit deadlines

is equal to the number of processors, then no feasible schedule can allow any processor

to remain idle for any length of time. [36]

This theorem entails that properly scheduling idle time is just as important as

scheduling the workloads. In fact, these two problems are interchangeable (dual).

Levering this dual approach can relax the aforementioned over-constriction, which

hampers the practical value of the methods related to P-fair and DP-fair. The notion

of a dual schedule is based on Theorem 2.2. It constitutes the basis of further

scheduling algorithms such as RUN and QPS, as well as the algorithms contributed

in this Thesis.

Theorem 2.2 Any scheduling problem with m processors and m + 1 tasks, where the

total rate of the tasks is m, may be scheduled by applying EDF or LLF to the uniprocessor

dual. [36]

RUN

Reduction to Uniprocessor (RUN) [61, 60] is a scheduling algorithm built upon

the idea of dual scheduling, to overcome the shortcomings of previous proposals.

RUN considers feasible systems composed of independent periodic (not sporadic)

tasks with implicit deadlines running on identical processors. RUN transforms

the multiprocessor RT scheduling problem into an equivalent set of uniprocessor

problems. The key underlying tool is the utilization of a task and its dual, e.g. if 0.7 is

the utilization of a task, its dual is 0.3. RUN first tries to find off-line proper utilization

subsets, which are task groups (named servers) with an aggregated utilization equal

2.2 Real time systems 23

to 1 This is called a pack operation (bin-packing, actually). A proper utilization

subset can be allocated to a virtual processor, configuring a proper subsystem. After a

successful pack, a dual operation follows. The dual operation makes groups with an

aggregated dual utilization of 1 groups considering the dual utilization. The pack-

dual operations continue until a single utilization system is found. The algorithm

guarantees convergence. Then, RUN uses EDF to schedule each task group on-line,

reversing (unpacking) the pack-dual operations performed off-line . Under the DUAL

and PACK operations, this algorithm yields a small number of preemptions and

migrations.

QPS

Quasi-Partitioned Scheduling (QPS) [55] partitions the task set into subsets. There

are two types of subsets, minor and major execution sets, depending on whether

they require one or multiple processors. If all subsets are minor, QPS boils down to

a partitioned EDF. Major execution sets are scheduled either by a set of QPS servers

on multiple processors, or by local EDF on a single processor depending on their

execution requirements.

Unlike RUN, QPS can adapt its scheduling strategy to the system load by monitoring

major execution sets at run-time. LikeRUN, QPS partition is performed off-line, then

generating the schedule on-line. Upon the arrival of aperiodic tasks, QPS needs

to recompute the servers, unlike fluid schedulers, which are more amenable to be

empowered with adaptive runtime policies.

Hybrid approaches

The limitations of partitioned and global algorithms can be mollified or even over-

come employing hybrid approaches [15]. On the one hand, semi-partitioned algo-

rithms limit the number of migratory tasks. Usually, this methods leverages a BPP

heuristic to allocate tasks to a single processor, minimizing the number of bins; tasks

that do not fit exactly are allowed to migrate among processors. Some EDF-based

algorithms are EDF-fm [3], EDF-WM, and NPS-F [9].

On the other hand, clustered algorithms group processors into clusters, and tasks

are pre-allocated to clusters [16]. Tasks can only migrate within the cluster they

are allocated to. Clusters can be single- or multi- processor, such that the global

24 Chapter 2 Background and prior work

scheduling problem is split into smaller problems. This, in turn, improves the overall

performance of a global scheduler [15].

2.2.5 Control strategies in RT scheduling

The aforementioned RT scheduling algorithms are open-loop, because the scheduling

decisions are based on worst-case estimations of task parameters. They do not

continuously observe the performance of the system, nor they adjust the decisions

or task parameters dynamically to improve performance. In contrast, close-loop

scheduling algorithms exploit the feedback information of the system to adjust task

and/or scheduler parameters, thereby improving system’s performance.

Feedback is a powerful concept that has played an important role in the development

of many areas of engineering. Feedback can make a system robust towards external

and internal disturbances and uncertainties [70]. An advantage of using feedback

alongside RT scheduling is that precise schedulability models are no longer needed:

the system can dynamically adapt its resource allocation policy or its load in a

controlled way to ensure the desired temporal behaviour.

Control techniques rely on the use of actuators handled by a controller to act on the

system and modify its output. In regular control systems, there is a desired value

(set-point) that the system must achieve, such as a certain water level in a tank.

A controller will act upon the valves of the tank either by modifying the input or

output water flow. Scheduling systems leverage performance metrics, instead of

defining a set-point. The most common metric is the deadline miss ratio. For this

reason, these approaches have been limited to FRT or SRT systems, allowing for a

certain percentage of missed deadlines.

These proposals appear in the literature under names as feedback scheduling quality

of service control and control scheduling-co-design. These works, instead of assum-

ing worst-case estimations of task parameters, they usually consider average-case

workload parameters, and are ready to deal with bounded transient overloads. The

concept of quality of service (QoS) is traditionally focused on performance metrics,

such as throughput, delay and jitter. QoS software adjusts the system resource

allocation on-line to maximize the performance in some respects.

Some works on feedback scheduling techniques in the line of [34, 35, 75], provide

a firm performance guarantee in terms of deadline misses while achieving high

2.2 Real time systems 25

utilization and throughput at the same time. Sahoo et al. [68] present a closed loop

approach for dynamically estimating the execution times of tasks based on both

deadline miss ratio and task rejection ratio in the system.

Co-design approaches have also been proposed when the RT tasks constitute digital

control loops. In control scheduling-co-design, the development of the control

system is performed along with the scheduling, based on a trade-off consideration of

scheduling constraints and control performance. For example, the task periods are

seen as a variable and the control design should include variable sampling times, as

in [5]. These varying times are considered in the controller gains within the control

loop tasks.

0The concept deadline miss ratio violates the main assumption in HRT systems,

and therefore it cannot be used in feedback scheduling for HRT. To overcome this

drawback, authors in [29, 28] leverage a fluid scheduling approach and impose a

sliding-mode controller such that fluid-rate curves of tasks, Fig. 2.4, are tracked. An

undesired side-effect of this technique is that it leads to a high number of context

switches, in the line of P-fair schedulers. The authors address this inconvenient

through a discretization step, following a deadline partitioning approach. This

decreases the number of context switches significantly, but still leaves room for

improvement.

Other contributions based on control theory are focused on smoothing the transition

of high critical systems, formerly deployed on single processor architectures to

multicores. In [33], a closed performance control loop enables a standalone WCET

estimation of a HRT application and execution on a multicore system concurrently

to other applications.

2.2.6 Thermal and energy aware strategies in RT scheduling

Thermal-aware scheduling has been largely studied for the past few decades. There

are at least two elements to consider when tackling this problem: a model rep-

resentation to study the thermal behaviour of the processors, and a scheduling

policy.

As far model representation is concerned, most works rely on mathematical models

based on RC circuits or a linearized model. Alternative approaches such as [28, 62]

26 Chapter 2 Background and prior work

provide a state model which encompass the thermal properties and dynamics of the

system.

Thermal-aware scheduling on single core systems exploit Dinamyc Voltage and

Frequency Scaling (DVFS) to reduce power consumption and temperature ([46,

40]). Authors in [18] study the temperature problem in uniprocessors and in homo-

geneous multiprocessor systems. They leverage a partitioned EDF-based algorithm

that minimizes energy, and derive an approximation bound for the maximum tem-

perature. In [69], they perform a worst-case temperature analysis for RT tasks with

non-deterministic workloads running on multiprocessors systems. Authors in [1]

tackle the problem of thermal-constrained scheduling of periodic tasks leveraging a

fluid scheduling model. They assume a partitioned scheduling scheme, which limits

the outreach of their results. While in [17], they use an equivalent circuit model to

estimate the temperature for a given set of HRT tasks on a multicore system, also

referred to a partitioned scheme.

Authors in [71] provide a HRT multiprocessor scheduler which accounts for energy

and thermal constraints by maximizing workload-per-joule (WPJ) subject to a

thermal constraint. The allocation of tasks to processors relies on an (enhanced)

variable-size bin packing algorithm (En-VSBP): the size of a bin depends on the

capability (frequency) of each core. The downside of the heuristic approach the

authors take is that it cannot ensure schedulability, and it only explores a very small

portion of the solution space, yielding sub-optimal results.

Feedback control has also been used to consider energy constraints, for example

Soria-Lopez, et al. [75] presented an energy-based feedback control scheduling

framework for power-aware soft real-time tasks executing in dynamic environments

where real-time parameters are not previously known a priori. The framework

contains an energy-based feedback scheduler and a power-aware optimization

algorithm.

2.3 System Model

This section exposes the TCPN global model for tasks, CPUs and thermal behaviour,

as well as a brief introduction to Tertimuss, the simulation tool used through the

work.

2.3 System Model 27

2.3.1 Background on Petri Nets

Petri Nets (PNs) is a widely accepted paradigm for modeling, analyzing and control of

discrete event systems, basically because of their powerful mathematical background

and their nice graphical representation [58]. Petri nets present two interesting

characteristics. Firstly, they make it possible to model and visualize behaviors

with parallelism, concurrency, synchronization and resource sharing. Secondly, the

theoretical results concerning them are plentiful; the properties of these nets have

been and still are extensively studied. A Petri Net PN, has two classes of nodes:

places and transitions. Places are represented as circles, while transitions with

bars, even though come author have used boxes. Edges can only connect places to

transitions, and transitions to places. The following definitions will further describe

a PN and its characteristics.

Basic definitions

Definition 2.5 A Petri net structure is a bipartite graph defined with a four tuple

N = ⟨P, T, P re, P ost⟩, where P and T are finite non-empty disjoint sets of nodes

named places and transitions, respectively. P re : P × T → N ∪ {0} is the pre-

incidence function that specifies the weighted arcs directed from places to transitions

and P ost : P × T → N ∪ {0} is the post-incidence function specifying the weighted

arcs directed from transitions to places.

A subnet of N , N ′ = ⟨P ′, T ′, P re′, P ost′⟩, is a Petri net structure where P ′ ⊆ P ,

T ′ ⊆ T are subsets of places and transitions of N , respectively; and P re′ =
P re[P ′, T ′] and P ost′ = P ost[P ′, T ′] are the pre- and post-incidence functions of

N restricted to P ′ and T ′. The preset and postset of a node v ∈ P ∪ T are denoted as

•v (set of input nodes) and v• (set of output nodes), respectively. These definitions

can be naturally extended: let V ⊂ P ∪ T be a set of nodes, •V (respectively,V •)

denotes the union of the preset (respectively, of the postset) of every node v ∈ V .

The incidence matrix of a petri net N is defined as C = P ost − P re. A column

vector y ̸= 0 is called a P-flow of N if yT C = 0; if the non-null entries of such vector

are positive, then it is called a P-semiflow. Similarly, a column vector x ̸= 0 is termed

a T-flow of N if Cx = 0; if the non-null entries of that vector are positive, then it is

termed a T-semiflow. If there is a P-semiflow (T-semiflow) such that y > 0 (x > 0),

the net is said to be conservative (consistent), respectively.

28 Chapter 2 Background and prior work

p1

p2 p3

t1 t2

t3 t4

p4

p5

10

10

Figure 2.5.: Example of a Petri net structure

Definition 2.6 A marking is a function m : P → N ∪ {0} that assigns to each place a

non-negative integer number

Definition 2.7 A Petri net system (or Petri net) is the duple PN = (N, m0) where N

is a Petri net structure and m0 is an initial marking.

Graphically, the marking of a Petri net is given by m(p) black dots or the number

m(p) at place p.

In a PN, a transition tj is enabled at marking mk iff mk[pi] ≥ Pre(pi, tj), ∀pi ∈ P .

In a PN, an enabled transition tj , at mk, can be fired. The firing of an enabled

transition tj produces a new marking that is computed with the fundamental PN

equation:

mk+1 = mk + Cvk (2.6)

where vk(j) = 1 and vk(i) = 0, ∀i ̸= j.

Example 2.1 Fig. (2.5) shows a Petri net with 4 places and 4 transitions, where

P = {p1, p2, p3, p4, p5}, T = {t1, t2, t3, t4}, and an initial marking:

m = [m(p1) m(p2) m(p3) m(p4) m(p5)]T = [10 0 0 0 10]T (2.7)

The Pre, Post and C matrices are:

2.3 System Model 29

Pre =



1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 1 0


, Post =



0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, C =



−1 −1 1 0

1 0 −1 0

0 1 0 −1

0 0 1 −1

0 0 −1 1


(2.8)

Firing an enabled transition consists of removing as many marks as indicated by the

weight of the arc from the input place of the fired transition and placing the number

of marks indicated by the weight of the arc towards the place in the post.

Example 2.2 In Petri net form Fig. (2.5), transitions t1 and t2 are enabled un-

der the initial marking m0 = [10 0 0 0 10]T . If t1 is fired, marking m1 =
[9 1 0 0 10]T is reached, i.e, m0

t1→ m1.

Continuous Petri net system

The marking of a place in a PN may correspond to the state of a device, a CPU is or

is not idle. This marking can be compared to a Boolean variable. A marking can also

be associated with an integer, e.g. the number of parts in the input buffer of a robot.

In the latter, the number of tokens may be a large number. This may result in such

a large number of reachable markings that a PNs would suffer from the so called

problem of state explosion, and become useful. The continuous Petri net (CPN) is

a model in which the number of marks in the places are real numbers instead of

integers [22]. CPNs arise from a fluidization process, in which each mark is divided

into k parts, such that when k rightarrow∞, the marking becomes a real number,

and the firing can be made through real quantities.

The marking in a CPN is a mapping m : P → R|P |
≥0 that assigns to each place of N a

non negative real value.

Definition 2.8 A continuous Petri net (CPN) system is a net N with an initial marking

m0 : P → R|P |
≥0 , and it is denoted as ⟨N, m0⟩

30 Chapter 2 Background and prior work

Unlike the discrete case, in a CPN a transition ti is enabled at a marking m if and

only if ∀p ∈ •ti, m(p) > 0. The enabling degree of a transition t at a marking m is

defined as

enab[t] = min
p∈•t

{
m[p]

P re[p, t]

}
. (2.9)

An enabled transition t can be fired in any real amount between the interval 0 ≤
α ≤ enab(t, m). Its firing leads to a new marking m′ = m + αC(P, t). If a marking

m′ can be reached from m0 with a firing sequence σ. The set of reachable markings

satisfy the following fundamental equation:

m = m0 + Cσ (2.10)

where σ ∈ {R ∪ 0)|T |} is the firing count vector.

Timed continuous Petri net systems

If the firing of transitions is timed, the marking of the continuous system evolves

along a trajectory within the set of reachable markings in a deterministic way. In

this sense, Eq. 2.10 will depend explicitly on time such that m(ζ) = m0 + Cσ(ζ),
and its time derivative yields the state equation,

ṁ(ζ) = Cσ̇(ζ) (2.11)

The derivative of the firing count vector σ̇(ζ) is known as the firing flow or through-

put vector of the timed model f(ζ) = σ̇(ζ). The firing flow may be defined according

with a semantic, in this work the infinite servers semantic is used, but other common

semantics are finite servers semantic or product semantic, each one will be defined

later.

Definition 2.9 A timed continuous Petri net TCPN system is a CPN along with a firing

rate vector λ, and is denoted as ⟨N, m0⟩, where λ : T → Q|T |
>0.

2.3 System Model 31

Definition 2.10 Under infinite servers semantics the firing flow f(ζ) of transition tj

is proportional its enabling degree, and is defined as

f [tj] = λ[tj] · min
p∈•tj

{
m[p]

P re[p, tj]

}
(2.12)

Definition 2.11 Under finite server semantics, if the marking of the input places of

transition ti is strictly greater than zero, then its flow is constant and equal to λi,

otherwise the flow is the minimum between the maximum firing speed and the total

input flow of the empty places.

f [tj] =


λ[tj] if ∀p ∈ •tj , m[p] > 0

min

 min
p∈•tj |m[p]=0

∑
tq∈•p

fq · P ost[tq, p]
P re[p, tj]

 , λ[tj]

 otherwise

(2.13)

Definition 2.12 Under product semantics the firing flow f(ζ) of transition tj is defined

as

f [tj] = λ[tj] ·
∏

p∈•tj

{
m[p]

P re[p, tj]

}
(2.14)

A TCPN under the semantics of infinite servers is a switched linear system, given by

the min operator that appears in the flow equation 2.12. And its marking evolution

can be represented by an affine positive piecewise linear system [73]. Throughout

this work, the semantics of infinite servers will be used for the modeling of systems.

A configuration C of a net N is a set of arcs (p, t), one for each transition of the

net, such that p ∈ •t. A configuration C has associated a configuration matrix

ΠC ∈ Q|T |×|P |
≥0 ,

ΠC [pi, tj] =


1

P re[pi,tj] if (pi, tj) ∈ C

0, otherwise
(2.15)

A configuration C is active at marking m if ΠCm = enab(m).

32 Chapter 2 Background and prior work

Then, the flow through the transitions in a given configuration C can be written as

the vector f(m) = ΛΠCm, where Λ is the diagonal matrix whose elements Λi,i are

the firing transition rates λi.

In the systems modeled by TCPNs, control actions may be applied to transitions as

means to decrease their speed, i.e their maximum transition flow f [t]. A transition

t is controllable if its flow can be reduced or stopped, the set of all controllable

transitions is denoted by Tc. And the set of uncontrollable transitions is denoted by

Tnc = T \ Tc.

The control vector u ∈ R|T | is defined such that ui represents the control action over

ti ∈ T . Then the effective flow through a controlled transition is given by:

wi(m) = f [ti](m) − ui,

0 ≤ ui ≤ λi · enab[ti](m)
(2.16)

where wi(m) ≥ 0.

Thus, the behaviour of a TCPN system, in any configuration C is described by the

state equation:

ṁ = CΛΠim − Cu,

= CΛΠim − Ccuc

with 0 ≤ u ≤ ΛΠim (2.17)

where CΛΠi is the dynamic matrix for configuration C; the input matrix Cc =
C(P, Tc) the incidence matrix C constrained to the columns of controllable transi-

tions, and uc = u(Tc) is u restricted to the controllable transitions Tc.

2.3.2 TCPN global model

According to the objectives of this Thesis, we attempt to solve the problem of

scheduling HRT tasks on a multicore system while complying with thermal and

energy constraints. Therefore, it is of great interest to obtain a model encompassing

all of these phenomena.

We have chosen a system model based on Timed Continuous Petri Nets (TCPN)

because this formalism is amenable to describe discrete event systems such as the

arrival of tasks and allocation of resources, while also being capable to describe

2.3 System Model 33

...

...

T
∞

T1
TkT2

T3

T
C

P
N

T
h

er
m

al
 M

o
d

el
T

C
P

N
 m

o
d

u
le

 f
o

r
T

C
P

N
 m

o
d

u
le

 f
o

r

(a)

...

(b)

Global Multiprocessor TCPN

...

...

...

.

...

Global Uniprocessor TCPN

Boundary transition

Boundary place

Figure 2.6.: Schema of the TCPN global model, on the right is an abstract representation
of the different modules and how they interconnect. On the left, is a more
detail representation of a TCPN model for n tasks assigned to one CPU, and
one component for the thermal model.

continuous behaviours, such as the heat transfer in a multicore system due to task

execution.

The TCPN global model is built by merging three main modules: a task arrival

module, a CPU module and a thermal model. Figure 2.6 shows the schema of the

model composition. The following sections will extend on how to obtain the model.

This methodology is not a contribution of this thesis; we provide an explanation

here to offer a better understanding of the contributions, and because we perform

changes on the CPU module required for the execution controller in Ch. 5. The

task arrival and CPU modules were first presented in [29], then improved in [28].

The heat transfer model methodology using TCPN was first introduced on [78] for

a greenhouse climate control, then it was adapted to a multicore system in [30].

Finally, the global TCPN model for tasks, CPUs and temperature were combined into

a global single model in [28] and [63].

Remark 2.1 A TCPN is an approximation of the discrete PN, therefore the model

shows the throughput or average value.

34 Chapter 2 Background and prior work

(a)

...

...

comp

CPUj

(b)

Figure 2.7.: (a) TCPN module for task arrival τi. (b) TCPN module for CPUj .

Task module

The task module represents the arrival of a periodic task into the system, and

is displayed on Fig. 2.7a. Each periodic task τi is defined by the 3 − tuple τi =
(cci, di, ωi), where cci is the worst-case execution time in processor cycles (WCET),

ωi the period and di is the relative implicit deadline (di = ωi) [6].

The period ωi implies that 1
ωi

jobs arrive per second in average. This is captured as

the firing rate λω
i = 1

ωi
of transition tω

i in the TCPN module. The duration of the task

is represented by the arc going from transition tω
i to place pcc

i . This arc models job

arrival. Accordingly, the marking of place pcc
i stands for the CPU cycles that remain

to be executed, its initial state is cci because each task activates at time zero.

CPU module

The CPU module, shown on Fig. 2.7b, models two important behaviours: task

allocation to a processor and task execution on a processor.

As with the task module, there is one module per CPU on the system. It is composed

of n transitions talloc
i,j , n transitions texec

i,j , n places pbusy
i,j , n places pexec

i,j and a place

pidle
j (Fig. 2.7b).

The initial marking of place pidle
j is set to 1 to indicate that CPUj is available or

idle.

Task allocation The firing of transition talloc
i,j means that a job from τi has been

allocated on CPUj and will be executed. The transition rate λalloc
i,j should be close

2.3 System Model 35

to infinity, since this is assumed as an instantaneous event1. Places pbusy
i,j represent

the busy state of processor CPUj due to the allocation of a job from τi.

Task execution Transitions texec
i,j are fired when τi is executing on processor CPUj ,

and its transition rate λexec
i,j models the execution rate of the task. Places pexec

i,j hold

the accumulated execution of τi over time.

The arcs going from transitions texec
i,j to place pidle

j and from place pidle
j to transitions

talloc
i,j are weighted by a constant value η, to ensure that the flow through transitions

talloc
i,j is limited by the throughput capacity of the CPU, and the TCPN evolves in only

one configuration.

Thermal model

Each processor generates heat due to task execution. This heat propagates across the

system by conduction from more energetic particles to the adjacent less energetic

ones [37]. Finally, the surfaces in contact with air experience convection, given the

exchange of heat between air particles and the boundary surface.

Heat transfer can be modeled by a partial differential equation (PDE) and a set of

defined boundary conditions. Based on the methodology presented on [63]and [28]

it is possible to build the model using elementary TCPN modules that represent the

convection, conduction and heat generation. Thus, avoiding to work with a model

formulated with PDEs. Appendix B provides a very detailed explanation on how to

produce TCPN elementary modules from a PDE.

The first step to use the elementary TCPN modules is to perform an spatial dis-

cretization of the multi-core platform, such that the geometry is divided into smaller

components. Then each component is associated to an elementary TCPN module

according to the phenomena present on that element. For example, on the compo-

nents corresponding to a CPU, there is heat generation and heat conduction with

the neighbour elements.

Following that methodology, the thermal model is built for the layout of the multicore

system and its physical properties. Fig. 2.8 shows the resulting TCPN for a component

subjected to conduction, convection and heat generation; place p1com represents the

average temperature of component one.

1For simulations purposes it is enough to set λalloc
i,j one order of magnitude greater than λexec

i,j

36 Chapter 2 Background and prior work

Componente 1

(a) Component

T
∞

T1
TkT2

T3

(b) TCPN for component 1

Figure 2.8.: TCPN for a component subjected to conduction, convection and heat genera-
tion; place p1com represents the average temperature the component.

In the methodology exposed in Appendix B, the heat generation modules provide a

constant heat generation rate. Howbeit, in the multi-core system the heat generation

might not be constant, and it rather depends on its power dissipation. For this reason

the heat generation modules differ and are shown on Table. 2.2. The power model

used in this Thesis appears as a weight on the arc that connects the CPU module

with the thermal model. More precisely, there is an arc connecting every transition

texec
i,j to each component (from the spatial discretization) on CPUj , relating task

execution (i.e frequency) and heat generation.

Power Dissipation and Energy consumption The power dissipated by a processor

has two main components: the dynamic power due to operation and the static power.

It is computed as:

PCP Uj = Pdynj
+ Pleakj

(2.18)

on the expression, Pdynj
corresponds to the dynamic power on CPUj , and Pleakj

refers to the power dissipated due to leakage currents, which is the main component

for the static power.

The dominant component of power consumption in CMOS technology is the dynamic

power Pdynj
given by Pdynj

= Ceff V 2
ddF , where Ceff is the effective switching

capacitance, Vdd the supply voltage and F is the frequency of the clock. Given that

Vdd ∝ F and k is a modeling constant, Pdynj
can be stated as:

Pdynj
= kF 3. (2.19)

2.3 System Model 37

Component TCPN module Parameter

Conduction

Componente 1

Componente 2

t1

p1 p2

t2

T1 T2

λ1

λ2

λ /λ2 1

λ /λ1 2

λ =
[1

V1ρ1cp1
· k1k2A

k2∆x1+k1∆x2
1

V2ρ2cp2
· k1k2A

k2∆x1+k1∆x2

]
P re =

[
1 0
0 1

]
P ost =

[
0 λ1

λ2
λ2
λ1

0

]

Convection

t1

p1 p2

t2

T1
T∞

λ1

λ2

λ =
[

λ1
λ2

]
=
[

hAs
V1ρ1cp1

hAs
V1ρ1cp1

]
P re =

[
1 0
0 1

]
P ost =

[
0 1
0 1

]

Heat genera-
tion due to
task execu-
tion

T1

P re = [0 · · · 0]

P ost =
[

F 3V 1
1

VCP U1
· · ·

F 3V k
m

VCP Um

]

Heat genera-
tion due to
Pleak

λleak =
[

λδ
1

λα
1

]
=
[

δ

α

]
P re =

[
1 0
0 1

]
P ost =

[
2 0
0 1

]

Table 2.2.: TCPN modules for element subjected to conduction, convection and heat gener-
ation

On the other hand, Pleakj
can be modeled as a linear function of temperature ([1]),

Pleak = δT + ρ, (2.20)

where T is the CPUs temperature and δ and ρ are modeling constants.

Based on the previous statements, the average energy Ej consumed during a time

interval interval (ζ1, ζ2] by the tasks running on CPUj is defined as:

Ej =
∫ ζ2

ζ1
PCP Uj (F)dζ (2.21)

38 Chapter 2 Background and prior work

2.3.3 Global model

The global model is obtained by merging the tasks modules, the CPU modules

and the thermal model together. This is achieved connecting boundary places and

transitions with arcs.

Tasks are linked to CPUs by connecting places pcc
i to transitions talloc

i,j with an arc.

This arc implies that jobs from task τi can be allocated on processor CPUj , therefore

by selecting which arcs to include it is possible to model partitioned, clustered or

global schemes.

The CPU and thermal model are connected by means of the the power dissipa-

tion/heat generation with the weighted arcs mentioned on the previous section.

Fundamental equation

The dynamic behavior of the global model (Fig. 2.6) is provided by the following

equations:

ṁT = CT ΛT ΠT (m)mT + Calloc
T walloc (2.22a)

ṁP = CPΛPΠP(m)mP + Calloc
P walloc (2.22b)

ṁexec = fexec (2.22c)

ṁT = CT ΛT ΠT (m)mT + CaΛaΠa(m)ma

+ Cexec
P fexec

(2.22d)

ṁa = 0 (2.22e)

Cx, Λx, and Πx(m) are the incidence matrix, the firing rate transitions and the

configuration matrix (x = {T, T , P}) of the thermal, task, and processor sub-

nets respectively. Each equation from system (2.22) represents a module from the

TCPN representation on Fig. 2.6. Eq. (2.22a) describes the periodic arrival of each

task, Eq. (2.22b) the processors behavior, and Eq. (2.22c) the processors execution

rate (i.e frequency). Finally, Eq. (2.22d) represents the thermal evolution of the

system due to task execution, with Eq. (2.22e) indicating that the environmental

temperature keeps constant during observation time (its derivative is neglected).

2.3 System Model 39

2.4 Tertimuss

Tertimuss is an open-source framework to model a RT multiprocessor system, simu-

late different RT schedulers, and process the results. It is publicly available at [21].

The development of Tertimuss begun with algorithms and tools first implemented

on MatLab [27]. It was utterly refactored in [20], porting the MatLab algorithms

to Python, adding new ones, refactoring the framework in a modular way, and

improving the components in terms of performance, usability and maintainability.

Tertimuss has been also extended as part of the work of this Thesis. All the proposed

algorithms have been implemented in Tertimuss. The experimental artifacts are

available in the framework.

Appendix A provides an overview of the architecture and characteristics of Ter-

timuss.

40 Chapter 2 Background and prior work

Energy-Efficient

Thermal-Aware RT

Multiprocessor Scheduling

3

This chapter presents an energy-efficient thermal-aware RT global scheduler for a

set of HRT tasks on a multiprocessor system. This global scheduler fulfills thermal

and temporal constraints by handling two independent variables: task allocation

and clock frequency selection. The proposed scheduler is split into two stages: one

offline and another online.

The off-line stage takes two steps. The first step computes a frequency range [F ∗, F +]
derived from the analysis of the TCPN global model from Section 2.3.2, such that

the HRT task set can execute correctly. Using the minimum frequency F ∗ power

consumption is minimized, whilst the system is at full capacity. Meanwhile, F + is

the maximum frequency that still guarantees the fulfilment of the thermal bound.

In other words, any frequency increase above F + would imply a thermal bound

violation. Then, the off-line stage leverages a deadline partitioning approach to

compute the CPU cycles that each task must execute per time interval. Finally, the

on-line stage performs the task allocation employing a Fixed-Priority until Zero-

Laxity policy (FPZL, [25]). It also includes an Adaptive Scheduler (AS) which adds

robustness by throttling the CPU frequency to accept/reject SRT aperiodic tasks, thus

ensuring the correct execution of the HRT task set minimizing energy consumption

and keeping a controlled temperature.

3.1 Problem definition

This section defines the system model and design constraints for the scheduling

problem herein addressed, which is formally stated in Problem 3.1.

Multiprocessor system The multiprocessor system is composed by m processors,

where job migration is permitted. P = {CPU1, . . . , CPUm} is the set of the m

41

Figure 3.1.: Overview of the scheduling solution: the task set conditioner module is detailed
on section 3.2.1 and it works upon the TCPN global model. The workload
computation is presented on sec. 3.2.2, it leverages a DP-fair scheme and solves
α integer linear programming problems (ILP). Finally, the workload is allocated
to processors on the scheduler and aperiodic manager module which are on
section 3.3

identical processors with an homogeneous clock frequency f ∈ F = {f1, . . . , fmax},

i.e a change on the operating frequency reaches all m processors.

Task model The set of HRT tasks is denoted by T = {τ1, ..., τn}. Each task is

independent, fully preemptive and defined by the 3-tuple τi = (cci, di, ωi), where cci

is the worst-case execution time (WCET) in cycles, ωi is the task period, and di is

the relative implicit deadline (di = ωi) ([6]).

The arrival of asynchronous, SRT aperiodic tasks is also considered. Each aperiodic

task τa
i is defined as a 3-tuple (cca

i , da
i , ra

i) in which cca
i (required CPU cycles) and da

i

(deadline) are known at task arrival time, and the arrival time ra
i is unknown.

Remark 3.1 It is assumed that all task parameters are integers and that every job

can be preempted at any time. The activation of the HRT tasks occur at time zero.

Problem 3.1 Minimum Energy Thermal Aware RT Scheduler (METARTS). Given the

sets T of tasks and P of CPUs, the METARTS problem consists in designing an algorithm

to allocate the tasks in T to the m identical CPUs within the hyperperiod H such that

deadlines for T are always satisfied, the CPU temperatures are always kept below a

given bound Tmax and the consumed energy is minimum. Additionally, the scheduler

must accept/reject aperiodic tasks upon arrival subject to HRT tasks and thermal

constraints.

42 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

3.2 Off-line stage

This stage computes two main elements: a range of operating frequencies and

the workload to execute. The range of valid operating frequencies [F ∗, F +] is

obtained from the analysis of the TCPN global model presented on section 2.3.2.

The second part of the offline stage leverages a deadline partitioned (DP) scheme, that

partitions time into slices. Within each slice, we solve an integer linear programming

problem (ILP) to compute the workload.

3.2.1 Set of working frequencies

The TCPN global model is a mathematical representation of three phenomena

present on our problem: task execution, energy consumption and heat generation

(due to the execution of tasks on processors). Thus, the relationship between task

execution and processors temperature is captured in a thermal constraint, obtained

from an steady state analysis, which will be discussed on the following section.

