«2s Universidad
A8 Zaragoza

15

H

2

Proyecto Fin de Carrera

Ingenieria Informatica

Andlisis y Diseno de Mecanismos de Seguridad de
Agentes Méviles para la Plataforma SPRINGS

Autor

Jorge Sainz Vela

Director

Sergio llarri Artigas

Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

Septiembre de 2013

Repositorio de la Universidad de Zaragoza - Zaguan http://zaguan.unizar.es

Analisis y Diseno de Mecanismos de Seguridad

de Agentes Mdviles para la Plataforma
SPRINGS

RESUMEN

Los agentes moviles son programas que pueden viajar de un ordenador a otro y
continuar su ejecucion en el ordenador destino. Se ha demostrado su utilidad en diversos
contextos, especialmente en entornos inaldmbricos y distribuidos. Asi, ofrecen diversas
ventajas, como la posibilidad de desplazar el procesamiento a los datos para realizar
un procesamiento local y minimizar las comunicaciones. Sin embargo, dichas ventajas
implican ciertos problemas de seguridad, los cuales han impedido el desarrollo y el uso
generalizado de la plataformas de agentes méviles. Dichos problemas de seguridad, se
suelen categorizar de la siguiente forma:

e Agente contra plataforma. Medidas para evitar que un agente daine la plataforma
sobre la que esta corriendo. Por ejemplo, ataques de denegacién de servicio, acceso
a recursos no permitidos, etc.

e Agente contra agente. Ataques entre agentes, mediante denegaciones de servicio
en el paso de mensajes, robos de datos, etc.

e Plataforma contra agente. Modificacién o copia de c6digo y/o datos del agente,
modificacion de los mensajes que se envian los agentes, enrutamiento incorrecto
del agente, etc.

En el proyecto hemos estudiado el estado del arte y hemos elegido e implementado las
medidas de seguridad mas importantes para proveer a la plataforma de agentes méviles
SPRINGS (Scalable PlatfoRm for MovINg Software) de un marco seguro de ejecucién
que permite su utilizaciéon en despliegues sobre redes abiertas y “no confiables”. Se
ofrece un diseno que permite al administrador de la plataforma hacer uso o no de las
funcionalidades de seguridad que considere oportunas segiin sus necesidades.

Las extensiones de seguridad integradas en SPRINGS permitiran al grupo SID
(Research Group of Distributed Information Systems) de la Universidad de Zaragoza
continuar el desarrollo de la plataforma con soporte para proteger a los sistemas de
agentes moéviles de posibles ataques. El grupo SID tiene intencién de continuar el estudio
y extender la arquitectura disefiando e implementando otras medidas de seguridad que
puedan resultar de interés. Posteriormente, se cree que se estara en condiciones de poder
preparar un articulo de investigacién conjunto que incluya parte del trabajo desarrollado
en este proyecto.

Agradecimientos

A mi familia, por ofrecerme la posibilidad de estudiar esta carrera que tanto me
apasiona sin reproches por haber tardado tanto tiempo en llegar hasta aqui.

Gracias también a mis compafieros, ex-compaferos y amigos, por apoyarme y no
dejar que me olvidara de que tenia que cerrar etapas para poder abrir otras.

A Sergio, por su paciencia aguantando mis idas y venidas a lo largo de los afos
siempre dispuesto a ofrecerme su guia y ayuda en el desarrollo del proyecto.

Y, en especial, a Maria, por estar siempre a mi lado.

1ii

Acronimos

A continuacién se definen varios acronimos utilizados a lo largo del presente
documento:
ADK Tryllian Agent Development Kit.
AES Advanced Encryption Standard.
AMS Agent Management System.
APIT Application Programming Interface.
ARE Tryllian Agent Runtime Environment.

ASN.1 Abstract Syntax Notation One.

CA Autoridad de Certificacién.
CORBA Common Object Request Broker Architecture.

