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Abstract

The use of reduced-order models (ROMs) for the numerical approximation of the solution
of partial differential equations is a topic of current interest, being motivated by the
high computational efficiency of ROMs when compared to full-order models (FOMs).
To construct a ROM to approximate the solution of transport equations, the use of
the proper orthogonal decomposition (POD) method is a common choice. POD-based
ROMs rely on the snapshot method, which consists in the off-line computation of a set
of values corresponding to the solution up to the training time by means of the FOM.
Then, the ROM is constructed and solved, up to the training time. When considering
parabolic equations, the method is able to compute the solution beyond the training time.
However, when considering hyperbolic problems, POD-based ROMs fail when computing
the solution beyond the training time, this being one of the strongest limitations of POD-
based ROMs. In this work, a novel strategy in the framework of POD-based ROMs to
extrapolate solutions in time is introduced. This method, called CT-ROM, is based on
a coordinate transformation and allows to compute the solution of advection-dominated
problems beyond the training time. The performance of this novel strategy is assessed
using a variety of test cases, showing promising results in all of them. The extension
of the CT-ROM to higher spatial dimensions by means of the Radon transform is also
presented. The results obtained are encouraging and motivate the application of this
idea to more complex problems.
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1. Introduction9

Many of the problems considered in Fluid Mechanics are modelled by systems of10

partial differential equations that stand for the conservation of some fundamental mag-11

nitudes (e.g. mass, momentum, energy, etc.), often including source terms that increase12

their complexity. The solutions of such equations cannot be obtained analytically and13

are generally approached by means of numerical methods, such as the finite volume14

method, the finite difference method or finite element method (such as the discontinu-15

ous Galerkin method) among others, which allow to compute the evolution in time of16

the flow variables inside the computational domain.17

The transient nature of real flows and the increasing need for higher fidelity solutions18

entail a high cost of computational resources, including computing power, storage ca-19

pacity and interconnection. When computing realistic events of long duration, i.e., the20

length of the event is much longer than the time scales of the relevant features of the flow,21

the need to speed up computational time is essential to preserve the predictive nature22

of the tool. The large number and diversity of problems requiring computational cost23

improvement has led in recent years to the development of a wide range of mathematical24

strategys and tools, including the (discrete) empirical interpolation method [6, 9], the25

dynamic mode decomposition [2, 43], the Krylov subspaces method [13] and artificial26

neural networks [2], among many others.27

In addition to the above methods, the reduced-order model (ROM) strategy is one of28

the most popular in the field. It was originally developed as the Reduced basis strategy29

for predicting the nonlinear static response of structures [5, 29, 32]. The ROM strategy30

states that the variable of interest resides on a low-dimensional manifold within the31

infinite-dimensional solution space associated with the partial differential equation [35].32

Proper orthogonal decomposition (POD), which is one of the most significant method-33

ologies related to ROM in Fluid Mechanics [3], was introduced originally by Lumley in34

1967 [27] to approach the turbulence problem by random field of velocities of turbu-35

lent flows into a set of deterministic functions [47]. The POD method is also known36

as Karhunen-Loève expansions [24, 26], principal component analysis [34, 23]. There37

are different modified POD methods proposed in the literature, such as the weighted38

POD [10], proper interval decomposition [1, 7, 22, 48], spectral POD [46] and manifold39

approximations via transported subspaces [40].40

The procedure of solving a problem with the POD-based ROM strategy starts with41

the snapshot method [44], which consists of the off-line computation of a set of values42

corresponding to the solution up to the training time by means a numerical scheme that43

is called the full-order model (FOM). These snapshots are used to train the ROM in44

the so-called on-line part. Then, the ROM can be solved up to the training time, thus45

setting up an interpolation problem or beyond that time horizon, if possible. In this case,46

one of the advantages of the ROM is that a speed-up of several orders of magnitude is47

possible [1].48

The computation of the solution beyond the training time is not always possible49

and represents one of the major limitations of the POD method when dealing with50

advection-dominated equations [1], this being a challenging problem of recent interest.51

Computing extrapolated solutions with a ROM for times longer than the training time52

would suppose a major step in the field of computational hydraulics. For this reason, a53
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new ROM strategy based on a coordinate transformation [19], which is called CT-ROM,54

is proposed in this work with the aim of predicting solutions beyond the training time.55

ROMs have been developed in the literature for elliptic [35], parabolic [20, 21, 41] and56

hyperbolic equations including the linear scalar equation [37], as well as for the Burgers57

equation [1, 31, 40, 42], the Navier-Stokes equations [7, 21], the shallow water equations58

(SWE) [2, 48] and other nonlinear problems involving discontinuous solutions [45]. There59

are different formulations of POD-based ROMs according to their relation with the FOM,60

as they can be intrusive [5, 31, 48] and non-intrusive [1]. In this work, the CT-ROM61

is applied intrusively to the 1D linear advection-diffusion-reaction equation and to 1D62

linear hyperbolic systems of partial differential equations, namely the linearized SWE63

and a solute transport coupled model. The application of the CT-ROM to nonlinear64

problems such as the Burgers equation is also explored. The FOMs of these equations65

are constructed by means of the standard Godunov first-order upwind method [4, 16, 17].66

The CT-ROM herein introduced is a genuinely 1D method. An extension of this67

strategy to 2D problems by means of the Radon transform is also presented [38]. This68

extension is based on the intertwining property of the Radon transform, which allows to69

express the 2D problem as a collection of 1D problems, all of them written in terms of a70

univariate derivative [12, 39, 40]. Then, the CT-ROM strategy can be applied to each of71

those 1D problems, and the solution in the 2D physical domain is computed by means72

of a back-projection, i.e., the inverse Radon transform. This approach proves useful for73

the application of the CT-ROM method to hyperbolic partial differential equations in74

2D. Results for the computation of a 2D advection problem are presented.75

The remainder of the paper is organized as follows. Section 2 describes the standard76

POD-based ROM strategy, showing with an example the flaw of this method when77

predicting beyond the training time. Section 3 introduces the novel CT-ROM strategy78

and presents some examples of application to linear and non-linear problems. The79

extension to 2D problems is also included in this section. Finally, concluding remarks80

are drawn in Section 4.81

2. ROM strategy82

Consider the following partial differential equation83

∂u(x, t)

∂t
+
∂f(u(x, t))

∂x
= ν

∂2u(x, t)

∂x2
− cu(x, t), (x, t) ∈ (0, L)× (0, T ] , (1)

where f(u(x, t)) is the physical flux; ν ≥ 0 is the diffusion coefficient; and c is the84

reaction coefficient. The initial (IC) and boundary (BC) conditions considered will be85

indicated for each specific problem.86

In the present work, the FOM to approximate the solution of problem (1) is based
on the Finite volume (FV) method. The computational domain is discretized by means
of volume cells of uniform length ∆x and the positions of the center and left and right
interfaces of j-th cell are xj , xj−1/2 and xj+1/2, respectively, with j = 1, ..., Nx. Re-
garding the time discretization, the time step ∆t = tn+1 − tn with n = 0, ..., Ntrain, is
selected dynamically using the Courant-Friedrichs-Lewy (CFL) condition [11] as follows

∆t = CFL
∆x2

∆xmax (λ) + 2ν
,
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where λ =
∂f

∂u
and CFL < 1. The FOM is formulated by means of the FV method87

[25, 33]88

un+1
j − unj

∆t
+
δfn,−,∗j+1/2 + δfn,+,∗

j−1/2

∆x
= ν

unj+1 − 2unj + unj−1

∆x2
− cunj , (2)

where unj ≈ u(xj , t
n) is the cell average value over the cell (xj−1/2, xj+1/2) and δfn,∓,∗j±1/289

are the numerical flux differences, defined as90

δfn,∓,∗j±1/2 =
(
λ̄∓δu

)n
j±1/2

, (3)

with δunj+1/2 = unj+1 − unj and91

(
λ̄±
)n
j+1/2

=
1

2

(
λ̄±

∣∣λ̄∣∣)n
j+1/2

, (4)

where λ̄nj+1/2 is the approximate wave celerity at time tn and cell interface xj+1/2.92

Numerical approximations to the solution u(x, t) are computed with (2) up to a93

training time ttrain = tNtrain with ttrain ≤ T . It is considered a prediction or extrapola-94

tion in time when the ROM computes the approximate solution of u(x, t) at t > ttrain,95

being particularly interesting the case when ttrain � T .96

A set of Ntrain time numerical solutions, also called snapshots unj , is used to construct

the snapshot matrix U ∈ RNx×Ntrain

U =



u1
1 u2

1 · · · uNtrain
1

u1
2 u2

2 · · · uNtrain
2

...
...