Therefore, the range of valid operating frequencies [F ∗, f+] has to guarantee the

thermal constraint even when working at full capacity, i.e U = m, besides ensuring

the HRT temporal constraints. Both frequencies F ∗ , F + are computed using

mathematical optimization.

Thermal constraint

As it was mentioned earlier, the TCPN thermal equation Eq. 2.22d is used to derive

the thermal constraint through a steady state analysis. The schedule is periodic

because it repeats every hyperperiod, therefore the same applies for thermal solution.

In this case, the initial and final temperature in every hyperperiod must be equal.

ṁT = AmT + B′ma + F 3Bfexec

YT = ⃗SmT

(3.1)

where A = CT ΛT ΠT (m), B = Cexec
P and B′ = CaΛaΠa(m). In a steady state

temperature, mTss , when time tends to infinite ṁT = 0. Hence,

mTss = −A−1(F 3Bwalloc + B′ma).

3.2 Off-line stage 43

The steady state temperature must be less than or equal to its maximum temperature

level to comply with the thermal constraint of CPUs, i.e. SmTss ≤ Tmax (thermal

constraint) then:

−SA−1F 3Bwalloc ≤ Tmax + SA−1B′ma (3.2)

This equation provides the thermal constraints that the allocation of tasks to the

processors (walloc) must fulfill. It includes the the clock frequency, the temperature

bounds and the allocated tasks, which in the steady state are equivalent to the

executed tasks. This equation will be used to compute the range of feasible operation

frequencies.

Minimum frequency

The proposed approach aims to minimize the system dynamic energy consumption

under the HRT, and thermal constraints. The energy minimization is explored under

DVFS, such that processor frequency can vary by selecting one from a finite set of a

preset values, i.e. F = {fmin, ..., fmax}.

Recall the energy and power dissipation equations from section 2.3.2, considering

only the dynamic component of the dissipated power, the consumed energy is

minimized Eq. 2.21 iff the clock frequency f is minimized. Nevertheless, f must be

fast enough to ensure that the temporal constraints are met. The next proposition

obtains the minimum clock frequency that fulfills the temporal constraints.

Proposition 3.1 Assuming that the task utilization is less than the number of proces-

sors U ≤ m and ui ≤ 1∀f ∈ F , the clock frequency that minimizes the total energy

consumption while meeting temporal constraints is constant:

F ∗∗ = max{fmin,
1
m

n∑
i=1

cci

ωi
}. (3.3)

Proof 3.1 According to Eq. (2.21) with P = kf3, the energy has a minimum iff

the consumer power is minimum. This occurs when f3 is minimum and fulfills that∑n
i=1

cci
fwi

= m, and f ≥ fmin. Using Lagrange multipliers, the Lagrangian function is

L = f3 + µ1(1
f

∑n
i=1

cci
wi

− m) + µ2(fmin − f). The solution yields four cases: a) Both

multipliers are inactive (µ1,2 = 0); b) Both multipliers are active (µ1,2 ≥ 0); c) µ1 = 0
and µ2 ≥ 0; and d) µ1 ≥ 0 and µ2 = 0. The first case is unfeasible, because f cannot

44 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

be zero. In the second case, the only solution is f = fmin = 1
m

∑n
i=1

cci
wi

. Finally, if one

multiplier is active while the other one is inactive there are two possible solutions: f =
fmin or f = 1

m

∑n
i=1

cci
wi

. Consequently, in order to fulfill both constraints, the frequency

that minimizes the total energy consumption becomes F ∗∗ = max{fmin, 1
m

n∑
i=1

cci
ωi

}.

The frequency F ∗∗ meets the temporal constraints. We must compute walloc and

solve Eq. (3.2) to guarantee the thermal constraint fulfilment. At frequency F ∗∗ the

system utilization is U =
∑n

i=1
cci
ωif

= m and the processor frequency is:

F ∗ = min{f ∈ F |f ≥ F ∗∗} (3.4)

given the nature of the discrete set of frequencies.

When computing F ∗∗ (Eq. 3.3) we assume a fully utilized system, but actual F ∗

in Eq. 3.4 can make the execution faster, causing the utilization to become below

100%. In those cases we introduce an idle task uidle = m −
n∑

i=1
cci

F ∗ωi
to ensure that

system utilization is 100%. The task allocation ratio is calculated as follows, to make

the distribution of the CPU cycles required to execute all tasks homogeneous:

walloc = [1
m

n∑
i=1

cci

ωiF ∗ , . . . ,
1
m

n∑
i=1

cci

ωiF ∗]T (3.5)

walloc controls the flow of the allocation transitions in the TCPN (talloc
i,j in Fig. 2.6),

thus modeling the allocation rate of tasks to CPUs (Eq. 2.22). If walloc satisfies

Eq. (3.2), then the thermal constraints are also satisfied. Otherwise, the METARTS

problem does not have a solution. If it result in a feasible F ∗, then we can compute

the maximum CPU cycles available for aperiodic tasks, and the maximum clock

frequency that can be used subject to thermal constraints.

Maximum frequency

The maximum thermal frequency F + ∈ F is the greatest frequency at which all CPUs

can operate at 100% of utilization and still meet the thermal constraint. To compute

3.2 Off-line stage 45

F +, first we solve the programming problem in Eq.(3.6) to find the frequency upper

bound Fc that satisfies the constraints.

max Fc

s.t.

−SA−1F 3
c B

[
CC1
FcH , . . . , CCm

FcH

]T

≤ Tmax + SA−1B′ma

CCj

FcH = 1 ∀j = 1, . . . , m

F ∗ ≤ Fc ≤ Fmax

(3.6)

The first constraint establishes the thermal requirements. CCj represents the cycles

that CPUj must execute per hyperperiod. Since all CPUs must work at their maxi-

mum capacity, the second constraint implies that the CPU utilization is 100%. The

last constraint bounds fc to the actual clock frequency range of CPUs. Finally, the

solution for F + has to be in the set F of discrete frequencies, thus the processor

frequency f+ is calculated as,

F + = max{f ∈ F |f ≤ fc}. (3.7)

With the minimum frequency f∗ and the maximum thermal frequency f+ we

define

F = {f ∈ F |f∗ ≤ f ≤ f+}, (3.8)

as the set of operating frequencies that meet the thermal constraint.

3.2.2 Workload computation

Given the periodic task system comprising n tasks to be executed on m-processors

and frequency F ∗, the second part of the offline stage leverages a deadline parti-

tioned (DP) scheme 2.2.4. In this offline stage we will compute the workload per

time interval, which will also be referred as frame. This is, the share of execution

that each job should execute per frame to satisfy its temporal requirements.

The workload computation is performed by solving an ILP at each frame. Then, its

solution is carried away as the input for the ILP on the following frame. This process

46 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

is repeated up to the last frame. The reason why we impose an integral solution

is because the workload is expressed on cycles rather than time, and a cycle is an

indivisible unit. Nevertheless, it will be proved that the ILP formulation meets the

unimodularity property, therefore the solution of the optimization problem through

a simplex method always ensures integral solutions.

ILP representation and unimodularity

A job is any instance of a periodic task τi. Therefore, a periodic task can produce

an infinite number of jobs. Nevertheless, in the context of periodic tasks, the

hyperperiod represents the smallest time window that would be repeated over time.

For this reason, we can study the behaviour of the system by analysing the set of

jobs within H.

Definition 3.1 Let SD be the ordered set of deadlines of all jobs j ∈ J within H ∪{0}.

Such that sd0 = 0, sdk−1, sdk ∈ SD, sdk−1 < sdk, where k is an integer value greater

than zero. Then, the frames (scheduling intervals) are defined as ϕk = [sdk−1, sdk)
∀ sdk ∈ SD.

Every τi ∈ T spawns H
ωi

jobs within the hyperperiod H. And the number of schedul-

ing intervals (α) is always one less than the cardinality of the set of deadlines,

i.e.:

α = |SD| − 1 (3.9)

Thus, there will always be α linear programming problems to solve.

Definition 3.2 The absolute laxity cc′
i of τi is the maximum time (in cycles) that τi

can remain idle before compromising its deadline, when executing at speed (frequency)

f . This is, cc′
i = (di f) − cci, where di is the deadline and cci the WCET of τi.

Example 3.1 Consider a task set T = {τ1, τ2, τ3, τ4}, with implicit deadlines d1 =
4, d2 = 5, d3 = 10 and d4 = 20. Therefore, the hyperperiod is H = lcm(4, 5, 10, 20) =
20, the task set spawns 12 jobs J = {j1, j2, . . . , j12}. Each task generates a different

number of jobs (Fig. 3.2).

3.2 Off-line stage 47

0 4 5 8 10 12 15 16 20

2 3 4 5

76 8 9

10 11

12

2

3

4

Figure 3.2.: Jobs generated by the task set of Example 1

The set of deadlines is:

SD = {0, 4, 5, 8, 10, 12, 15, 16, 20},

where |SD| = 9, such that it generates α = 8 frames:

ϕ1 = [0, 4) ϕ2 = [4, 5) ϕ3 = [5, 8) ϕ4 = [8, 10)

ϕ5 = [10, 12) ϕ6 = [12, 15) ϕ7 = [15, 16) ϕ8 = [16, 20)

Variables

The variable xi,k denotes the share of execution cycles from the task τi that is

scheduled upon the k-th interval/frame ϕk. That is, variables xi,k take integer values

such that xi,k ≤ cci, assuming that an execution cycle is an indivisible unit.

The index i takes each integer value in the range [1, n], where n is the number of

tasks in T . For each i, the index k iterates on the number of frames ϕk, i.e. on

range [1, α]. In total, the number of xi,k variables per LPP is equal to n and there are

α LPPs to solve. Furthermore, let XHRT,k be the set of variables in frame ϕk, and

XHRT the set of all variables xi,k, ∀i ∀k.

Remark 3.2 When the task set utilization is U < m, its necessary to add an idle or

dummy task, to ensure a system at maximum capacity. Such that,

uidle = m −
n∑

i=1

cci

fωi

where f is the system frequency and τidle = (uiddle × H, H).

48 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

Constraints

The time is multiplied by the frequency F ∗ to represent the available execution

capacity over a time window, since the xi,k variables represent execution cycles. This

is, in frame ϕ1 = [0, 4), from Example 3.1 there are m × |ϕ1| × F ∗ = 4 available

cycles for m = 1 and F ∗ = 1.

The following constraints ensure the completion of a task before its deadline:

1. The Maximum utilization constraint (M.c) ensures that the system utilization

per frame ϕk is 100%. That is, the summation of every share of execution per

task on each frame has to add up to the available system capacity,

n∑
i=1

xi,k = m × |ϕk| × F ∗ (3.10)

There are 1 of such constraints per frame ϕk.

2. The following constraint ensures that each job completes before its deadline.

This is expressed by means of the accumulative execution, because the solution

of the previous LPP is carried on to the next LPP. It can take two forms,

depending on whether the frame matches the task deadline or not. Since

frames were defined from the set of deadlines, at least one task will have its

own deadline on ϕk, but not necessarily all. To know if τi has its deadline

on ϕk = [sdk−1, sdk), it suffices to write sdk = qi,k × di + ri,k and check if the

residual ri,k is zero. The quotient qi,k represents the number of past jobs that

have completed, which is needed to compute the cumulative execution.

e =


k∑

j=γ
xi,j = qi,k × cci if ri,k = 0

k∑
γ=1

xγ
i ≥ qi,k × cci + max{0, F ∗

k∑
γ=1

|ϕγ | − F ∗qi,kdi − cc′
i} if ri,k ̸= 0

(3.11)

Given that xi,j variables are cycles from τi they must all be assigned values

greater or equal to zero xi,j ≥ 0 ∀i ∀k. This is the rational underlying the max
operator.

3.2 Off-line stage 49

3. Task parallelism is not allowed, therefore each task cannot execute more cycles

than those available in each frame,

xi,k ≤ |ϕk| × F∗ (3.12)

This constraint is referred as Sequential constraint (S.c), with as many con-

straints as tasks (n).

Thus, the final amount of constraints per LPP is 2n+1. Constraint (3.11) is improved

on the following chapters.

Example 3.2 Let us consider the task set from Example 3.1. The constraints for the

third LPP in ϕ3 = [5, 8) yield

x1,3 + x2,3 + x3,3 + x4,3 = m × 3 × f

Task τ1 has a deadline on ϕ3, therefore,

x1,1 + x1,2 + x1,3 = 2 × cc1

variables x1,1 and x1,2 have already been solved, so we replace them with their

calculated values. The other three tasks do not have a deadline on ϕ3, their residuals

ri,3 are: r2,3 = 3, r3,3 = 8 and r4,3 = 8. Only τ2 had released its second job, so the

quotients are q2,3 = 1, q3,3 = 0 and q4,3 = 0.Thus,

x2,1 + x2,2 + x2,3 ≥ cc2 + max
{
0, (3 × F ∗) − cc′

2
}

x3,1 + x3,2 + x3,3 ≥ max
{
0, (8 × F ∗) − cc′

3
}

x4,1 + x4,2 + x4,3 ≥ max
{
0, (8 × F ∗) − cc′

4
}

as in the past case, variables x2,1, x2,2, x3,1, x3,2, x4,1 and x4,2 have already been

solved so we replace them with their calculated values. Finally, the upper bounds

for xi,3 variables are:

x1,3 ≤ 3 × F ∗, x2,3 ≤ 3 × F ∗, x3,3 ≤ 3 × F ∗, x4,3 ≤ 3 × F ∗.

Objective function

The objective function minimizes

50 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

n∑
i=1

xi,k (3.13)

This function is only intended to ensure a solution, and other metrics could be

used.

Proposition 3.2 Given a task set T , where the task utilization at F ∗ is equal to the

number of CPUs, the solution of the LPPs in Eq. (3.14) is always integer. Moreover,

if each task τi is executed exactly xk
i cycles during the k − th interval, then a feasible

schedule is obtained.

∀k = 1, . . . , α, solve :

min
n∑

i=1
xk

i

s.t
n∑

i=1
xk

i = m ∗ |Ik
SD| ∗ F ∗

k∑
j=γ

xi,j = qi,k × cci if ri,k = 0
k∑

γ=1
xγ

i ≥ −qi,k × cci + max{0, F ∗
k∑

γ=1
|ϕγ | − F ∗qi,kdi − cc′

i} if ri,k ̸= 0

∀i xk
i ≤ |Iγ

SD| ∗ F ∗

(3.14)

Proof 3.2 Let T k = T k
1 ∪T k

2 , where T k
1 and T k

2 partition the task set. T k
1 = {τ1, ..., τv}

is the set of tasks that have their deadlines at sdk and T k
2 = {τv+1, ..., τn} = T − T k

1 .

In the LPP 3.14, the last two constraints must be converted into equality equations. This

is solved by adding slack variables hi to each constraint. Then all the constraints are

represented as My = b where the vector of variables is composed of the workload and

slack variables, i.e. y = [x h]T . Notice that vector b is always integer. By construction,

the restriction matrix M has the form:

M =

 L(v+1)×n ∅

Q(2n−v)×n I(2n−v)

 (3.15)

3.2 Off-line stage 51

where L has the form:

Lv+1×n =



1 1 · · · 1 1 · · · 1

1 0 · · · 0 0 · · · 0

0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0


(3.16)

It is easy to observe that the rank of L is v + 1. Hence, the rank of M is rank(M) =
rank(L) + rank(I) = 2n + 1, i.e M is a full row rank matrix. In order to prove that

the solution is always integer, we will demonstrate that the restriction matrix M is

unimodular.

M is a full row rank matrix, therefore the determinant of every square submatrix (Msi)

of order 2n+1, obtained by removing columns, must be equal to 1, 0 or -1 to prove that

M is unimodular [72]. Once the columns are removed, the following three scenarios

are possible.

1) If any of the first v columns is removed, Msi losses rank, because a row with only

zero elements remains, hence the determinant is 0. 2) If the removed column M(•, j)
contains a nonzero entry M(i, j), where j > v, then the corresponding row M(i, •) has

a nonzero element among the first v columns, then Msi losses rank since the resulting

row is duplicated among the first v rows. Thus the determinant is 0. 3) When any other

column not listed before is deleted, the resulting matrix always can be arranged as

Msi =

 A ∅

B I

 (3.17)

Then, according to Theorem 3.2 in [72], A is always a totally unimodular matrix, thus

det(A) = 0, ±1. Also, the determinant for the identity matrix is always 1; therefore,

applying determinant per blocks, det(Msi) = det(A) = 0, ±1.

Output from the Offline stage Summarizing, this offline stage computes two compo-

nents. First, the set of valid CPU clock frequencies, Eq. (3.8), F = {f ∈ F |F ∗ ≤ f ≤
F +}. Second, the set XHRT with every variable xi,k, that denotes the share of cycle

execution from HRT task τi that has to be scheduled upon the k-th interval/frame

ϕk.

52 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

Algorithm 1 Scheduler

1: Input T :Task set; phik – Scheduling (deadline) intervals;
X – Task cycles per deadline interval;
exi,k– Cycles actually executed for each task since the last scheduling event;
Fn – CPU frequency

2: Output W alloc
i,j or pair (τi, CPUj)

3: Aux. functions
4: if reach a new ϕk then
5: Update scheduling interval: k = k + 1
6: Compute task priorities using Priority Levels
7: Execute the m tasks with higher priority
8: else if reach a zero laxity then
9: Compute task priorities using Priority Levels

10: Execute the m tasks with higher priority
11: else if aperiodic task arrival then
12: call the Adaptive Scheduler
13: end if

3.3 On-line stage

The inputs for the on-line stage are: the ordered set of deadline intervals or frames

ϕk, the cycles that each task must execute per deadline interval XHRT , the set of

feasible CPU frequencies F , the cycles that each job have executed since the last

scheduling event exi,k, and the aperiodic task parameters.The output signal walloc
i,j

(Eq. 3.5), is the vector that determines the task allocation ratio of the allocation

transitions talloc
i,j in the TCPN model (Eq. 2.22). If the scheduler is implemented on

a real system instead of tested on the TCPN model of the system, it represents the

vector of pairs (τi, CPUj) determining the allocation of tasks to CPUs.

3.3.1 Scheduler

The on-line scheduler (Alg. 1) leverages a Fixed Priority until Zero-Laxity (FPZL)

algorithm ([25]) to allocate tasks to processors until the next scheduling event. The

inputs are the outputs of the off-line stage, and the accumulated runtime execution

times of each task since the previous scheduling event. A scheduling event occurs

whenever a job reaches its zero laxity, a job completes, or an aperiodic task arrives.

In the latter event, if the aperiodic task is accepted, the adaptive scheduler (AS)

provides the cycles that the aperiodic task must run during the deadline interval

(xk,τai
), along with the adjusted CPU frequency Fn.

3.3 On-line stage 53

Priority Levels

Task priorities are updated according to their laxity Whenever an event occurs.

Per-job laxities are calculated and ordered in a set SL = {li|li = sdk+1 − (Fn × xi,k −
exi,k) − ζ}. ζ is used to denote time, t is avoided because it is already employed for

transitions.

Jobs reaching their zero-laxity time are given the maximum priority (= 1). Jobs

being executed and with laxity different from zero receive priority equal to 2. The

remaining jobs receive priority level equal to 3 (the lowest one). Thus, zero laxity

tasks have the highest priority and must be executed immediately.

Execution of m tasks with the highest priority

In Alg. 1, steps 7, 10, m tasks are dispatched to the m CPUs. To reduce the number

of migrations, tasks that are executed during two consecutive events are allocated

to the same CPU. In a system simulated by a TCPN, this step means to compute

Eqs. 2.22 according to walloc
i,j (Eq. 3.5), in order to advance the simulation. In a

real system, the set of m tasks are just passed to the dispatcher of the operating

system.

Preemptions and migrations bound

Job preemption is one of the causes of run time overhead and large memory require-

ments in RT scheduling. In this section we prove that the number of preemptions

and migrations incurred by Alg. 1 is bounded.

Proposition 3.3 Assuming that the conditions of Proposition 3.2 hold, then the context

switches at each scheduling interval ϕk caused by Alg. 1 are upper-bounded by

2m + na (3.18)

where na represents the number of active tasks in each frame ϕk.

Proof 3.3 . Let X be the solution of the LPPs in Eq.(3.14), such that xi,k ∈ XHRT .

During interval ϕk, a job from task τi must run for xi,k cycles at a given Fn clock

frequency, but it can be the case that xi,k = 0, hence the number of active tasks nak

54 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

in frame ϕk can be less than n. Recall that a task can only leave a processor under

two conditions: it has finished its execution or it is preempted by another task that has

reached zero laxity (ZL). On the best-case scenario, all tasks assigned to the processors

are already in ZL, therefore nak = m. Under this condition, each task is allocated to a

processor, generating m context switches (CS) and another m CS at the end of their

execution, thus producing a total of 2m CS. Also, it is possible that the m tasks that

were first allocated finished their execution before the end of ϕk. Therefore, at most

nak − m tasks will be allocated and incurring in (nak − m) + 2m CS. Finally, there

are cases when some tasks reach ZL and others just finished their execution. Since the

schedule is feasible there could only be m tasks reaching ZL at most, lest they miss their

deadline. Hence the upper bound of CS is (nak − m) + 2m + m, which is the same as

2m + nak.

Proposition 3.4 Assuming that Proposition 3.2 holds, Alg. 1 causes at most m − 1
migrations of tasks.

Proof 3.4 Recall that a task τi is preempted only when another task has reached zero

laxity, hence when τi is preempted it will migrate because its original processor will

become unavailable. Therefore at most there will be m − 1 migrations.

3.3.2 Aperiodic tasks and Adaptive Scheduler

Aperiodic tasks arrive asynchronously to the system. An adaptive scheduler (AS)

determines if these tasks can be executed without compromising the HRT constraints

of the periodic task set. If so, a new CPU clock frequency is computed allowing

the execution of the aperiodic task. The computed frequency must be in the set

F = {F ∗ . . . F +}, because from the off-line stage we know that these frequencies

meet the thermal constraints. Moreover, the frequency must also be as low as

possible, in order to guarantee a minimum power consumption while meeting the

temporal constraints.

Upon an aperiodic arrival, the AS determines the current frame ϕk and the scheduling

interval Γ at which τa
i has its deadline (ra

i + da
i). Recall that the scheduler is periodic

on the hyperperiod, such that the scheduling interval ϕΓ is the one that contains the

element g = (ra
i + da

i) mod H.

3.3 On-line stage 55

Then the AS computes the required CPU cycles Cu for all active tasks from the

current scheduling interval j to Γ as:

Cu =
|Xk|∑
i=1

(xi,k − exi,k) +
Γ+g∑

γ=k+1

|Xγ |∑
i=1

xi,γ (3.19)

where exi,k is the execution of active task i in CPU cycles, since the last scheduling

event and Xk = XHRT,k ∪ Xap,k represents the set of CPU cycles that every active

task must execute during the k − th scheduling interval. Hence, the first sum in

Eq. (3.19) stands for the CPU cycles that the system still need to execute, while the

second sum does the same for the subsequent scheduling intervals up to ϕΓ. With

this information, the algorithm computes the maximum amount of CPU cycles Cfree

that the processors can spare when running at maximum frequency F +,

Cfree = (m × da
i × F +) − Cu (3.20)

where m is the number of CPUs and da
i is the aperiodic task relative deadline. If

Cfree is greater than the cycles demanded by the aperiodic task cca
i , the system is

capable of serving τa
i , hence the AS determines the new operating frequency Fn

as:

Fn = min
{

f ∈ F|f ≥ Cu + cca
i

m × da
i

}
(3.21)

Once Fn has been determined, the algorithm calculates the number of cycles xk
τa

i

from τa
i that will be executed in each scheduling interval from ϕj to ϕΓ, which is an

iterative procedure:

ccr = cca
i (3.22)

xk
τa

i
= min

m(|ϕk| − ra
i)Fn −

|Xk|∑
i=1

(xk
i − exk

i), ccr


For γ = k + 1 to (Γ + g)

ccr = ccr − xτa
i

,(γ mod α)−1

xγ mod α
τa

i
= min

m(|ϕγ mod α|)Fn −
|Xγ mod α|∑

i=1

xγ mod α
i , ccr



56 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

Algorithm 2 Adaptive Scheduler (AS)
1: Input

Xk – Task cycles per deadline interval; Ik
SD – Scheduling intervals;

cca
i , da

i – Aperiodic tasks parameters;
F = {F ∗, . . . , F +}–Clock frequencies;
Fn– CPUs operating frequency;
exk

i – Cycles executed for each task since the last scheduling event;
2: Output

Fn updated operating frequency,
xk

τai
cycles of the aperiodic task per scheduling interval;

3: if periodic task arrives then
4: Determine interval ϕΓ, where τa

i has its deadline
5: Compute required CPU cycles for active tasks during interval {Eq. (3.19)}
6: Calculate free CPU cycles Cfree {Eq.(3.20)}
7: if Cfree ≥ cca

i then
8: Accept task τa

i

9: Determine new Fn{Eq.(3.21)}
10: Calculate xk

τa
i

from current ϕk to ϕΓ{Eq. (3.22)}
11: else
12: Reject task
13: end if
14: end if
15: if an aperiodic task finishes then
16: Discard the CPU cycles associated to the aperiodic task
17: Recalculate the new frequency
18: end if

Complexity

The complexity of the on-line stage depends on two algorithms. The priority level

and the computation of laxity in Alg. 1 is linear in the number of tasks. At most

n = |T | tasks will end its execution xk
i in the k − th interval (there are at most n

tasks). Also, n tasks will reach their zero laxity at most. If q aperiodic tasks arrive

in the k − th interval, then the nested while loop ends in (n + n + q) × (n + n)
(number of events × number of operations). Considering that the outer loop runs

α = |ISD| times, then the number of steps of this algorithm is polynomial in the

order of tasks. Alg. 2 runs on the arrival of an aperiodic task and is polynomial

in the order of tasks and independent of the number of CPUs. Thus the proposed

algorithm is polynomial in the order of tasks.

3.4 Experimental Results

In this Section we simulate the behavior of EETAMS, a scheduler implemented

according to the on-line and off-line stages previously described. First, we present

3.4 Experimental Results 57

Figure 3.3.: Temperature evolution (upper plot) for the periodic schedule (lower plot) at
CPU1 (above) and CPU2 (below). The maximum temperature produced by
this schedule is TCP U1,2 = 45.3oC

.

an example to study the thermal behavior and real utilization considering the HRT

task set. Then, we proof the ability of the scheduler to deal with the arrival of

an aperiodic task while maximizing CPU utilization, controlling temperature and

optimizing energy consumption.

Experimental environment

We assume a platform composed of two homogeneous Intel XScale silicon micro-

processors mounted over a copper heat spreader for all the experiments. The

isotropic thermal properties and dimensions of the materials are taken from [30].

The power model for the Intel XScale is based on [19]. The processor supports

five operating frequency levels F = {0.15, 0.4, 0.6, 0.8, 1} GHz, consuming

PCP U = {80, 170, 400, 900, 1600} mWatt respectively. Thus, the power consump-

tion function can be represented approximately as PCP U = 0.08+1.52 ·ϕ3 Watt. The

temperature of the surrounding air is constant and set to 45o C. In the experiments

we assume cache memories and speculative mechanisms non-existent or turned

off.

58 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

3.4.1 Temperature control and utilization

In this first experiment, we study the thermal control capabilities and real utilization

achieved by EETAMS. We consider a set of sporadic tasks with implicit deadlines T =
{τ1, τ2, τ3}, where τ1 = (1.5e9, 4), τ2 = (3e9, 8), τ3 = (5e9, 12), the hyperperiod is

H = 24. The maximum operating temperature level is set to Tmax1,2 = 50o C. First,

the minimum frequency for the periodic task set is computed off-line according to

Eq. (3.3), obtaining F ∗∗ = 0.5833 GHz. This frequency is raised to the nearest upper

frequency actually available for the processor, which is F ∗ = 0.6 GHz. Eq. (3.6)

provides the maximum clock frequency f+ = 1 GHz, such that the METARTS

problem has a solution. We assume that scheduling and context-switch overheads

are included in task WCET. Then, solving the LPP from Eq. 3.14 for F ∗ yields the

CPU cycles of each task to be executed per interval (xi,k).

Fig. 3.3 provides the schedule and temperature evolution produced by the algorithm

without considering aperiodic tasks. The off-line LPP and the FPZL on-line scheduler

are work-conserving and yield a theoretical 100% CPU utilization. However, the fact

that F ∗ > F ∗∗ makes tasks allocated in CPU2 to run faster in this simulation. This

translates into the slack time that appears in the lowest plot of the figure (interval

[18, 20]), which temporarily lowers the temperature as shown in the corresponding

temperature graph, and decreases the theoretical utilization by about 8%.

3.4.2 Handling aperiodic tasks

We now show the behavior of the EETAMS scheduler upon the arrival of an aperiodic

task while running the same HRT task set considered in the previous experiment.

Fig. 3.4 depicts the outcome when an aperiodic task τa
1 = (4000, 10) arrives at ζ = 2,

during the ϕ1 time slice. τa
1 has an absolute deadline at ζ = 12. Since Cfree ≥ cca

1,

the AS accepts the aperiodic task, and computes Fn = 0.8 GHz ∈ F as the frequency

at which the processors must execute during interval [2, 12). The solid red line shows

that temperature increases during this interval because of the execution of the tasks

at frequency Fn, and then it decreases after ζ = 12 because a new (lower) frequency

has been calculated for the next interval. In both experiments, with and without the

aperiodic tasks, CPU1 achieves full utilization, whereas CPU2 shows a slack (idle

time) at about ζ = 18, which translates into a temperature valley. As it happened

in the previous experiment, this slack appears because the exact optimal frequency

3.4 Experimental Results 59

Figure 3.4.: Temperature evolution (upper plot) for the periodic schedule (lower plot) at
CPU1 (above) and CPU2 (below) upon acceptance of the aperiodic task τa

1 .
The maximum temperature produced by this schedule is TCP U1,2 = 46.24oC

calculated in Eq. (3.3) is upper bounded by a frequency belonging to the discrete set

of frequencies actually available in the microprocessor (Fn ∈ F).

3.5 Conclusions

This work shows that the TCPN formalism is a suitable tool for the design of thermal-

aware RT schedulers, particularly when complexity rises because of the confluence

of thermal and time constraints plus aperiodic task management. Leveraging this

formalism, we build a two-stage, energy-efficient thermal-aware scheduling system

in which an HRT periodic task set executes at minimum clock frequency on a set of

processors, with the ability to manage aperiodic tasks, optimizing power consump-

tion, maximizing CPU utilization and honoring the HRT and thermal constraints in

all cases. The TCPN models the activity of the tasks, their allocation to CPUs, heat

generation and transfer, and how the latter affects to the overall system tempera-

ture. The thermal schedule feasibility is proved by an LPP that captures the RT and

thermal restrictions as linear constraints. If there exists a feasible solution, then the

LPP finds the maximum operating frequency f+ to satisfy the thermal constraint.

60 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

The following chapter analyzes and improves a few points of the solution presented

so far. Particularly, some feasible task sets are not schedulable under this algorithm,

because no feasible solution exist for one of the ILPs (Prop. 3.2), on some cases.

The reason behind this is that the relationship among different intervals is not

considered, such that a past decision causes that the constraints of a following ILP

are not satisfied. This phenomenon is exemplified below.

Example 3.3 Consider a task set T = {τ1, τ2, τ3, τ4}, each task is defined as τ1 =
(2, 2), τ2 = (5, 40), τ3 = (3, 8) and τ4 = (2, 4), and assume F ∗ = 1. To be schedule

on m = 2 processors. The task set utilization is U = 2, therefore the task set is

feasible. The hyperperiod is H = lcm(2, 40, 8, 4) = 40, and the set of deadlines is:

SD = {0, 2, 4, 6, . . . , 40}, such that it generates α = 20 intervals,

ϕ1 = [0, 2) ϕ2 = [2, 4) ϕ3 = [4, 6) ϕ4 = [6, 8) . . . ϕ20 = [38, 40)

all of them share the same duration |ϕk| = 2.