DER Distinguished Encoding Rules.
DNA Tryllian Definition of New Agent.

DoS Denial of Service.
FIPA Foundation for Intelligent Physical Agents.

GPL General Public License.
IMTP Internal Message Transport Protocol.

JAAS Java Authentication and Authorization Service.
JADE Java Agent DEvelopment Framework.
JADE-S JADE Security.

JAR Java ARchive.

JAVA SE Java Platform Standard Edition.

JCE Java Cryptography Extension.

JDK Java Development Kit.

JRMP Java Remote Method Protocol.

JSSE Java Secure Socket Extension.

JVM Java Virtual Machine.
KQML Knowledge Query and Manipulation Language.
LGPL Lesser General Public License.

MAC Message Authentication Code.
MD5 Message-Digest algorithm 5.

MIDP Mobile Information Device Profile.
NTP Network Time Protocol.
OTP One Time Password.

PAM Pluggable Authetication Module.

PKCS Public-Key Cryptography Standards.

RMI Java Remote Method Invocation.

RNS Region Name Server.

SeMoA Secure Mobile Agents.
SID Research Group of Distributed Information Systems.
SPRINGS Scalable PlatfoRm for MovINg Software.

SSL Secure Sockets Layer.
TLS Transport Layer Security.

UML Unified Modeling Language.

vi

Indice

1 Introduccién 1
1.1 Entorno tecnoldgico sobre agentes méviles 1
1.2 Objetivos del proyecto Lo 3
1.3 Planificacién estimada del proyecto oo 4
1.4 Contenido de la memoria L oL L 5

2 Seguridad en plataformas de agentes moéviles 7
2.1 Clasificacién de ataques 8

2.1.1 Agente malicioso atacando a la plataforma 8
2.1.2 Agente malicioso atacando a otros agentes 9
2.1.3 Plataforma atacando agentes 9
2.2 Estudio de medidas de seguridad en plataformas de agentes moviles
existentes L L 10
2.2.1 Caracteristicas de seguridad de SeMoA 10
Arquitectura de seguridad 11
Estructura del agente L. 13
Seguridad en la ejecuciono 14
Limitaciones L 15
2.2.2 Caracteristicas de seguridad de JADE 16
Capa de Seguridad JADE-S, 17

vii

IMTPoverSSL 19

Limitaciones 19

2.2.3 Caracteristicas de seguridad de Aglets 21

Autenticacion de Dominios oL Lo 21

Comprobacion de integridad en las comunicaciones 22

Identificacion de Cédigo 22

Autorizacion de Aglets 23

2.2.4 Caracteristicas de seguridad de Tryllian 24

Permisos en el Habitat 25

Permisos de los Agentes 25

Otros mecanismos de seguridad 25

2.2.5 Caracteristicas de seguridad de Voyager 26

Confianza entre codigo y contexto 27

Principales mecanismos de seguridad 27

2.2.6 Resumen de medidas de seguridad en diferentes plataformas 27

3 Arquitectura de Seguridad para SPRINGS 31

3.1 Identificacién - Uso de certificados digitales 33

3.2 Seguridad en la capa externa 35

3.3 Autenticacién y autorizacién a nivel de plataforma 36
3.3.1 Autenticacion y autorizacién de los contextos y de los agentes ante

el RNS . . . 37

3.3.2 Autenticacion del RNS frente a los contextos 42

3.4 Autenticacion a nivel de contexto 44

3.5 Cifrado y comprobaciéon de integridad de datos 49

3.6 Comparativa con otras plataformas de agentes moviles estudiadas 54

viii

4 Pruebas sobre la plataforma SPRINGS

4.1

4.2

Pruebas funcionales oo oo
Resultados Experimentales
4.2.1 Entorno de pruebas oo
4.2.2 Escenarios funcionales
4.2.3 Resultados y conclusiones de las pruebas de carga