. . .
...

u1
Nx

u2
Nx

· · · uNtrain
Nx


.

A basis of functions is calculated by applying the singular value decomposition (SVD,
[18]) to the snapshot matrix

U = ΦΣΨT ,

where Σ ∈ RNx×Ntrain is a diagonal matrix whose entries of the main diagonal are the97

singular values of U and Φ ∈ RNx×Nx and Ψ ∈ RNtrain×Ntrain are orthogonal matrices.98

The matrix Φ = (φ1, . . . , φNx) with φk = (φ1,k, . . . , φNx,k)T consists of the orthogonal99

eigenvectors of UUT .100

Let NPOD be a positive integer such that NPOD ≤ Ntrain and it will be chosen as101

small as possible without significantly affecting the accuracy of the computed solution102

with our reduced order method. The POD basis {φ1, ..., φNPOD
} of dimension NPOD is103

used to construct, in the offline stage, a set of matrices that are fed into the ROM. In104

the online stage, the reduce-order approximations v̂n = (v̂n1 , . . . , v̂
n
NPOD

)T for tn > ttrain105

are computed with the POD-based reduced-order finite volume method. Then, the106

numerical solution v(xj , t
n) is reconstructed using the Galerkin projection [14]107

vnj =

NPOD∑
p=1

v̂npφj,p, j = 1, ..., Nx. (5)
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Bounds on the difference between un and its orthogonal projection onto span{φ1, ..., φNPOD
}108

when tn ≤ ttrain are available in the literature (see, for example, [36, Theorem 6.1]), but109

not when tn > ttrain. In the following section a simple 1D linear problem is considered110

and it is shown that a standard POD-based ROM does not provide accurate approxi-111

mations to the solution when t > ttrain.112

Performance of standard POD-based ROM: 1D linear advection-diffusion problem113

Consider the 1D linear equation (1) where the physical flux is f(u(x, t)) = au(x, t)114

and the approximate wave celerity in (2) is λ̄nj+1/2 = a, ∀j, n.115

The intrusive ROM of (2) is obtained by: i) introducing the Galerkin method (5)116

into the FOM; ii) multiplying it by φj,p (the p-th component of the vector φj of the POD117

basis); and iii) summing up over the cells (i.e., from j = 1 to Nx). For a full development118

of the procedure to obtain the ROM, see [48].119

The vector formulation of the ROM of the 1D linear advection-diffusion problem is120

v̂n+1 = v̂n − a

2

∆t

∆x
Av̂n +

|a|
2

∆t

∆x
Bv̂n + ν

∆t

∆x2
Bv̂n − c∆tCv̂n, (6)

where the elements of matrices A = (Akp), B = (Bkp) and C = (Ckp) ∈ RNPOD×NPOD

are

Akp = Λ1
kp +

Nx−1∑
j=2

[φj+1,k − φj−1,k]φj,p + ΛNx
kp ,

Bkp = β1
kp +

Nx−1∑
j=2

[φj+1,k − 2φj,k + φj−1,k]φj,p + βNx
kp ,

Ckp = ζ1
kp +

Nx−1∑
j=2

φj,kφj,p + ζNx
kp ,

and the terms Λ1
kp, ΛNx

kp , β1
kp, β

Nx
kp , ζ1

kp and ζNx
kp depend on the type of the boundary121

conditions. For example, in the case of Dirichlet boundary conditions, they are given by122

123

Λ1
kp = (φ2,k − φ1,k)φ1,p, ΛNx

kp = (φNx,k − φNx−1,k)φNx,p,

β1
kp = (φ2,k − φ1,k)φ1,p, βNx

kp = (φNx,k − φNx−1,k)φNx,p,

ζ1
kp = 0, ζNx

kp = 0,

(7)

and, if periodic boundary conditions are considered, then124

Λ1
kp = (φ2,k − φNx,k)φ1,p, ΛNx

kp = (φ1,k − φNx−1,k)φNx,p,

β1
kp = (φ2,k − 2φ1,k + φNx,k)φ1,p, βNx

kp = (φ1,k − 2φNx,k + φNx−1,k)φNx,p,

ζ1
kp = 0, ζNx

kp = 0.

(8)

The ROM (6) is used to approximate the advection-diffusion problem (1) with ν =125

0.001, a = 0.5 and c = 0. In the domain [0, 2]× [0, 0.5], with IC126

u(x, 0) = 1 + e−200(x−1)2 , 0 < x < 2, (9)
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and BC127

u(0, t) = u(2, t) = 1, 0 ≤ t ≤ 0.5. (10)

The spatial domain is divided into Nx = 200 volume cells of cell size ∆x = 0.01. The
time step, with CFL = 0.9, is

∆t = CFL
∆x2

a∆x+ 2ν
= 0.0129,

Numerical approximations to u(x, t) have been computed with the FOM (2) up to128

ttrain = 0.1 which corresponds with Ntrain = 9. From these data, new numerical approx-129

imations are computed using the ROM (6) up to the final time T = 0.5. Figure 1 plots130

numerical results for this example with NPOD = 14: Figures 1a and 1b show the time131

evolution of the Gaussian IC computed by the FOM and the ROM, respectively; Figure132

1c shows the same ROM results superimposed on top of each other. It can be seen in133

Figures 1b and 1c that the ROM, for times greater than the training time, generates134

fluctuations in the solution that blur the Gaussian profile, so it ends up not resembling135

the reference solution at the final time T = 0.5 (red line). This can be seen in Figure136

1d, where the ROM solution is compared with the FOM solution at T = 0.5. It also137

includes the IC and the FOM solution at the training time (ttrain = 0.1).138

It should be noted that for diffusion-dominated problems, extrapolation in time can139

be done with the standard ROM. However, this example justifies the development of a140

new ROM strategy to predict solutions beyond the training time for advection-dominated141

problems.142
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(a) Solution computed with the FOM.
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(d) Comparison between the FOM and the ROM re-
sults.

Figure 1: Solutions computed with the FOM/ROM.

3. CT-ROM strategy143

In this section, a new ROM (which is called in this paper CT-ROM) is presented144

based on an appropriate coordinate transformation and the POD to generate accurate145

approximations to (1) beyond the training time. For that purpose, an interior point146

d0 ∈ (0, L) must be identified in the initial condition, such as, for example, the peak147

of a Gaussian function or a discontinuity. Our CT-ROM approximates the solution in148

a new coordinate system which is aligned with the characteristic curve emanating from149

point d0. This strategy is applied to some cases. First, the case of a linear problem with150

f(u(x, t)) = a(t)u(x, t) is considered and later the extension to the Burgers’ equation is151

outlined.152

3.1. CT-ROM applied to 1D linear problems153

Consider the characteristic curve d(t) defined by154

d′(t) = a(t), 0 < t ≤ T, d(0) = d0. (11)

It is given by155

d(t) =

∫ t

s=0
a(s) ds+ d(0),
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and it is assumed that d(T ) < L. This characteristic curve is used to define the following156

mapping [19]:157

x̃(t) =


d(0)

d(t)
x, if 0 ≤ x ≤ d(t),

L− L− d(0)

L− d(t)
(L− x), if d(t) < x ≤ L.