Solving the ILP 3.14 for ϕ1, ϕ2 and ϕ3, using the Simplex algorithm from MATLAB,

yields the following solution:

k=1 k=2 k=3

xk
i

i=1 2 2 2

i=2 0 2 0

i=3 0 0 2

i=4 2 0 0

Unfortunately, because of the selection of the previous solutions, which comply with

the LPP 3.14, there is no feasible solution for the LPP of frame ϕ4 = [6, 8). In which

follows, we explain the problem generated for ignoring the relationship among

consecutive frames. First, we present the constraints for the preceding frames, as

long as the restrictions for ϕ4. Since every frame has the same duration, the upper

bound for the variables is:

xi,k ≤ 2

and will be omitted in the following.

The restrictions for frame ϕ1 = [0, 2) are:

3.5 Conclusions 61

x1,1 = 2

x2,1 ≥ 0

x3,1 ≥ 0

x4,1 ≥ 0

x1,1 + x2,1 + x3,1 + x4,1 = 4

And the solution found was:

xi,1 = {2, 0, 0, 2} ∀i, i = 1, 2, 3, 4

For frame ϕ2 = [2, 4), the constraints are as follows:

x1,1 + x1,2 = 4

x2,1 + x2,2 ≥ 0

x3,1 + x3,2 ≥ 0

x4,1 + x4,2 = 2

x1,2 + x2,2 + x3,2 + x4,2 = 4

Variables x1,1, x2,1, x3,1 and x4,1 have already been solved, so they are replaced with

their calculated values, such that:

x1,2 = 2

x2,2 ≥ 0

x3,2 ≥ 0

x4,2 = 0

x1,2 + x2,2 + x3,2 + x4,2 = 4

Thus, a solution that complies with the former restrictions is:

xi,2 = {2, 2, 0, 0} ∀i, i = 1, 2, 3, 4

The constraints for frame ϕ3 = [4, 6) are shown on the left, whilst the previous

solutions are substituted on the right:

62 Chapter 3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling

x1,1 + x1,2 + x1,3 = 6 x1,3 = 2

x2,1 + x2,2 + x2,3 ≥ 0 x2,3 ≥ 0

x3,1 + x3,2 + x3,3 ≥ 1 substituting, x3,3 ≥ 1

x4,1 + x4,2 + x4,3 ≥ 2 x4,3 ≥ 0

x1,3 + x2,3 + x3,3 + x4,3 = 4 x1,3 + x2,3 + x3,3 + x4,3 = 4

Solution:

xi,3 = {2, 0, 2, 0} ∀i, i = 1, 2, 3, 4

The constraints for frame ϕ4 = [6, 8) are as follows:

x1,1 + x1,2 + x1,3 + x1,4 = 8 x1,4 = 2

x2,1 + x2,2 + x2,3 + x2,4 ≥ 0 x2,4 ≥ 0

x3,1 + x3,2 + x3,3 + x3,4 = 3 substituting, x3,4 = 1

x4,1 + x4,2 + x4,3 + x4,4 = 4 x4,4 = 2

x1,4 + x2,4 + x3,4 + x4,4 = 4 x1,3 + x2,3 + x3,3 + x4,3 = 4

The only solution that satisfies the first four constraints, such that the time require-

ments are meet, is:

xi,4 = {2, 0, 1, 2} ∀i, i = 1, 2, 3, 4

However, the last constraint cannot be fulfilled (x1,4 + x2,4 + x3,4 + x4,4 = 5 ̸= 4).

This implies that the system capacity is over passed, i.e. the actual execution time

on the available CPUs would be longer than the execution time required to meet all

constraints.

This drawback is addressed on the following chapter. Results provided on this

chapter were presented on [62].

3.5 Conclusions 63

RT Multiprocessor Scheduling

based on continuous control
4

This chapter builds from the results obtained previously. The main premise is

to endow the scheduler with a dynamical component such that it could react to

unpredictable events such as CPU detentions or time drifting due to unexpected

latencies while guaranteeing the HRT constraints.

The use of continuous control on RT scheduling was considered in [28]. Therein,

authors tackled the thermal-aware RT global scheduling problem considering two

stages, one stage to compute the workload, the other one to allocate tasks to CPUs. A

fluid approach avoided the NP-completeness in the computation of the task workload

per CPU, requiring the subsequent discretization algorithm. The fluid approach

improved system’s resilience to parameter variations, but led to a high number

of context switches which hampered the feasibility of the scheduler. A different

approach was used in [77], where authors proposed an energy-efficient scheduler

for two heterogeneous processors. They formulate a general case as a non-linear

integer programming problem to obtain a schedule, which yields algorithms with

high computational complexity.

In Chapter 3 we proved that the task workload could be solved in polynomial time

using a DP-fair ([36]) scheme, avoiding the discretization stage from [28] and

reducing the number of context switches. Then, we resorted to a zero-laxity policy

([24]) to allocate tasks to CPUs on-line. Nevertheless, this approach solved the

workload allocation through an Integer Linear Programming Problem (ILP) that

ignored the relationship between consecutive scheduling intervals (frames), thus

some feasible task sets were not schedulable under the algorithm, as shown on

example 3.3.

Herein, two deficiencies of the previous solution are corrected: first the workload

computation is performed up the hyperperiod, rather than per frame, thus enlarging

the class of problems that could be solved, secondly the previous solution is endowed

with a controller to add robustness to the scheduler by rejecting small disturbances

65

Figure 4.1.: Allocation and Execution Control Scheduler (AlECS) Overview: the task set
conditioner module is borrowed from the previous chapter, but a brief summary
is is section 4.3, the Pre-scehduler module is defined on section 4.4. In Get
reference, a schedule is translated into continuous references, sec. 4.5, It also
includes the aperiodic manager (sec. 4.6.3) because it alters the schedule.
Finally, the Feedback controller is presented on section 4.6

such as CPU detentions, time drifting due to unexpected latencies or parametric

issues obviated in the model.

The proposed scheme consists of three main components. The first component is

an off-line scheduler, similar to the scheduler presented on Chapter 3, but entirely

offline. The second component implements an on-line controller to add robustness to

the offline scheduler. Finally, the third component adds the capability of scheduling

SRT aperiodic tasks.

4.1 Problem definition

The same multiprocessor system and task model as in Chapter 3 is used herein, but

the increment on frequency values is assumed continuous.

Multiprocessor system The multiprocessor system is composed by m processors,

where migration is permitted. P = {CPU1, . . . , CPUm} is the set of the m identical

processors with an homogeneous clock frequency F ∈ F = [f1, . . . , fmax], i.e a

change on the operating frequency is reflected on all m processors. Furthermore,

each CPU is subjected to a thermal bound Tmax.

66 Chapter 4 RT Multiprocessor Scheduling based on continuous control

Task model The set of HRT tasks is denoted by T = {τ1, ..., τn}. Each task is

independent, fully preemptive an is identified by the 3-tuple τi = (cci, di, ωi), where

cci is the worst-case execution time (WCET) in cycles, ωi is the task period, and di is

the relative implicit deadline (di = ωi) ([6]).

The arrival of asynchronous, SRT aperiodic tasks is also considered. Each aperiodic

task τa
i is defined as a 3-tuple (cca

i , da
i , ra

i) in which cca
i (required CPU cycles) and da

i

(deadline) are known at task arrival time, and the arrival time ra
i is unknown. Let

Ta = {τa
1 , ..., τa

p } be a set of the p independent aperiodic tasks.

Problem 4.1 Control RT Scheduler (CRTS). Given the system of multiprocessors in P
and the HRT tasks T , the CRTS problem consists in designing a control law that tracks

a set of feasible references. Additionally, the controller should execute or reject aperiodic

tasks from Ta, upon arrival, subject to the temporal and thermal constraints from the

HRT tasks.

Such that the feasible references hold the characteristics from Definition 4.1

Definition 4.1 A feasible reference is a function that represent a schedule that success-

fully allocate the tasks in T to the m identical processors within the hyperperiod H,

such that: the deadlines for T are guaranteed, the temperatures of the processors are

kept below a bound Tmax and the consumed energy is minimum.

4.2 Overview of the AlECS scheduling system

This section describes AlECS (Allocation and Execution Control Scheduler) as a

solution to the CRTS problem. AlECS consists of three components. The first

component yields, entirely off-line, a correct schedule for a HRT task set that

minimizes energy and ensures a processor temperature below a thermal bound Tmax,

similar to the one presented in the previous chapter. The second component is an

on-line stage focused on adding robustness by rejecting small disturbances such

as CPU detentions, time drifting due to unexpected latencies or parametric issues

obviated in the model. The first controller acts upon the flow of transition talloc
i,j in

the TCPN model, to ensure the correct allocation of tasks to processors according

to the task execution paths calculated off-line. A second controller modifies the

flow of transition texec
i,j to ensure the timed execution of the task execution paths by

4.2 Overview of the AlECS scheduling system 67

adjusting the CPU frequency. This controller warrants that the off-line schedule is

met despite errors on the modeling section or unexpected (but bounded) overheads

at run time. Finally, the third component provides the ability of managing SRT

aperiodic tasks by means of the Online Aperiodic Manager (OnAM). The following

sections extend on each component of AlECS.

4.3 Task set conditioner

This module is borrowed from Chapter 3. It yields a set of operating frequencies

computed form the analysis performed on the TCPN global model, from sec. 2.3.2,

and the energy equation 2.21.

F = {f ∈ F|F ∗ ≤ f ≤ F +}, (4.1)

We leverage DVFS to vary processor frequency by selecting one from the finite set of

preset values F . F ∗ minimizes the energy consumption and ensures the temporal

requirements of the HRT tasks, and F + is the maximum permissible frequency at

maximum utilization. This frequency range ensures the accomplishment of the

thermal bound Tmax.

4.4 Pre-scheduler

This section details scheduler obtained off-line, it resembles the scheduler from

chapter 3, but it solves the drawbacks of the previous scheme.

Fist, it will be described the workload assignment of tasks per time interval, then

the allocation of this workload to the processors. The output from this stage is an

static offline schedule for the HRT tasks T , i.e a cyclic executive.

4.4.1 Workload Assignment: ILP definition

The workload computation is performed by solving an ILP defined for the task

set execution within the hyperperiod, in contrast with last chapter, where such

calculations were done per time interval (frame) and the solution was carried on to

68 Chapter 4 RT Multiprocessor Scheduling based on continuous control

the next interval. The reason for imposing an integral solution is the same as before,

the workload is expressed on cycles rather than time, and a cycle is an indivisible

unit. It will be proved that theILP formulation still meets the unimodularity property,

regardless of the changes introduced. Therefore, the solution of the optimization

problem through a simplex method always ensures integral solutions.

Given a periodic task system comprising n tasks to be executed on m-processors, the

following linear programming problem poses the necessary constraints to build a

feasible schedule such that no deadline is missed.

The ILP solves the share of cycle execution from task τi, such that no deadlines

are missed, an is described for the hyperperiod H, which represents the smallest

time window where the schedule would be repeated over time, for this reason by

analysing the set of jobs within H, we can study the behaviour of the system.

Definition 4.2 Let J = {j1, . . . , jx} denote all the jobs generated by task set T that

have their arrival times and deadlines within H, such that each τi generates H
ωi

jobs.

Therefore, the number of jobs generated by task set T within the hyperperiod H, i.e

the cardinality of J , is:

H
n∑

i=1

1
ωi

(4.2)

Definition 4.3 Let SD be the ordered set of deadlines of all jobs j ∈ J within H,

union {0}. Such that sd0 = 0, sdk−1, sdk ∈ SD, sdk−1 < sdk, where k is an

integer value greater than zero. Then, the frames (scheduling intervals) are defined as

ϕk = [sdk−1, sdk) ∀ sdk ∈ SD.

Within the hyperperiod H, every τi ∈ T spans H
ωi

jobs, therefore |SD| < |J |. And,

the number of scheduling intervals (α), is always one less than the cardinality of the

set of deadlines, i.e,

α = |SD| − 1 (4.3)

Definition 4.4 The absolute laxity cc′
i of τi in cycles is the maximum time (in cycles)

that τi can remain idle before compromising its deadline, when executing at speed

(frequency) f . This is, cc′
i = (di · f) − cci, where di is the deadline/period and cci the

WCET of τi.

4.4 Pre-scheduler 69

0 5 10 2015 25 30
2 3 4 5 6

2

3

4

2 3 4 5

7 8 9

10 11

12 13

15 17 18 195

Figure 4.2.: Jobs generated by the task set of Example 4.1

Example 4.1 Consider a task set T = {τ1, τ2, τ3, τ4, τ5}, each task is defined as

τ1 = (3, 5), τ2 = (6, 10), τ3 = (9, 15), τ4 = (6, 10) and τ5 = (3, 5). Therefore, the hy-

perperiod is H = lcm(5, 10, 15) = 30, the task set spans 20 jobs J = {j1, j2, . . . , j20}.

Each task generates a different number of jobs (Fig. 4.2).

The set of deadlines is:

SD = {0, 5, 10, 15, 20, 25, 30},

where |SD| = 7, such that it generates α = 6 frames:

ϕ1 = [0, 5) ϕ2 = [5, 10) ϕ3 = [10, 15) ϕ4 = [15, 20) ϕ5 = [20, 25) ϕ6 = [25, 30)

Variables

The variable xi,k denotes the share of cycle execution from task τi that is scheduled

upon the k-th interval/frame ϕk. That is, variables xi,k take integer values such that

xi,k ≤ cci. The former under the assumption that an execution cycle is an indivisible

unit.

The index i takes on each integer value in the range [1, n], where n is the number of

tasks in T . For each i, the index k iterates on the number of frames ϕk, i.e, on range

[1, α]. In total, the number of xi,k variables is equal to (n · α).

Remark 4.1 When the task set utilization is U < m, it is necessary to add an idle or

dummy task, to ensure a system at maximum capacity. Such that,

uidle = m −
n∑

i=1

cci

f · ωi

70 Chapter 4 RT Multiprocessor Scheduling based on continuous control

where f is the system frequency and τidle = (uiddle · H, H).

Remark 4.2 Despite the use of task to refer to the piece of execution upon a pro-

cessor, recall that it is the job who actually is executed (an instance of the task),

nevertheless using the term task and its numbering helps to simplify the definition

of the linear programming variables and constraints.

Example 4.2 For the task set from Example 3.1, this example shows the variables

for each task and its correspondence between its jobs.

The variables for task τ1 are:

j1︷︸︸︷
x1,1

j2︷︸︸︷
x1,2

j3︷︸︸︷
x1,3

j4︷︸︸︷
x1,4

j5︷︸︸︷
x1,5

j6︷︸︸︷
x1,6

Those corresponding to τ2 are:

j7︷ ︸︸ ︷
x2,1, x2,2

j8︷ ︸︸ ︷
x2,3, x2,4

j9︷ ︸︸ ︷
x2,5, x2,6

The ones for τ3 are:

j10︷ ︸︸ ︷
x3,1, x3,2, x3,3

j11︷ ︸︸ ︷
x3,4, x3,5, x3,6,

Those spanned for τ4 are:

j12︷ ︸︸ ︷
x4,1, x4,2

j13︷ ︸︸ ︷
x4,3, x4,4

j14︷ ︸︸ ︷
x4,5, x4,6

Finally, the variables for τ5 are:

j15︷︸︸︷
x5,1

j16︷︸︸︷
x5,2

j17︷︸︸︷
x5,3

j18︷︸︸︷
x5,4

j19︷︸︸︷
x5,5

j20︷︸︸︷
x5,6

Constraints

The time is multiplied by the frequency to represent the available execution capacity

over a time window, since variables xi,j represent execution cycles.

The following constraints ensure the completion of task execution before its dead-

line:

4.4 Pre-scheduler 71

1. The Maximum utilization constraint (M.c) ensures that the system utilization

per frame ϕk is 100%. That is the summation of every share of execution per

task on each frame has to add up to the available system capacity,

n∑
i=1

xi,k = m · |ϕk| · f (4.4)

There are α − 1 of such constraints, one per frame ϕk but the last. Because the

restriction on the frame where the hyperperiod occurs is linearly dependant,

because every task will have a deadline on the last frame, this constraint

will impose the completion of every job, along with the following execution

constraint.

2. The following constraint, Execution constraint (E.c), ensures that each job

completes its execution before its deadline. This is defined per each frame and

task. It can take two forms, depending on whether the frame is a deadline for

the task or not. Since the frames were defined by the set of deadlines, at least

one task will have its own deadline on ϕk, but not all. To know if τi has its

deadline on ϕk = [sdk−1, sdk), it suffices to write sdk = qdi + ri,k and check if

the residual ri,k is zero.

e =


k∑

j=γ
xi,j = cci if ri,k = 0

k∑
j=γ

xi,j ≥ (ri,k · f) − cc′
i if ri,k ̸= 0

(4.5)

where γ is the current job activation’s frame

the counter γ helps to keep track of the frame where the current job had

its activation, thus avoiding to compute the cumulative execution as in the

LPP (3.11) in previous Chapter (Sec. 3.2.2). The residual ri,k is given in

time units, but cc′
i in cycles. For this reason, the residual is multiplied by the

frequency f .

3. Task parallelism is not allowed, therefore each task cannot execute more cycles

than those available in one frame:

xi,k ≤ |ϕk| · f (4.6)

This constraint is referred as Sequential constraint (S.c), and there are (n · α).

72 Chapter 4 RT Multiprocessor Scheduling based on continuous control

4. Given that xi,j variables are cycles from τi they must all be assigned values

greater or equal to zero xi,j ≥ 0 ∀i ∀k, but also comply with the execution

constraint (4.6) for ri,k ̸= 0, therefore the second case of Eq. 4.6 results in:

k∑
j=γ

xi,j ≥ max
{
0, (ri,k · f) − cc′

i

}
if ri,k ̸= 0 (4.7)

Thus, the total amount of constraints in this LPP is α(2n + 1) − 1.

Example 4.3 For the task set from Example 4.1. The constraints for ϕ5 = [20, 25)
yield,

x1,5 + x2,5 + x3,5 + x4,5 + x5,5 = m × 5 · f

Task τ1 and τ5 have a deadline on ϕ5, therefore,

x1,5 = cc1 x5,5 = cc5

The other three tasks do not have a deadline on ϕ5, their residuals ri,5 are: r2,5 = 5,

r3,5 = 10 and r4,5 = 5. Thus,

x2,5 ≥ max
{
0, (5 · f) − cc′

2
}

x3,4 + x3,5 ≥ max
{
0, (10 · f) − cc′

3
}

x4,5 ≥ max
{
0, (5 · f) − cc′

4
}

Finally, the upper bound for xi,5 variables:

x1,5 ≤ 5 · f, x2,5 ≤ 5 · f, x3,5 ≤ 5 · f, x4,5 ≤ 5 · f, x5,5 ≤ 5 · f.

Objective function

The objective function minimizes,

n∑
i=1

α∑
k=1

xi,k (4.8)

4.4 Pre-scheduler 73

which is the summation of all the variables. Even though every solution holds the

same value for the objective function, it was chosen to ensure a solution. A different

objective function can be used, for instance to maximize only one xi,k per job and

reduce task partition, the downside is that it will vary according to the problem.

Proposition 4.1 Given a task set T , where task utilization at frequency f is equal to

the number of processors, the solution X of the LPP (4.9) is always a vector of integer

numbers xi,k, and if each task τi is executed for exactly xi,k cycles during the k-th

interval, then an optimal schedule is obtained.

max
n∑

i=1

α∑
k=1

xi,k

s.t

∀k
n∑

i=1
xi,k = m · |ϕk| · f M.c

∀i, k


k∑

j=γ
xi,j = cci if ri,k = 0

k∑
j=γ

xi,j ≥ max {0, (ri,k · f) − cc′
i} if ri,k ̸= 0

E.c

where γ is the current job activation’s frame, and ri,k is the residual from sdk = qωi + ri,k

∀i, k xi,k ≤ |ϕk| · f S.c

(4.9)

Proof 4.1 The execution constraints (eq. 4.6) from LPP (4.9) ensure that every task

meets its deadline. Hence, if it the LPP has a solution, then the workload allocation

leads to a feasible schedule. Furthermore, by Theorem 4 from [36], the schedule is also

optimal.

To prove that the solution for the LPP (4.9) is always integer, we will show that the

restriction matrix is unimodular. Let M · y = b be the constraints from LPP (4.9),

where y = [x h], x is the solution vector from the LPP, h represents the vector of slack

variables and M is the restriction matrix. By construction, M has the form:

M =


A ∅

B

Isc

Ih

 (4.10)

74 Chapter 4 RT Multiprocessor Scheduling based on continuous control

Figure 4.3.: Form of submatrix [AT BT]T

A represents the equality constraints, B the execution constraints (Eq. 4.6) that

resulted on inequalities, Isc the sequential constraints (one for each xi,k) and Ih

corresponds to the slack variables. All constraints are linearly independent among them,

by construction, hence M is full row rank with rank(M) = α(2n + 1) − 1, where α is

the number of scheduling intervals.

It is well known, from the properties of totally unimodular matrices (TUM), that the

property of total unimodularity (TU) holds under the adjoining of unit vectors [80].

Thus, M is TUM if submatrix [AT BT]T is TUM.

Submatrix [AT BT]T has the particular form showed in Fig. 4.3. It contains a special

structure of −1s in stair. If we remove all unit vectors from [AT BT]T but those in the

stairs the TU property still holds. Let this new matrix be M ′. The TU property is also

preserved under elementary row operations with no scaling, then each row in the stair

structures from M ′ can be transformed to unit vectors. Thus it is sufficient to prove that

A is TUM.

We claim that A is TUM because it satisfies Theorem 3 from [41], with a row partition

(T1 and T2) such that rows associated with the Maximum utilization constraints (M.c)

are elements of T1 and the restrictions corresponding to the Execution constraints (E.c)

are in T2.

Zero Laxity policy

In this section we discuss how to construct a preemptive schedule based on the

solution of the linear programming problem 4.9. The workload X previously

computed determines that task τi must be allocated xi,k cycles at frequency F ∗

4.4 Pre-scheduler 75

during the interval ϕk to satisfy the HRT and thermal constraints. This implies that

the frequency can be throttled up to F + without violating the thermal restriction.

However, the actual allocation of tasks to processors requires a scheduling algorithm.

In this work, we leverage a FPZL policy as posed in Algorithm 3, following the results

from Prop. 4.1.

Algorithm 3 ZLH policy

1: Input Ik
SD – Scheduling intervals; Xk – CPU cycles per interval of each task; exk

i – Current
execution P cycles in interval t0 – Initial time tf – Final time

2: Output A feasible schedule;
k = 0,

3: for t = t0 to tf do
4: Compute the laxity of every active task
5: if reach Ik+1

SD then
6: k=k+1;
7: Compute task priorities as: Jobs with Zero laxity get higher priority, followed by jobs that are

being executed
8: Execute the m tasks with higher priority
9: else if reach a zero laxity then

10: Compute task priorities
11: Execute the m tasks with higher priority
12: end if
13: end for

Example 4.4 Consider the same task set from Example 4.1, T = {τ1, τ2, τ3, τ4, τ5},
each task was defined as τ1 = (3, 5), τ2 = (6, 10), τ3 = (9, 15), τ4 = (6, 10) and
τ5 = (3, 5). Assume the frequency is F ∗ = 1, therefore, U = 3, so it is feasible on
m = 3 processors. The solution from LPP 4.9 (per task τi and per ϕk) is

k=1 k=2 k=3 k=4 k=5 k=6

xi,k

i=1 3 3 3 3 3 3

i=2 3 3 5 1 5 1

i=3 5 1 3 3 1 5

i=4 1 5 1 5 3 3

i=5 3 3 3 3 3 3

Applying the ZL policy (Alg. 3) up to the hyperperiod, we find the target schedule in

Fig. 4.4.

So far, we have found an off-line schedule that can be implemented on a real system,

in the absence of disturbances.

76 Chapter 4 RT Multiprocessor Scheduling based on continuous control

0 5 10 2015 25 30

time

2

3

4 5

6

11

15

19

207

10 14

16

16 17

17

18CPU1

CPU2

CPU3

1

2

3

4

5

Figure 4.4.: Schedule of task set T = {(3, 5), (6, 10), (9, 15), (6, 10), (3, 5)} on 3 processors.
Task τ1 (red blocks) generates jobs: j1 to j6, τ2 (light green) produces jobs j7
to j9, τ3 (yellow) creates jobs j10 and j7, task τ4 (dark green) spawns jobs j12
to j14, and finally, τ5 (blue) generates jobs j15 to j19

.

4.5 Compute references

The off-line schedule obtained from the previous module is now translated into a

set of accumulative execution functions. These functions represent the accumulated

execution of every task in each processor in cycles, i.e there are n · m accumulative

functions. These functions could be used as reference for the TCPN model to track a

feasible schedule.

In order to define these accumulative execution functions, we first need to specify

when a task is being executed on a specific processor. Despite the use of task to refer

to the piece of execution upon a processor, recall that it is the job (an instance of

the task) which is actually executed. Using the term task and its numbering helps

simplify the notation.

Definition 4.5 Let Wi,j(ζ) be the activation function of τi in CPUj , such that

Wi,j(ζ) =

1 if τi is executed on CPUj

0 otherwise
(4.11)

where ζ represents time.

Remark 4.3 Note that whenever a job from τi in CPUj is preempted (allocated),

function Wi,j will show a break point, i.e a drastic change from 1 to zero (0 to

1). Therefore, when a context switch occurs on any of the processors, at least one

function Wi,j has a break point. Thus, every Wi,j is constant in between every pair

of context switches.

4.5 Compute references 77

Definition 4.6 Let S = {δ0, δ1 . . . , δk, . . . , δh} be the set with all the time stamps δk

from a given cyclic executive when a context switch occurred, where δ0 = 0 and δh is

the last context switch.

Definition 4.7 The execution interval

∆k = (δk−1, δk], (4.12)

is the time interval between consecutive context switches δk−1 and δk, where k =
1, . . . , h.

Now the accumulative execution functions are formally defined on Def. 4.8.

Definition 4.8 Let Ri,j(ζ) be the accumulative execution function of task τi in proces-

sor j, at time ζ. Ri,j(ζ) is a continuous function such that

Ṙi,j(ζ) = f · Wi,j(ζ) (4.13)

where ζ is the time, f the operating frequency of CPUj , i = 1, 2, ..., |T |, j = 1, 2, ..., |P|

and Wi,j(ζ) is the activation function. Thus, integrating Eq. 4.13 for ζ ∈ ∆k, such that

Wi,j(ζ) is constant, yields

∫ Ri,j(ζ)

Ri,j(δk−1)
dQ =

∫ ζ

δk−1
f · Wi,j(τ) dτ

Ri,j(ζ) − Ri,j(δk−1) = f · Wi,j(ζ)
∫ ζ

δk−1
dτ

Thus,

Ri,j(ζ) = Ri,j(δk−1) + f · Wi,j(ζ) · (ζ − δk−1) ∀ζ ∈ ∆k (4.14)

Example 4.5 Consider the task set from example 4.1, and its schedule from Fig. 4.4.

Therein, task τ1 executes in CPU1 during the time intervals [6, 9) and [26, 29), in

CPU2 at [0, 3) and [11, 14), and in CPU3 during [16, 19) and [21, 24). The execution

of task τ1 is divided into the three processors, resulting in one accumulative execution

function per processor, this is R1,1, R1,2 and R1,2.

78 Chapter 4 RT Multiprocessor Scheduling based on continuous control

R1,1(ζ) =



0 0 ≤ ζ ≤ 6

(ζ − 6) 6 < ζ ≤ 9

3 9 < ζ ≤ 26

3 + (ζ − 26) 26 < ζ ≤ 29

6 29 < ζ ≤ 30

R1,2(ζ) =



ζ 0 ≤ ζ ≤ 3

3 3 < ζ ≤ 11

3 + (ζ − 11) 11 < ζ ≤ 14

6 14 < ζ ≤ 30

(4.15)

R1,3(ζ) =



0 0 < ζ ≤ 16

(ζ − 16) 16 < ζ ≤ 19

3 19 < ζ ≤ 21

3 + (ζ − 21) 21 ≤ ζ ≤ 24

6 24 < ζ ≤ 30

(4.16)

Functions R1,1, R1,2, R1,3 are plotted in Fig. 4.5.

2 610 1416 17 18CPU1

0 5 10 2015 25 30

0

3

6

R1,1

time

c
y
c
le
s

0 5 10 2015 25 30

0

3

6

R1,2

3 111917CPU2

time

c
y
c
le
s

0 5 10 2015 25 30

0

3

6

R1,3

4 515 20716CPU3

time

c
y
c
le
s

Figure 4.5.: Execution accumulative functions for τ1 on each processor, R1,1 and R1,2 are
defined on Eq. (4.15) and R1,3 on Eq. (4.16)

4.5 Compute references 79

Solving Eq. (4.13) at the end of interval ∆k provides the amount of cycles that τi

must complete within ∆k,

Ri,j(δk) = Ri,j(δk−1) + f · [Wi,j(δk−1)](δk − δk−1) (4.17)

Consecutively, Ri,k(δk)−Ri,k(δk−1) represents the number of CPU cycles that τi must

execute in CPUj within ∆k before being preempted.

4.6 On-line controller ALECS

The allocation and execution of the HRT tasks is modeled in Eq. (2.22a)-(2.22c).

Specifically, it is determined by the flow of transitions talloc
i,j for the allocation and

texec
i,j for the execution.

The firing of transition talloc
i,j represents that task τi is allocated to CPUj , and the

marking of place mbusy
i,j holds the number of cycles from τi allocated to CPUj .

Accordingly, the marking mexec
i,j at pexec

i,j represents the accumulated execution of task

τi in CPUj . The controllers for allocation and execution read these measures either

from the TCPN equations, when simulating a TCPN model of the system, or from

actual counters, when running in a real system.

Figure 4.6 shows the Timed Continuous Petri Net (TCPN) for the CPU module, each

transition talloc
i,j has two places on its preset: pidle

j and pcc
i . The former represents

the idle state of a processor, while the latter relates to the amount of cycles from τi

ready to be allocated, but is omitted from this figure. As stated previously, the model

uses an infinite server semantics and its transition firing policy,

f [tj] = λ[tj] · min
p∈•tj

{
m[p]

P re[p, tj]

}
,

has the min operator. In this work we assume that pidle
j will always constraint the

flow of transitions talloc
i,j by selecting an adequate value for η, such that the TCPN

model evolves in only one configuration.

Also, from Figure 4.6 it becomes apparent that transitions talloc
i,j can be fired simul-

taneously, nevertheless this is an undesired behaviour that disappears when the

following allocation control is imposed.

80 Chapter 4 RT Multiprocessor Scheduling based on continuous control

...

...

...

... ...

CPU1 CPUj

Figure 4.6.: TCPN module for CPU1 to CPUj . The gray places

The allocation control can be though of as the scheduler, it takes the decision of

which task should be allocated on each processor. On the other hand, the execution

control is a flow controller that can increase or decrease the speed of execution.

Thus, leading to the accomplishment of the offline schedule.

4.6.1 Allocation control

At each executing interval ∆k = (δk−1, δk] places pbusy
i,j and pexec

i,j should hold the

required marking Ri,j(δk) (Eq. 4.17).

Let define the allocation error vector Ealloc(ζ) = [Ealloc
1,1 , ..., Ealloc

n,1 , ..., Ealloc
n,m]T , where

each Ealloc
i,j (ζ) is computed as:

Ealloc
i,j (ζ) = mexec

i,j (ζ) + mbusy
i,j (ζ) − Ri,j(δk) (4.18)

where δk−1 ≤ ζ < δk. The change in time of the marking of a place in a TCPN, is

computed as the input flow minus its output flow. Then, taking the time derivative

of Eq. 4.18, the dynamics of the error is given by:

Ėalloc
i,j (ζ) = ṁexec

i,j + ṁbusy
i,j (4.19)

= λexec
i,j mbusy

i,j +
λalloc

i,j

η
midle

i,j − λexec
i,j mbusy

i,j − ualloc
i,j (4.20)

= falloc
i,j − ualloc

i,j = walloc
i,j (4.21)

where walloc
i,j is the controlled flow through transition talloc

i,j and falloc
i,j is

falloc
i,j =

λalloc
i,j

η
midle

i,j . (4.22)

In a TCPN, the flow of transitions can only be decreased. For this reason, an ON/OFF

control is proposed, such that control ualloc
i,j cancels falloc

i,j when necessary. Whenever

4.6 On-line controller ALECS 81

the initial condition of Ealloc
i,j is zero the error itself can always be driven back to zero.

This idea is formalized on the following proposition.

Proposition 4.2 Let ualloc
i,j be an ON/OFF control for system (4.21), such that

ualloc
i,j =


λalloc

i,j

η midle
i,j if Ealloc

i,j (ζ) ≥ 0

0 if Ealloc
i,j (ζ) < 0

(4.23)

Then system (4.21) is stable and each Ealloc
i,j remains bounded for all δk−1 < ζ ≤ δk.