4.2.4 Resultados y conclusiones de las pruebas de escalabilidad

5 Conclusiones y trabajo futuro

5.1

5.2

5.3

Objetivos y resultados del proyecto
Trabajo futuro

Valoracién personal y problemas encontrados

A Entorno Tecnolégico

Al

A2

A3

A4

Conceptos generales de seguridad informética
Seguridad en Javao oL
Entorno de desarrollo Lo oo
A.3.1 Lenguaje de programacién Java
A.3.2 Hardware de desarrollo L.
A.3.3 Herramientas adicionales
Entornode pruebas. L L Lo
A.4.1 Software de gestion de certificados digitales
A.4.2 MaAquinas virtuales para pruebas funcionales
A.4.3 Hardware utilizado en las pruebas de carga y escalabilidad
A.4.4 Agente y contexto para pruebas de carga

A.4.5 Script de andlisis de resultados de pruebas de carga

ix

57

o8

99

99

60

61

65

65

66

67

71

B Pruebas funcionales 85
B.1 Acceso a la plataforma de un contexto que no tiene activado SSL 85
B.2 Acceso a la plataforma de un contexto que usa un certificado no valido . . 86

B.3 Acceso y/o modificacién de comunicaciones entre el RNS y los contextos
oentre contextos Lo Lo 89

B.4 Acceso a la plataforma de un contexto cuyo certificado no estd aceptado

porel RNS o 93
B.5 Creacién de un agente por parte de un contexto que no tiene permisos
paraello L L 94
B.6 Movimiento de un agente por parte de un contexto que no tiene permisos
paraello L 95
B.7 Agente realizando llamadas creado en un contexto que no tiene permisos
paraello oL 97
B.8 Contexto atacando otro contexto simulando ser el RNS. 98

B.9 Uso de autenticacién de contexto con la autenticacién de plataforma
desactivada 100

B.10 Acceso a recursos no permitidos por la autorizacion a nivel de contexto . 102

B.11 Uso de cifrado cuando esté desactivado en la plataforma 103
B.12 Uso de cifrado y verificacién de integridad de datos 104
B.13 Intento de descifrado de datos en un contexto incorrecto 105
B.14 Simulacién de robo de dato cifrado e intento de descifrarlo 106
B.15 Ataque de uso masivo de memoria de un contexto 107
C Manual de Usuario 109
C.1 Administracion de la plataformao 109
C.1.1 Gestién de certificados digitales y keystores 109
Importacién de clave ptblica de una CA en el sistema 110

Creacién de keystore para RNS 110

Creacion de keystore para contexto 110

Importacién de la clave pablica de un contexto en el RNS 111

C.1.2 Procedimientos de administracién del RNS 111
Script de arranque oL oL 0oL 111

Fichero de configuraciéon oL 112

C.1.3 Procedimientos de administracién de los contextos 115
Script de arranque 115

Ficheros de configuracion 115

C.2 Guia del programador o 119
C.2.1 Uso de mecanismo de logging 119
C.2.2 Interfaz para la creacion de contextos 121
C.2.3 Uso de funciones de cifrado en un agente 121
Bibliografia 124

Xi

xii

Indice de figuras

1.1

1.2

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

Ejemplo de plataforma de agentes méviles 2

Diagrama de Gantt estimado L L. 4

Capas de seguridad de SeMoA (adaptado de http://semoa.sourceforge.net) 12

Estructura de un agente SeMoA (adaptado de http://semoa.sourceforge.net) 15

Capas de seguridad de SPRINGS 32
Identidad, uso de certificados digitales 34
Comunicaciones RMI-SSL oo 36
Autenticacion y autorizaciéon de los contextos L. 38
Clase ContextSecurityInformation 39
Clase RegionNameServer 40
Clase ContextAuthentication 40
Clase AuthorizationLevel 42
Autenticacion y autorizaciéon del RNSo 43
Clase OTP e 44
Clase ContextLogin. 46
Clase ContextLoginModule, 46
Clase ContextCallbackHandler 47
Clase PasswordCallback 47