(12)

Note that the sub-domains {(x, t), 0 ≤ x ≤ d(t), 0 ≤ t ≤ T} and {(x, t), d(t) ≤ x ≤158

L, 0 ≤ t ≤ T} are transformed into the rectangular sub-domains [0, d(0)] × [0, T ] and159

[d(0), L]× [0, T ], respectively. In addition, note that x̃ = x at t = 0. Using the chain rule160

∂u

∂x
=


d(0)

d(t)

∂ũ

∂x̃
, if 0 < x < d(t),

L− d(0)

L− d(t)

∂ũ

∂x̃
, if d(t) < x < L,

and161

∂u

∂t
=


∂ũ

∂t
− a(t)

x̃

d(t)

∂ũ

∂x̃
, if 0 < x < d(t),

∂ũ

∂t
− a(t)

L− x̃
L− d(t)

∂ũ

∂x̃
, if d(t) < x < L.

Thus, the following problem is obtained when the mapping (12) is applied to (1) with162

f(u(x, t)) = a(t)u(x, t)163 
∂ũ

∂t
+

[
a(t)

d(0)

d(t)
− a(t)

x̃

d(t)

]
∂ũ

∂x̃
= ν

(
d(0)

d(t)

)2 ∂2ũ

∂x̃2
− cũ, if 0 < x̃ < d(0),

∂ũ

∂t
+

[
a(t)

L− d(0)

L− d(t)
− a(t)

L− x̃
L− d(t)

]
∂ũ

∂x̃
= ν

(
L− d(0)

L− d(t)

)2 ∂2ũ

∂x̃2
− cũ, if d(0) < x̃ < L,

(13)
where ũ(x̃, t) = u(x, t). In the following it is assumed that the solution ũ of (13) is a164

smooth function in [0, L]× [0, T ].165

In the transformed variables (x̃, t), the computational mesh is rectangular, but in166

the physical variables (x, t), it is a time dependent mesh which is aligned with the167

characteristic curve d(t). The spatial mesh in the transformed domain is uniform in168

the subintervals [0, d(0)] and [d(0), L] with x̃J+1/2 = d(0). The coordinate transformed169

FOM (CT-FOM) is defined on this mesh and it is given by170 

ũn+1
j = ũnj −

∆t

∆x

[
d0

dn

(
δf̃n,−,∗j+1/2 + δf̃n,+,∗

j−1/2

)
− an

dn

(
δf̃n,−,∗∗j+1/2 + δf̃n,+,∗∗

j−1/2

)]
+ν

∆t

∆x̃2

(
d0

dn

)2 (
ũnj+1 − 2ũnj + ũnj−1

)
−∆tcũnj , if x̃j ≤ d0,

ũn+1
j = ũnj −

∆t

∆x

[
L− d0

L− dn
(
δf̃n,−,∗j+1/2 + δf̃n,+,∗

j−1/2

)
− an

L− dn
(
δf̃n,−,∗∗j+1/2 + δf̃n,+,∗∗

j−1/2

)]
+ν

∆t

∆x̃2

(
L− d0

L− dn

)2 (
ũnj+1 − 2ũnj + ũnj−1

)
−∆tcũnj , if x̃j > d0,

(14)
where an = a(tn), dn = d(tn) and the numerical fluxes are

δf̃n,±,∗j+1/2 =
(
λ̄±,∗j+1/2δũj+1/2

)n
, δf̃n,±,∗∗j+1/2 =

(
λ̄±,∗∗j+1/2δũj+1/2

)n
,
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with δũnj+1/2 = ũnj+1 − ũnj , and

λ̄n,±,∗j+1/2 =
1

2

(
λ̄n,∗j+1/2 ±

∣∣∣λ̄n,∗j+1/2

∣∣∣) =
1

2
(an ± |an|) ,

λ̄n,+,∗∗
j+1/2 =

1

2

(
λ̄n,∗∗j+1/2 +

∣∣∣λ̄n,∗∗j+1/2

∣∣∣) =

{
x̃j+1/2 , if x̃j ≤ d0,

L− x̃j+1/2, if x̃j > d0,

λ̄n,−,∗∗j+1/2 =
1

2

(
λ̄n,∗∗j+1/2 −

∣∣∣λ̄n,∗∗j+1/2

∣∣∣) = 0.

The explicit updating equation of the reduced order model with the coordinate trans-
formation (CT-ROM) is obtained following the same three steps indicated in the pre-
vious section for the POD method. The reduced-order solution approximations of the
CT-ROM are ŵn = (ŵn

1 , . . . , ŵ
n
NPOD

)T and the CT-ROM itself

ŵn+1 = ŵn − 1

2
an

∆t

∆x̃

[
d0

dn
AL +

L− d0

L− dn
AR

]
ŵn +

1

2
|an| ∆t

∆x̃

[
d0

dn
BL +

L− d0

L− dn
BR

]
ŵn

+
1

4
an

∆t

∆x̃

[
1

dn
DL +

1

L− dn
DR

]
ŵn + ν

∆t

∆x̃2

[(
d0

dn

)2

BL +

(
L− d0

L− dn

)2

BR

]
ŵn

− c∆tCŵn, (15)

where the elements of these matrices are

AL
kp = Λ1

kp +
J∑

j=2

(φj+1,k − φj−1,k)φj,p, B
L
kp = β1

kp +
J∑

j=1

(φj+1,k − 2φj,k + φj−1,k)φj,p,

Ckp = ζ1
kp +

Nx−1∑
j=2

φj,kφj,p + ζNx
kp , D

L
kp = δ1

kp + 4
J∑

j=2

x̃j−1/2 (φj,k − φj−1,k)φj,p, D
R
kp = δNx

kp ,

where J is the position of the adjacent cell to x̃J+1/2 = d(0), and the terms Λ1
kp, β

1
kp, ζ

1
kp171

and ζNx
kp are given in (7) and (8) for Dirichlet and periodic BC, respectively. The matrices172

AR and BR are defined similarly to AL and BL and the limits of the summations are173

from j = J + 1 to Nx − 1. The terms δ1
kp and δNx

kp in the matrices DL and DR are174

obtained following the same procedure. Once ŵn is computed with (15) at all the175

times levels tn, n = 0, 1, . . . , NT , the numerical approximation wn
j at the mesh points176

{(xj , tn), j = 1, 2, . . . , Nx, n = 0, 1, . . . , NT } of the physical domain is generated177

wn
j =

NPOD∑
p=1

ŵn
pφj,p, j = 1, ..., Nx.

The CT-ROM outlined above is applied to four numerical cases.178

Case 1. 1D transport of Gaussian IC179

The example described in Section 2 is revisited and the ability of the ROM and the180

CT-ROM to predict solutions beyond the training time is compared for some values of181

the advection coefficient a. In addition, some numerical results for different choices of182

ttrain and NPOD are shown and some conclusions are drawn. Finally, the CPU times183

required by the CT-FOM and CT-ROM are compared, showing that the latter generates184

a similar approximation with a lower computational cost.185
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The Péclet number is used to consider a range of advection-diffusion problems. It is
defined to be the ratio of the advection to the diffusion transport

Pe =
a∆x

ν
,

and, depending on the value of this number, the problem is advection or diffusion dom-186

inated. In the numerical experiments, the value of the diffusion coefficient is fixed with187

ν = 0.001, the cell size is ∆x = 0.01 and the advection coefficient a takes the values188

shown in Table 1. The corresponding Péclet numbers are also given in this table.189

a 0.005 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Pe 0.05 0.25 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Table 1: Case 1: Values of the advection coefficient and the Péclet number.

The application of the CT-ROM to this problem is now described. The starting190

point of the characteristic curve d(t) is placed at the location of the maximum of the191

initial Gaussian function, i.e., d(0) = 1. In Figure 2, the mesh and the characteristic192

curve (11) for a = 0.5 in the physical domain are shown.193

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

Figure 2: Case 1: Time evolution of the physical mesh.