Proof 4.2 To prove the stability of all allocation errors, we assume that place midle
j

constrains transitions talloc
i,j , hence we write the dynamic of each allocation error as:

Ėalloc
i,j =

λalloc
i,j

η
midle

j − ualloc
i,j . (4.24)

Then, a Lyapunov candidate function V ([45]) can be defined, satisfying V (Ealloc) > 0,

∀Ealloc ̸= 0 and V (Ealloc) = 0 for Ealloc = 0, as

V = 1
2EallocT Ealloc

Taking its time derivative yields:

V̇ = EallocT Ėalloc

For each Ealloc
i,j there are two possible scenarios:

1. Ealloc
i,j ≥ 0. Then, ualloc

i,j = λalloc
i,j

η midle
i,j , therefore

Ealloc
i,j Ėalloc

i,j = 0.

2. Ealloc
i,j < 0. Since Ealloc

i,j = −|Ealloc
i,j | and ualloc

i,j = 0 we can state that

Ealloc
i,j Ėalloc

i,j = −
λalloc

i,j

η
|Ealloc

i,j |midle
j ≤ 0.

because midle
j ≥ 0 for all t. Consequently we can conclude that V̇ ≤ 0 which implies

that V (ζ) ≤ V (δk−1), ∀ δk−1 ≤ ζ < δk. Therefore each Ealloc
i,j remains bounded for

all δk−1 ≤ ζ < δk.

82 Chapter 4 RT Multiprocessor Scheduling based on continuous control

4.6.2 Execution control

The execution control relies on the proper performance of the allocation control,

since it is only concerned with the rate of execution, i.e. the frequency at which the

processor should operate to satisfy the accumulative execution functions.

The frequency is a parameter on the execution module of the TCPN model in

Sec. 2.22c, specifically, it appears on the firing rate λexec
i,j of transitions texec

i,j . The

flow through those transitions represents the maximum rate at which the processor

CPUj can execute cycles, namely the maximum frequency CPUj . Said maximum

frequency F + has already been calculated in Sec. 4.4, it is the maximum frequency at

which the processors may operate while complying with the thermal constraint and

guarantee the HRT requirements of set T . On the other hand, F ∗ is the minimum

frequency for the processor, otherwise HRT requirements could not be satisfied.

Therefore, the flow through transitions texec
i,j should vary along a range defined by

F ∗ and F +. Furthermore, from the problem definition all the processors execute at

the same frequency.

The purpose of this controller is to keep the execution error Eexec
i,j (ζ) equal to zero,

that is, the marking mexec
i,j at places pexec

i,j has to track its appropriate accumulative

execution function Ri,j .

Now, let define the execution error vector ⃗Eexec(ζ) = [Eexec
1,1 , ..., Eexec

n,1 , ..., Eexec
n,m]T ,

where each Eexec
i,j (ζ) is computed as:

Eexec
i,j (ζ) = mexec

i,j − Ri,j(ζ). (4.25)

Then the dynamic system of the execution error is:

Ėexec
i,j (ζ) = ṁexec

i,j − Ṙi,j(ζ) (4.26)

= λexecmbusy
i,j − uexec − Ṙi,j(ζ)

= ηF +mbusy
i,j − uexec − Ṙi,j(ζ) (4.27)

= wexec
i,j − Ṙi,j(ζ)

where wexec
i,j is the controlled flow through transition texec

i,j :

wexec
i,j = fexec

i,j − uexec

4.6 On-line controller ALECS 83

Proposition (4.3) shows how to select the control flow uexec
i,j for each transition texec

i,j .

But since the multiprocessor platform is identical all processors work at the same

frequency, for this reason the control action is referred as uexec, to denote that it is

the same for every uexec
i,j .

Proposition 4.3 Let uexec be a control law for system (4.27), such that

uexec =


0 if γ ≥ ηF +mbusy

E

η(F + − F ∗)mbusy
E if γ ≤ ηF ∗mbusy

E

ηF +mbusy
E − ṘE + αE otherwise

(4.28)

γ = ṘE − αE

where α is a positive constant, E is the element Eexec
i,j such that |Eexec

i,j | = ||Eexec||∞1,

and mbusy
E , ṘE are the elements mbusy

i,j and ˙Ri,j respectively associated to E. Then

the execution error is locally exponentially stable and the controlled flow is bounded

ηF ∗mbusy
E ≤ wexec

E ≤ ηF +mbusy
E for all δk−1 ≤ ζ < δk.

Proof 4.3 Let V be a Lyapunov candidate function, satisfying V (Eexec) > 0, ∀Eexec ̸= 0
and V (Eexec) = 0 for Eexec = 0

V = 1
2 · m · n

EexecT Eexec

= 1
2 · m · n

m∑
j

n∑
i

Eexec2
i,j ≤ 1

2 · m · n
m · n · E2

Let,

Q = 1
2E2,

if Q is driven to zero, then V too. Taking the time derivative of Q:

Q̇ = EĖ,

1||x||∞ = maxi |xi|

84 Chapter 4 RT Multiprocessor Scheduling based on continuous control

using Eq. (4.27)

Q̇ = EĖ

Q̇ = E
(
ηF +mbusy

E − uexec − ṘE

)
(4.29)

with

uexec = ηF +mbusy
E − ṘE + αE (4.30)

then Eq.(4.29) yields:

Q̇ = −αE2 = −2αQ ∀ δk−1 ≤ ζ < δk. (4.31)

Therefore the system is globally and exponentially stable for all δk−1 ≤ ζ < δk.

Nevertheless, the processor frequency must operate between F ∗ and F +, therefore the

controlled flow associated with Ė should operate in the interval ηF ∗mbusy
E ≤ wexec

E ≤
ηF +mbusy

E . Hence, uexec cannot always take the value from Eq. (4.30). Then uexec is

selected as Eq. (4.28) and the exponential stability condition no longer holds globally,

but in a region

Ω =
{

E ∈ R | ṘE − ηF +mbusy
E

α
≤ E ≤ ṘE − ηF ∗mbusy

E

α

}
.

Example 4.6 Consider the same task set from example 4.1. To prove the effective-

ness of the control law, suppose there is an overhead in the system at time [15, 16],
such that the execution was all active tasks was interrupted, see Fig. 4.7b. Then, the

system must increase the frequency to compensate for the delay.

Fig. 4.7a shows the target functions and Fig. 4.7b shows the output of the system

and how the execution accelerates to reach the execution paths. This is achieved

thanks to the execution control law which ensures that the current allocation of task

is met, despite the time overhead (system perturbation).

4.6.3 Online Aperiodic Manager

Now, we endow our scheduler with a third component, the Online Aperiodic Manager

(OnAM), which manages SRT aperiodic tasks. Upon arrival of a SRT aperiodic task,

the OnAM determines if such task can be executed without compromising the

4.6 On-line controller ALECS 85

time(sec)

C
P

U
 c

y
cl

es
C

P
U

 c
y
cl

es
C

P
U

 c
y
cl

es

time(sec)

a) b)
No execution

zoneTarget functions Execution has recovered

Figure 4.7.: a) Task execution paths and b) System output recovering from a system over-
head in the interval [15, 16]

constraints of the HRT periodic task set. If so, it re-computes the task execution

paths Ri,j in order to include the execution of τa
i .

First, the OnAM determines the scheduling intervals where τa
i will be active (ϕr to

ϕf). Second, it computes the processor cycles Cu pending to satisfy the rest of the

active tasks until the deadline of τa
i . Third, with this information, the algorithm

computes the frequency that would allow the execution of the current active jobs and

the incoming aperiodic task, Fn = max
{

Cu+cca
i

m·da
i

,
cca

i
da

i

}
Last, if Fn ≤ F +, then OnAM

accepts the incoming task into the system and assigns the workload xak (per frame)

for τa
i proportionally to the scheduling interval duration: xai,k = |ϕk|

da
i

cca
i If the arrival

or deadline (ra
i + da

i) of the aperiodic task does not match any current deadline,

the current interval duration will differ from ϕk, thus xak is slightly modified. If

the mismatch occurred at arrival time, instead of ϕk, the remaining time sdk − ra
i is

86 Chapter 4 RT Multiprocessor Scheduling based on continuous control

Algorithm 4 OnAM Online aperiodic manager

1: Input Ik
SD – Scheduling intervals; Xk – tasks CP U cycles per interval; exr

i – current execution P
cycles in interval cca

i , da
i – Aperiodic tasks parameters;

2: Output jRi

3: if periodic task arrives then
4: Determine intervals Ir

SD to If
SD , where τa

i is active
5: Compute required CPU cycles for active tasks
6: if Fn ≤ F + then
7: Accept task τa

i

8: Assign workload xak
i from Ir

SD to If
SD

9: Execute Alg.1 from [ra, sdf)
10: Compute task execution paths Ri,j

11: else
12: Reject task
13: end if
14: end if
15: if aperiodic task deadline then
16: Execute Alg.1 from [sdf , H)
17: Compute task execution paths Ri,j

18: end if

used. However, if it occurred at the deadline, then we use (ra
i + da

i) − sdk−1. The

frequency Fn along with the new workload that accounts for τa
i serves as input for

Alg. 3, which now computes Wi,j and Ri,j on-line, for the interval [ra, sdf), as in

Eq. (4.11) and Eq. (4.14). When task τa
i reaches its deadline, the execution paths

are computed for the rest of active tasks under the previous frequency. Alg. 4 details

the workflow of OnAM.

Example 4.7 Recall example 4.1. An aperiodic task arrives at t=3, i.e. τa
1 =

(10, 6, 3). The interval of admissible frequencies is F = [1, 3]. Fig. 4.8a shows the

schedule for T and τa
1 , the change in height of the boxes is intended to represent

the increment in the processors frequency. Fig. 4.8b shows the new accumulative

execution functions computed to accommodate the aperiodic task. On CPU 1,

Rap,1 shows a ramp until t = 9 whereas Rap,2 and Rap,2 are flat for the whole

interval in CPU 2 and 3, meaning that the incoming aperiodic task can be entirely

accommodated in CPU 1 without disturbing the correct execution of tasks 2 and 3

now scheduled on CPU 2 and 3.

4.7 Conclusions

We have introduced a scheduling scheme which provides entirely off-line a schedule

that meets the HRT, thermal and power constraints of a periodic task set. We

4.7 Conclusions 87

0 5 10 2015 25 30

time

2

3

4 5

6

11

15

19

20

10 10

13

1417

17

18CPU1

CPU2

CPU3

1

2

3

4

5

15

1612

10

7

a

a

(a) Schedule

time(sec)

C
P

U
 c

y
cl

es
C

P
U

 c
y
cl

es
C

P
U

 c
y
cl

es

(b) Accumulative execution functions in time interval

Figure 4.8.: Aperiodic task management, serving an aperiodic task τap = (10, 6, 3) that
arrives at time 3 and has its deadline at time 9, for example 4.7

reformulate the ILP solved in chapter 3.14 to calculate the share of each task job per

time interval. This greatly improves the schedulability of the former approach, by

posing and solving the ILP taking into account the whole hyperperiod, furthermore

the unimodularity property is conserved. Besides, we apply a ZL task policy off-line

to allocate jobs to processors, in contrast with chapter 3 where the allocation is

performed on-line. We add robustness to the system by designing a second on-line

component where an allocation controller and an execution controller respectively

compare actual or simulated allocation and execution data with the values (execution

paths) provided by the previous off-line stage, taking action to bring the error to

zero. As a bonus, the execution controller allows the design of an aperiodic task

manager (onAM) simpler and lighter than the one presented in section 3.3.2.

88 Chapter 4 RT Multiprocessor Scheduling based on continuous control

Maximizing utilization and

minimizing migration
5

We introduce in this chapter a scheduling framework named Clustered Allocation

and Execution Control Scheduler (CAlECS) which involves two strands coming out

from the work exposed in the previous chapter. One of them led to improving the

computation of the CE. The other one led to the redesign of the online execution

controller.

The first strand came out from a preliminary comparison of context switch (CS)

and migration overhead between the cyclic executive obtained from Sec. 4.4 and

RUN ([61]), Fig. 5.1. This comparison resulted in that whereas the CE from AlECS

performed better than RUN concerning the CS overhead, the results concerning the

migration overhead were a bit different. The number of migrations was lower in

AlECS than in RUN, but in task set 7 RUN performed an exact partition on the task

set, thus avoiding any migration. Therefore, in a few favourable cases RUN performs

better because it finds partitions on the task set while AlECS does not. The workload

distribution in AlECS only depends on the results of the ILP, and trying to minimize

the number of migrations from the ILP definition would inevitably take us back to a

Bin packing problem. The solution proposed is a clustering algorithm summarized

in Sec. 5.3.2 which was conceived an developed in tight collaboration with Abel

Chil’s MSc Thesis [20].

The second strand, the online execution controller, improves the translation from

the control law in Sec. 4.6.2, to the frequency that will actually be deployed on the

multicore platform. It also improves the performance of the TCPN model, and more

importantly it detaches the controller implementation from the TCPN parameters,

facilitating both the usage of the TCPN model for simulation and the computation

of CPU frequencies for deployment. The aperiodic manager is also re-designed to

exploit the capabilities of the new frequency controller, and avoid the laborious stage

of re-computing the execution references every time an aperiodic task was released.

89

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70
AIECS

RUN

MCS

Task set (a)

C
o
n
te

x
t
s
w

it
c
h
e
s

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

18

20
AIECS

RUN

Task set (b)

M
ig

ra
ti
o
n
s

Figure 5.1.: (a) Breakdown of context switches generated by our proposal vs RUN along
the ten task sets. The bottom black bars stand for the Mandatory Context
Switches MCS and the upper stacked bars represent the Coerced Context
Switches CCS of the proposal (grey) and RUN (dark grey). MCS are given
by job activation and termination, and therefore are independent from the
scheduler, unlike CCS. (b) Number of job migrations produced by our proposal
(grey) vs. RUN (dark grey)

1

5.1 Problem definition

This section defines the system model and design constraint for the scheduling

problem herein addressed. The main difference between the definitions from last

chapter is that here the frequency of the processor is restricted to a set of discrete

values.

Multiprocessor system The multiprocessor system is composed by m processors,

where migration is permitted. P = {CPU1, . . . , CPUm} is the set of the m iden-

tical processors with an homogeneous clock frequency F ∈ F = {f1, . . . , fmax}.

Furthermore, each CPU is subjected to a thermal bound Tmax.

Task model The set of HRT tasks is denoted by T = {τ1, ..., τn}. Each task is

independent, fully preemptive an is identified by the 3-tuple τi = (cci, di, ωi), where

cci is the WCET in cycles, ωi is the task period, and di is the relative implicit deadline

(di = ωi) ([6]).

The arrival of asynchronous, SRT aperiodic tasks is also considered. Each aperiodic

task τa
i is defined as a 3-tuple (cca

i , da
i , ra

i) in which cca
i (required CPU cycles) and da

i

(deadline) are known at task arrival time, and the arrival time ra
i is unknown. Let

Ta = {τa
1 , ..., τa

p } be a set of the p independent aperiodic tasks.

Remark 5.1 It is assumed that all task parameters, are integers and that every job

can be preempted at any time. The activation of the HRT tasks occur at time zero.

90 Chapter 5 Maximizing utilization and minimizing migration

Figure 5.2.: Clustered Allocation and Execution Control Scheduler (CAlECS) Overview: the
novelty of this chapter resides on the task clustering (Sec. 5.3.2) and feedback
controller (Sec. 5.4) modules, the rest of modules remain practically the same
under AlECS

5.2 Overview of the CAlECS scheduling system

CAlECS constitutes a good starting point to design either a standalone cyclic execu-

tive for a HRT task set or a Minor Frame in a collective hyperperiod.

As with the two previous chapter, we leverage a divide and conquer strategy. This

section will help the reader to identify the elements of CAlECS as they are extended

on in further sections. The CAlECS architecture appears in Fig. 5.2. The modules task

set conditioner, clustering, and pre-schedule process the HRT task set, to yield an opti-

mal schedule entirely off-line, ensuring minimum energy consumption and honoring

a thermal bound. The module get-reference translates the off-line schedule into a set

of references for the feedback controller. The module feedback controller acts on-line

at runtime, it guarantees the accomplishment of the HRT and thermal constraints

upon the arrival of SRT aperiodic tasks or in the presence of disturbances.

The task set conditioner determines the schedulability of the HRT task set on the

available processors. Also, as in previous chapter it solves the minimum frequency

F ∗ and the maximum frequency F +, but the execution controller presented in this

chapter is capable of working at discrete values of the frequency, thus instead of

defining a range of operation, it defines a set of operating frequencies.

Then, the clustering module partitions the task set into k ≤ m subsets, if the number

of subsets is equal to m (number of processors) then a perfect partition was achieved,

5.2 Overview of the CAlECS scheduling system 91

these subsets are named clusters. Therefore, each Qj , where j = 1, . . . k, is a task set

whose utilization sj is always integer and,

k∑
j=1

sj = m

This module uses a bin packing problem (BPP) algorithm based on the Best Fit De-

scending (BFD) heuristic. The novelty of this approach is that it does not enumerate

all the possible solutions, and it always favours the computation of smaller size

clusters.

The pre-schedule module finds a feasible schedule per cluster Qj . When the utilization

of a cluster is unitary (minor cluster), Qj is assigned to a single CPU and we resort

to an EDF scheduling policy to find a feasible schedule. If the cluster utilization

is greater than one (major cluster), then Qj is assigned to sj processors and the

pre-schedule module from AlECS is used, please refer to Sec. 4.4 for further details.

Finally, the individual schedules are combined into a single schedule, that could be

implemented straightforward, as a simple cyclic executive with minimum overhead,

in the absence of additional SRT sporadic tasks or system disturbances.

The module get-reference uses this feasible off-line schedule to generate task-allocation

references for the next module.This module is described on Sec. 4.5 and will not be

repeated here.

At runtime, the feedback controller allocates and executes tasks. The allocation

control remains the same as in AlECS, but the execution control is re-designed. A

significant but minor change is implemented on the TCPN mode to allow an easier

control law computation, it is further described under Sec. 5.4.3. The Aperiodic

manager, Sec. 5.4.4, is capable of accepting or rejecting SRT aperiodic tasks by

implementing a smart ZL policy that relies on the frequency control and, so that the

temporal and thermal constraints of the system are always met. The main difference

of this aperiodic manager with respect from that of AlECS is that this strategy avoids

re-computing an schedule and the change in control references.

5.3 Off-line stage

The scheduling scheme presented in this chapter (CAlECS) starts with the off-line

computation of the scheduling references that are later tracked by the on-line

92 Chapter 5 Maximizing utilization and minimizing migration

controller at runtime. This off-line computation is broke down in four stages, which

correspond to the modules Task-set conditioner, Task-clustering, Pre-scheduler and

Get-reference.

The first module, Task-set conditioner, was introduced in Sec. 3.8 and employed in

the scheduling methods of chapters 3 and 4. It is also used as is in CAlECS. In this

Section, we first set a base example (Example 5.1) that will referenced in further

explanations. Therefore, we starts by applying the Task-set conditioner to this base

example (subection 5.3.1).

A key point in CAlECS is an off-line clustering stage which was absent in the schemes

of previous chapters. This stage is carried out by the new module Task-clustering,

introduced in subsection 5.3.2.

The remaining modules (Pre-scheduler and Get-reference) were introduced and used

in AlECS (Sec. 4.2). The last two subsections here explain the modifications required

to adapt these modules to CAlECS.

5.3.1 Task set Conditioner and base example

As explained in Sec. 3.8, this module checks that the HRT task set T is schedu-

lable on the available cores. Also, it yields the set of operating frequencies F =
{F ∗, . . . , F +} ⊂ F , where F ∗ minimizes the energy consumption, and F + is the

maximum permissible frequency at maximum utilization.

Example 5.1 The task set conditioner stage requires knowledge of the processors

layout, materials, thermal properties and the CPU operating frequencies. In this

example, the MPSoC considered is composed of six 1 cm ×1cm silicon microprocessor

mounted over a 7 cm×7 cm copper board, as shown in Fig. 5.3b. The thermal

properties of the materials appear on Table 5.3a [30], where cp, ρ and k stands for

the specific heat capacity, density and thermal conductivity coefficient, respectively.

The equation that describes the power dissipation for each core is assumed to be

Pdyn = C1 ∗F 3 +C2, where C1 = 0.8421 and C2 = 9.1579. Table 5.1 shows the corre-

sponding power frequency pairs. Let us consider the task set T = {τ1, τ2, τ3, τ4, τ5, τ6, τ7},

where each task is defined as τ1 = (10, 20), τ2 = (5, 10), τ3 = (7, 10), τ4 = (7, 10),
τ5 = (7, 10), τ6 = (14, 20) and τ7 = (3, 5) Solving the minimum frequency yields

F ∗ = 1 Hz, as described in Sec. 3.2.1. Since the utilization of every task under

F ∗ = 1 Hz is less than 1 and the total utilization Utot = 4.4 is less than the number of

5.3 Off-line stage 93

Silicon Copper

cp 712 J/Kg K 385 J/Kg K

ρ 2330 Kg/m3 8933 Kg/m3

k 148 W/m oC 400 W/m oC

(a) Material properties (b) Layout

Figure 5.3.: Material properties and layout of the MPSoC, needed to characterize the TCPN
thermal model

Frequency Power consumption

1.0 Hz 10 Watts
1.5 Hz 12 Watts
2.0 Hz 15.895 Watts
2.5 Hz 22.316 Watts
3.0 Hz 31.895 Watts

Table 5.1.: Example 5.1. Power frequency pairs

processors (m = 6), we only need five out of the six processors to correctly run the

HRT task set. Therefore, CPU6 will be off for the remaining of this example. Then,

the optimization problem from Eq. (3.6) yields F + = 2.5 Hz as the the maximum

frequency that the system stands with five cores running at maximum load and the

sixth core off, while keeping the MPSoC temperature under Tmax = 110oC.

5.3.2 Task clustering

This clustering module was conceived and developed in tight collaboration with Abel

Chills during his MSc Thesis [20]. The algorithm aims to reduce the number of job

migrations by constraining such migrations within clusters of processors. Clustering

also downsizes the global scheduling problem, now reduced to each cluster. A

desirable effect of the algorithm in this module is that it usually reduces the number

of preemptions as well. The worst case appears when only one cluster, containing

all the processors, can be obtained. In such case the global scheduling algorithm

must deal with the whole set of processors and tasks, boiling down to the AlECS

algorithm. The clustering problem can be formally stated as follows.

94 Chapter 5 Maximizing utilization and minimizing migration

Algorithm 5 Clustering algorithm
1: Input T :Task set; m: Number of CPUs
2: Output A set of clusters;
3: Aux. functions

· SolveBPP(task set, binVolume) – Solves BPP for bins with volume binV olume;
· utilization(bin) – Returns the sum of the utilizations of the tasks in the bin

4: Q = ∅,
5: binV olume = 1,
6: cpusT oAssign = m,
7: tasksW ithoutCluster = T
8: T = {T ∪ τidle}
9: while binV olume <= cpusT oAssign do

10: SolveBP P (tasksW ithoutCluster, binV olume)
11: for all bin ∈ bins do
12: if utilization(bin) == binV olume then
13: // Each data structure cluster has (number of CPUs in cluster, tasks in the cluster)
14: Q = Q ∪ (binV olume, bin)
15: tasksW ithoutCluster = tasksW ithoutCluster \ bin
16: cpusT oAssign = cpusT oAssign − binV olume
17: end if
18: end for
19: binV olume = binV olume + 1
20: end while
21: // Ensure that all tasks and CPUs are in a cluster
22: if cpusT oAssign! = 0 then
23: Q = Q ∪ (cpusT oAssign, tasksW ithoutCluster)
24: end if

Problem 5.1 Task Clustering. Given a task set T with n tasks HRT-schedulable on m

processors, find a set partition Q = {Q1, ..., Qk} of T into Q1, ..., Qk subsets (clusters)

such that they are pairwise disjoint and
⋃k

j=1 Qj = T , the utilization Uj of tasks in

cluster Qj . We call this utilization the size of Qj , and is always an integer, such that

the summation of all sizes equal the number of processors m, i.e.
∑k

j=1 Uj = m.

A cluster Qj is a minor cluster if it has an unitary utilization Uj = 1, and a major

cluster if Uj ≥ 2. Tasks from a minor cluster are scheduled on a single processor.

A task set T which is HRT feasible before the partition, will also be so after the parti-

tion, furthermore the algorithm will never increase the system capacity. Problem 5.1

implies systems with full utilization, for which we resort to add an idle task when

required; details are discussed below.

Approximate solution

The clustering problem 5.1 is a form of Bin packing problem (BPP) [44], which

is an NP-hard problem. Nevertheless, we can approximate a solution through the

5.3 Off-line stage 95

use of heuristics. This approximate solution is designed to maximize the number of

clusters of the smallest possible size upon the intuition that the number of migrations

decreases with the size of a cluster. This intuition proved to be coherent with the

experimental results presented in Sec. 5.5.

Definition 5.1 The BPP states that given n items and m bins, with wi as the weight

of item i and c as capacity of each bin, assign each item to one bin so that the total

weight of the items in each bin does not exceed capacity s and the number of bins used

is minimum.[52]

In order to pose problem 5.1 as a BPP, we define bins of capacity s ≤ m and tasks as

items with weight equal to their utilization ui. The utilization Ub of bin b is equal to

the sum of the utilization of the tasks it contains. Then, a bin of size s is said to be

fully utilized if its utilization is exactly equal to its size, Ub = s.

Notice that in a BPP every bin has the same capacity, therefore we will solve a

BPP for each possible size of bin s = 1, 2, . . . , m until a solution for problem 5.1 is

found.

The process is as follows. We first solve a BPP for bins of size 1. Then, each fully

utilized bin constitutes a valid cluster Qj with utilization Uj = 1, and the group of

tasks in each bin is assigned to a cluster. The rest of unassigned tasks are used to

pose a BPP for bins of size 2, where we look again for fully utilized bins and assign

their tasks to a cluster. This process continues until no unallocated tasks are left.

In the worst case, only one bin of size s = m is found, this solution is always assured

because the task set is already feasible U ≤ m. In the best case scenario, there are

m unit-size bins.

We resort to a Best Fit Descending (BFD) heuristic [44] to solve the BPP but other

solutions are possible. Actually, the problem can also be undertaken by leveraging

heuristics that solve the Knapsack Problem or the Cutting Stock problem. We made

some preliminary calculations and found that the BPP formulation with the BFD

heuristics provided the most promising results for us.

Alg. 5d escribes the algorithm for the approximate solution. It starts by adding an

idle task τidle to T , for cases where
∑

ui < m (line 8). We make the deadline of this

task be equal to the hyperperiod, so that it has always the lowest priority. Actually, it

will never be scheduled.

96 Chapter 5 Maximizing utilization and minimizing migration

0.8

0.8

0.4

(a) 1
idle

0.80.8

0.2 0.2

(b) 2 idle

Figure 5.4.: Differences in clustering between the usage of one idle (forces one cluster) and
two idle tasks (idle tasks are in gray)

Then, we solve the BPP for bins of size 1 (minor clusters). If there are bins with

a utilization lower than 1, we solve the BPP again considering bins of size 2 (i.e.

clusters with sj = 2), then 3 and so on until no unallocated tasks are left.

A group of tasks is assigned to a cluster if the the bin containing them is fully utilized.

The variables cpusToAssign and tasksWithoutCluster represent, respectively, the

number of CPUs and tasks unassigned to any cluster yet. Since this heuristic does

not guarantee an optimal solution of the BPP, the condition in line 22 from Alg. 5

ensures that the last cluster contains any possible group of tasks with total utilization

y < m that failed to conform a bin when binV olume = y.

Idle task: other options

Adding a single idle task τidle in Alg. 5 line 8 is just a simple solution, well suited

to our scheduling scheme, which can deal with aperiodic tasks and disturbances in

later stages. However, it does not always help minimize migrations. Let us consider

two tasks such that u1 = u2 = 0.8, to be scheduled on two processors. Adding an

idle task with uidle = 0.4 leads to the solution in Fig. 5.4 (a), with a single cluster

holding all the three tasks τ1, τ2 and τidle. A global scheduler could yield migrations

over the two processors. Alternatively, if we add two idle tasks with utilization equal

to 0.2, we reach solution (b) in Fig. 5.4, with two clusters of size 1, that will be

scheduled separately using EDF, with no migrations.

When possible, the idle task is split to favour the composition of unit size bins.

Example 5.2 Consider the same task set as in example 5.1:

T = {τ1, τ2, τ3, τ4, τ5, τ6, τ7}, each task is defined as τ1 = (10, 20), τ2 = (5, 10),

5.3 Off-line stage 97

(a) Bins size 1 (b) Bins size 2

Figure 5.5.: BBP in Alg. 5: a) Iteration 1; b) Iteration 2

τ3 = (7, 10), τ4 = (7, 10), τ5 = (7, 10), τ6 = (14, 20) and τ7 = (3, 5). The utilization

per task is yields, u1 = 0.5, u2 = 0.5, u3 = 0.7, u4 = 0.7, u5 = 0.7, u6 = 0.7 and

u7 = 0.6. Thus, U = 4.4 and the task set is feasible on m = 5 processors.

We now apply Alg. 5 to allocate the tasks to the five processors maximizing utilization.

Line 8 adds the idle task τidle such that didle = 20. Since U = 4.4 and m = 5, the

utilization of τidle = 0.6 and ccidle = 12.

The first iteration of Alg. 5 solves the BPP with bins of size binVolume = 1 using a

BFD heuristic. The size of each task constitutes its utilization. This yields seven bins

(Fig. 5.5 a), where only one of them (Bin 7 (C 1,1)) is fully utilized. The heuristics

ensures that no bin will be filled above its capacity. This bin (Bin 7 (C 1,1)) can

be allocated to a single CPU (CPU1), and accordingly removed from the pool of

available cores, conforming a minor cluster.

Since the iteration number (1) is less than the number of cores still available (4),

the algorithm performs a second iteration using bins of volume binVolume = 2. This

yields two major bins, (Bin 1, (C 2,1)) and (Bin 2, (C 2,2)) (Fig. 5.5 b) each of

which requires two processors, conforming two major clusters. The current number

of available cores (0) is less than the iteration number (3), so the algorithm ends.

Consequently, the task set partition yields three clusters,

Q1 = {τ1, τ2}

Q2 = {τ3, τ4, τ7}

Q3 = {τ5, τ6, τidle}

98 Chapter 5 Maximizing utilization and minimizing migration

(a) Schedule of each clusters over their respective
hyperperiod

(b) CE for the HRT task set T

Figure 5.6.: CAlECS pre-scehduler for task set

We allocate CPU1 to cluster Q1, CPU2 and CPU3 to Q2, and CPU4 and CPU5 to Q3.

Each cluster can be scheduled using any optimal global scheduler.

5.3.3 Pre-schedule

The pre-scheduler computes a valid off-line schedule per cluster Qj ∈ Q. If the cluster

has size 1, then it is scheduled using EDF [26]. Otherwise, the clusters is scheduled

using the off-line stage of AlECS described in Sec. 4.4.

The individual schedules per each cluster are then put together into a single Cyclic

Executive (CE) within the same major frame. For every CE under CAlECS, the major

cycle is selected as the hyperperiod H of the task set. The minor cycles are selected

as the time intervals defined from the set SD of deadlines of the task set.

Example 5.3 Consider the task clustering in Example 5.6. We apply the proper

scheduler to each cluster. Fig. 5.6a (CPU1) shows the result of applying EDF to

Q1 = {τ1, τ2}, hyperperiod equal to 20s, resulting in zero migrations, since it is

5.3 Off-line stage 99

a single-core cluster. For the dual-core clusters Q2 and Q3 we apply the AlECS

global scheduler, with an hyperperiod equal to 10s in both cases. Upon the resulting

per-cluster scheduling, we can now generate a CE for the HRT task set T over

its hyperperiod H = 20s, replicating the scheduling in the case of clusters whose

hyperperiod is less than the hyperperiod of T (Fig. 5.6b). The hyperperiod of each

cluster is always a divisor of the hyperperiod of the initial HRT task set. In a system

with no (on-line) aperiodic tasks or disturbance management, this is the resulting

thermal-safe HRT schedule, at minimum frequency, with low context switches and

migrations, It can be implemented as a CE in a straightforward manner.

5.3.4 Get-reference

The off-line schedule obtained from the previous module is now translated into

accumulative execution functions, such that they express the accumulated execution

of every task in each processor in cycles, i.e there are n · m accumulative functions.

