000121404 001__ 121404
000121404 005__ 20241125101127.0
000121404 0247_ $$2doi$$a10.1016/j.compbiomed.2022.106458
000121404 0248_ $$2sideral$$a131615
000121404 037__ $$aART-2023-131615
000121404 041__ $$aeng
000121404 100__ $$0(orcid)0000-0001-6727-563X$$aUrdeitx, Pau$$uUniversidad de Zaragoza
000121404 245__ $$aComputational modeling of multiple myeloma interactions with resident bone marrow cells
000121404 260__ $$c2023
000121404 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121404 5203_ $$aThe interaction of multiple myeloma with bone marrow resident cells plays a key role in tumor progression and the development of drug resistance. The tumor cell response involves contact-mediated and paracrine interactions. The heterogeneity of myeloma cells and bone marrow cells makes it difficult to reproduce this environment in in-vitro experiments. The use of in-silico established tools can help to understand these complex problems.
In this article, we present a computational model based on the finite element method to define the interactions of multiple myeloma cells with resident bone marrow cells. This model includes cell migration, which is controlled by stress–strain equilibrium, and cell processes such as proliferation, differentiation, and apoptosis.
A series of computational experiments were performed to validate the proposed model. Cell proliferation by the growth factor IGF-1 is studied for different concentrations ranging from 0–10 ng/mL.
Cell motility is studied for different concentrations of VEGF and fibronectin in the range of 0–100 ng/mL. Finally, cells were simulated under a combination of IGF-1 and VEGF stimuli whose concentrations are considered to be dependent on the cancer-associated fibroblasts in the extracellular matrix.
Results show a good agreement with previous in-vitro results. Multiple myeloma growth and migration are shown to correlate linearly to the IGF-1 stimuli. These stimuli are coupled with the mechanical environment, which also improves cell growth. Moreover, cell migration depends on the fiber and VEGF concentration in the extracellular matrix. Finally, our computational model shows myeloma cells trigger mesenchymal stem cells to differentiate into cancer-associated fibroblasts, in a dose-dependent manner.
000121404 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-106099RB-C44
000121404 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000121404 590__ $$a7.0$$b2023
000121404 592__ $$a1.481$$b2023
000121404 591__ $$aBIOLOGY$$b7 / 109 = 0.064$$c2023$$dQ1$$eT1
000121404 593__ $$aHealth Informatics$$c2023$$dQ1
000121404 591__ $$aMATHEMATICAL & COMPUTATIONAL BIOLOGY$$b2 / 66 = 0.03$$c2023$$dQ1$$eT1
000121404 593__ $$aComputer Science Applications$$c2023$$dQ1
000121404 591__ $$aENGINEERING, BIOMEDICAL$$b16 / 123 = 0.13$$c2023$$dQ1$$eT1
000121404 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b19 / 170 = 0.112$$c2023$$dQ1$$eT1
000121404 594__ $$a11.7$$b2023
000121404 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121404 700__ $$aMousavi, S. Jamaleddin
000121404 700__ $$aAvril, Stephane
000121404 700__ $$0(orcid)0000-0003-0088-7222$$aDoweidar, Mohamed H.$$uUniversidad de Zaragoza
000121404 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000121404 773__ $$g153 (2023), 106458 [13 pp.]$$pComput. biol. med.$$tComputers in biology and medicine$$x0010-4825
000121404 8564_ $$s9265177$$uhttps://zaguan.unizar.es/record/121404/files/texto_completo.pdf$$yVersión publicada
000121404 8564_ $$s2486078$$uhttps://zaguan.unizar.es/record/121404/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121404 909CO $$ooai:zaguan.unizar.es:121404$$particulos$$pdriver
000121404 951__ $$a2024-11-22-11:57:57
000121404 980__ $$aARTICLE