The spatial domain [0, 2] is divided into Nx = 200 volume cells, so that the cell size194

in the transformed domain is ∆x̃ = 0.01. The time step is computed to satisfy the195

following stability condition196

∆t = CFL
∆x̃2

∆x̃max {ã1, ã2}+ 2 max {ν̃1, ν̃2}
, (16)

where the modified velocities and modified viscosities are

ã1 = max
0≤x̃≤d(0)

∣∣∣∣ad(0)

d(t)
− a x̃

d(t)

∣∣∣∣ = |a|d(0)

d(t)
,

ã2 = max
d(0)≤x̃≤L

∣∣∣∣aL− d(0)

L− d(t)
− a L− x̃

L− d(t)

∣∣∣∣ = |a|L− d(0)

L− d(t)
,

ν̃1 = ν

(
d(0)

d(t)

)2

, ν̃2 = ν

(
L− d(0)

L− d(t)

)2

.

To assess the predictive capability of ROM and CT-ROM, numerical solutions are197

computed with the FOM and CT-FOM up to ttrain = 0.1 and approximations up to198
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the final time T = 0.5 are obtained using the ROM and CT-ROM (see Figure 2 for the199

latter method). Unless otherwise stated, the number of modes in all the experiments200

performed in this case is NPOD = 14.201

Lets first consider Case 1 with a = 0.15 and a = 0.5. The corresponding Péclet202

numbers are Pe = 1.5 and Pe = 5, and they are representative examples of diffusion203

dominated and advection dominated problems, respectively. In Figure 3, the IC and204

the computed solutions with both methods at ttrain = 0.1 and T = 0.5 are shown. A205

separately computed FOM/CT-FOM solution at T = 0.5 is also included for comparison206

with the ROM/CT-ROM solutions.207

Figure 4 illustrates how the CT-ROM works: i) the reduced order model is solved in208

the transformed mesh, so that the Gaussian profile of the IC remains fixed at the initial209

position and hardly changes (the decrease in amplitude is due to the given diffusion210

ν = 0.001), this can be seen in Figure 4a; and ii) the inverse coordinate transformation211

is performed to recover the solution in the physical mesh at each time step. This implies212

that the initial Gaussian profile is transported in space due to the evolution of the mesh213

itself, as can be seen in Figure 4b.214

0.6 0.8 1 1.2 1.4

1

1.2

1.4

1.6

1.8

2

Pe=1.50

(a) FOM/ROM: Pe = 1.5.

0.6 0.8 1 1.2 1.4

1

1.2

1.4

1.6

1.8

2

(b) FOM/ROM: Pe = 5.

0.6 0.8 1 1.2 1.4
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1.2

1.4
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1.8
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Pe=1.50

(c) CT-FOM/CT-ROM: Pe = 1.5.

0.6 0.8 1 1.2 1.4

1

1.2

1.4

1.6

1.8

2

Pe=5.00

(d) CT-FOM/CT-ROM: Pe = 5.

Figure 3: Case 1: Solutions computed with the FOM/ROM (top) and with the CT-FOM/CT-ROM
(bottom).
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(a) Computational domain.

0.5 1 1.5
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1.4

1.6

1.8

2

Pe=5.00Pe=5.00Pe=5.00Pe=5.00

(b) Physical domain.

Figure 4: Case 1: Solutions computed with the CT-ROM on the computational and physical domains.

On the one hand, it can be seen from Figure 3a that, in the case of Pe = 1.5, ROM is
able to predict the solution at times greater than the training time ttrain = 0.1, whereas
it is not possible for Pe = 5 as shown in Figure 3b. On the other hand, the CT-ROM
is able to predict in time both examples; see Figures 3c and 3d. The ROM and the
CT-ROM are compared in detail by calculating at all time levels tn

Dn
S =

‖un − vn‖`2
‖un‖`2

, Dn
CT =

‖ũn −wn‖`2
‖ũn‖`2

,

where ‖·‖`2 is the standard discrete L2([0, L]) norm for mesh functions. These differences215

are shown in Figure 5 and it is observed that the CT-ROM does indeed allow to predict216

in time with high accuracy for the set of problems considered including both advection-217

dominated and diffusion-dominated problems.218
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0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-18

-16

-14

-12

-10

-8

-6

-4

-2

(a) ROM: log10 of the difference DS .
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(b) CT-ROM: log10 of the difference DCT .

Figure 5: Case 1: Differences DS and DCT .

In Figure 6, the differences Dn
S and Dn

CT are shown for four different values of219

Pe = 0.05, 1.5, 3, 5, whose advective velocities are a = 0.005, 0.15, 0.3, 0.5, respectively.220

On the one hand, it can be seen that, for the most advection-dominated problem, the221

improvement is more significant and Dn
CT is reduced by five orders of magnitude with222
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respect to Dn
S . On the other hand, Dn

CT and Dn
CT have similar orders of magnitude at223

all time levels when the problem is diffusion-dominated.224
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(a) ROM: log10 of the difference DS .
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(b) CT-ROM: log10 of the difference DCT .

Figure 6: Case 1: Sections of differences DS and DCT .

The Péclet numbers shown in Figures 5b and 6b are only used as a tool to compare
the results with those in Figures 5a and 6a, respectively. In the new coordinate system,
(13) leads to the definition of a modified Péclet number

P̃ e =



a
d(0)− x̃
d(t)

ν

(
d(0)

d(t)

)2 ∆x̃ = Pe
d(0)− x̃
d(0)

, if 0 ≤ x̃ ≤ d(0),

a
x̃− d(0)

L− d(t)

ν

(
L− d(0)

L− d(t)

)2 ∆x̃ = Pe
x̃− d(0)

L− d(0)
, if d(0) < x̃ ≤ L.

Thus, this modified Péclet number depends on the variable x̃, i.e., P̃ e = P̃ e(x̃), and it225

is a piecewise linear function with P̃ e(0) = P̃ e(L) = 1 and P̃ e(d(0)) = 0. Therefore,226

P̃ e(x̃) ≤ Pe for all x̃ ∈ [0, L] and these numbers are only the same at the endpoints of227

the domain x̃ = 0, L.228

To analyze the influence of the training time ttrain on the accuracy of the computed229

solution with the CT-ROM, a series of results have been computed by varying the ratio230

between the number of cells and the training time. Table 2 shows the difference DNT
CT of231

the results of the CT-ROM at the final time T = 0.5 with respect to the reference solution232

computed with the CT-FOM. These results have been obtained for three different mesh233

refinements, Nx = 100, 200 and 400, and for three different training times, ttrain = 0.05,234

0.1 and 0.2. This table shows that the differences DNT
CT are small in all the cases, but235

they grow by an order of magnitude from ttrain = 0.2 to ttrain = 0.05. In addition, for236

different mesh refinements, the value of DNT
CT remains in the same order of magnitude.237
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ttrain/Nx 100 200 400

0.2 1.62 · 10−4 1.70 · 10−4 2.01 · 10−4

0.1 1.28 · 10−3 1.19 · 10−3 9.74 · 10−4

0.05 2.94 · 10−3 3.30 · 10−3 4.00 · 10−3

Table 2: Case 1: Differences DNT
CT vs. the training time for three different mesh refinements.

By setting Nx = 200 and ttrain = 0.1, the influence of the number of modes NPOD238

used by the CT-ROM is next analysed. In this case, Ntrain = 15 and NPOD = 3, 5, 7, 10239

and 15. The numerical results are given in Table 3, where it can be observed that the240

larger NPOD is, the smaller the differences DNT
CT are, although the order of magnitude241

remains constant. It is important to note that the CT-FOM and the CT-ROM give242

similar approximations to the solution even for a small number of modes.243

NPOD 3 5 7 10 15

DNT
CT 5.09 · 10−3 2.34 · 10−3 1.64 · 10−3 1.31 · 10−3 1.19 · 10−3

Table 3: Case 1: Differences DNT
CT with Nx = 200 volume cells, ttrain = 0.1 and some values of NPOD.