The CAlECS module get-reference remains as the same module from AlECS, mainly

for compatibility, because the frequency controller does not need the knowledge of

the accumulative execution function Ri,j at all time, only at the end of the execution

interval ∆k.

For readability, we remember the definition of such intervals ∆k.

Let S = {δ0, δ1 . . . , δk, . . . , δh} be the set with all the time stamps δk from a given

cyclic executive when a context switch occurred, where δ0 = 0 and δh is the last

context switch. Then, the execution interval

∆k = (δk−1, δk], (5.1)

is the time interval between consecutive context switches δk−1 and δk, where k =
1, . . . , h.

Therefore, instead of fully define the accumulative execution functions Ri,j as we

did on Eq. 4.14, herein we only need to solve each Ri,j at the end of each interval

∆k and store those values, since they will be needed for the allocation and frequency

controller.

100 Chapter 5 Maximizing utilization and minimizing migration

Example 5.4 Consider the CE from example 5.3, shown on Fig. 5.6b). First, the set

S of context switches, up to the hyperperiod, is obtained from the CE,

S = {0, 3, 5, 7, 10, 13, 14, 15, 17, 20}

It yields h = 9 execution intervals ∆k = (δk−1, δk], for k = 1, . . . , h

∆1 = (0, 3], ∆2 = (3, 5], ∆3 = (5, 7], ∆4 = (7, 10], ∆5 = (10, 13],

∆6 = (13, 14], ∆7 = (14, 15], ∆8 = (15, 17], ∆9 = (17, 20]

Considering these intervals and the CE, we easily obtain the cycles each task must

execute on each CPU at each interval ∆k, i.e solve for Ri,j(δk) as in Eq. 4.17.

Table 5.2 shows Ri,j(δk) ∀i, j, k. However, given that the task set was partitioned,

some tasks never execute on some cores, such that those accumulative execution

function will always be zero, those combination are excluded from Table 5.2. For

instance, functions

Ri,1(δk) = 0, ∀i = {3, 4, 5, 6, 7}, ∀k

because only tasks τ1 and τ2 are allocated on CPU1, thus they are excluded from the

table.

The references in this table are the input for the on-line feedback controller at the

next stage.

5.4 On-line controller

The allocation and execution of the HRT tasks at runtime is determined by the flow

of transitions talloc
i,j and texec

i,j respectively. The markings mbusy
i,j and mexec

i,j represent

the tasks allocated and executed, both constitute the variables under control. The

allocation and execution control will perform per δk interval.

We proved in Sec. 4.6.2 that the CE was guaranteed even in the presence of distur-

bances that could divert the task execution from the predefined schedule, thanks

to the proper selection of uexec
i,j . Still, there persisted a drawback on how to trans-

late uexec
i,j to the actual selection of a frequency, which is eventually the controlled

variable in the multiprocessor platform.

5.4 On-line controller 101

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Ri,1(δk)
i=1 0 0 2 3 3 1 1 0 0
i=2 3 2 0 0 0 0 0 2 3

Ri,2(δk)
i=3 0 0 0 0 0 0 0 0 0
i=4 3 2 2 0 3 1 1 2 0
i=7 0 0 0 3 0 0 0 0 3

Ri,3(δk)
i=3 0 2 2 3 0 1 1 2 3
i=4 0 0 0 0 0 0 0 0 0
i=7 3 0 0 0 3 0 0 0 0

Ri,4(δk)
i=5 0 0 0 0 0 0 0 0 0
i=6 3 2 2 3 3 1 0 0 0

Ri,5(δk)
i=5 3 2 2 0 0 1 1 2 3
i=6 0 0 0 0 0 0 0 0 0

Table 5.2.: Ri,j(δk), cycles that each task must execute on each CPU at every interval ∆k

In order to address this inconvenient, the flow of transitions texec
i,j is expressed

differently. The TCPN, as a formalism, is an continuous approximation of a discrete

PN that works very good when the marking is large and behaves poorly or not as

close to the discrete system when the marking is small. This phenomenon induces

a delay time before the throughput reaches a steady rate, in our systems it relates

to the frequency of the CPUs, whenever the marking is sparse. Such behaviour

is welcome on the allocation transitions talloc
i,j , because it allows to model latency

times, such as context switch delay. Nevertheless, on the execution transitions texec
i,j

we expect to have a ramp response were the slope correspond to the operating

frequency and the linear/slow delays appear both at the beginning and near the end

of the execution of a task, such that the model behaves different than the system

and the translations of the previous uexec
i,j depended on several model parameters.

5.4.1 TCPN equations in scalar form

The dynamics of the marking of each place of the TCPN model can be represented

as the difference between the input and output flows. Specifically the dynamics of

markings mbusy
i,j , from places pbusy

i,j , are given by (Sec. 2.3.2):

102 Chapter 5 Maximizing utilization and minimizing migration

ṁbusy
i,j =

λalloc
i,j

η
midle

i,j − ualloc
i,j − fexec

i,j , (5.2)

where 0 ≤ ualloc
i,j ≤ λalloc

i,j

η midle
i,j .

Recall that flow fexec
i,j represents the rate at which CPUj executes cycles, which holds

the same interpretation as the operating frequency of the processor. This analogy

was also presented on Sec. 4.6.2, where the firing execution rate λexec incorporated

the frequency value F such that fexec
i,j = ηFmbusy

i,j .

The considerations described in the introduction regarding the inconvenient of

the previous execution control Sec. 4.6.2 are translate into a restriction upon the

dynamics of markings mexec
i,j , such that it should have a constant flow equal to the

processors frequency F when task τi is active on processor CPUj , otherwise there is

no flow. Thus:

ṁexec
i,j = λexec

i,j mbusy
i,j − vexec

i,j = σi,jF, (5.3)

where vexec
i,j stands for a corrective parameter that can take any real value and:

σi,j =

1 if mbusy
i,j > 0

0 if mbusy
i,j = 0.

(5.4)

The marking mbusy
i,j is controlled in the allocation control, therefore that marking

is different from zero only when task τi is active on CPUj . Thus the flow fexec
i,j in

transition texec
i,j is

fexec
i,j = σi,jF. (5.5)

5.4.2 Allocation control

The allocation control will result on the same equations as its homologous from

Sec. 4.6.1, but first we will show that the changes introduced on the dynamic

definition of mexec
i,j do not alter previous results.

5.4 On-line controller 103

First, define the vector allocation error Ealloc(ζ) as,

Ealloc(ζ) := [Ealloc
1,1 , ..., Ealloc

n,1 , ..., Ealloc
n,m]T (5.6)

where each Ealloc
i,j (ζ) is computed as,

Ealloc
i,j (ζ) = mexec

i,j (ζ) + mbusy
i,j (ζ) − Ri,j(dk) (5.7)

where dk−1 ≤ ζ < dk. Taking the time derivative of Eq. 5.7 and using Eqs. (5.2)-

(5.3), the dynamics of each error is given by :

Ėalloc
i,j (ζ) = ṁexec

i,j + ṁbusy
i,j

= σi,jF +
λalloc

i,j

η
midle

i,j − ualloc
i,j − σi,jF

=
λalloc

i,j

η
midle

i,j − ualloc
i,j

= falloc
i,j − ualloc

i,j = walloc
i,j (5.8)

Eq. (5.8) is equal to Eq. (4.21), therefore results from Proposition (4.2) hold.

5.4.3 Frequency control

In accordance with the off-line calculations, we assume that the CPUs are iden-

tical, they work at the same frequency and the operating frequency f is in the

set F = {F ∗, . . . , F +}. Below we offer a discussion, to accommodate different

assumptions.

Each processor can only attend one task at a time and parallelism is not allowed,

consequently, the number of active tasks is at most |P|. Therefore there must be, at

most, |P| transitions texec
i,j enabled. Accordingly, we define the vector of active tasks

mexec
active as,

mexec
active = A(∆k)mexec (5.9)

where mexec is a vector that holds every element mexec
i,j , and A(∆k) is a matrix with

{0, 1} entries that depends on the tasks which are active during the interval ∆k,

defined in Eq. (4.7). Thus, mexec
active holds only mexec

i,j values corresponding to the

active tasks in the ∆k. Therefore, A(∆k) has only one nonzero element per row, and

no more than one nonzero element per column.

104 Chapter 5 Maximizing utilization and minimizing migration

Then, the execution error of the active tasks Eexec will be defined as:

Eexec(ζ) := A(∆k)mexec − R(δk) (5.10)

for all ζ ∈ δk, and R(δk) is the vector of elements Ri,j(δk) computed from Eq. (4.14)

corresponding to every active tasks in ∆k.

Using Eq. (5.10), the dynamics of the execution error is given by

Ėexec(ζ) = A(∆k)ṁexec(ζ) (5.11)

where A(∆k) remains constant during each interval ∆k.

Proposition 5.1 Let F be the frequency at which all CPUs work during the execution

interval ∆k = (δk−1, δk], such that

F ≥ ∥Eexec(δk−1)∥
λ|∆k|

(5.12)

where |∆k| is the duration of interval ∆k, and Eexec(δk−1) is the execution error at the

beginning of the interval.

Then Eexec(ζ) reaches zero before the end of the interval.

Proof 5.1 Let V be the candidate Lyapunov function:

V = 1
2Eexec

T Eexec. (5.13)

Deriving Eq. (5.13) and using Eq. (5.3),

V̇ = Eexec
T Ėexec

= Eexec
T A(∆k)ṁexec(ζ)

= Eexec
T A(∆k)σF = Eexec

T ΦF (5.14)

where σ is a vector containing all σi,j and Φ is a vector with all |P| entries equal to 1.

Then Eq. 5.14 can be rewritten as

V̇ =
|P|∑
j=1

Eexecj F (5.15)

5.4 On-line controller 105

From proposition 4.2, ualloc restricts transitions talloc such that only Ri,j(δk) tokens

are available during ∆k. Hence, Eexecj ≤ 0, for j = 1, . . . , |P|, therefore:

V̇ = −∥Eexec∥1F. (5.16)

From Eq. (5.13),

V = 1
2Eexec

T Eexec = 1
2∥Eexec∥2

2

Solving for ∥Eexec∥,

∥Eexec∥2 = (2V)1/2, (5.17)

Using Eq. (5.16),

V̇ = −∥Eexec∥1F ≤ −λ∥Eexec∥2F

V̇ ≤ −λ(2V)1/2F (5.18)

By the comparison lemma [45], where ζ ∈ ∆k,

dV

dζ
≤ −λ(2V)1/2F

V (ζ)∫
V (dk−1)

x−1/2dx ≤ −λ
√

2F

∫ ζ

dk−1
dτ

2V (ζ)1/2 − 2V (dk−1)1/2 ≤ −λ
√

2F (ζ − dk−1) (5.19)

Substituting V (ζ) from Eq. (5.17) and solving for ∥Eexec(ζ)∥ we obtain:

2√
2

∥Eexec(ζ)∥ − 2√
2

∥Eexec(dk−1)∥ ≤ −λ
√

2F (ζ − dk−1)

∥Eexec(ζ)∥ ≤ ∥Eexec(dk−1)∥ − λF (ζ − dk−1)

Solving for ζ when ∥Eexec(ζ)∥ = 0, we get

ζ ≤ ∥Eexec(dk−1)∥
λF

+ dk−1

106 Chapter 5 Maximizing utilization and minimizing migration

To ensure that task deadlines are met, the execution error should be zero before the

interval ∆k is over, thus

ζ ≤ ∥Eexec(δk−1)∥
λF

+ δk−1 ≤ δk

Hence,

∥Eexec(δk−1)∥
λF

≤ δk − δk−1

∥Eexec(δk−1)∥
λ|∆k|

≤ F (5.20)

Any frequency that satisfies Eq. (5.20) is suitable to drive Eexec to zero before interval

∆k is over. Therefore, F is chosen as the smallest F ∈ F (from Ec. (4.1)) such that

Eq.(5.20) is satisfied.

It is straightforward to prove by induction the stability of Eexec up to the hyperperiod,

as this Proposition holds for the interval ∆1 and therefore no error is carried over into

the next execution interval. Therefore,

||Eexec(ζ)||∞ ≤ max{|∆1|, . . . , |∆h|}F ∗.

Proposition 5.1 shows that when selecting the operating frequency as in Eq.(5.12)

the HRT tasks will not miss their deadlines even when a bounded overload is

present.

5.4.4 Aperiodic Manager

As stated before, the on-line control is capable to reject disturbances, and thus the

execution controller treats aperiodic tasks as a type disturbances. Namely, when an

aperiodic task τa arrives to the system and is accepted, a disturbance is simulated

on processor CPUj assigned to the τa. In this way, the controller will automatically

update the CPU frequency. When the HRT task that was originally assigned to CPUj

reaches its zero laxity, τa will be assigned to the next available CPU. For this purpose,

we first calculate the minimum frequency Fn required to serve both the HRT tasks

and the aperiodic task τa,

Fn = F + cca

daU

5.4 On-line controller 107

Algorithm 6 Aperiodic Manager
1: Input U :System utilization; P: CPUs
2: Output Fn: frequency for aperiodic tasks; D: disturbance
3: Aux. functions

· LaxityInCPU(CP Uj , t) – Returns laxity for τap at time t ;
4: Fn = F + cca

daU
,

5: if Fn <= F + then
6: accept=1; // Accept τap

7: end if
8: while accept == 1 do
9: if LaxityInCPU(CP Uj , t)> 0 then

10: Assign τap to CP Uj

11: Simulate disturbance on CP Uj

12: else
13: CP Uj = next available CPU;
14: end if
15: if τa finishes execution then
16: accept=0; Fn = F ∗;
17: Eliminate disturbance from CP Uj

18: end if
19: end while

where F is obtained from Eq. (5.12), U is the system utilization and (cca, da) are

the parameters of the aperiodic task τa. If Fn ≤ F +, the aperiodic task is accepted,

otherwise it is rejected. Fn is now the minimum frequency acceptable in order to

reach every task deadline. Therefore the set F is restricted to those F ≥ Fn. The

aperiodic task manager proceeds according to Alg. 6.

Example 5.5 Consider the same system from previous examples 5.3-5.4. To demon-

strate the behavior of the feedback controller and the aperiodic manager, assume

that an aperiodic task with a relative deadline of 9 s and WCET of 7 s arrives at

t = 1 s. The multiprocessor are assume to be executing at F = 1 Hz. In Fig.5.7 we

see that the feedback controller increases the frequency of the processors to 1.5 Hz

at t = 1 s, holding it up to t = 7 s, in order to allow the execution of the aperiodic

task. The feedback controller will be able to execute the aperiodic task during this

interval meeting the timing constraints, then restoring the previous frequency and

the execution references at t=7s.

Thermal management To demonstrate the proper thermal behavior the system, we

have performed a simulation with the processor distribution shown in Fig. 5.3b. The

MPSoC is cooled down by forced air, with a heat transfer coefficient of 500 W/m2 ∗K

[47]. Fig. 5.8a displays the temperature evolution at the center of the cores when

the system is running the cyclic executive. Aligned side-by-side, Fig. 5.8b shows the

temperature evolution at the same places when the system manages an aperiodic

108 Chapter 5 Maximizing utilization and minimizing migration

(a) CPU 1

(b) CPU 2 (c) CPU 3

(d) CPU 4 (e) CPU 5

Figure 5.7.: Execution of tasks with the admission of an aperiodic task

task throttling the frequency during that interval. The core temperature increases

along the interval [1, 7], then decreases when the frequency is set back to F ∗, once

normal execution resumes.

5.5 Comparison with RUN

CAlECS specifically deals with the challenge of maximizing processor utilization

while minimizing job migration and context switching. In order to evaluate this

capability, in this Section we compare the number of context switches and migrations

entailed by CAlECS, AlECS and RUN.

5.5 Comparison with RUN 109

(a) CE (b) CE and aperiodic task admission

Figure 5.8.: Processors temperature evolution, on the left the nominal behaviour and on
the right the temperature evolution with the admission of an aperiodic tasks

We consider RUN because it is considered an optimal reference (Sec. 2.2.4) as far as

context switches and migration is concerned. Also, we include AlECS because it is

just the worst-case clustering solution of CAlECS —the situation in which there is a

single (major) cluster encompassing the whole HRT task set and all the CPUs.

5.5.1 Simulation environment and setup

We carry out the comparison using Tertimuss [21].We only consider job preemptions

as context switches. We rule out job start and job termination events, since their

number is common to every scheduling algorithm. A migration is computed when a

110 Chapter 5 Maximizing utilization and minimizing migration

2/8 2/16 2/24 2/32 2/40 4/16 4/32 4/48 4/64 4/80
cores / # tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m

ig
ra

tio
ns

 /

jo
bs

(a) RUN

2/8 2/16 2/24 2/32 2/40 4/16 4/32 4/48 4/64 4/80
cores / # tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m

ig
ra

tio
ns

 /

jo
bs

(b) AlECS

2/8 2/16 2/24 2/32 2/40 4/16 4/32 4/48 4/64 4/80
cores / # tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m

ig
ra

tio
ns

 /

jo
bs

(c) CAlECS

Figure 5.9.: Simulation results for the number of migrations/number of jobs.

job resumes execution on a CPU different from the one on which it was previously

running.

The task sets for the comparison are generated using the UUniFast-discard algo-

rithm [23]. The total utilization of each task set is equal to the number of processors

in the experiment. Task periods are randomly selected between the divisors of 60,

to obtain a major cycle of at most 60 s. The task sets are executed on systems with 2

and 4 cores, with task-to-core ratios of 4, 8, 12, 16, and 20. This amounts to 200

experiments per combination, totalling 2000 experiments in all.

Tertimuss takes the WCET in cycles, and performs the simulation on a cycle-by-cycle

basis. Since RUN defines its tasks as fixed rate tasks and can yield fractional execution

times, we apply some adjustments in the task set creation to avoid floating point

errors.

Following the original description of the algorithm in [61], we implemented RUN

using a Worst-Fit policy for the packing operation, the EDF policy for the scheduling

of the servers, and the original task-to-processor allocation policy. When applying

EDF, deadline ties in servers are either solved at random if no server has run yet,

or by choosing the server that was last executed, otherwise. Since all the three

schedulers under comparison are optimal and the selected task sets are feasible, all

the three schedulers obtain a feasible schedule in all experiments.

5.5.2 Migrations per job

The boxplots in Fig. 5.9 summarize the number of migrations per job (Y-axis) as

the number of tasks per processor (TPP) varies (X-axis). Tab. 5.3 details the mean

and the standard deviation. A common trend to all the three schedulers under

comparison is that both the mean and the standard deviation of migrations per job

5.5 Comparison with RUN 111

m n
RUN AlECS CAlECS
Mean SD Mean SD Mean SD

2

8 0,676 0,375 0,320 0,096 0,298 0,122
16 0,407 0,254 0,254 0,054 0,193 0,119
24 0,224 0,192 0,196 0,039 0,113 0,101
32 0,145 0,151 0,162 0,033 0,059 0,083
40 0,087 0,117 0,130 0,024 0,032 0,058

4

16 0,957 0,283 0,516 0,096 0,431 0,140
32 0,526 0,165 0,359 0,061 0,192 0,099
48 0,316 0,153 0,270 0,041 0,090 0,070
64 0,182 0,135 0,203 0,031 0,041 0,048
80 0,108 0,112 0,159 0,024 0,014 0,028

Table 5.3.: Number of migrations per job depending on the tasks-per-processor ratio (TPP)

decrease as the number of processors decreases and the TPP increases. These results

support the intuition discussed in Sec. 5.3.2, upon the rationale that a minor cluster

yields zero migrations.

AlECS achieves fewer migrations than RUN with low TPP ratios, but RUN outper-

forms AlECS with high TPP ratios (16, 20). Also, the mean of migrations decreases

faster in RUN than in AlECS as the TPP increases. Last, AlECS never reaches zero

migrations, while RUN yields a Q1 of zero with high TPP ratios, also in the case of

the 24/2 TPP, and reaches a median of zero in the case 40 tasks executed in two

CPUs. However, the standard deviation is outstandingly lower in AlECS than in

RUN in all cases. The analysis of the behavior of RUN with high TPP ratios shows

that RUN manages to find a full partition of the task-set (minor cluster) during

its packing operation in a considerable amount of experiments, leading to a zero

migrations figure in those cases.

These results prove that CAlECS outperforms AlECS and RUN in all configurations

because it is able to find as many partitionable task sets as RUN, while retaining the

properties of AlECS when scheduling major clusters. Also, it can reach a median of

zero migrations when the TPP ratio is high, even yielding a Q3 of zero in the case of

80 tasks executed in four CPUs. The standard deviation is lower in CAlECS than in

RUN but higher than in AlECS.

RUN is not specifically designed to find clusters, particularly minor clusters (achiev-

ing zero migrations), but its ability to find them often, when possible, makes RUN

reach the zero migrations notch in cases where AlECS fails to do this. The task

clustering stage in CAlECS aims to find low-size clusters, reaching zero migrations

112 Chapter 5 Maximizing utilization and minimizing migration

2/8 2/16 2/24 2/32 2/40 4/16 4/32 4/48 4/64 4/80
cores / # tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pr

ee
m

pt
io

ns
 /

jo

bs

(a) RUN

2/8 2/16 2/24 2/32 2/40 4/16 4/32 4/48 4/64 4/80
cores / # tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pr

ee
m

pt
io

ns
 /

jo

bs

(b) AlECS

2/8 2/16 2/24 2/32 2/40 4/16 4/32 4/48 4/64 4/80
cores / # tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

pr

ee
m

pt
io

ns
 /

jo

bs

(c) CAlECS

Figure 5.10.: Simulation results for the number of preemption / number of jobs.

m n
RUN AlECS CAlECS
Mean SD Mean SD Mean SD

2

8 1,449 0,608 0,575 0,117 0,561 0,132
16 0,832 0,291 0,431 0,082 0,410 0,090
24 0,495 0,199 0,313 0,058 0,288 0,063
32 0,367 0,157 0,249 0,047 0,228 0,049
40 0,267 0,114 0,199 0,034 0,183 0,035

4

16 1,362 0,307 0,653 0,116 0,614 0,120
32 0,816 0,172 0,433 0,074 0,371 0,068
48 0,534 0,137 0,317 0,049 0,273 0,047
64 0,370 0,116 0,236 0,035 0,214 0,034
80 0,266 0,090 0,184 0,026 0,174 0,025

Table 5.4.: Number of preemptions per job

in more experiments than RUN (Fig. 5.9). We can examine Tables 5.5 5.6 to better

understand the clustering behavior of RUN and CAlECS (AlECS does not apply

clustering) and to assess the consistency of our experimental results. The third

column in this table shows the number of clusters of each size (from 1 to 4 CPUs)

obtained for each TPP. For example, with 64 tasks on four processors, Table 5.6,

CAlECS finds a full partition (four minor clusters) in 108 experiments, whereas RUN

does it only 56 times. In 85 experiments, CAlECS fits the HRT task set into two

minor clusters and a major cluster with two CPUs, whereas RUN only finds that

configuration in 20 experiments. This trend holds for all design points, with CAlECS

always finding substantially more minor clusters (entailing zero migrations) than

RUN.

5.5 Comparison with RUN 113

m n Distibution of CPUs in clusters CAlECS RUN

2

8
1,1 13 6
2 187 194

16
1,1 49 33
2 151 167

24
1,1 85 72
2 115 128

32
1,1 132 92
2 68 108

40
1,1 152 120
2 48 80

Table 5.5.: Clustering performance

5.5.3 Preemptions per job

The boxplots in Fig. 5.10 and Tab. 5.4 help to analyze the mean of preemptions

per job by experiment for each TPP configuration. The results indicates that AlECS

performs better than RUN on the average, yielding a lower standard deviation and

fewer outliers. However, there are some specific cases where RUN outperform AlECS,

such as when scheduling 8 tasks over two CPUs, with RUN providing a minimum

value of 0.09091 while AlECS reaches 0.2593. As for CAlECS, it outperforms RUN

and AlECS on the average, with a slightly greater standard deviation than AlECS

nonetheless.

As we observed with migrations, the mean of preemptions and its standard deviation

decreases in all the three schedulers as the TPP ratio increases. Also, for each TPP

ratio, the mean of preemptions decreases with the number of CPUs.

5.6 Computational complexity

This section gathers the computational complexity of the various parts of the pro-

posed system, Fig. 5.2. The off-line stages calculate the minimum and maximum

frequencies, resolve the task clustering, and apply a pre-scheduling which, depend-

ing on the container size of each cluster, follows the EDF or ZL dispatching rules.

The on-line stage consists on a continuous controller and the aperiodic manager.

114 Chapter 5 Maximizing utilization and minimizing migration

m n Distibution of CPUs in clusters CAlECS RUN

4

16

1, 1, 1, 1 0 0
1, 1, 2 7 0
2, 2 15 0
1, 3 62 17
4 116 183

32

1, 1, 1, 1 7 4
1, 1, 2 97 9
2, 2 11 0
1, 3 60 40
4 25 147

48

1, 1, 1, 1 53 20
1, 1, 2 113 21
2, 2 9 0
1, 3 22 59
4 3 100

64

1, 1, 1, 1 108 56
1, 1, 2 85 20
2, 2 2 0
1, 3 4 56
4 1 68

80

1, 1, 1, 1 160 89
1, 1, 2 38 26
2, 2 1 0
1, 3 1 32
4 0 53

Table 5.6.: Clustering performance

Off-line calculations

The Task Set Conditioner calculates the minimum and maximum frequencies (F ∗

and F +). Computing F ∗ is linear in the number of tasks O(n). The calculation of

F + requires solving a non-linear optimization problem, whose number of iterations

to find a solution depends on some parameters such as the required convergence

error and the gradient weighting. To this end, we employ an interior point algorithm.

Tests show that it provides a good performance and converges to the optimum in a

very short time.

The computational complexity of our task clustering (Sec. 5.3.2) depends on Alg. 5.

The outer while loop (line 9) iterates m times. At each iteration it first executes

SolveBPP (line 10), whose complexity is n × log(n). Then, it runs the inner for

5.6 Computational complexity 115

loop. All instructions inside the inner for loop are executed α × m times. Thus, the

computational complexity of Alg. 5 is of order O(m2 × n × log(n)).

Next, the complexity of solving Eq. (4.9) to compute the workload per scheduling

point is linear in xk
i , i.e. in n2 × β, where β = maxτi

H
wi

. Thus, it is in the order of

O(n2). Finally, EDF or ZL (Alg.3) policies run in polynomial time.

Hence, all the algorithms in the off-line stage run in polynomial time except , but

the non-linear optimization. As mentioned before, in our tests, the non-linear

optimization algorithm runs in a very short time.

On-line computations

References Ri,j(δk) (Eq. 4.17) are pre-computed, and only checked when a context

switch occurs, which results on gathering the appropriate execution requirement .

The feedback controller (Sec. 5.4) runs at every sampling period, which depends

on the minimum difference between two consecutive δi − δi−1 from set S. Since

the RT clock routine is executed with a fixed period and more frequently than

any other RT task, we propose to implement the feedback controller routine as

a call back (deferred function, softirq or tasklet depending on the RT operating

system), activated at each RT clock routine execution. In this approach we include

a feedback controller routine per CPU . Thus, their complexity is O(1), because it

requires to solve Eqs. (4.23) and (5.12), that have a fixed number of operations.

A different implementation approach may use a devoted CPU for the feedback

controller routine.

5.7 Conclusions

RT scheduling on multicore processors remains a challenge in many ways, all

the more when temperature and energy counts. One of the points is maximizing

processor utilization to avoid overprovisioning. Partitioned scheduling approaches

fall short in this aspect, whereas optimal global schedulers are too complex to

be effective. Near-optimal solutions are possible by leveraging a mix of ad-hoc

techniques, but there is still a shortage of practical methods and tools interesting

enough for the industry to adopt them.

116 Chapter 5 Maximizing utilization and minimizing migration

CAlECS leverages the ability of known scheduling algorithms to simplify the global

scheduling problem, and the power of a fluid model and feasible mathematical

optimization to account for thermal constraints and to maximize processor utilization.

It provides an off-line cyclic executive for a HRT task set which is thermal-safe,

energy efficient, easy to implement and more effective than RUN. Our comparison

with RUN reveals that CAlECS is able to find more minor clusters and more major

clusters of smaller size, along with the fact that the global scheduler AlECS performs

particularly well in lowering migrations in major clusters.

As a cyclic executive, the number of preemptions and migrations is known for the

hyperperiod, and therefore the WCET, which usually includes scheduling costs, can

be fine-tuned in future work to obtain a schedule with more realistic bounds. This

cyclic executive can feed an on-line controller which manages the SRT aperiodic

tasks, deals with small disturbances, due to parameter variations for example. It

could easily fit a slack reclamation scheme. The modular design of CAlECS permits

designers to employ other thermal models or schedulers.

5.7 Conclusions 117

Accounting for preemption and

migration costs on CE
6

The problem we are addressing comes from a causality dilemma which appears when

leveraging preemptive multicore RT scheduling algorithms to calculate a CE. On the

one hand, the final number of preemptions (some of which entail a migration) is only

know after calculating the CE. On the other hand, to calculate a CE we must account

for the overheads of all context switches and migrations. Since we do not know the

final number of context switches and their type (with or without migration) until we

have calculated the CE, the only possible solutions are either considering an upper

bound for preemptions and migrations, or to proceed iteratively, ensuring that the

RT constraints are always met. Neither solution is trivial, as we analyze in which

follows.

There is a context switch whenever a job is released or terminates. We name

these cases compulsory context switches. Its number is just the number of jobs,

considering all tasks in the set, and is independent on the scheduler, although

different schedulers can allocate tasks to CPUs with different outcomes. Thus, it is

trivial to account for the cost of such context switches either with non-preemptive

or preemptive schedulers, because we can add it beforehand to the WCET. In

contrast, considering the cost of the new context switches /migrations introduced

by preemptive schedulers is far more challenging.

In the case of priority-driven scheduling algorithms, such as RM or EDF, the upper

bound for the number of preemptions is strictly less than the number of jobs that

are being scheduled. This result also holds for the number of job migrations among

CPUs [6]. In global DP-FAIR scheduling policies, the upper bound for preemptions

and for job migrations per minor frame are, respectively, the number of tasks minus

one, and the number of CPU minus one [36]. Nevertheless, these bounds leads to

very pessimistic calculations, worsening the WCET overestimation problem.

A straightforward alternative approach consists on calculating the CE considering

the WCET of tasks and obviating any overhead, then compute the overhead, add

119

0 5 10 15 20 25 30 35 40

P1

P2

(a) CE neglecting migration and preemption costs

0 5 10 15 20 25 30 35 40

P1

P2

preemption migration

(b) CE considering preemption and migration costs

Figure 6.1.: Motivational example. CE of task set on 6.1. j1 to j4 are τ1 jobs, j5 to j8 are τ2
jobs, and j9 is the only job of τ3. The black thin line represents a job boundary,
the black bar indicates a preemption and the hatched bar indicates a migration.

it to the CE, and increase the frequency to augment system capacity accordingly.

However, the following simple example (Fig. 6.1) proves that this naive approach

leads to missing task deadlines.

Example 6.1 Consider a task set T = {τ1, τ2, τ3} with implicit deadlines, where

τ1 = (9000, 10), τ2 = (9000, 10) and τ3 = (8000, 40). WCET (cci) is given in cycles

and relative deadlines (di) in time units. Utilization value ui is computed assuming

a frequency f = 1000, such that u1 = 0.9, u2 = 0.9 and u3 = 0.8. The task set T is

scheduled on m = 2 processors. Fig. 6.1a shows a CE for this set of tasks, where

preemption and migration costs are neglected. Illustratively, Fig. 6.1b highlights the

four preemptions and four migrations, adding their computing time to the CE such

that the overall execution overflows the hyperperiod. Now, assume a worst-case

preemption (migration) cost pcost (mcost) of 10 and 20 cycles, respectively. Let UT

represent the task set utilization,

UT =
3∑
i

cci

f · di
= 2 ≤ m,

since UT = m, we said that the system is at full capacity. Now, let first compute the

associated utilization overhead on the system uoverhead, given that the overhead is

computed as the number of preemptions pre times the preemption cost pcost plus

the number of migrations mig times its cost mcost,

uoverhead = 4pcost + 4mcost

f · H

120 Chapter 6 Accounting for preemption and migration costs on CE

where H is the hyperperiod of T . Then we update the frequency accordingly, from

the fact that the maximum system utilization is equal to the number of cores, i.e

U ≤ m = 2,

UT + uoverhead ≤ m

1
f

(3∑
i

cci

di
+ 4pcost + 4mcost

H

)
≤ m

Thus, new frequency is f = 1001.5, such that the system increased its capacity 1.5%.