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

3.23

4.1
4.2
4.3
4.4
4.5

4.6

Al
A2
A3
A4
A5
A6

B.1

B.2

Clase ContextPrincipal 48
Clase AgentLogin 48
Clase AgentLoginModule 49
Clase ContextAuthenticationCallback 50
Clase AgentPrincipal 51
Cifrado y firma dedatos 51
Clase EncryptedData 52
Descifrado de datos oL o 53
Comprobacién firma de datos 53
Pruebas de carga: Tiempo total de ejecucién 62
Pruebas de carga: Tiempo medio de estancia 62
Pruebas de carga: Tiempo medio de invocaciéon a agente 62
Pruebas de escalabilidad: Tiempo total de ejecuciéon 63
Pruebas de escalabilidad: Tiempo medio de estancia 63
Pruebas de escalabilidad: Tiempo medio de invocacién a agente 63
Identificacién del emisor por parte del receptor 71
Autenticacion del emisor por parte del receptor 72
El receptor identifica el nivel de autorizaciéon del emisor 72
La integridad de la informacién es cuestionada por el receptor 72
La confidencialidad de la informacién es cuestionada por el receptor . . . 73
Entornode pruebas. Lo 81
Captura de red trafico RMI no cifrado 89
Captura de red trafico RMI cifrado 92

Xiv

Indice de tablas

2.1

2.2

3.1

Al
A2

Capas de seguridad en plataformas de agentes méviles 8

Comparativa de medidas de seguridad en las plataformas estudiadas . . . 28

Comparativa de medidas de seguridad de SPRINGS y de las plataformas

estudiadas e 54
Caracteristicas de maquina de desarrollo 79
Caracteristicas de servidor virtual 80

XV

Xvi

Capitulo 1

Introduccion

En el presente capitulo vamos a realizar una presentaciéon del Proyecto Fin de Carrera
desarrollado. En primer lugar ofreceremos una breve descripcién de conceptos sobre
agentes moviles y su seguridad para familiarizar al lector con el entorno tecnolégico
del proyecto. Pasaremos a destacar los objetivos establecidos para el proyecto y la
planificacién estimada para el mismo. Por ltimo, describiremos el contenido del resto
de capitulos del documento.

1.1 Entorno tecnolégico sobre agentes moéviles

Un agente mdvil es un tipo de agente software que tiene las siguientes capacidades:
autonomia y pro-actividad, sociabilidad, adaptacién, y, como no, movilidad. Los agentes
moviles tienen la capacidad de moverse por diferentes nodos de una red, una o mas veces,
son auténomos para ejecutar tareas correctamente, independientemente del nodo de red
desde el que se lanzaron, transportando su estado de un entorno a otro, con sus datos
inalterados [1].

La caracteristica diferenciadora de los agentes moviles, frente a paradigmas de
programacion de cédigo mévil [2] como la evaluacién remota o el cddigo bajo demanda, es
que los agentes moviles pueden “elegir” cudndo migrar entre nodos de la red en cualquier
momento de su ejecucion.

Se denomina plataforma de agentes modviles al conjunto de elementos estructurales
que ofrecen los servicios necesarios a los agentes méviles para que estos puedan realizar su
funcién correctamente. Una plataforma de agentes moviles suele tener una arquitectura
como la mostrada en la Figura 1.1. Normalmente cada plataforma usa una nomenclatura
propia pero, en esencia, los elementos mostrados pueden aparecer en la mayoria.

Servicios de
la Regién

invocacion

mensajem/

Contenedor 3

Doénde esta “Contenedor 3"?