To check the efficiency gain of the CT-ROM vs. the CT-FOM, the CPU times of244

Case 1 with a = 0.5 are plotted in Figure 7, where Nx = 100, 200, 500, 1000, 2000245

and 3000, ttrain = 0.1 and T = 0.5. The CPU times of the CT-ROM at T = 0.5 are246

lower than those of CT-FOM for the same final time. The CPU times required by the247

CT-FOM to generate the training solutions have been added to the figure so that it can248

be seen that, with ttrain = 0.1, they are similar to those of the CT-ROM up to T = 0.5.249

100200500 1000 2000 3000

0

0.5

1

1.5

2

2.5

Figure 7: Case 1: CPU times measurement of the CT-FOM and the CT-ROM.

Case 2. 1D transport of Gaussian IC with a = a(t)250

Case 2 considers the 1D linear equation

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= 0, (x, t) ∈ (0, 2)× (0, 2],

with time-dependent advective velocity a(t) = 1− t. The Gaussian IC (9) and periodic251

BC (10) are considered. The starting point of the characteristic curve is placed at the252

point d(0) = 1 where the Gaussian IC reaches its maximum value.253

The spatial domain [0, 2] is divided into Nx = 200 volume cells, so that the cell size is254

∆x̃ = 0.01. The CFL number considered in this case is 0.9 and the time step is computed255
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to satisfy stability condition (16). Solutions are computed with the CT-FOM (14) up256

to ttrain = 0.1 and approximate solutions are computed using the CT-ROM (15) up to257

T = 2. In this case, Ntrain = 10 and the number of modes is NPOD = 10. The physical258

mesh evolves as shown in Figure 8 where the characteristic curve is d(t) = 1 + t− t2/2.259

0 0.5 1 1.5 2

0

0.5

1

1.5

2

Figure 8: Case 2: Time evolution of the physical mesh.

This case has been designed in such a way that the Gaussian IC moves to the right260

until t = 1, when a = 0, and, from that moment on, it moves to the left. Finally,261

at T = 2, the solution arrives at the initial position. As shown in Figure 9, the CT-262

ROM is able to reproduce the change of direction in the movement of the solution with263

a training time much shorter than the time in which the velocity changes sign, i.e.,264

ttrain = 0.1 < 1. The CT-ROM solution at the final time T = 2 reproduces accurately265

the reference solution computed with the CT-FOM.266

0

0

2

0.5

1.51

1

1

0.5
2 0

(a) CT-FOM.
(b) CT-ROM.

Figure 9: Case 2: Solutions computed with the CT-FOM and the CT-ROM.

Case 3. 1D reactive transport of two coupled functions267

Consider the following system of equations that models the reactive transport of two268

coupled solutes u(x, t) and v(x, t)269

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= −cu(x, t),

∂v(x, t)

∂t
+ a

∂v(x, t)

∂x
= cu(x, t),

(17)
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with (x, t) ∈ (0, L) × (0, T ], L = T = 10, the value of the advective velocity is a = 0.2
and the reactive coefficient is c = 0.1. The following IC is considered

u(x, 0) =


0, if 0 < x ≤ 0.3,

sin

(
2π

L
(x− 0.3)

)
, if 0.3 < x < 5.3,

0, if 5.3 ≤ x < 10,

v(x, 0) =


1, if 0 < x ≤ 0.3,

1− sin

(
2π

L
(x− 0.3)

)
, if 0.3 < x < 5.3,

1, if 5.3 ≤ x < 10,

and the BC
u(0, t) = u(L, t) = 0, v(0, t) = v(L, t) = 1.

Using again the mapping (12), problem (17) is transformed in the following system of270

partial differential equations271 
∂ũ

∂t
+ a

du(0)− x̃
du(t)

∂ũ

∂x̃
= −cũ, if 0 < x̃ ≤ du(0),

∂ũ

∂t
+ a

x̃− du(0)

L− du(t)

∂ũ

∂x̃
= −cũ, if du(0) < x̃ < L,

∂ṽ

∂t
+ a

dv(0)− x̃
dv(t)

∂ṽ

∂x̃
= cũ, if 0 < x̃ ≤ dv(0),

∂ṽ

∂t
+ a

x̃− dv(0)

L− dv(t)

∂ṽ

∂x̃
= cũ, if dv(0) < x̃ < L,

(18)

where du(t) and dv(t) are the characteristic curves for each equation

du(t) = du(0) + at, dv(t) = dv(0) + at,

passing through the points (du(0), 0) and (dv(0), 0) with du(0) = dv(0) = 0.3 in this272

case. The CT-FOM and the CT-ROM for the system of PDEs (18) are very similar to273

the ones deduced for Case 1 and they are not included here.274

Regarding the data of the numerical problem, the spatial domain [0, L = 10] is di-275

vided into Nx = 100 volume cells and then the spatial step size is ∆x̃ = 0.1. Additionally,276

CFL = 0.9, ttrain = 4 with Ntrain = 49 and NPOD = 14.277

Figure 10 shows the IC, the results of the CT-ROM at the final time T = 10 and278

the result of the CT-FOM at ttrain = 4. A separately calculated CT-FOM solution279

at T = 10 is also included for comparison with the CT-ROM solution. The CT-ROM280

accurately predicts the location and the shape of the solution at the final time T = 10,281

although some small oscillations appear around the sinusoidal profile.282
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Figure 10: Case 3: Solutions computed with the CT-FOM and the CT-ROM.

Case 4. 1D transport of Gaussian IC with linearized SWE283

Several hydraulic phenomena such as river systems can be simulated using the SWE,284

also known as depth-averaged St. Venant equations, to model the motion of water with285

a free surface [15]. These equations are obtained by integration of the three-dimensional286

Navier-Stokes equations over the depth, with the assumption of hydrostatic vertical287

pressure distribution, i.e., negligible vertical accelerations. The 1D linearized SWE are288

∂h(x, t)

∂t
+ h0

∂u(x, t)

∂x
= 0,

∂u(x, t)

∂t
+ g

∂h(x, t)

∂x
= 0,

(19)

where h(x, t) is the water depth and u(x, t) is the depth-averaged water velocity in289

the x-direction, h0 is the undisturbed water depth at t = 0 and g is the gravitational290

acceleration.291

In order to approximate problem (19) in a new coordinate system using the map-292

ping (12), it is necessary to decouple the system of equations [8]. The procedure is293

explained below. First, problem (19) is written in vector form294

∂

∂t
U + J

∂

∂x
U = 0, (20)

where U = (h, u)T is the conserved variables vector and

J =

(
0 h0

g 0

)
is a diagonalizable Jacobian matrix with J = PΛP−1 and

Λ =

(
c 0
0 −c

)
, P =

(
1 1

c/h0 −c/h0

)
, c =

√
gh0.

Second, the conserved variables are decoupled by multiplying (20) by P−1. Then,295

∂W

∂t
+ Λ

∂W

∂x
= 0, (21)
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where W = P−1U = (ω1, ω2)T are the characteristic variables296

ω1 = (ch+ h0u) /2c, ω2 = (ch− h0u) /2c. (22)

Finally, the mapping (12) is applied to problem (21) and the characteristic variables297

w̃i in the new coordinate system are separately approximated with a CT-FOM and a298

CT-ROM as in Case 1.299

In this case, h0 = 1, the spatial domain is [0, L = 4] and the final time is T = 0.4.
The IC are defined as

h(x, 0) = 1 + e−200(x−2)2 , u(x, 0) = 0, 0 ≤ x ≤ L,

and periodic BC are considered

h(0, t) = h(L, t), u(0, t) = u(L, t), 0 < t ≤ T.

From (22), observe that the IC and BC of the characteristic variables are

wi(x, 0) = h/2, 0 ≤ x ≤ L, wi(0, t) = wi(L, t), 0 < t ≤ T, i = 1, 2.