However, this approach leads to deadline misses. Both τ1 and τ2 should complete

their first job by time=10. On processor P2, the first job of τ1 (j1) completes its

WCET (9000 cycles), afterwards the first job of τ2 (j5), previously allocated on P1,

resumes and completes its remaining 1000 cycles. Considering the corresponding

migration cost, the execution ends at 9000+20+1000
1001.5 = 10.005, missing τ2 deadline at

10.

In this thesis we propose two different solutions. Both of them consider the WCET

obtained from static code an. They first compute a CE. The resulting CE provides

the number and temporal localization of all preemptions and migrations for every

job and core. In the first solution (named AdWCET, Sec. 6.1), the WCET of each

task is adjusted by adding up the corresponding overhead. The stages iterate

until the preemption and migration overhead keeps constant, thus concluding the

adjustment.

The second solution, named DP-U (Sec 6.2, follows closer the idea presented in the

motivational example (6.1). It also starts from a CE which provides the temporal

location of every preemption and migration. Then, it finds the time interval between

consecutive deadlines that holds the maximum overhead. Finally, it computes the

increment in frequency required to accommodate such overhead.

Both AdWCET and DP-U satisfy the following assumptions:

Assumption 6.1 The WCET of each task used to calculate the first CE is obtained from

static tools and accounts for memory conflicts but not for scheduling overheads

Assumption 6.2 Both, the preemption overhead cost pcost and migration cost mcost

are parameterized and given in cycles.

121

Figure 6.2.: Position of the algorithm that account for preemption and migration overhead,
with regards of the CAlECS scheme which is defined inside the dotted rectangle

At the end of the chapter, we present a comparison between both strategies based

on experimental results.

6.1 The AdWECT algorithm

AdWCET takes a CE as the input at every iteration, and updates the WCET according

to this CE. When the WCET stabilizes, the algorithm ends. Otherwise a new iteration

starts. The CE at each iteration can be computed using any appropriate scheduler.

In this thesis we leverage CAlECS because it constitutes a reference in yielding a

very low number of preemptions and migrations as we explained in Chapter 5.

Definition 6.1 The overhead of a job jx from task τi that incurs in prejx preemptions

and migjx migrations is computed as,

overheadjx = (pcost · prejx) + (mcost · migjx) (6.1)

where pcost (mcost) is the associated cost in cycles of a preemption (migration).

The algorithm can be outlined as follows:

1. Compute a preemptive cyclic executive.

2. Count the number of preemptions and migrations per job on the CE.

122 Chapter 6 Accounting for preemption and migration costs on CE

Figure 6.3.: Flow chart of AdWCET, the algorithm to adjust the WCET of a task set on a CE

3. Compute the overhead in cycles for each task. This steps requires two interme-

diate steps:

a) Compute the overhead of each of its jobs overheadjx , as in Eq. 6.1.

b) Select the task’s overhead overheadτi as the maximum value from the

previous computation.

4. For each task, check if its new overhead is greater than the previous overhead.

If there was no change, then the algorithm has finished. Otherwise, continue

5. Adjust the task’s WCET. Add the task overhead from step 3 to its original

WCET, this is ad_cci = cci + overheadτi .

6. Check if the adjusted task set is still schedulable with the current frequency, if

true go to step 1. Otherwise, continue.

7. Increase the frequency f to make the task set schedulable again, for CAlECS

this is true if U ≤ m, then

f = 1
m

n∑
i=1

ad_cci

ωi

where ad_cci is the adjusted WCET of the tasks. Go to step 1.

AdWCET requires a minimum of two iterations. The first iteration calculates a first

schedule with its corresponding overheads; the second iteration adjusts the WCET

based on this overhead.

6.1 The AdWECT algorithm 123

Example 6.2 Consider the task set T = {τ1 = (3000, 4), τ2 = (4000, 6), τ3 =
(5000, 12), τ1 = (4000, 24)}, to schedule on m = 2 processors with the available

discrete frequencies f ∈ F = {1000, 1020, 1040, . . . , 2000} (Hz). The cost in cycles

per preemption is pcost = 10 and per migration is mcost = 20 (cycles). This task set

spawns 13 jobs, the task to job relation is given bellow,

τ1 :j1, j2, j3, j4, j5, j6

τ2 :j7, j8, j9, j10

τ3 :j11, j12

τ4 :j13

This example converges in three iterations. The iterations proceed as follows:

Iteration 1

Step 1 Compute a cyclic executive, (Fig. 6.4a)

Step 2 Count migrations and preemptions per job:

Migrations per job [(j8, 1), (j9, 1), (j10, 1)].

Preemptions per job: [(j8, 1), (j9, 1), (j10, 1), (j11, 1), (j12, 1)]

Step 3 Compute task’s overhead

1. Calculate overhead per job: zero for every job but

[(j8, 30), (j9, 30), (j10, 30), (j11, 10), (j12, 10)]

2. Select new overhead per task: [(τ1, 0), (τ2, 30), (τ3, 10), (τ4, 10)]

Step 4 Check if the new task overhead is greater than previous task overhead: this

is true because this is the first iteration.

Step 5 Add overhead to original task set:

Adjusted WCET ad_cci by task: [(τ1, 3000), (τ2, 4030), (τ3, 5010), (τ4, 4010)]

Step 6 Check schedulability. System utilization is U = 2.00625, he system is no

longer schedulable.

Step 7 Increase frequency, f = 1
m

∑n
i=1

adjustedW CETi
ωi

= 1003.12, but because of the

discrete values f = 1020. Return to step 1.

End of iteration 1

Iteration 2

Step 1 Compute a cyclic executive, Fig. 6.4b.

124 Chapter 6 Accounting for preemption and migration costs on CE

Step 2 Count migrations and preemptions per job:

Migrations by job: [(j8, 1), (j10, 1), (j11, 1), (j12, 1), (j13, 1)].

Preemption by job: [(j8, 1), (j9, 1), (j10, 1), (j11, 2), (j12, 2), (j13, 2)]

Step 3 Compute task’s overhead

1. Calculate overhead per job: zero for every job but

[(j8, 30), (j9, 10), (j10, 30), (j11, 40), (j12, 40), (j13, 40)]

2. Select new overhead per task: [(τ1, 0), (τ2, 30), (τ3, 40), (τ4, 40)]

Step 4 Check if the new task overhead is greater than previous task overhead: this

is true because this is the first iteration, 0 = 0, 30 = 30, 40 > 10, 40 > 10

Step 5 Add overhead to original task set:

Adjusted WCET ad_cci by task: [(τ1, 3000), (τ2, 4030), (τ3, 5040), (τ4, 4040)]

Step 6 Check schedulability. System utilization is U = 1.97, he system is schedulable.

End of iteration 2 Go back to step 1.

Iteration 3

Step 1 Compute a cyclic executive, Fig. 6.4c.

Step 2 Count migrations and preemptions per job:

Migrations by job: [(j8, 1), (j10, 1), (j11, 1), (j12, 1), (j13, 1)].

Preemption by job: [(j8, 1), (j9, 1), (j10, 1), (j11, 2), (j12, 2), (j13, 2)]

Step 3 Compute task’s overhead

1. Calculate overhead per job: zero for every job but

[(j8, 30), (j9, 10), (j10, 30), (j11, 40), (j12, 40), (j13, 40)]

2. Select new overhead per task: [(τ1, 0), (τ2, 30), (τ3, 40), (τ4, 40)]

Step 4 Check if the new task overhead is greater than previous task overhead: this

is true because this is the first iteration, 0 = 0, 30 = 30, 40 = 40, 40 = 40

The end

The overhead of the tasks for the second iteration increases from [0, 30, 10, 10] to

[0, 30, 40, 40], and therefore the adjustment requires a third iteration. We can see

that the overhead does not increase for any task anymore, therefore the algorithm

converges. The resulting CE appears in Fig. 6.4c, which is the same as in a previous

iteration Fig. 6.4b. The adjusted WCET of the tasks is: [3000, 4030, 5040, 4040],

6.1 The AdWECT algorithm 125

0 4 8 12 20 246 16 18

P1

P2

preemption migration

(a) Iteration 1, totalling 5 preemptions and 3 migrations

0 4 8 12 20 246 16 18

P1

P2

(b) Iteration 2, totalling 9 preemptions and 5 migrations

0 4 8 12 20 246 16 18

P1

P2

(c) Iteration 3, totalling 9 preemptions and 5 migrations

Figure 6.4.: Iterations for AdWCET to adjust the WCET for example, using CAlECS as
scheduling policy.

with frequency f = 1020. The adjusted task set increments system utilization by 2%
and ensures the accomplishment of temporal constraints.

6.1.1 Convergence of AdWCET algorithm

AdWCET either increases or holds the overhead of tasks, even if the current iteration

yields a smaller overhead. Therefore, it will always converge. Besides, the number

of iterations is bounded because the same scheduling policy holds throughout the

adjustment. Also, the maximum overhead is bounded by the maximum number of

preemptions (ρ) and migrations (µ) of the chosen scheduling policy, i.e. n(ρ + µ)
iterations in the worst case, where n is the cardinality of T . Actually, this bound is

unlikely reached. The following section evaluates AdWCET performance choosing

CAlECS [67] as the scheduling policy.

126 Chapter 6 Accounting for preemption and migration costs on CE

6.2 DP-U, an approach based on the utilization

In contrast with AdWCET, DP-U accounts for the overhead due to preemptions

focusing on the utilization per interval, cautiously leveraging the motivational

example exposed in 6.1. In such example, the overhead on system utilization

uoverhead is used to compute the new frequency f that should accommodate the

preemptions and migrations, but fails to achieve the expected outcome.

The overhead on system utilization uoverhead is computed as a task utilization, but

instead of the execution time cci it uses the overheard computed in cycles, and for

ωi it takes the hyperperiod,

uoverhead = overhead

f · H
(6.2)

The main issue of leveraging uoverhead (6.2) to compute the new frequency f is that

this computation does not take into account the exact temporal location of the added

workload, and only computes its weight on the processor. Therefore, to effectively

use this approach, the calculation of uoverhead has to be performed differently.

Definition 6.2 Let SD be the ordered set of deadlines of all jobs j ∈ J within H ∪{0}.

Such that sd0 = 0, sdk−1, sdk ∈ SD, sdk−1 < sdk, where k is an integer value greater

than zero.

Definition 6.3 Let a frame ϕk be the time interval between two consecutive deadlines,

such that ϕk = [sdk−1, sdk) ∀ sdk ∈ SD. And the duration of the frame is |ϕk| =
sdk − sdk−1.

Instead of computing the overhead per job, as in adWECT (Eq. (6.1)), DP-U computes

the overhead per frame k at each processor j.

Definition 6.4 The overhead in a frame ϕk, wherein prek,j preemptions and migk,j

take place, is defined as

overheadk,j = (pcost · prek,j) + (mcost · migk,j) (6.3)

where pcost (mcost) is the associated cost in cycles of a preemption (migration).

6.2 DP-U, an approach based on the utilization 127

Remark 6.1 To avoid confusion while referring to a processor’s frequency f , let

fb be the baseline frequency, or the frequency for the first computed CE. And fn

denotes the new calculated frequency that accounts for the overhead.

A better selection of the frequency

The idea behind this strategy is to accommodate the overhead inside the CE, this is,

how to increase the system capacity such that the preemption times fit inside the

hyperperiod, and at the same time ensure HRT constraints.

If we enforce a DP-like constraint on the CE, such that every overhead overheadϕk,j

fits in its frame ϕk along with the current job execution, then the HRT constraints

will be satisfied. This idea is written as,

exk,j + overheadk,j

fn
≤ |ϕk| (6.4)

exk,j + overheadk,j

|ϕk|
≤ fn (6.5)

where exk,j represents the execution in cycles during frame ϕk in processor CPUj .

Thus, the HRT constraints will be satisfied if we compute the required fn per frame

and processor, and we select the maximum value.

Observe that the maximum exk,j appears when there is no spare time at ϕk in CPUj .

This yields:

exk,j ≤ |ϕk| · fb (6.6)

Therefore, substituting in Eq. (6.5):

|ϕk| · fb

|ϕk|
+ overheadk,j

|ϕk|
≤ fn

fb + overheadk,j

|ϕk|
≤ fn (6.7)

Defining,

u′
k,j = overheadk,j

|ϕk|
(6.8)

128 Chapter 6 Accounting for preemption and migration costs on CE

eq. (6.7) is written as,

fb + u′
k,j ≤ fn (6.9)

In this case, calculating fn will suffice to select the maximum u′
k,j , and then compute

Eq. (6.9) with this value.

Upon this analysis, the outline of the algorithm is as follows:

1. Compute a preemptive cyclic executive.

2. Count the number of preemptions prek,j and migrations migk,j , per frame ϕk

and per CPUj .

3. Compute the overhead in cycles per frame ϕk and per CPUj , as in Eq. (6.3)

4. Obtain the quotient of overhead per frame ϕk and the duration of the frame,

u′
k,j =

overheadϕk,j

|ϕk|

5. Select the the maximum value u′
max = max{u′

k,j |∀k, j} from the previous

computation.

6. Select the new frequency f ,

fn =
(
fb + u′

max

)
7. Update CE with the new frequency f

6.3 Experimental results

This section compares empirically the performance of the two previous strategies.

The main focus will be on the increment in system capacity demanded by each

method. First, we explain the experimental set up. Then, we conduct some ex-

periments per method. Finally, we perform a comparison to asses which method

achieves the smallest increment in system capacity.

6.3 Experimental results 129

6.3.1 Experimental setup

We carry out the experiments using Tertimuss [21], an open-source framework to

model a RT multiprocessor system, simulate different RT schedulers, and process

the results.

Task sets are generated using the Dirichlet Rescale (DRS) algorithm [39]. The total

utilization of each task set is equal to the number of processors in the experiment,

with available frequencies f ∈ F = {1000, . . . , 1500} (Hz). Task periods are ran-

domly selected between the divisors of 60, to obtain a major cycle of at most 60 s.

The task sets are executed on systems with 2 and 4 cores, with task-to-core ratios of

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44 and 48. This amounts to 100 experiments per

combination, totalling 2400 experiments in all.

6.3.2 Methodology for task generation

The task sets for the experiments are generated such that they are valid and feasible

under a m-processor system, i.e. U ≤ m and ui ≤ 1 ∀τi ∈ T .

We first calculate task utilization leveraging the DRS algorithm, which produces

n-dimensional vectors uniformly distributed over the valid region, such that the

components sum to a specified value (total task set utilization). Each component

accepts lower and upper bounds. The algorithm has the signature u = DRS(n, U ,

umax, umin), where u = (U1, U2, . . . , Un) is the output vector of task utilization

values, n is the cardinality of the task set, U is the specified total utilization and

umax = (Umax
1 , Umax

2 , . . . , Umax
n) and umin = (Umin

1 , Umin
2 , . . . , Umin

n) are optional

vectors to constrain the utilization values for the task set, by default umax =
(1, 1, . . .) and umin = (0, 0, . . .).

To mimic a realistic setup, the minimum WCET and the preemption/migration costs

are of different orders of magnitude. This follows the commonly accepted notion

that a context switch is negligible with respect to the execution time of a task.

To this purpose, we define wcetmin as the minimum WCET that any generated task

can receive. The DRS algorithm allows imposing a lower bound for the computed

utilization of every task in the generated task set, that we calculate as:

umin = wcetmin

fH
(6.10)

130 Chapter 6 Accounting for preemption and migration costs on CE

Figure 6.5.: Utilization lower bound umin for different hyperperiods. The horizontal lines
represent the constraint 1/r, where r is the task-to-core ratio. f = 1000, fixed
for every curve

where f is the frequency and H the hyperperiod. This expression is deduced from

the fact that the utilization ui of any task τi is inversely proportional to its period ωi

(Eq. (2.2)). Hence, the minimum utilization is achieved with the largest possible

period, which is the hyperperiod H.

Nevertheless, when constraining the minimum value of every task we must ensure

that the utilization constraint allows for a feasible task set. Therefore, the utilization

lower bound should not be greater than the total of processors, i.e.:

n∑
i=1

wcetmin

fH
≤ m (6.11)

Hence, the task-to-core ratio (r = n/m) cannot be selected arbitrarily. There exists a

trade-off between hyperperiod, frequency and task-to-core ratio. From Eq. 6.11 it

follows that:

wcetmin

fH
≤ m

n
(6.12)

Therefore, umin should always be less or equal than 1/r in order to generate a valid

task set:

umin ≤ 1
r

(6.13)

To illustrate the importance of Eq. (6.13) on the utilization lower bound, we plot

in Fig. 6.5 the relation of umin to different values of H. The frequency value

6.3 Experimental results 131

(a) Maximum WCET increment analysis with
m = 2

(b) Maximum WCET increment analysis with
m = 4

(c) Frequency increment analysis with m = 2 (d) Frequency increment analysis with m = 4

Figure 6.6.: Percentage of WCET maximum increase (a and b) and percentage of frequency
increase (c and d)

is fixed at f = 1000, and every umin curve is computed for each wcetmin ∈
[100, 350, 800, 2000, 5000]. The flat colored lines represent the constraint from

Eq. (6.13), for four task-to-core ratios r. Therefore, to generate valid task sets,

umin must be below the 1/r desired line.

Note from Fig. 6.5 that it is easier to satisfy Eq. (6.13) for smaller values of wcetmin.

Also, as wcetmin increases the number of feasible task-to-core ratios decrease.

For example, with wcetmin = 350 and H = 10, we obtain umin = wcetmin/(f ×10) =
0.035, and therefore a task set with task-to-core ratio r = 40 will be unfeasible.

However, this task-to-core ratio becomes feasible for H ≥ 14. On the other hand,

valid task sets for H = 10 can be generated with any r ≤ 28. In our setup, we chose

wcetmin = 350, and H = 60, therefore every task set on the experiments is valid.

6.3.3 Results

AdWCET

AdWCET iterates to adjust the WCET of a task set according to the overhead intro-

duced by migrations and preemptions. The number of iterations is highly dependent

on the scheduling algorithm, but this number is bounded.

132 Chapter 6 Accounting for preemption and migration costs on CE

(a) Iteration analysis with m = 2 (b) Iteration analysis with m = 4

Figure 6.7.: Iteration analysis of AdWCET under CAlECS

(a) Preemption analysis on first iteration (b) Migration analysis on first iteration

(c) Preemption analysis on convergence itera-
tion

(d) Migration analysis on convergence iteration

Figure 6.8.: Analysis of preemption and migrations per job on first and convergence iteration

We generate task sets as explained in Sec. 6.3.1 and focus on WCET and frequency

increases after adjusting the CE, and on the number of iterations to reach conver-

gence. The following figures share all the same scheme. The configurations, i.e.

number of processors over the number of tasks, appear on the x-axis, whereas the

y-axis holds the studied feature.

The results on WCET and frequency increments are both normalized and plotted as

percentage increase. In the case of WCET Fig. 6.6a-6.6b, we selected the maximum

percentage of increase among the WCETs on each task set, i.e. it shows the WCET

increment from the task that had the maximum overhead, and does not represent

the behaviour of the whole task set.

6.3 Experimental results 133

In the case of frequency, the percentage increase was computed as the increment

between the frequency on the first iteration and the frequency at the convergence

iteration. The latter indicates the required increment in system capacity. The results

in Fig. 6.6c-6.6d show that the maximum WCET increase is bounded by 30% and

is more variable than the frequency increase, which lies below 6% for most cases.

The increment in frequency is more stable than the maximum increment in WCET

as the number of tasks per core increase. This is consistent with the fact that the

latter represents the maximum overhead of a single task while the former measures

the overhead on the task set.

Fig. 6.7 shows the number of iterations requireed by AdWCET to converge to a

solution for each task set in every configuration. Fig. 6.7a shows the iteration

analysis for different task set sizes on 2-processors. The number of iterations is

always below 15 except for an spurious case. Fig. 6.7b shows that it takes more

iterations to reach convergence on 4-processors than on 2-processors. This is the

logical result because the number of possible schedules increases with the number

of tasks and processors.

Fig. 6.8 shows the analysis of preemptions and migrations per job in the experiments

on 2-processors. We only take into account the data from the first and last iteration.

The total number of preemptions and migrations never exceeds 1, because of the

chosen scheduler (CAlECS). The number of preemptions and migrations will be

consistent in both iterations for any other scheduler, as long as the number of tasks

and processors holds.

The number of iterations increases with the ratio of tasks per processor, whereas

preemptions and migrations decrease (Fig. 6.8, Fig. 6.7). This is because the theoret-

ical bound for the iteration is n(ρ + µ), and therefore the number of iterations will

always be proportional to the task set cardinality, and to the number of preemptions

and migrations. Fortunately, on CAlECS both migrations and preemptions decrease

as the number of tasks increase, thus keeping the number of AdWCET iterations

low.

DP-U

In the following experimental analysis we now focus on the increment of system

capacity, with is the relevant aspect to compare with AdWCET. We use the same task

set in the experiments as in AdWCET. Also, the figures show again the configurations,

134 Chapter 6 Accounting for preemption and migration costs on CE

(a) Frequency increment analysis with m = 2 (b) Frequency increment analysis with m = 4

Figure 6.9.: Percentage of frequency increase in the utilization approach

i.e. number of processors over the number of tasks, on the x-axis, whereas the y-axis

holds the studied feature. The results on system capacity increment is plotted as

percentage increase.

6.4 Comparison between AdWCET and DP-U

In this section, we compare the increment in system capacity under each method to

analyze which one yields the smallest increment while honoring HRT constraints.

Each bar in the plots of Fig. 6.10 represents the number of experiments in which

each algorithm yields the lowest frequency of the two. Applying a lower frequency

results in a lower capacity increase. In the experiments with under m = 2 processors

(Fig. 6.10a) both strategies improve CE calculation accounting for preemption over-

heads. However, with higher numbers of tasks (last three configurations) AdWCET

performs notably better than the alternate approach. Whilst, DP-U clearly outperfors

AdWCET on five configurations. On four configurations (’2/8’, ’2/56’, ’2/64’, and

’2/72’) it cannot be clearly stated which strategy is better. Thus, according to the

experimental results both strategies are suitable when working on two processor, but

AdWCET is more advisable when having task sets with a task-to-core ratio greater

than or equal 28, and the utilization approach for task-to-core ratio r ≤ 24.

In contrast, DP-U outperforms AdWCET in every configuration under m = 4 proces-

sors (Fig. 6.10b).

6.4 Comparison between AdWCET and DP-U 135

2/8 2/16 2/24 2/32 2/40 2/48 2/56 2/64 2/72 2/80 2/88 2/96
Configuration #cores/#tasks

0

10

20

30

40

50

60

70

80

Nu
m
be

r o
f t
as
k
se
ts

AdWCET
DU

(a) Task set scheduled on 2 processors

4/16 4/32 4/48 4/64 4/80 4/96 4/112 4/128 4/144 4/160 4/176 4/192
Configuration #cores/#tasks

0

20

40

60

80

Nu
m

be
r o

f t
as

k
se

ts

AdWCET
DU

(b) Task set scheduled on 4 processors

Figure 6.10.: Comparison of frequency increment in AdWCET and DP-U. Each bar repre-
sents the number of experiments in which that algorithm obtained the lower
frequency of the two.

6.5 Conclusion

In this chapter we presented two safe methodologies to account for the preemp-

tion and migration overheads when producing a preemptive Cyclic Executive (CE)

schedule.

Usually, a CE enforces that a task cannot be preempted inside a minor frame, the

consequence of such constraint is low system utilization. However, if we construct a

preemptive CE then it is possible to achieve fully utilized systems. But, since this

is an offline-solution the scheduling overhead has to be integrated. As mentioned

on the introduction, it is a common assumption that the time cost of both migra-

tion and preemption is either neglected or considered part of the WCET. For the

latter case, upper bounds on the number of migrations and preemptions should be

136 Chapter 6 Accounting for preemption and migration costs on CE

considered but this entails a highly pessimistic value and increases the problem of

overprovisioning.

AdWCET is born from the idea of adding the overhead in the WCET, but instead

of using upper bounds only use the values form current schedules. But since the

WCET parameter is changed then the schedule is not longer valid, thus the reason

for AdWCET to be an iterative process.

On the other hand, the utilization approach only increases the frequency to ac-

commodate the overhead in between two consecutive deadlines, therefore it is no

possible to schedule again the task set and the first activation time inside each frame

has to remain the same as in the original schedule. Future work includes taking

into account the possible memory conflicts while migrating a job on specific memory

hierarchies.

6.5 Conclusion 137

Conclusion 7
7.1 Summary of contributions

The contributions of this Thesis can be gathered under two relevant achievements:

• A method to calculate a CE for a HRT task set on a multicore architecture

which manages to maximize utilization leveraging fluid scheduling while

minimizing preemptions (i.e. context switching and migration). Besides, the

resulting CE accounts for the overhead introduced by preemptions, and is

thermal-compliant at minimum energy.

• An runtime close loop control which uses the references provided by the CE

to ensure the accomplishment of the time constraints of the HRT task set in

the presence of small disturbances and parametric variations, managing the

arrival of SRT aperiodic tasks.

The work under these two contributions is based on the following hints.

Instead of a co-design approach, as proposed by Desirena [28], the proposed method-

ology follows a modular design. This decision allows us to detach the different

analysis, and to work from a input-output perspective.

First, the open loop scheduling algorithm considers a thermal and energy manage-

ment. Again, we assume a periodic scheduler to perform an steady state thermal

analysis, and on the TCPN model the frequency of the CPUs is stated explicitly

as a variable. The thesis formulates two optimization problems upon this trick,

alongside the assumption that each CPU execution cycle consumes the same power.

The solution to these two problems entails a frequency range of operation, which is

thermal compliant. Thus, working at those frequencies while reaching maximum

CPU utilization will not overpass a temperature bound. Moreover, the lower bound

of the frequency range F ∗ minimizes the energy consumption. This analysis is

derived on Chapter 3, Sec. 3.8.

Upon this offline module, named Task set conditioner we can propose a number

of scheduling schemes. The open loop scheduling algorithm (Chapter 3) is based

139

on the DP-fair approach, in the sense that the workload distribution analysis is

performed on a deadline basis. Then, per each time interval (time between two

consecutive deadlines) we pose a ILP, to solve the amount of cycles that each task

should execute in order to fulfill their execution requirements. This ILP has the

unimodularity property, and therefore it always provides integer solutions when

solved with a simplex algorithm. Nevertheless, that ILP formulation was unable

to provide solutions for every feasible task set. This drawback is addressed on

Chapter 4.

Then, we proposed AlECS a close loop scheduling scheme, compatible with the

Task set conditioner. That also follows a modular design, it computes an off-line

schedule which then is used as reference for a continuous controller. In contrast with

classic feedback schedulers, the error is computed with respect to the accumulated

execution curves, rather than a miss deadline ratio, therefore we can prove HRT

constraints. Still this controller acts directly upon on the TCPN model, and its

translation to plant parameters was not straightforward. For the off-line schedule

we performed a similar approach as in Chapter 3, but we reformulate the ILP to

improve schedulability and preserve the unimodularity property.

In a preliminary comparison between the CE, obtained from the off-line stages of

AlECS, and RUN it became apparent that AlECS produced less preemptions and

migrations than RUN, however the latter achieved zero migrations in many cases.

Inspired by this insight we propose a clustering stage on the task set, incorporated

on the CAlECS scheduling scheme, from Chapter 5. Later, on the chapter we showed

that CAlECS cyclic executive outperformed RUN and AlECS in terms of migrations,

whilst preserving the good metrics in number of preemptions from AlECS.

The control stage from CAlECS presents a mayor improvements with respect to

AlECS, in terms of simplicity to implement. Furthermore, important adjustment to

the TCPN model provided better simulation of the plant.

Finally, we propose two methodologies for the preemptive CE to account for the

overhead introduced by preemptions and migrations. This is a novel contributions

and aids to avoid over provisioning. Even though, the RT community has move their

research towards on line schedules, the industry still relies heavily on off-line ad

hoc schedules specially for highly critical systems, as shown in a recent survey to

practitioners [2]. Therefore, our scheme provides a solid ground to produce reliable

preemptive CE that also accounts for the preemption overheads whilst achieving

maximum utilization. In contrast with non-preemptive schedulers.

140 Chapter 7 Conclusion

7.2 Complexity

The computational complexity of the various parts of the proposed system, is briefly

review here. The Task set conditioner calculates the minimum and maximum fre-

quencies (F ∗ and F +). Computing F ∗ is linear in the number of tasks O(n). The

calculation of F + requires solving a non-linear optimization problem, we employ

an interior point algorithm. Tests show that it provides a good performance and

converges to the optimum in a very short time. The computational complexity of

the Task clustering (Sec. 5.3.2) is of order O(m2 × n × log(n)).

Next, the complexity of solving the ILP Eq. (4.9) to compute the workload per frame

is linear in xi,k, i.e. in n2 × β, where β = maxτi
H
wi

. Thus, it is in the order of O(n2).
Finally, EDF or ZL policies run in polynomial time. Hence, all the algorithms in

the off-line stage run in polynomial time, but the non-linear optimization.

References Ri,j(δk) are pre-computed in the Get reference module, and only checked

when a context switch occurs, which results on gathering the appropriate execution

requirement.

The feedback controller (Sec. 5.4) runs at every sampling period, which depends

on the minimum difference between two consecutive δi − δi−1 from set S. Since

the RT clock routine is executed with a fixed period and more frequently than any

other RT task, we propose to implement the feedback controller routine as a call

back (deferred function, softirq or tasklet depending on the RT operating system),

activated at each RT clock routine execution. In this approach we include a feedback

controller routine per CPU . Thus, their complexity is O(1), because it requires to

solve equations that have a fixed number of operations. A different implementation

approach may use a devoted CPU for the feedback controller routine.

7.3 Conclusions

The results obtained prove that it is worth designing HRT schedulers based on the

principles of fluid scheduling, which maximize utilization, while getting around the

traditional overhead and complexity which hampered the practical application of

many previous proposals.

7.2 Complexity 141

The CE calculation and fine-tuning proposed in Chapter 6 is compatible with the

application of close-loop controllers, which can increase the resilience of the system

and open up the new opportunities commented in the next, final section.

7.4 Future work

Unrealistic worst-case bounds constitute a lingering problem in RT systems, and

exacerbates the problem of overprovisioning. This problem keeps lying on the

horizon of any research on the field including the two contributions of the Thesis as

summarized in Sec. 7.1.

• The first contribution helps reducing overprovisioning by maximizing the uti-

lization while minimizing the preemption activity and, therefore, its overhead.

Working on better time bounds related to memory access conflicts besides a

better WCET calculation is mandatory, and is orthogonal to this contribution,

which is helpful and can still be exploited in any scenario.

• The second contribution leverages close-loop control techniques to ensure the

runtime integrity of the execution of the HRT task set upon the occurrence

of unexpected events. This approach has traditionally raised concern in the

field, as the certifications of RT systems rely on precise worst-case assumptions.

However, it represent now a whole new venue to explore in the line of recent

proposals encompassing runtime additional hardware to monitor the execution

of RT systems so as to find better time bounds on a probabilistic basis, which

can be amenable for certification (see e.g. [48, 74, 79])

142 Chapter 7 Conclusion

Conclusiones 8
Resumen de las contribuciones

Las contribuciones de esta Tesis se pueden agrupar bajo dos logros relevantes:

• Un método para calcular un CE para un conjunto de tareas HRT sobre una

arquitectura multinúcleo que logra maximizar la utilización aprovechando

la planificación fluida y minimizando las expulsiones (es decir, cambio de

contexto y migración). Además, el CE resultante toma en cuenta la sobrecarga

introducida por las expulsiones y cumple con cotas térmicas a energía mínima.

• Un control en lazo cerrado en tiempo de ejecución que utiliza las referencias

proporcionadas por el CE para garantizar el cumplimiento de las restricciones

temporales del conjunto de tareas HRT en presencia de pequeñas perturba-

ciones y variaciones paramétricas, gestionando la llegada de tareas aperiódicas

SRT.

El trabajo detrás de estas dos contribuciones se basa en las siguientes sugerencias.

En lugar de un enfoque de codiseño, como lo propone Desirena [28], la metodología

propuesta propone un diseño modular. Esta decisión nos permite separar los difer-

entes análisis, y trabajar desde una perspectiva entrada-salida.