The characteristic curves for each decoupled equation are given by

d1(t) = d1(0) + ct, d2(t) = d2(0)− ct, 0 < t ≤ T,

with d1(0) = d2(0) = 2. Note that the functions wi(x, 0) reach the maximum value at300

d(0) = 2.301

Regarding the data of the numerical problem, the spatial domain [0, 4] is divided302

into Nx = 200 volume cells, so that the cell size is ∆x̃ = 0.02. In this case, CFL= 0.9,303

ttrain = 0.0625, NPOD = 5 and Ntrain = 5 time levels are solved with the CT-FOM.304

Figure 11 shows the IC, the results of the CT-FOM at ttrain = 0.0625 and the results305

of the CT-ROM at T = 0.4. A separately calculated CT-FOM solution at T = 0.4 is also306

included for comparison with the CT-ROM solution. The CT-ROM is able to predict307

the position and the amplitude of the solution at the final time T = 0.4.308
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Figure 11: Case 4: Solutions computed with the CT-FOM and the CT-ROM.

The CPU times of Case 4 are plotted in Figure 12, where Nx = 100, 200, 500, 1000,309

2000 and 3000. The CPU times of the CT-ROM at T = 0.4 are lower than those of310
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CT-FOM at the training time ttrain = 0.0625 and therefore even lower than those at the311

final time.312
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Figure 12: Case 4: CPU times measurement of CT-FOM and CT-ROM.

3.2. CT-ROM applied to 1D inviscid Burgers’ equation313

Consider the 1D inviscid Burgers’ equation314

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= 0, (x, t) ∈ (0, L)× (0, T ] . (23)

The FOM to approximate the solution of this problem is based on the FV method315

un+1
j − unj

∆t
+
δfn,−,∗j+1/2 + δfn,+,∗

j−1/2

∆x
= 0, j = 1, ..., Nx, (24)

where the numerical flux differences are defined as in (3) and (4), with the following
approximate wave celerity

λ̄nj+1/2 =
fni+1 − fni
unj+1 − unj

=
1

2

(unj+1)2 − (unj )2

unj+1 − unj
=

1

2

(
unj+1 + unj

)
.

The explicit updating equation of the reduced order model is obtained following the316

same three steps indicated in Section 2 for the standard POD method, leading to317

v̂n+1
p = v̂np −

∆t

∆x
(v̂n)T A(p)v̂n +

∆t

∆x
|v̂n|T B(p)v̂n, (25)

where

A
(p)
qk = Λ1

qk;p +

Nx−1∑
j=2

1

4
[(φj+1,k + φj,k) (φj+1,q − φj,q) + (φj,k + φj−1,k) (φj,q − φj−1,q)]φj,p

+ ΛNx
qk;p,

B
(p)
qk = β1

qk;p +

Nx−1∑
j=2

1

4
[|φj+1,k + φj,k| (φj+1,q − φj,q)− |φj,k + φj−1,k| (φj,q − φj−1,q)]φj,p

+ βNx
qk;p.

For a full development of the procedure to obtain the ROMs, see [48]. The terms Λ1
qk;p,318

ΛNx
qk;p, β

1
qk;p and βNx

qk;p are obtained following the same procedure as in (7) and (8).319
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In Cases 5, 6 and 7 considered in this section, the standard ROM (25), although320

it is trained until the final time (i.e., ttrain = T ), is not able to accurately reproduce321

the shock and rarefaction wave solutions, due to the appearance of oscillations, as can322

be seen below. However, a ROM based on a coordinate transformation using only two323

sub-domains in the computational domain may not be able to reproduce the generation324

of shocks or rarefactions. This drawback is overcome by considering more sub-domains325

separated by characteristic curves which are appropriately chosen. The transformation326

when two characteristic curves are required is explained below, and it is similarly defined327

in the general case. In particular, the ICs in Cases 5 and 6 described below are piecewise328

linear functions in the intervals [0, d1(0)], [d1(0), d2(0)] and [d2(0), L]; it is a decreasing329

linear function on [d1(0), d2(0)] generating a shock in Case 5 whereas it is increasing in330

Case 6 and its solution becomes a rarefaction wave. This kind of ICs are considered331

below, except in Case 7 where a polynomial (but not linear) piecewise IC is imposed.332

Let the characteristic curves be

d′i(t) = u(di(t), t), di(0) given, i = 1, 2, 0 ≤ t ≤ tc,

where tc ≤ T is the critical value such that the solution is single-valued and d1(t) ≤ d2(t)333

is assumed for 0 ≤ t ≤ tc. If the two characteristic curves intersect, d1(tc) = d2(tc), then334

a shock wave is generated at t = tc and a similar transformation to (12) is used for335

t > tc. If a rarefaction wave is produced by the Burger’s equation, three sub-domains336

are considered for 0 ≤ t ≤ T .337

When the spatial domain is divided into three sub-domains, the coordinate transfor-
mation for the characteristic curves d1(t) and d2(t), reads as follows

x̃(t) =



d1(0)

d1(t)
x, if 0 ≤ x < d1(t),

d1(0) +
d2(0)− d1(0)

d2(t)− d1(t)
(x− d1(t)) , if d1(t) ≤ x ≤ d2(t),

L− L− d2(0)

L− d2(t)
(L− x), if d2(t) < x ≤ L.

The 1D Burgers’ equation (23) in the transformed domain is

∂ũ

∂t
+

(
ũ(x̃, t)

d1(0)

d1(t)
− ũ(d1(0), t)

x̃

d1(t)

)
∂ũ

∂x̃
= 0, if 0 < x̃ < d1(0),

∂ũ

∂t
= 0, if d1(0) ≤ x̃ ≤ d2(0),

∂ũ

∂t
+

(
ũ(x̃, t)

L− d2(0)

L− d2(t)
− ũ(d2(0), t)

L− x̃
L− d2(t)

)
∂ũ

∂x̃
= 0, if d2(0) < x̃ < L,

where ũ(x̃, t) = u(x, t). The CT-FOM of the 1D inviscid Burgers’ equation is obtained
by means of the FV method [28, 30, 33]

ũn+1
j = ũnj −

∆t

∆x̃

[
d0

1

dn1

(
δf̃n,−,∗j+1/2 + δf̃n,+,∗

j−1/2

)
−
ũnJ1+1/2

dn1

(
δf̃n,−,∗∗j+1/2 + δf̃n,+,∗∗

j−1/2

)]
,

if 0 < x̃j < d0
1,

ũn+1
j = ũnj , if d0

1 ≤ x̃j ≤ d0
2, (26)

ũn+1
j = ũnj −

∆t

∆x̃

[
L− d0

2

L− dn2

(
δf̃n,−,∗j+1/2 + δf̃n,+,∗

j−1/2

)
−
ũnJ2+1/2

L− dn2

(
δf̃n,−,∗∗j+1/2 + δf̃n,+,∗∗

j−1/2

)]
,

if d0
2 < x̃j < L,
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where x̃J1+1/2 = d0
1 and x̃J2+1/2 = d0

2; the numerical fluxes are

δf̃n,±,∗j+1/2 = λ̄n,±,∗j+1/2δũ
n
j+1/2, δf̃n,±,∗∗j+1/2 = λ̄n,±,∗∗j+1/2 δũ

n
j+1/2,

with δũnj+1/2 = ũnj+1 − ũnj ; and

λ̄n,±,∗j+1/2 =
1

2

(
λ̄n,∗j+1/2 ±

∣∣∣λ̄n,∗j+1/2

∣∣∣) =
1

4

(
ũnj+1 + ũnj ±

∣∣∣ũnj+1 + ũnj

∣∣∣) ,
λ̄n,+,∗∗
j+1/2 =

1

2

(
λ̄n,∗∗j+1/2 +

∣∣∣λ̄n,∗∗j+1/2

∣∣∣) =


x̃j+1/2, if x̃j ≤ d0

1,

0, if d0
1 ≤ x̃j ≤ d0

2,
L− x̃j+1/2, if d0

2 ≤ x̃j ,
λ̄n,−,∗∗j+1/2 =

1

2

(
λ̄n,∗∗j+1/2 −

∣∣∣λ̄n,∗∗j+1/2

∣∣∣) = 0.