Primero, el algoritmo de planificación en lazo abierto considera una gestión térmica

y energética. Nuevamente, asumimos una planificación periódica para realizar un

análisis térmico en estado estable, y en el modelo TCPN la frecuencia de las CPUs

se establece explícitamente como una variable. La tesis formula dos problemas de

optimización basados en este truco, junto con la suposición de que cada ciclo de

ejecución de CPU consume la misma potencia. La solución a estos dos problemas

proporciona un rango de frecuencias de operación, que cumple con la cota térmica.

Por lo tanto, trabajar a esas frecuencias, mientras se está a utilización máxima en las

CPUs, no superará una cota de temperatura. Además, el límite inferior del rango

de frecuencias, F ∗, minimiza el consumo de energía. Este análisis se deriva en el

Capítulo 3, Sec. 3.8.

143

Sobre este módulo fuera de línea, denominado Condicionador de conjunto de tareas,

se pueden proponer una serie de esquemas de planificación.

Nevertheless, that ILP formulation was unable to provide solutions for every feasible

task set. This drawback is addressed on Chapter 4.

El algoritmo de planificación en lazo abierto (Capítulo 3) se basa en el enfoque

DP-fair, en el sentido de que el análisis de distribución de la carga de trabajo se

basa en los plazos de las tareas. Luego, por cada intervalo de tiempo (entre dos

plazos consecutivos) planteamos un ILP, para resolver la cantidad de ciclos que

debe ejecutar cada tarea para cumplir con sus requisitos de ejecución. Este ILP tiene

la propiedad de unimodularidad y, por lo tanto, siempre proporciona soluciones

enteras cuando se resuelve con un algoritmo simplex. Sin embargo, esa formulación

del ILP no tenía solución para todo conjunto de tareas factibles. Este inconveniente

se aborda en el Capítulo 4.

Luego, se propuso AlECS un esquema de planificación en lazo cerradop, compatible

con el Task set conditioner. Este también sigue un diseño modular, calcula una

planificación fuera de línea que luego se usa como referencia para un controlador

continuo. A diferencia de los planificadores de retroalimentación clásicos, el error se

calcula con respecto a las curvas de ejecución acumulada, en lugar de una tasa de

incumplimiento de plazos, por lo tanto, se pueden asegurar las restricciones HRT.

Aun así, este controlador actúa directamente sobre el modelo TCPN, y su traducción

a los parámetros de la planta es sencilla.

Para la planificación fuera de línea, se siguió un enfoque similar al del Capítulo 3,

pero se reformuló el ILP para mejorar planificabilidad y preservar la propiedad de

unimodularidad.

En una comparación preliminar entre el CE de AlECS, obtenido de sus etapas fuera de

línea, y RUN se hizo evidente que AlECS producía menos expulsiones y migraciones

que RUN, sin embargo, este último generaba cero migraciones en muchos casos.

Inspirándonos en esta comparativa, se propone una etapa de agrupamiento del

conjunto de tareas, incorporado en el esquema de planificación CAlECS, Capítulo 5.

Más adelante en el capítulo, se muestra que el ejecutivo cíclico de CAlECS superó a

RUN y AlECS en términos de migraciones, al mismo tiempo que conservó las buenas

métricas de número de expulsiones de AlECS.

144 Chapter 8 Conclusiones

La etapa de control de CAlECS presenta una gran mejora con respecto a AlECS, en

términos de simplicidad de implementación. Además, el ajuste al modelo TCPN

proporciona una mejor simulación del problema.

Finalmente, se proponen dos metodologías para considerr la sobrecarga introducida

por las expulsiones y migraciones en el CE apropiativo. Se trata de una aportación

novedosa que ayuda a evitar el sobreaprovisionamiento.

A pesar de que la comunidad RT ha movido su investigación hacia los planificadores

en línea, la industria todavía depende en gran medida de planificación ad hoc fuera

de línea, especialmente para sistemas altamente críticos, como se muestra en una

encuesta reciente a profesionales [industrysurvey2021]. Por lo tanto, nuestro

esquema proporciona una base sólida para producir CE apropiativos, que son confi-

ables y que además consideran los costos de sobracarga por las expulsiones mientras

logra utilización máxima, a diferencia de los planificadores no apropiativos.

Complejidad

La complejidad computacional de las diversas partes del esquema propuesto se

resumen aquí. El Acondicionador del conjunto de tareas calcula las frecuencias

mínima y máxima (F ∗ y F +). Calcular F ∗ es lineal en el número de tareas O(n). El

cálculo de F + requiere resolver un problema de optimización no lineal, para esto

se emplea un algoritmo de punto interior. Las pruebas muestran que proporciona

un buen rendimiento y converge al óptimo en muy poco tiempo. La complejidad

computacional del Agrupamiento de las tareas (Sec. 5.3.2) es del orden de O(m2 ×
n × log(n)).

Por otra parte, la complejidad de resolver el ILP Eq. (4.9) para calcular la carga de

trabajo por intervalo es lineal en el número de variables xi,k, es decir, en n2 × β,

donde β = maxτi
H
wi

. Por lo tanto, está en el orden de O(n2). Finalmente, las

políticas EDF o ZL se ejecutan en tiempo polinomial. Por lo tanto, todos los

algoritmos en la etapa fuera de línea se ejecutan en tiempo polinomial, excepto la

optimización no lineal.

Las referencias Ri,j(δk) se calculan previamente en el módulo Obtener referencias

y solo se verifican cuando ocurre un cambio de contexto, lo quesólo implica la

recopilación del dato de ejecución adecuado.

145

El controlador por retroalimentación (Sec. 5.4) se ejecuta en cada período de

muestreo, que depende de la diferencia mínima entre dos δi − δi−1 consecutivos

del conjunto S. Dado que la rutina de reloj RT se ejecuta con un período fijo y con

más frecuencia que cualquier otra tarea RT, se propone implementar la rutina del

controlador como una devolución de llamada (función diferida, softirq o tasklet

dependiendo del sistema operativo RT), activada en cada ejecución de la rutina

de reloj RT. En este enfoque, se puede incluir una rutina para el controlador por

retroalimentación por CPU . Por lo tanto, su complejidad es O(1), porque requiere

resolver ecuaciones que tienen un número fijo de operaciones. Otra implementación

diferente puede usar una CPU dedicada para la rutina del controlador por retroali-

mentación.

Conclusiones

Los resultados obtenidos demuestran que vale la pena diseñar planificacdores HRT

basados en los principios de planificación fluida, que maximizan la utilización, al

tiempo que evitan la tradiciona sobrecarga y complejidad que han dificultado la

aplicación práctica de propuestas anteriores.

El cálculo y ajuste fino del CE propuesto en el Capítulo 6 es compatible con la

aplicación de controladores en lazo cerrado, que pueden aumentar la resiliencia

del sistema y abrir nuevas oportunidades, que serám comentadas en la siguiente

sección.

Trabajo futuro

Las cotas poco realistas del peor-caso de ejecution (WCET) constituyen un problema

persistente en los sistemas RT y exacerban el problema del sobreaprovisionamiento.

Este problema permanece en el horizonte de cualquier investigación en el campo,

incluyendo las dos contribuciones de la Tesis como se resumen en Sec. 7.1.

• La primera contribución ayuda a reducir el aprovisionamiento excesivo al

maximizar la utilización mientras se minimizan las expulsiones y, por lo tanto,

su sobrecarga. Trabajar en obtener mejores cotas para los tiempos asociados

con los conflictos de acceso a memoria, además de un mejor cálculo del WCET

146 Chapter 8 Conclusiones

es necesario, y ortogonal a esta contribución, que es útil y aún puede explotarse

en cualquier escenario.

• La segunda contribución aprovecha técnicas de control en lazo cerrado para

garantizar la integra ejecución de las tarea HRT ante la ocurrencia de eventos

inesperados. Este enfoque tradicionalmente ha generado preocupación en el

campo, ya que las certificaciones de los sistemas RT se basan en suposiciones

precisas del peor caso. Sin embargo, ahora se abre un horizonte nuevo para

explorar, en conjunto con recientes líneas propuestas que introducen hardware

adicional, que en tiempo de ejecución monitorean la ejecución de los sistemas

RT a fin de encontrar mejores cotas de tiempo sobre una base probabilística,

que se pueden someter a certificación. (ver, por ejemplo, [48, 74, 79])

147

Bibliography

[1] Rehan Ahmed, Parameswaran Ramanathan, and Kewal K Saluja. “Necessary
and Sufficient Conditions for Thermal Schedulability of Periodic Real-Time
Tasks Under Fluid Scheduling Model”. In: ACM Transactions on Embedded
Computing Systems (TECS) 15.3 (2016), p. 49.

[2] Benny Akesson et al. “A comprehensive survey of industry practice in real-time
systems”. In: Real-Time Systems (2021), pp. 1–41.

[3] J.H. Anderson, V. Bud, and U.C. Devi. “An EDF-based scheduling algorithm for
multiprocessor soft real-time systems”. In: 17th Euromicro Conference on Real-
Time Systems (ECRTS’05). 2005, pp. 199–208. DOI: 10.1109/ECRTS.2005.6.

[4] James H Anderson and Anand Srinivasan. “Mixed Pfair/ERfair scheduling of
asynchronous periodic tasks”. In: Real-Time Systems, 13th Euromicro Confer-
ence on, 2001. IEEE. 2001, pp. 76–85.

[5] K-E Arzén et al. “An introduction to control and scheduling co-design”. In:
Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.
00CH37187). Vol. 5. IEEE. 2000, pp. 4865–4870.

[6] S. Baruah, M. Bertogna, and G. Butazzo. Multiprocessor Scheduling for Real-
Time Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2015. ISBN:
978-3-319-08695-8.

[7] Sanjoy K Baruah, Johannes E Gehrke, and C Greg Plaxton. “Fast scheduling
of periodic tasks on multiple resources”. In: IPPS 95. IEEE. 1995, p. 280.

[8] Sanjoy K Baruah et al. “Proportionate progress: A notion of fairness in resource
allocation”. In: Algorithmica 15.6 (1996), pp. 600–625.

[9] Andrea Bastoni, Bjorn B Brandenburg, and James H Anderson. “Is semi-
partitioned scheduling practical?” In: 2011 23rd Euromicro Conference on
Real-Time Systems. IEEE. 2011, pp. 125–135.

[10] Marko Bertogna and Michele Cirinei. “Response-time analysis for globally
scheduled symmetric multiprocessor platforms”. In: 28th IEEE International
Real-Time Systems Symposium (RTSS 2007). IEEE. 2007, pp. 149–160.

[11] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. “Improved Schedu-
lability Analysis of EDF on Multiprocessor Platforms”. In: Proceedings of the
17th Euromicro Conference on Real-Time Systems. ECRTS ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 209–218. ISBN: 0-7695-2400-1.

149

https://doi.org/10.1109/ECRTS.2005.6

[12] Enrico Bini and Giorgio C Buttazzo. “Measuring the performance of schedula-
bility tests”. In: Real-Time Systems 30.1-2 (2005), pp. 129–154.

[13] Björn B Brandenburg and James H Anderson. “On the implementation of
global real-time schedulers”. In: Real-Time Systems Symposium, 2009, RTSS
2009. 30th IEEE. IEEE. 2009, pp. 214–224.

[14] Bjorn B. Brandenburg. “Scheduling and Locking in Multiprocessor Real-time
Operating Systems”. PhD thesis. Chapel Hill, NC, USA: University of North
Carolina at Chapel Hill, 2011. ISBN: 978-1-267-25618-8.

[15] Björn B. Brandenburg and Mahircan Gül. “Global Scheduling Not Required:
Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi -
Partitioned Reservation”. In: IEEE Real-Time Systems Symposium (RTSS 2016).
2016, pp. 99–110.

[16] John M. Calandrino, James H. Anderson, and Dan P. Baumberger. “A Hybrid
Real-Time Scheduling Approach for Large-Scale Multicore Platforms”. In:
Proceedings of the 19th Euromicro Conference on Real-Time Systems. ECRTS
’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 247–258.

[17] T. Chantem, X.S. Hu, and R.P. Dick. “Temperature-Aware Scheduling and
Assignment for Hard Real-Time Applications on MPSOCS”. In: Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on 19.10 (Oct. 2011),
pp. 1884–1897. ISSN: 1063-8210.

[18] Jian-Jia Chen, Chia-Mei Hung, and Tei-Wei Kuo. “On the minimization of the
instantaneous temperature for periodic real-time tasks”. In: 13th IEEE Real
Time and Embedded Technology and Applications Symposium (RTAS’07). IEEE.
2007, pp. 236–248.

[19] Jian-Jia Chen and Tei-Wei Kuo. “Procrastination determination for peri-
odic real-time tasks in leakage-aware dynamic voltage scaling systems.” In:
Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Confer-
ence on. Nov. 2007, pp. 289–294.

[20] Abel Chils Trabanco. “Planificación Tiempo Real en multiprocesadores: re-
ducción de cambios de contexto y migraciones en AlECS”. https://zaguan.
unizar.es/record/106782#. MA thesis. Universidad de Zaragoza, 2021.

[21] Abel Chils Trabanco et al. Tertimuss: Simulation environment for Real-Time
Multiprocessor Schedulers. https://gaz.i3a.es/tertimuss-simulation-
environment-for-thermal-aware-real-time-scheduling/. 2019-2022.
(Visited on 09/01/2022).

[22] R. David and H. Alla. “Discrete, Continuous and Hybrid Petri Nets”. In: Control
Systems, IEEE 28.3 (June 2008), pp. 81–84. ISSN: 1066-033X.

[23] R. I. Davis and A. Burns. “Priority Assignment for Global Fixed Priority Pre-
Emptive Scheduling in Multiprocessor Real-Time Systems”. In: 2009 30th
IEEE Real-Time Systems Symposium. 2009, pp. 398–409.

150 Bibliography

https://zaguan.unizar.es/record/106782#
https://zaguan.unizar.es/record/106782#
https://gaz.i3a.es/tertimuss-simulation-environment-for-thermal-aware-real-time-scheduling/
https://gaz.i3a.es/tertimuss-simulation-environment-for-thermal-aware-real-time-scheduling/

[24] Robert I Davis and Alan Burns. “A survey of hard real-time scheduling for
multiprocessor systems”. In: ACM computing surveys (CSUR) 43.4 (2011),
p. 35.

[25] Robert I. Davis and Alan Burns. “FPZL Schedulability Analysis”. In: Proceedings
of the 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium. RTAS ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 245–256. ISBN: 978-0-7695-4344-4.

[26] M. L. Dertouzos. “Control Robotics: The Procedural Control of Physical Pro-
cesses”. In: Proceedings of IFIP Congress (IFIP’74)). 1974, pp. 807–813.

[27] Gaddiel Desirena López et al. “A Flexible Framework for Real-Time Thermal-
Aware Schedulers using Timed Continuous Petri Nets”. In: Computación y
Sistemas 23.2 (2019), pp. 417–433.

[28] G Desirena-Lopez et al. “Thermal-aware real-time scheduling using Timed
Continuous Petri nets”. In: ACM Transactions on Embedded Computing Systems
(TECS) 18.4 (2019b), p. 36.

[29] G. Desirena-Lopez et al. “On-line Scheduling in Multiprocessor Systems based
on continuous control using Timed Continuous Petri Nets”. In: 13th Interna-
tional Workshop on Discrete Event Systems. 2016, pp. 278–283.

[30] G. Desirena-Lopez et al. “Thermal modelling for Temperature Control in
MPSoC’s Using Fluid Petri Nets”. In: IEEE Conference on Control Applications
part of Multi-conference on Systems and Control. 2014.

[31] Calvin Deutschbein et al. “Multi-core cyclic executives for safety-critical sys-
tems”. In: Science of Computer Programming 172 (2019), pp. 102–116.

[32] Sudarshan K Dhall and CL Liu. “On a real-time scheduling problem”. In:
Operations research 26.1 (1978), pp. 127–140.

[33] Johannes Freitag and Sascha Uhrig. “Closed loop controller for multicore
real-time systems”. In: International Conference on Architecture of Computing
Systems. Springer. 2018, pp. 45–56.

[34] Xing Fu, Xiaorui Wang, and Eric Puster. “Dynamic thermal and timeliness
guarantees for distributed real-time embedded systems”. In: 2009 15th IEEE
International Conference on Embedded and Real-Time Computing Systems and
Applications. IEEE. 2009, pp. 403–412.

[35] Yong Fu et al. “Feedback thermal control of real-time systems on multicore
processors”. In: Proceedings of the tenth ACM international conference on
Embedded software. ACM. 2012, pp. 113–122.

[36] Shelby Funk et al. “DP-Fair: a unifying theory for optimal hard real-time
multiprocessor scheduling”. In: Real-Time Systems 47.5 (2011), pp. 389–429.

Bibliography 151

[37] A.J. Ghajar and D. Yunus A. Cengel. Heat and Mass Transfer: Fundamentals
and Applications. McGraw-Hill Education, 2014. ISBN: 9780073398181. URL:
https://books.google.com.mx/books?id=B89MnwEACAAJ.

[38] Joeè L Goossens and Shelby Funk. “Priority-driven scheduling of periodic task
systems on multiprocessors”. In: Real-Time Systems (2003), pp. 2–3.

[39] David Griffin, Iain Bate, and Robert I Davis. “Generating utilization vectors
for the systematic evaluation of schedulability tests”. In: 2020 IEEE Real-Time
Systems Symposium (RTSS). IEEE. 2020, pp. 76–88.

[40] Pradeep M. Hettiarachchi et al. “A design and analysis framework for thermal-
resilent hard real-time systems”. In: ACM Transactions on Embedded Computing
Systems 13.5s (2014), 146:1–146:25.

[41] Alan J Hoffman and Joseph B Kruskal. “Integral boundary points of convex
polyhedra”. In: 50 Years of integer programming 1958-2008. Springer, 2010,
pp. 49–76.

[42] IEEE Technical Community on Real-Time Systems. Terminology and nota-
tion:Definitions related to a computation. https://cmte.ieee.org/tcrts/
education/terminology-and-notation/ - Last visited 2022-08-22.

[43] Intel. ECU consolidation reduces vehicle cost, weight and testing. URL: https:
//www.intel.com/content/dam/www/public/us/en/documents/white-
papers/ecu-consolidation-white-paper.pdf (visited on 05/01/2021).

[44] David Johnson. “Fast Algorithms for Bin Packing”. In: Journal of Computer
and System Sciences 8 (June 1974), pp. 272–314.

[45] Hassan K Khalil. Nonlinear systems. Upper Saddle River, 2002.

[46] Joonho Kong, Sung Woo Chung, and Kevin Skadron. “Recent thermal man-
agement techniques for microprocessors”. In: ACM Computing Surveys 44.3
(2014), 13:1–13:42.

[47] Philip Kosky et al. “Chapter 14 - Mechanical Engineering”. In: Exploring
Engineering (Fifth Edition). Ed. by Philip Kosky et al. Fifth Edition. Academic
Press, 2021, pp. 317–340. ISBN: 978-0-12-815073-3. DOI: https://doi.
org / 10 . 1016 / B978 - 0 - 12 - 815073 - 3 . 00014 - 4. URL: https : / / www .
sciencedirect.com/science/article/pii/B9780128150733000144.

[48] Leonidas Kosmidis et al. “Fitting processor architectures for measurement-
based probabilistic timing analysis”. In: Microprocessors and Microsystems 47
(2016), pp. 287–302. ISSN: 0141-9331. DOI: https://doi.org/10.1016/
j.micpro.2016.07.014. URL: https://www.sciencedirect.com/science/
article/pii/S0141933116300977.

[49] John Lehoczky, Lui Sha, and Yuqin Ding. “The rate monotonic scheduling al-
gorithm: Exact characterization and average case behavior”. In: RTSS. Vol. 89.
1989, pp. 166–171.

152 Bibliography

https://books.google.com.mx/books?id=B89MnwEACAAJ
https://cmte.ieee.org/tcrts/education/terminology-and-notation/
https://cmte.ieee.org/tcrts/education/terminology-and-notation/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ecu-consolidation-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ecu-consolidation-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ecu-consolidation-white-paper.pdf
https://doi.org/https://doi.org/10.1016/B978-0-12-815073-3.00014-4
https://doi.org/https://doi.org/10.1016/B978-0-12-815073-3.00014-4
https://www.sciencedirect.com/science/article/pii/B9780128150733000144
https://www.sciencedirect.com/science/article/pii/B9780128150733000144
https://doi.org/https://doi.org/10.1016/j.micpro.2016.07.014
https://doi.org/https://doi.org/10.1016/j.micpro.2016.07.014
https://www.sciencedirect.com/science/article/pii/S0141933116300977
https://www.sciencedirect.com/science/article/pii/S0141933116300977

[50] Chung Laung Liu and James W Layland. “Scheduling algorithms for multipro-
gramming in a hard-real-time environment”. In: Journal of the ACM (JACM)
20.1 (1973), pp. 46–61.

[51] J.M. López, J.L. Díaz, and D.F. García. “Utilization bounds for EDF scheduling
on real-time multiprocessor systems”. In: Journal of Real Time Systems 28.1
(2004), pp. 39–68.

[52] Silvano Martello and Paolo Toth. “Bin-packing problem”. In: Knapsack prob-
lems: algorithms and computer implementations. John Wiley & Sons, Inc.,
1990, pp. 221–245.

[53] A. Mascitti, T. Cucinotta, and L. Abeni. “Heuristic partitioning of real-time
tasks on multi-processors”. In: 2020 IEEE 23rd International Symposium on
Real-Time Distributed Computing (ISORC). 2020, pp. 36–42. DOI: 10.1109/
ISORC49007.2020.00015.

[54] E. Massa, G. Lima, and P. Regnier. “Revealing the Secrets of RUN and QPS:
New Trends for Optimal Real-Time Multiprocessor Scheduling”. In: 2014
Brazilian Symposium on Computing Systems Engineering. 2014, pp. 150–155.

[55] Ernesto Massa et al. “Quasi-partitioned Scheduling: Optimality and Adap-
tation in Multiprocessor Real-time Systems”. In: Real-Time Syst. 52.5 (Sept.
2016), pp. 566–597. ISSN: 0922-6443.

[56] Aloysius Ka-Lau Mok. “Fundamental design problems of distributed systems
for the hard-real-time environment”. PhD thesis. Massachusetts Institute of
Technology, 1983.

[57] S. Murali et al. “Temperature-aware processor frequency assignment for MP-
SoCs using convex optimization”. In: Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2007 5th IEEE/ACM/IFIP International Conference
on. 2007, pp. 111–116.

[58] Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceed-
ings of the IEEE 77.4 (1989), pp. 541–580.

[59] Dong-Ik Oh and T. P. Bakker. “Utilization Bounds for N-Processor Rate Mono-
tone Scheduling with Static Processor Assignments”. In: Real-Time Systems
15.2 (1998), pp. 183–192.

[60] Paul Regnier et al. “Multiprocessor scheduling by reduction to uniproces-
sor: an original optimal approach”. In: Real-Time Systems 49.4 (July 2013),
pp. 436–474.

[61] Paul Regnier et al. “RUN: Optimal Multiprocessor Real-Time Scheduling via
Reduction to Uniprocessor”. In: Proceedings of the 2011 IEEE 32Nd Real-Time
Systems Symposium. RTSS ’11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 104–115. ISBN: 978-0-7695-4591-2.

Bibliography 153

https://doi.org/10.1109/ISORC49007.2020.00015
https://doi.org/10.1109/ISORC49007.2020.00015

[62] L Rubio-Anguiano et al. “Energy-efficient thermal-aware multiprocessor schedul-
ing for real-time tasks using TCPN”. In: Discrete Event Dynamic Systems (2019),
pp. 1–28.

[63] L Rubio-Anguiano et al. “Energy-Efficient Thermal-Aware Scheduling for RT
Tasks Using TCPN”. In: IFAC-PapersOnLine 51.7 (2018), pp. 236–242.

[64] L. Rubio-Anguiano et al. “Real time scheduler for multiprocessor systems
based on continuous control using Timed Continuous Petri Nets”. In: IFAC-
PapersOnLine 53.4 (2020). 15th IFAC Workshop on Discrete Event Systems
WODES 2020 — Rio de Janeiro, Brazil, 11-13 November 2020, pp. 371–
377. ISSN: 2405-8963. DOI: https://doi.org/10.1016/j.ifacol.2021.
04.036. URL: https://www.sciencedirect.com/science/article/pii/
S240589632100077X.

[65] Laura E. Rubio-Anguiano, José Luis Briz, and Antonio Ramírez-Treviño. “Ac-
counting for Preemption and Migration Costs in the Calculation of Hard
Real-Time Cyclic Executives for MPSoCs”. In: 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE). 2022.

[66] Laura E. Rubio-Anguiano, José Luis Briz, and Antonio Ramírez-Treviño. “Ac-
counting for Preemption and Migration Costs in the Calculation of Hard
Real-Time Cyclic Executives for MPSoCs”. In: IEEE Robotics and Automation
Letters 7.3 (2022), pp. 7990–7997. DOI: 10.1109/LRA.2022.3186489.

[67] Laura Elena Rubio-Anguiano et al. “Maximizing utilization and minimizing
migration in thermal-aware energy-efficient real-time multiprocessor schedul-
ing”. In: IEEE Access 9 (2021), pp. 83309–83328.

[68] Deepak R Sahoo et al. “Feedback control for real-time scheduling”. In: Pro-
ceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301).
Vol. 2. IEEE. 2002, pp. 1254–1259.

[69] Lars Schor et al. “Worst-case temperature guarantees for real-time applications
on multi-core systems”. In: 2012 IEEE 18th Real Time and Embedded Technology
and Applications Symposium. IEEE. 2012, pp. 87–96.

[70] Lui Sha et al. “Real time scheduling theory: A historical perspective”. In:
Real-time systems 28.2-3 (2004), pp. 101–155.

[71] Shi Sha et al. “Thermal-constrained energy efficient real-time scheduling
on multi-core platforms”. In: Parallel Computing 85 (2019), pp. 231–242.
ISSN: 0167-8191. DOI: https://doi.org/10.1016/j.parco.2019.01.
003. URL: https : / / www . sciencedirect . com / science / article / pii /
S0167819118300280.

[72] Gerard Sierksma. Linear and integer programming: theory and practice. CRC
Press, 2001.

154 Bibliography

https://doi.org/https://doi.org/10.1016/j.ifacol.2021.04.036
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.04.036
https://www.sciencedirect.com/science/article/pii/S240589632100077X
https://www.sciencedirect.com/science/article/pii/S240589632100077X
https://doi.org/10.1109/LRA.2022.3186489
https://doi.org/https://doi.org/10.1016/j.parco.2019.01.003
https://doi.org/https://doi.org/10.1016/j.parco.2019.01.003
https://www.sciencedirect.com/science/article/pii/S0167819118300280
https://www.sciencedirect.com/science/article/pii/S0167819118300280

[73] M. Silva et al. “On fluidization of discrete event models: observation and
control of continuous Petri nets”. In: Discrete Event Dynamic Systems 21(4).3
(Dec. 2011), pp. 427–497.

[74] Mladen Slijepcevic et al. “pTNoC: Probabilistically Time-Analyzable Tree-
Based NoC for Mixed-Criticality Systems”. In: 2016 Euromicro Conference on
Digital System Design (DSD). 2016, pp. 404–412. DOI: 10.1109/DSD.2016.23.

[75] Alberto Soria-Lopez, Pedro Mejia-Alvarez, and Julio Cornejo. “Feedback
scheduling of power-aware soft real-time tasks”. In: Sixth Mexican Inter-
national Conference on Computer Science (ENC’05). IEEE. 2005, pp. 266–273.

[76] Anand Srinivasan. Efficient and flexible fair scheduling of real-time tasks on
multiprocessors. The University of North Carolina at Chapel Hill, 2003.

[77] Mason Thammawichai and Eric C. Kerrigan. “Energy-efficient real-time schedul-
ing for two-type heterogeneous multiprocessors”. In: Real-Time Systems 54
(2018).

[78] José Luis Tovany et al. “Greenhouse modeling using continuous timed Petri
nets”. In: Mathematical problems in engineering 2013 (2013).

[79] David Trilla et al. “Randomization for Safer, more Reliable and Secure, High-
Performance Automotive Processors”. In: IEEE Design & Test 36.6 (2019),
pp. 39–47. DOI: 10.1109/MDAT.2019.2927373.

[80] Klaus Truemper. Matroid decomposition. Vol. 6. Boston: Academic Press, 1992.

[81] Wickström Ulf. “Heat Transfer by Radiation”. In: Temperature Calculation in
Fire Safety Engineering. Springer, 2016. Chap. 5. DOI: 10.1007/978-3-319-
30172-3_5.

[82] K. Vipin. “CANNoC: An open-source NoC architecture for ECU consolidation”.
In: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems
(MWSCAS). Aug. 2018, pp. 940–943.

Bibliography 155

https://doi.org/10.1109/DSD.2016.23
https://doi.org/10.1109/MDAT.2019.2927373
https://doi.org/10.1007/978-3-319-30172-3_5
https://doi.org/10.1007/978-3-319-30172-3_5

Tertimuss A
Tertimuss is an open-source framework to model a RT multiprocessor system, simu-

late different RT schedulers, and process the results. It is publicly available at [21].

Architecture

In its first version, Tertimuss was designed to be used by commands through the

command line, or a graphical interface. These methods in practice were of little

use, rather Tertimuss is used as a set of libraries within Python scripts in which the

simulation to be performed is defined. This new orientation does not exclude the

future possibility of adding interfaces to the simulation environment. Organized as

a set of libraries, Tertimuss allows the simulations to execute faster. Environment

development is also simplified, since both the graphical interface and the command

line interface require maintenance whenever new features are added. As drawback,

this new design requires users familiar with Python syntax.

Components

Tertimuss components are detailed in figure A.1, and explained below.

• Task generator. It generates synthetic periodic tasks from a specification of the

system configuration. Allows you to choose different algorithms to perform

this operation.

• Scheduler simulation. It computes a schedule from a description of the system

and of a set of tasks, may also provide the temperature evolution in the system.

It relies on the scheduler and the thermal simulator.

• Scheduler. It reacts to different simulation events and responds accordingly

with the assignment of tasks to CPUs, the change of frequency in the processing

cores or the event generation request at an agreed time in the future.

157

Figure A.1.: Main components of Tertimuss

• Thermal simulator. It calculates the temperature reached by a system A after

executing a set of tasks T during a given time interval.

• Schedule analysis. It extracts information from a schedule, and might generate

visualizations of it. This includes different analysis techniques as well as

different types of visualizations.

158 Appendix A Tertimuss

Modeling methodology using

TCPNs
B

In this appendix we present a methodology based on TCPNs to model physical

systems described by Parabolic partial differential equation (PDE).

It is intended as a tutorial, and a bridge between Timed Continuous Petri Net

(TCPN) and PDE to obtain a mathematical model that has both a representation in

ordinary differential equations and in TCPN, and perform control with well known

techniques.

First, we briefly introduce a PDE, then a spatial discretization to derive a TCPN

elementary module, B.2-B.3. The same procedure is performed for the boundary

conditions,B.4. Then in Sec. B.5, we describe how to build the model, from the

elementary modules without describing nor solving the PDE, that also describes the

physical system. Finally in Sec. B.6, a heat transfer problem is shown to exemplify

the methodology.

B.1 Parabolic partial differential equations

Recall that a parabolic PDE describes the change of the physical quantity with respect

of time and position variables inside the medium. The the boundary conditions relate

the interactions with the environment at the surfaces of the system.

A parabolic PDE can be expressed as,

1
α

∂g(x, τ)
∂τ

= ∂2g(x, τ)
∂x2 + f(x, τ), (B.1)

subject to appropriate initial and boundary conditions. To avoid confusions with

the notation t for transitions, the time will be expressed by symbol τ . Then α is

a constant, τ ∈ [0, ∞), x ∈ Rn and g(x, τ) : Rn × [0, ∞) → R. If Eq.(B.1) is in its

homogeneous form f(x, τ) = 0, else f(x, τ) : Rn × [0, ∞) → R.

159

Therefore, we first explain how to analyze the system inside the medium by approxi-

mating the parabolic PDE (B.1) to a set of linear first order differential equations.

We later derive the TCPN elementary modules from this set.

B.2 Spatial discretization

In order to accomplish this aforementioned approximation, we resort to the tradi-

tional finite difference method on the right hand side of Eq. (B.1). To this purpose,

the derivatives are replaced by differences. Now suppose that Eq. (B.1) is a one-

dimensional PDE, in which x is discretized into N + 1 sections 0, ..., n − 1, n, n +
1, ..., N , with only one point of interest into each section, as shown on Figure B.1.

N

xn
n�1

boundary

point
boundary

point

section n

0 n

Figure B.1.: Points and sections for the finite difference formulation

Assume that the thickness of each section n is equal to δn for all n ∈ {0, 1, . . . , N},

and the separation between each pair of points n − 1 and n is equal to ∆xn
n−1 =

∆xn−1
n . Then, defining gn(τ) := g(n, τ) for a fixed n ∈ {0, . . . , N} and using

a difference approximation on the partial derivatives of g(x, τ) along x, we can

analyze g(x, τ) by means of N + 1 functions gn(τ).

To approximate the element α ∂2g
∂x2 at section n (see Fig. B.1), we first compute the

approximations to the first order derivative at the mid-points n − 1/2 and n + 1/2 as

follows:

∂g(x, τ)
∂x

∣∣∣∣
n−1/2

≈ gn − gn−1
∆xn

n−1
and

∂g(x, τ)
∂x

∣∣∣∣
n+1/2

≈ gn+1 − gn

∆xn
n+1

(B.2)

160 Appendix B Modeling methodology using TCPNs

Then, the finite difference approximation of the second derivative of g(x, τ) at

section n can be computed using Eq. (B.2) as:

∂2g(x, τ)
∂x2

∣∣∣∣∣
n

≈
gn+1−gn

∆xn
n+1

− gn−gn−1
∆xn

n−1

δn

= gn+1 − gn

δn∆xn
n+1

− gn − gn−1
δn∆xn

n−1
. (B.3)

Hence, the time derivative of gn(τ) is:

ġn =α{ gn−1
δn∆xn

n−1
− gn

δn∆xn
n−1

− gn

δn∆xn
n+1

+ gn+1
δn∆xn

n+1
} + fn(τ),

∀n ∈ {1, ..., N − 1}. (B.4)

Eq. (B.4) implies that the rate of change with respect to time of some inner point

gn(τ), depends on itself and on the two neighboring places plus some function of

time fn(τ).

For simplicity, assume that fn(τ) = 0 ∀n, τ for now. Fig. B.2 shows the TCPN for

three interior places. The marking in each place pn corresponds to the value of

gn(τ).

gn�1

pn�1

gn

pn

gn+1

pn+1

tn�1
n

tn
n�1

tn
n+1

an
n�1

an
n+1

tn+1
n

an+1
n

an�1
n

Figure B.2.: TCPN representation for interior places

Therefore the dynamics of gn is given by,

ġn = an
n−1λn

n−1gn−1 − (λn+1
n + λn−1

n)gn + an
n+1λn

n+1gn+1 (B.5)

The values for the arc’s weights and the firing rates are chosen such that Eq.(B.5)

resembles Eq.(B.4). Therefore,

B.2 Spatial discretization 161

an
n−1 = λn−1

n

λn
n−1

, λn
n−1 = α

δn−1∆xn
n−1

, λn+1
n = α

δn∆xn
n+1

,

an
n+1 = λn+1

n

λn
n+1

, λn−1
n = α

δn∆xn
n−1

, λn
n+1 = α

δn+1∆xn
n+1

.

Now, assume that fn(τ) = constant ∀n, τ , then we can model this behavior as the

TCPN shown in Fig. B.3, such that the firing rate λf of transition tf is equal to fn.

i.e, λf = αfn(τ) .

gn

pn
tf pf

Figure B.3.: TCPN representation for fn(t) constant

Due to the superposition characteristic of TCPNs, by merging the TCPN module

from Fig. B.3 to the TCPN in Fig. B.2 at place pn, we obtain the same dynamics

as in Eq. (B.4). In a heat transfer problem f(τ) usually corresponds to a heat

generation factor. With these insights we can define a TCPN elementary module for

the components of the PDE.

B.3 Elementary TCPN module

mn

pn

tn
n+1

tn+1
ntn

n�1

an
n�1

tn�1
n

an
n+1

Figure B.4.: TCPN elementary module

The elementary TCPN module in Fig. B.4 is defined for every inner point inside a

section, where sections are defined by domain discretization, as explained before.

162 Appendix B Modeling methodology using TCPNs

Each inner TCPN module is composed by a place pn, whose marking mn relates to

the quantity gn; two transitions tn−1
n and tn+1

n , which link pn with its neighbors pn−1

and pn+1, respectively, and other two transitions tn
n−1 and tn

n+1. The former connects

pn−1 to pn, while the latter connects pn+1 to pn−1, such that there exists a marking

exchange.

The firing rates for transitions with pn as pre-place are:

λn+1
n = α

δn∆xn
n+1

, λn−1
n = α

δn∆xn
n−1

The shadowed transitions in Fig. B.4 are defined by characteristics of the neighboring

elementary modules from pn−1 and pn+1. The arc’s weights an
n−1 and an

n−1 are

computed as:

an
n−1 = λn−1

n

λn
n−1

, an
n+1 = λn+1

n

λn
n+1

(B.6)

In order to interconnect several inner elements we should merge the transitions.

The discretization discussed on Sec. B.2 was performed on one dimension only. The

three-dimensional discretization is carried out following the same procedure, such

that the dynamics per each point on the grid is the sum of the discretization per-

formed in each dimension, just as in a typical finite-difference application. Therefore,

the inner TCPN module will have an extra couple of transitions per dimension, in

order to connect to the neighboring places.

Up to this point, we have showed how to represent elements of the PDE as a TCPN

module. Next, we will cover how to write the corresponding boundary conditions.

B.4 Boundary conditions

In this section, we derive elementary TCPN modules for the Dirichlet, Neumann,

Mixed and Robin boundary conditions (BC) for PDE (B.1). For example, common

boundary conditions in heat transfer problems are convection and a specified surface

B.4 Boundary conditions 163

temperature. Each boundary condition can be translated into a TCPN representa-

tion.

B.4.1 Dirichlet boundary conditions

m0

p0
t1

0

Figure B.5.: TCPN elementary module for Dirichlet BC

This type of boundary conditions specify a value at a surface point for every time

(Eq. (B.1)). Considering PDE (B.1) in the domain [0, 1], a Dirichlet boundary

condition is,

g(0, τ) = a, g(1, τ) = b (B.7)

where a and b are constant values. In a context of heat transfer, a Dirichlet boundary

condition corresponds to an specified temperature at the surface.

The Dirichlet BC is represented by the TCPN in figure B.5, the marking m0 at place

p0 corresponds to the constant boundary value a as in eq.(B.7) The TCPN state

equation for place p0 is,

ṁ0 = λ1
0m0 − λ1

0m0 = 0 (B.8)

λ1
0 is the firing rate of transition t1

0:

λ1
0 = α

δ0∆1
0

(B.9)

where α is the same constant as in Eq. (B.1), and δ0 and ∆1
0 are the discretization

lengths we defined in Sec. B.2 (Fig. B.1). Transition t1
0 directly connects to the

elementary TCPN for inner points by merging it with the transition defined on the

inner element.

164 Appendix B Modeling methodology using TCPNs

B.4.2 Neumann boundary condition

The Neumann boundary condition provides the value of the gradient of the depen-

dent variable normal to the boundary, ∂u/∂n = q. In a one-dimensional case for

PDE (B.1), the Neumann boundary condition is expressed as,

∂g(0, τ)
∂x

= q0,
∂g(1, τ)

∂x
= q1. (B.10)

under the assumption that x ∈ [0, 1], where q0 and q1 are given constants. The

Neumann boundary condition is often viewed as a flux boundary condition.

The derivation of the TCPN module for this boundary condition comes from the

finite difference approximation of Eq. (B.1), such that the dynamics of point g0

yields:

ġ0 = α

(
∂g1
∂x − ∂g0

∂x

δ0

)
+ αf

Without loss of generality, assume f = 0. We have already shown how to add this

term on the analysis. From the BC in Eq.(B.10) we know that ∂g0
∂x = q0, therefore

the dynamics of marking m0 that represents the quantity g0 is:

ṁ0 = α

(
m1 − m0

δ0∆1
0

)
+ α

q0
δ0

(B.11)

The first term in Eq. (B.11) reflects the conduction-diffusion due to the second order

derivatives, where m1 is the marking of a neighbor place p1, and the second term is

the imposition of the Neumann boundary condition. The later Neumann term can

be modeled as we did for fn(τ) on Fig. B.3.

Then, the TCPN representation for Eq. (B.11) is shown in Fig. B.6a, and the elemen-

tary TCPN module for the Neumann boundary condition is illustrated on Fig. B.6b.

The firing rate for transition tNe is:

λNe = α

δ0
q0 (B.12)

B.4 Boundary conditions 165

m0

p0

m1

p1

t0
1

t1
0

a1
0

a0
1

tNepNe

(a)

m0

p0

tNepNe

(b)

Figure B.6.: TCPN representation for the boundary point dynamics ġ0, on the left , and on
the right the TCPN elementary module for Neumann boundary conditions

B.4.3 Robin boundary condition

The Robin boundary condition is a linear combination of the two previous boundary

conditions. For example in PDE (B.1), for g on a domain G with boundary ∂G, the

Robin condition states: ag + b∂g/∂n = q on ∂G, for non-zero constants (a, b) and a

defined function q. For the one-dimensional case of PDE (B.1) where x ∈ [0, 1], a

Robin boundary condition yields,

ag(0, τ) + b
∂g(0, τ)

∂x
= q0, ag(1, τ) + b

∂g(1, τ)
∂x

= q1. (B.13)

for given a, b, q0 and q1 constants. The Mixed boundary condition considers that the

solution of the PDE must satisfy different boundary conditions on disjoints parts of

the boundary domain. For the one-dimensional case of PDE (B.1) with x ∈ [0, 1], it

will entail that g(0, τ) is subjected to a boundary condition different to the one at

g(1, τ). For example,

166 Appendix B Modeling methodology using TCPNs

g(0, τ) = a,
∂g(1, τ)

∂x
= q. (B.14)

The analysis to derive its TCPN representation is the same as in the Neumann

boundary condition case that we conclude in Eq. (B.11). However, in this case

∂g0/∂x = 1
b (q0 − ag(0, τ)), therefore:

ġ0 = α

(
g1 − g0
δ0∆1

0

)
+ α

δ0b
(g0 − ag0) (B.15)

Then, the elementary TCPN module for the Robin boundary condition is illustrated

on Fig. B.7, and the firing rates for transitions tR
2 and t2

R are:

λR
2 = αa

δ0b
, λ2

R = α

δ0b
(B.16)

m0

p0

pR

tR
2

t2
R

q0

Figure B.7.: TCPN elementary module for Robin boundary condition

B.4.4 Mixed boundary condition

The case of mixed boundary conditions is straightforward. One should use the

defined TCPN elementary modules accordingly.

B.5 Building the model

Once the elementary modules have been defined, we can build the model to represent

the system. The following steps describe this process:

1. Define a spatial discretization, as described on Fig. B.1

B.5 Building the model 167

2. Identify the boundary and inner points

3. Create a module for each point in the spatial discretization

a) Associate an inner module to each inner point

b) Associate a Dirichlet BC module to the boundary points subject to constant

defined values

c) Associate a Neumann BC module to the points under input or output

fluxes

d) Associate a Robin BC module to the boundary point usually related to

convection-diffusion phenomena

4. Merge the constructed modules on the common transitions

5. Identify the unknown parameters

Following the previous procedure we obtain the global model as:

ṁ = CΛΠT (m)m (B.17)

where m is the value for the quantity under study on each grid point, C, Λ, and

Π(m) are the incidence matrix, the firing rate transitions and the configuration

matrix of the grid elements. The TCPN system has only one configuration matrix

because every transition has at most one input place. If we define some places as

inputs, for example those related to input fluxes or to actuators, the model can be

expressed as:

ṁ = CΛΠT (m)m + Cinfin (B.18)

where Cin is the incidence matrix for the input transitions and fin is the input flow.

The model can also be written in state space form as:

ṁT = Am + Bfin

YT = SmT

(B.19)

where A = CΛΠ(m) and B = Cin. The output of the system is YT , such that S

holds the measurable states.

168 Appendix B Modeling methodology using TCPNs

B.6 Heat transfer application

In this section we provide some examples of the proposed methodology. We represent

a variety of heat transfer problems with TCPN modules. This section generalizes the

results from [78] and [30].

There are three physical phenomena in a typical heat transfer problem: heat con-

duction, convection and radiation. Heat conduction occurs in a medium and it is

described as in Eq. (B.4), whereas convection and radiation are representatives of

boundary conditions. The convection boundary condition is a type of Robin BC,

while the radiation will be analysed as a type of Neumann BC. Also, there can be

heat generation due to no modeled dynamics, but the heat generation factor is

known.

B.6.1 Heat conduction

Conduction is the transfer of energy from more energetic particles of substance

to the adjacent less energetic ones [37]. It is described by Eq. (B.1), where the

constant α is referred as the thermal diffusivity of the material and represents how

fast heat propagates through the material. The thermal diffusivity relates the thermal

conductivity k, the density ρ and the specific heat c of the material, such that:

α = k

ρc
(B.20)

Therefore, after performing a domain discretization as proposed in Sec. B.2, an inner

point has the TCPN module shown in Fig. B.8.

The values for the firing rates are:

λn+1
n = α

δn∆xn
n+1

, λn−1
n = α

δn∆xn
n−1

where α is the thermal diffusivity, δn is the thickness of element n and ∆xn
n+1 is the

distance between element n and element n + 1. The firing rates for the elements k

and k + 1 are derived similarly. Arc weights are define as in Eq. (B.6):

an
n−1 = λn−1

n

λn
n−1

, an
n+1 = λn+1

n

λn
n+1

(B.21)

B.6 Heat transfer application 169

Tn

(a) 2D-Grid

Tn

pntn�1
n

tk�1
n

tk+1
n

tn+1
n

(b) Elementary module

Tn�1

pn�1

Tn

pn

Tn+1

pn+1

tn�1
n

tn
n�1

tn
n+1

an
n�1

an
n+1

tn+1
n

an+1
n

an�1
n

Tk�1

pk�1

Tk+1

pk+1

tk�1
n tn

k�1

tn
k+1

an
k�1

an
k+1

ak +1
n

ak	1
n

tk+1
n

(c) Connection with neighbor
places

Figure B.8.: Heat conduction TCPN representation

Tn

T8

(a) Grid

Tn

pn
T8

p8

tn

tntn�1
n

(b) Elementary module

Tn

pn
T8

p8

tn

tntn�1
n

Tn�1

pn�1

tn
n�1

an�1
n

an
n�1

(c) Connection with neighbor
places

Figure B.9.: TCPN module for a convection boundary condition

B.6.2 Convection

A convection boundary condition is a type of Robin BC, and it is described by

Newton’s cooling law, such that the heat flux at the boundary point n is:

∂T (n, τ)
∂x

= −h

k
[T∞ − T (n, τ)], (B.22)

where h is the convection heat transfer coefficient, T∞ is the ambient temperature

and k the thermal conductivity. Therefore, any element boundary element subject to

convection can be modeled as in Fig. B.9, with the corresponding firing rates:

λ∞
n = λn

∞ = αh

δnk
, λn−1

n = α

δn∆xn
n−1

(B.23)

170 Appendix B Modeling methodology using TCPNs

Tn

(a) Grid

Tn

pn
trad prad

tn�1
n

(b) Elementary module

Tn

pn

tn�1
n

Tn�1

pn�1

tn
n�1

an�1
n

an
n�1

trad prad

(c) Connection with neighbor

Figure B.10.: TCPN module for a radiation boundary condition

B.6.3 Radiation

In this example, radiation is always considered as an input heat flux, and it is

described as a Neumann BC. This just constitutes a convenient simplification here;

for a deeper understanding please refer to [37, 81]. In the case of solar radiation

incident at a boundary surface, we have that:

∂T (n, τ)
∂x

= ϵ

kαs
q̇solar (B.24)

where αs is the absorptivity (0 ≤ αs ≤ 1), ϵ is the emmisivity and q̇solar is the incident

solar heat flux. Fig. B.10 shows a boundary element subject to solar radiation, with

firing rates:

λrad = αϵ

δnkαs
q̇solar, λn−1

n = α

δn∆xn
n−1

(B.25)

B.6.4 Heat generation

Heat generation is represented as an energy generation rate inside an element,

expressed in [W/m3]. From Eq.(B.1), it implies that f(τ) ̸= 0. Therefore, it can be

modeled as the TCPN from Fig. B.3, such that

λf = λgen = α

k
ėgen (B.26)

where ėgen is the heat generation rate.

B.6 Heat transfer application 171

B.6.5 Building the model

Once the previous elements have been set, the global model can be formulated as:

ṁT = CT ΛT ΠT (m)mT + CaΛaΠa(m)ma+ Cgenfgen (B.27)

where mT is the temperature for the grid points, ma is the ambient temperature

T∞ and fgen is the input heat flux due to heat generation. Cx, Λx, and Πx(m)
are the incidence matrix, the firing rate transitions and the configuration matrix

(x = {T, a, gen}) of the grid elements, ambient temperature, and heat generation

subnets respectively.

The model can be also written in state space form as:

ṁT = AmT + B′ma + Bfgen

YT = SmT

(B.28)

where A = CT ΛT ΠT (m), B = Cgen and B′ = CaΛaΠa(m). The system output

is YT , and S holds the measurable states.

Example

To better understand the previous methodology to model a heat transfer problem,

we present the following simple example. Consider the transient heat conduction

problem in a large Uranium Plate, as in [37]. The plate thickness is L = 4 with

thermal conductivity k = 28 W/mK and thermal diffusivity α = 12.5 × 10−6 m2/s.

Heat is uniformly generated at a constant rate of ė = 5 × 106 W/m3. One side of the

plate is maintained at 0ºC at all times, while the other side is subject to convection to

an environment at T∞ = 30ºC with a heat convection coefficient of h = 45W/m2K,

as shown in Fig. B.11.

Fig. B.11 shows that there is only one interior point of interest T1(τ) and two bound-

ary points T0 and T2. The boundary condition for T0(τ) is a specific temperature

boundary condition, i.e Ṫ0 = 0, T0(0) = 0. And the second boundary condition is

that T2(τ) is subjected to convection. Therefore, the TCPN model for this problem

can be formed as the union of 1) an interior point element, 2) a specified tempera-

172 Appendix B Modeling methodology using TCPNs

0°C

L

inner point
boundary

point

boundary

point

element 0 element 1 element 2

8T

0 1 2

Figure B.11.: Schematic for Example B.6.5

ture element and 3) a convection module, plus the heat generator modules, as show

in Figure B.12.

T0

p0

T1

p1

T2

p2

t2
1

t1
2

t0
1

t1
0

a2
1

a1
2

t

8

2

t2

8

T8

p8

tgen

pgen

tgen

pgen

a1
0

Figure B.12.: TCPN model for Example B.6.5 with three element discretization

The resulting model is:

Ṫ0 = 0

Ṫ1 = αT0
δ1∆x1

0
− αT1

δ1∆x1
0

− αT1
δ1∆x1

2
+ αT2

δ1∆x1
2

+ α

k
ėgen

Ṫ2 = αT1
δ2∆x2

1
− αT2

δ2∆x2
1

− αhT2
kδ2

+ αhT∞
kδ2

+ α

k
ėgen

where the firing rates of each transition are given by:

λ1
0 = α

δ0∆1
0
, λ0

1 = α

δ1∆1
0
, λ2

1 = α

δ1∆2
1

λ1
2 = α

δ2∆2
1
, λ∞

2 = αh

k
, λ∞

2 = λ2
∞, λgen = αėgen

k

and the arc weights:

a1
0 = λ0

1
λ1

0
= δ0

δ1
, a1

2 = λ2
1

λ1
2

= δ1
δ2

, a2
1 = λ1

2
λ2

1
= δ2

δ1
.

B.6 Heat transfer application 173

Notes on preliminary

comparison between RUN and

AlECS

C

We considered two processor cores with cache memories and speculative mechanisms

non-existent or turned off. We produced task sets with 10 tasks per set and total

utilization U = 2. Each task utilization was randomly generated under a uniform

distribution by using UUnifast ([12]), integrated in Tertimuss. Deadlines were

selected as 2, 5 and 10 s.

Unlike our proposal, RUN uses time, not cycles, to calculate a schedule. This requires

rounding to cycles the time share of jobs as provided by RUN, which makes some

task sets not schedulable in practice, despite the fact that they are theoretically

schedulable according to RUN. For the comparison to be fair, we have only selected

task sets which are schedulable under both schedulers.

We measured separately the number of Mandatory Context Switches (MCS) and

Coerced Context Switches (CCS). MCS are given by job activation and termination,

and therefore are independent from the scheduler, unlike CCS. Fig. 5.1 (a) displays

two stacked bars per experimental task set, the bottom black bar of which represents

the MCS, amounting to the same value in both schedulers as expected. RUN triggers

between 6% (set 7) and up to 80% (set 6) more CCS than our proposal, averaging

44%. Fig. 5.1 (b) shows that our proposal cuts by almost a quarter the number

of job migrations yielded by RUN, which reaches zero migrations against the two

produced by our proposal in set 9 nonetheless.

175

Unimodularity D
An integer programming problem (ILP) is defined as a LPP, however the solution

space is restricted to integer values, because in practice it is often necessary to work

with integer quantities. However, solving them can be a great challenge and it is

usually highly computational demanding.

In particular, there are linear programming problems that can have integer solutions

if their constraint matrix has the Unimodular characteristic.

A matrix A of rank r is unimodular if all its elements are integers and the determinant

of each square submatrix of order r is either 0, +1 or −1. A matrix A is totally

unimodular (TUM) if the determinant of each square submatrix of A is 0, ±1. Total

unimodularity implies unimodularity. [72]. Below are two classic results that allow

evaluating the unimodularity of a matrix.

Theorem D.1 [72] Unimodularity and integer vertex. Let A be an integer matrix

of dimension (m,n), with full rank by rows m and let F = {x ∈ Rn | Ax = b, x ≥ 0}
not empty. Then A is unimodular if and only if for every vector b ∈ Rm the set F has

integer vertices.

Theorem D.2 Total unimodularity and integer vertex.Let A be an integer matrix

and let F = {x | Ax ≤ b, x ≥ 0} not empty. Then A is totally unimodular if and only

if for every integer vector b the region F has integer vertices.

If a LPP, with a unimodular restriction matrix A, is solved by the simplex method,

the solution is integral, according to theorems (D.1) and (D.2). However, testing

whether a matrix is unimodular can be very difficult. Theorem (D.3) establishes

sufficient TUM conditions for a special type of matrix.

Theorem D.3 Sufficiency conditions for total unimodularity. Any matrix A with

elements (−1, 0, 1) is totally unimodular if:

1. each column of A contains no more than two nonzero elements, and

177

2. the rows of A can be separated into two subsets such that:

a) if a column contains two elements with the same sign, then the corresponding

rows belong to different subsets, and,

b) if a column contains two elements with opposite signs, then the correspond-

ing rows belong to the same subset.

Proofs for theorems (D.1),(D.2) and (D.3) can be consulted on [72].

178 Appendix D Unimodularity

List of Figures

2.1. Classification of scheduling algorithms 16

2.2. Classification of RT multiprocessor scheduling 19

2.3. Dhall’s effect. Example with m processors and m + 1 tasks for EDF and

RM . 21

2.4. Fluid versus practical schedules . 22

2.5. Example of a Petri net structure . 29

2.6. TCPN global model . 34

2.7. TCPN module for task and CPU . 35

2.8. TCPN module for task and CPU . 37

3.1. EETAMS schema overview . 42

3.2. Jobs generated by the task set of Example 1 48

3.3. Temperature evolution (upper plot) for the periodic schedule (lower

plot) at CPU1 (above) and CPU2 (below). The maximum temperature

produced by this schedule is TCP U1,2 = 45.3oC 58

3.4. Temperature evolution (upper plot) for the periodic schedule (lower

plot) at CPU1 (above) and CPU2 (below) upon acceptance of the

aperiodic task τa
1 . The maximum temperature produced by this schedule

is TCP U1,2 = 46.24oC . 60

4.1. AlECS Overview . 66

4.2. Jobs generated by the task set of Example 4.1 70

4.3. Form of submatrix [AT BT]T . 75

4.4. Schedule for T = {(3, 5), (6, 10), (9, 15), (6, 10), (3, 5)} 77

4.5. Execution accumulative functions Ri,j 79

4.6. TCPN module for CPU1 to CPUj . The gray places 81

4.7. a) Task execution paths and b) System output recovering from a system

overhead in the interval [15, 16] . 86

4.8. AlECS aperiodic task management . 88

5.1. Preliminary comparison fon context switches between AlECS and RUN 90

179

5.2. CAlECS scheduler scheme . 91

5.3. Example 5.1. Materials and Layout . 94

5.4. Differences in clustering between the usage of one idle (forces one

cluster) and two idle tasks (idle tasks are in gray) 97

5.5. BBP in Alg. 5: a) Iteration 1; b) Iteration 2 98

5.6. CAlECS pre-scehduelr . 99

5.7. Execution of tasks with the admission of an aperiodic task 109

5.8. Processors temperature evolution, on the left the nominal behaviour

and on the right the temperature evolution with the admission of an

aperiodic tasks . 110

5.9. Simulation results for the number of migrations/number of jobs. 111

5.10. Simulation results for the number of preemption / number of jobs. . . . 113

6.1. Motivational example to account for preemption and migration overheads120

6.2. Position of the algorithm that account for preemption and migration

overhead, with regards of the CAlECS scheme which is defined inside

the dotted rectangle . 122

6.3. Flow chart of AdWCET . 123

6.4. AdWCET iterative process . 126

6.5. Utilization lower bound umin for different hyperperiods. The horizontal

lines represent the constraint 1/r, where r is the task-to-core ratio.

f = 1000, fixed for every curve . 131

6.6. Percentage of WCET maximum increase (a and b) and percentage of

frequency increase (c and d) . 132

6.7. Iteration analysis of AdWCET under CAlECS 133

6.8. Analysis of preemption and migrations per job on first and convergence

iteration . 133

6.9. Percentage of frequency increase in the utilization approach 135

6.10. Comparison of frequency increment in AdWCET and DP-U. Each bar

represents the number of experiments in which that algorithm obtained

the lower frequency of the two. 136

A.1. Main components of Tertimuss . 158

B.1. Points and sections for the finite difference formulation 160

B.2. TCPN representation for interior places 161

B.3. TCPN representation for fn(t) constant 162

180 List of Figures

B.4. TCPN elementary module . 162

B.5. TCPN elementary module for Dirichlet BC 164

B.6. TCPN representation for the boundary point dynamics ġ0, on the left ,

and on the right the TCPN elementary module for Neumann boundary

conditions . 166

B.7. TCPN elementary module for Robin boundary condition 167

B.8. Heat conduction TCPN representation 170

B.9. TCPN module for a convection boundary condition 170

B.10. TCPN module for a radiation boundary condition 171

B.11. Schematic for Example B.6.5 . 173

B.12. TCPN model for Example B.6.5 with three element discretization 173

List of Figures 181

List of Tables

2.1. Summary of the notation used for tasks and processors 14

2.2. TCPN modules for element subjected to conduction, convection and heat

generation . 38

5.1. Example 5.1. Power frequency pairs . 94

5.2. Ri,j(δk), cycles that each task must execute on each CPU at every interval

∆k . 102

5.3. Number of migrations per job depending on the tasks-per-processor ratio

(TPP) . 112

5.4. Number of preemptions per job . 113

5.5. Clustering performance . 114

5.6. Clustering performance . 115

183

Acronyms

AI Artificial Intelligence. 9

AlECS Allocation and Execution Control Scheduler. 7, 66, 67, 91–94, 99, 100, 109,

110, 112, 114, 117, 140, 144, 145, 179

BF Best Fit. 19, 20

BFD Best Fit Descending. 96, 98

BPP Bin packing problem. 19, 20, 24, 95–98

CAlECS Clustered Allocation and Execution Control Scheduler. 7, 89, 91–93, 99,

100, 109, 110, 112–114, 117, 122, 123, 126, 134, 140, 144, 145, 180

CE Cyclic Executive. 2–4, 15, 17, 99, 100, 119–122, 128, 133, 135, 136, 139, 140,

142–146

COTS Components-off-the-shelf. 1, 15

CPI Cycles per Instruction. 10

CPN Continuous Petri Nets. 30, 31

CPU Central Processing Unit. 3, 9, 12, 16, 139, 143

DJP Dynamic job priority. 16

DM Deadline Monotonic. 16, 17

DP Deadline partitioning. 43, 140, 144

DSM Distributed Shared Memory. 10

DVFS Dinamyc Voltage and Frequency Scaling. 11, 27

ECU Electronic Control Unit. 1

EDF Earliest Deadline First. 1, 17, 20, 23, 24, 27, 97, 99, 111, 119

FF First Fit. 19, 20

185

FFD First Fit Descending. 20

FJP Fixed job priority. 16

FPZL Fixed Priority until Zero Laxity. 41, 53, 59

FRT Firm Real Time. 11, 25

FTP Fixed task priority. 16

GPU Graphic Processing Unit. 9

HRT Hard Real Time. 1–3, 11, 13, 26, 27, 41–44, 52, 55, 58, 60, 65, 67, 68, 76, 80,

83, 86, 87, 93–95, 99, 100, 128, 135, 139–144, 146, 147

ILP Integer Linear Programming Problem. 43, 61, 65, 69, 140, 141, 144, 145, 177

ISA Instruction Set Architecture. 9, 10

LLF Least Laxity First. 17, 23

LPP Linear Programming Problem. 59, 177

MPSoC Multiprocessor System on a Chip. 1, 2, 9, 10, 93

NF Next Fit. 19

NoC Network on Chip. 9

NUMA Non-Uniform Memory Access. 10

PDE Parabolic partial differential equation. 159

PN Petri Net. 28, 102

QPS Quasi-Partitioned Scheduling. 23, 24

RM Rate Monotonic. 1, 16, 17, 20, 119

RT Real Time. 1, 7, 11–15, 21, 23, 25–27, 40–42, 54, 60, 119, 130, 140–142,

145–147, 157

RUN Reduction to Uniprocessor. 23, 24, 109–114, 140, 144

SMP Symmetric Multiprocessor. 9–11

186 Acronyms

SRT Soft Real Time. 2, 11, 25, 42, 139, 143

SWaP-C Space, Weight, Power and Cost. 1

TCPN Timed Continuous Petri Net. 3, 7, 31, 32, 60, 68, 77, 80, 81, 89, 92, 102,

139, 140, 143, 144, 159

TUM Total Unimodularity. 177

UMA Uniform Memory Access. 10

WCET Worst Case Execution Time. 1, 12, 13, 15, 26, 59, 111, 119–126, 130,

132–134, 142, 146, 180

WF Worst Fit. 19

Acronyms 187

Acronyms 189

	2296_Rubio Anguiano TESIS.pdf
	Cover
	Titlepage
	Contents
	1 Introduction
	1.1 Rationale
	1.2 Thesis Objectives
	1.3 Contributions
	1.4 Structure of this document

	2 Background and prior work
	2.1 Hardware Foundations
	2.2 Real time systems
	2.3 System Model
	2.4 Tertimuss

	3 Energy-Efficient Thermal-Aware RT Multiprocessor Scheduling
	3.1 Problem definition
	3.2 Off-line stage
	3.3 On-line stage
	3.4 Experimental Results
	3.5 Conclusions

	4 RT Multiprocessor Scheduling based on continuous control
	4.1 Problem definition
	4.2 Overview of the AlECS scheduling system
	4.3 Task set conditioner
	4.4 Pre-scheduler
	4.5 Compute references
	4.6 On-line controller ALECS
	4.7 Conclusions

	5 Maximizing utilization and minimizing migration
	5.1 Problem definition
	5.2 Overview of the CAlECS scheduling system
	5.3 Off-line stage
	5.4 On-line controller
	5.5 Comparison with RUN
	5.6 Computational complexity
	5.7 Conclusions

	6 Accounting for preemption and migration costs on CE
	6.1 The AdWECT algorithm
	6.2 DP-U, an approach based on the utilization
	6.3 Experimental results
	6.4 Comparison between AdWCET and DP-U
	6.5 Conclusion

	7 Conclusion
	7.1 Summary of contributions
	7.2 Complexity
	7.3 Conclusions
	7.4 Future work

	8 Conclusiones
	Bibliography
	A Tertimuss
	B Modeling methodology using TCPNs
	C Notes on preliminary comparison between RUN and AlECS
	D Unimodularity
	List of Figures
	List of Tables
	Acronyms