In scheme (26), the characteristic curves are approximated with the explicit Euler
method

dn+1
i − dni

∆t
= (ũi)

n
Ji+1/2, i = 1, 2.

The intrusive CT-ROM is obtained from the CT-FOM (26) as has been done in
previous cases

v̂n+1
p = v̂np −

∆t

∆x̃

d0

d(t)

[
(v̂n)T

(
AL
)(p)

v̂n − |v̂n|T
(
BL
)(p)

v̂n
]

+
∆t

∆x̃

1

d(t)
CLv̂n

− ∆t

∆x̃

L− d0

L− d(t)

[
(v̂n)T

(
AR
)(p)

v̂n − |v̂n|T
(
BR
)(p)

v̂n
]

+
∆t

∆x̃

1

L− d(t)
CRv̂n, (27)

with the following matrices

(
AL
)(p)

qk
= Λ1

qk;p +
1

4

J1∑
j=2

[(φj+1,k + φj,k) (φj+1,q − φj,q) + (φj,k + φj−1,k) (φj,q − φj−1,q)]φj,p,

(
BL
)(p)

qk
= β1

qk;p +
1

4

J1∑
j=2

[|φj+1,k + φj,k| (φj+1,q − φj,q)− |φj,k + φj−1,k| (φj,q − φj−1,q)]φj,p,

CL
kp = ζ1

kp +
1

4
(φJ1,k + φJ1+1,k)

J1∑
j=2

(x̃j + x̃j−1) (φj,k − φj−1,k)φj,p,

CR
kp =

1

4
(φJ2,k + φJ2+1,k)

Nx−1∑
j=J2+1

(2L− x̃j − x̃j−1) (φj,k − φj−1,k)φj,p + ζNx
kp ,

and the terms Λ1
qk;p, β

1
qk;p, ζ

1
kp and ζNx

kp can be computed following the same procedure338

as in (7) and (8) for Dirichlet and periodic BC, respectively. The matrices (AR)(p) and339

(BR)(p) are defined similarly to (AL)(p) and (BL)(p) and their limits of the summations340

are from j = J2 + 1 to Nx − 1.341

Case 5. 1D shock generation342

In this Case 5, the generation of a shock wave is considered. The IC of this problem343

is344

u(x, 0) =


3, if 0 < x ≤ d1(0),

3− 2
x− d1(0)

d2(0)− d1(0)
, if d1(0) < x < d2(0),

1, if d2(0) ≤ x ≤ L,

(28)
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where L = 2 and the starting points of the characteristic curves are d1(0) = 0.25 and
d2(0) = 0.55. A fixed boundary condition at x = 0 is considered

u(0, t) = 3, 0 ≤ t ≤ T,

where the final time is T = 0.65 and the training time is ttrain = 0.35.345

The linear slope of the ramp in the IC (28) in the central sub-domain of the trans-346

formed coordinates will steepen until a shock is generated. At this time tc, the two347

characteristic curves d1(t) and d2(t) converge into a single characteristic curve d3(t). All348

the points of the physical mesh in the central sub-domain are eventually mapped in the349

shock front and are no longer useful. Thus, the central sub-domain is suppressed to350

return to a two sub-domain problem. Numerically, at the critical time tc, the problem351

is redefined by re-meshing, maintaining the original number of cells. The characteristic352

curves in the spatial domain are shown in Figure 13, where the time evolution of the353

physical mesh is represented for both the CT-FOM and the CT-ROM.354
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Figure 13: Case 5: Time evolution of the physical mesh for a shock wave generation.

The training time ttrain is also shown in Figure 13 and it is observed that ttrain > tc355

in this case. It should be noted that ttrain could be shorter than tc, but, in that case,356

it would be necessary to train the reduced order model with the CT-FOM before and357

after the shock wave is generated.358

Before commenting on the results obtained with the CT-ROM for this case, it is359

necessary to take into account a couple of numerical considerations for solving a problem360

with three sub-domains. On the one hand, the confluence must be carefully solved, fitting361

the time step ∆t to the critical time tc satisfying that d1(tc) = d2(tc), as depicted in362

Figure 14a. On the other hand, the starting point of the new characteristic curve d3(tc)363

has to be moved to the nearest wall so that x̃J+1/2 = d3(tc), in order to keep the stability,364

as depicted in Figure 14b. The coordinate transform method is very sensitive to this365

point.366
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(a) Confluence of d1(t) and d2(t) into d3(t).

J J+1d3

tc

(b) Moving d3(t) to the nearest interface.

Figure 14: Case 5: Numerical considerations for solving a problem with three sub-domains.

Regarding the data of the numerical problem, the spatial domain [0, L = 2] is divided
into Nx = 100 volume cells, so that ∆x̃ = 0.02. The CFL number considered is 0.9 and
the time step is computed to satisfy the following stability condition

∆t = CFL
∆x̃

max {ã1, ã2}
,

where the modified velocities are

ã1 = max
0<x̃<d1(0)

∣∣∣∣ũ(x̃, t)
d1(0)

d1(t)
− ũ(d1(0), t)

x̃

d1(t)

∣∣∣∣ ,
ã2 = max

d2(0)<x̃<L

∣∣∣∣ũ(x̃, t)
L− d2(0)

L− d2(t)
− ũ(d2(0), t)

L− x̃
L− d2(t)

∣∣∣∣ .
The number of time steps used to train the CT-ROM is Ntrain = 33 and NPOD = 10.367

Figure 15 shows the solutions computed with the FOM (24) and the ROM (25); and368

the CT-FOM (26) and the CT-ROM (27). From this figure, the following conclusions369

can be drawn: i) a proper prediction in time is computed with the CT-ROM; and ii) the370

solution computed with the CT-ROM does not exhibit spurious oscillations, as is the371

case with the ROM.372
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(b) CT-FOM/CT-ROM.

Figure 15: Case 5: Solutions computed with the FOM/ROM (left) and with the CT-FOM/CT-ROM
(right).
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Cases 6 and 7. 1D rarefaction generation373

Case 6 considers the Burger’s equation (23) with the following IC

u(x, 0) =


1, if 0 < x ≤ d1(0),

1 + 2
x− d1(0)

d2(0)− d1(0)
, if d1(0) < x < d2(0),

3, if d2(0) ≤ x ≤ L,

where the spatial domain [0, L = 2] is divided into Nx = 100 volume cells, the starting
points of the characteristic curves are d1(0) = 0.2 and d2(0) = 0.22 and a fixed BC at
x = 0 is considered

u(0, t) = 1, 0 ≤ t ≤ T,

and the final time is T = 0.5. In this case, the characteristic curves d1 and d2 do not
intersect. However, the starting points of the characteristic curves are so close to each
other that a uniform mesh would contain very few points between them, and it could
even contain only one point if it is coarse enough. Then, a finer mesh is set in the middle
section, between d1(0) and d2(0), to properly reproduce the non-linear character of the
Burgers’ equation. Taking the latter into account, the spatial domain [0, L] is divided
into

[0, L] = [0, d1(0)] ∪ [d1(0), d2(0)] ∪ [d2(0), L],

and a piecewise uniform mesh is constructed with mesh widths ∆x̃ = 0.02, ∆x̃ = 0.001374

and ∆x̃ = 0.02, respectively.375

The CFL number considered is 0.9, the training time is ttrain = 0.2, which corre-376

sponds to Ntrain = 41, and NPOD = 11. The time evolution of the physical mesh for377

both CT-FOM and CT-ROM is shown in Figure 16.378
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Figure 16: Case 6: Time evolution of the physical mesh for a rarefaction wave generation.

Figure 17 shows solutions computed using the FOM/ROM (left) and CT-FOM/CT-379

ROM (right). Although the ROM is trained until the final time T , the CT-ROM gives380

a better approximation to the solution of Case 6. In this rarefaction case, the same381

conclusions can be drawn as in Case 5 above and the prediction in time is only possible382

with the CT-ROM.383

24



0 0.5 1 1.5 2

1

1.5

2

2.5

3

(a) FOM/ROM.

0 0.5 1 1.5 2

1

1.5

2

2.5

3

(b) CT-FOM/CT-ROM.

Figure 17: Case 6: Solutions computed with the FOM/ROM (left) and with the CT-FOM/CT-ROM
(right).

Finally, Case 7 is considered where the IC of the non-linear problem is not a piecewise384

linear function. The problem is defined in the domain [0, 2]× [0, 0.4] and the IC is385

u(x, 0) =


0, if 0 < x ≤ d1(0),

(x− d1(0))x2

(d2(0)− d1(0))d2
2(0)

, if d1(0) < x < d2(0),

1, if d2(0) ≤ x ≤ 2,

where the starting points of the characteristic curves are d1(0) = 0.25 and d2(0) = 0.5386

and the BC is387

u(0, t) = 0, 0 ≤ t ≤ 0.4.

The solution of Case 7 has a raferaction wave and it is approximated with the CT-388

FOM and the CT-ROM. The spatial domain is divided into Nx = 128 volume cells,389

CFL = 0.9, the training time is ttrain = 0.1 and the number of modes is NPOD = 10.390

The IC and the computed solutions with both models at the final time T = 0.4 are391

shown in Figure 18. The difference of these solution in `2 norm is DNT
CT = 1.799 · 10−7

392

and it can be concluded that both solutions for this case are very similar even though393

the number of modes of the CT-ROM is very small.394
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Figure 18: Case 7: Solutions computed with the CT-FOM/CT-ROM.
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3.3. 2D extension of the CT-ROM strategy using Radon transform395

The CT-ROM strategy introduced in this work is a genuine 1D method. In this
section, the CT-ROM strategy is extended to a two-dimensional problem using the
Radon transform. The Radon transform is based on the parametrization of any straight
line L with respect to the arc length z as

x(z) = s cosα− z sinα
y(z) = s sinα+ z cosα,

where s is the distance from L to the origin and α is the angle between L and the y-axis396

[12, Section 2.2]397

The Radon transform of a function f is given by the integral of f along the line L

Rf(α, s) =

∫ +∞

−∞
f(x(z), y(z))dz.

The intertwining property of the Radon transform will be of particular interest for the398

objective of this section. The Radon transform allows to intertwine a partial derivative399

with a univariate derivative as follows [12, Section 3.6]400

R
{
∂f

∂x

}
= cosα

∂Rf
∂s

, R
{
∂f

∂x

}
= sinα

∂Rf
∂s

. (29)

Lets consider now the 2D linear homogeneous version of (1), which reads401

∂u

∂t
+ λ1

∂u

∂x
+ λ2

∂u

∂y
= 0, (x, y, t) ∈ (−L,L)× (−L,L)× (0, T ] . (30)

By applying the intertwining property (29) of the Radon transform to (30), the following402

set of one-dimensional problems is obtained403

∂Ru
∂t

+ λ̂
∂Ru
∂s

= 0, (s, t) ∈ (−L,L)× (0, T ] , (31)

where λ̂ = λ1 cosα+ λ2 sinα, for α ∈ (0, π) [40].404

The 1D CT-ROM strategy is used to predict the evolution in time of the 2D hy-405

perbolic problem (30). To do this, first, the IC is transformed from the physical space406

into the Radon domain, i.e., the (s, α) domain. Then, the CT-ROM strategy described407

in previous sections is applied to (31) for a discrete collection of values of α ∈ (0, π).408

Finally, the solution in the (s, α) domain is transformed into the physical space using409

a filtered back-projection inversion formula for the Radon transform [39, 40]. This is410

illustrated in the test case described below.411

Case 8. 2D transport of Gaussian IC.412

Lets consider the problem (30) with λ1 = λ2 = 1, L = 10 and the final time is T = 2.
The intervals [−L,L] and [0, α] are uniformly divided into 200 subintervals. The IC is

u(x, y, 0) = e−
x2+y2

2 ,

and the BC is
u(0, y, t) = u(L, y, t), u(x, 0, t) = u(x, L, t).
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The CFL number considered in this case is 0.9 and the time step is computed to satisfy413

the stability condition (16). Solutions are computed with the CT-FOM (14) up to414

ttrain = 0.5 and, with these data, new solutions are computed using the CT-ROM (15)415

up to T = 2. In this case, a uniform mesh in time is used with step size ∆t = 0.05 to416

approximate the set of problems (31). Thus, Ntrain = 10 and NPOD = 6.417

The numerical solution provided by the CT-ROM at T = 2 and the absolute value of418

the difference between the CT-FOM and the CT-ROM solutions are shown in Figure 19.419

Note that the position of the center of the CT-FOM solution is marked by a red dot and420

the IC is also shown. Figure 20 shows the sinogram of the numerical solution provided421

by the CT-ROM, i.e., the solution in the (s, α) plane. The contourline corresponding422

to the maximum value of the sinogram of the CT-FOM solution is also depicted using423

a red line, showing a good agreement between both solutions. These results evidence424

that although the CT-ROM strategy herein proposed is a genuine method for 1D time425

dependent problems, it can be extended to higher spatial dimensions using the Radon426

transform.427

(a) Solution of the CT-ROM. (b) CT-FOM vs. CT-ROM.

Figure 19: Case 8: Solution computed with the CT-ROM and its comparison with the CT-FOM.

Figure 20: Case 8: Sinogram of the numerical solution at T = 2.

In the case of a 2D non-linear equation, it would be necessary to perform the Radon428

transformation and then take into account the considerations set out in section 3.2 and429
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Cases 5, 6 and 7.430

4. Concluding remarks431

The standard POD-based ROM strategy for the resolution of partial differential432

equations allows extrapolation in time when the equation of interest is not advection-433

dominated. In the case of hyperbolic problems, or other more general advection-dominated434

problems, the standard POD-based ROM fails when computing the solution beyond the435

training time.436

In this work, a new ROM strategy that allows the prediction of solutions beyond437

the training time, called CT-ROM, is proposed. The CT-ROM strategy is based on438

a coordinate transformation using characteristic curves [19]. This novel approach has439

been assessed using a variety of eight different test cases that comprise a variety of sce-440

narios. The proposed cases have been designed to analyze the CT-ROM response to441

different characteristics and configurations, showing promising results in all of the sce-442

narios considered. These problems include 1D linear advective equations with diffusion443

and reaction source terms, systems of coupled linear equations, including the linearized444

shallow water equations, and the non-linear inviscid Burgers’ equation. The numerical445

results evidence the prediction capability of the CT-ROM strategy. This achievement is446

presented here for the first time, to the knowledge of the authors.447

On the one hand, linear problems allow a direct application of the CT-ROM strategy,448

obtaining accurate solutions for larger times than the training times (Cases 1, 2 and 3).449

Linear systems such as the linearized shallow water equations have to be decoupled so450

that each new variable evolves in its own domain following the proposed coordinate451

transformation (Case 4). On the other hand, it has been observed that the non-linearity452

of the equations challenges the prediction capabilities of the CT-ROM strategy. This is453

the case of Burgers’ equation (Cases 5, 6 and 7). The generation of shock and rarefaction454

waves requires the division of the domain into sub-domains. In this way, this limitation455

can be addressed and high accuracy solutions can be obtained. For more complex ICs456

than those of the cases described here, the suggested procedure would be to further457

subdivide the domain.458

The CT-ROM strategy is based on a coordinate transformation only valid for 1D459

problems. An extension of the CT-ROM to 2D based on the Radon transform has been460

proposed (Case 8). By means of the intertwining property of the Radon transform, the461

problem can be reduced to a set of 1D problems, thus making possible the application of462

the the CT-ROM to each of them. The results of Case 8 show the effective combination463

of both transformations, allowing the extrapolation of solutions beyond the training time464

with high accuracy.465
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