Dénde esta “Agente 3"?

ontenedor 2

Region

L
r—-————(——— — — — — — —
| Servicios de
| la Region
I
I

Contenedor 3
: @m\movimiemo/
I
I
L Regor

4

Contenedor 2

movimiento

Region 3

—_— — — ————— - — 4

|

|

|
Contenedor 7

| \

|

| movimiento

|

L

Servicios de
la Region

Contenedor 5

Agente 4
Contenedor 6

Figura 1.1: Ejemplo de plataforma de agentes méviles

Los elementos de la plataforma de la Figura 1.1 son:

Regioén 2

—_— — — — — — — — — 41

e Region. Suele denominarse asi al conjunto de contenedores o servidores que forman
parte de una misma organizaciéon. Suelen tener varios servicios de control como
pueden ser servidores de nombres, de pdginas amarillas, etc.

e Contenedores. Son los servidores que ofrecen sus servicios computacionales a los
agentes. En esencia, es donde se ejecutan los agentes. Los contenedores suelen
ser denominados servidores, contextos, agencias, héabitats, dependiendo de las

platafo

rmas.

e Agentes. Son los programas que se ejecutan en los contenedores pudiendo moverse
entre contenedores y seguir su ejecucion en ellos. También suele ser habitual la
posibilidad de comunicacién entre agentes.

Las principales ventajas de los agentes méviles son [3]:

e reducen la carga de la red,

e ayudan evitar problemas relacionados con la latencia de la red,
e encapsulan protocolos,

e se ejecutan asincronamente y auténomamente,

e se adaptan dindmicamente,

e permiten un mantenimiento flexible,

e son robustos y tolerantes a fallos.

Por todas estas razones y sus posibles aplicaciones, los agentes moéviles han
despertado una gran expectacién en el mundo de la computacién distribuida [4, 5, 6].

Sin embargo, debido al caricter distribuido del paradigma de agentes moviles, uno
de los puntos méas importantes a tener en cuenta es el referente a la seguridad [7, 8, 9,
10]. Mas especificamente, se suelen tener en cuenta los siguientes aspectos [11]:

e proteccion del agente contra la plataforma,
e proteccion del agente frente a otros agentes,

e proteccién de la plataforma frente al agente.

1.2 Objetivos del proyecto

A lo largo del presente Proyecto de Fin de Carrera, se estudiara el estado del arte
de la seguridad en plataformas de agentes méviles y se elegiran e implementaran las
medidas de seguridad més importantes para la plataforma SPRINGS de la Universidad
de Zaragoza [12]. Ademds, se estudiard el impacto en el rendimiento de la plataforma
al introducir dichas medidas de seguridad.

La arquitectura de seguridad de SPRINGS deberd ofrecer un disenio modular,
permitiendo al administrador de la plataforma hacer uso o no de las funcionalidades
de seguridad que considere oportunas seglin sus necesidades.

El proyecto comprende las siguientes tareas:

e Estudio del estado del arte sobre los diferentes problemas de seguridad de las
plataformas de agentes moviles y de las diferentes propuestas para su solucién.

e Definicién y disenio de la arquitectura modular de seguridad elegida para SPRINGS.

3

e Implementacién de la arquitectura modular de seguridad disefiada para SPRINGS.

e Pruebas funcionales para comprobar la correcta proteccion de la plataforma ante

posibles ataques.

e Pruebas de carga de la plataforma para comprobar cémo afecta la nueva
arquitectura de seguridad al rendimiento de SPRINGS.

Por tanto, el resultado final serd una ampliacién de la plataforma SPRINGS con
protecciones frente a distintos ataques de seguridad, con distintos niveles de proteccion
configurables, asi como un estudio del rendimiento de la plataforma en funcién del nivel
de proteccién escogido. Esta ampliacion permitird la utilizacién libre de la plataforma
por un mayor nimero de personas que puedan estar interesadas.

1.3 Planificacién estimada del proyecto

Inicialmente, se ha estimado la duracién del proyecto en alrededor de cinco meses.
Se debe tener en cuenta la necesidad por parte del autor de investigar en un area nueva
para él y el sobre-esfuerzo necesario para realizar una implementacion en el lenguaje de

desarrollo Java.

El diagrama de Gantt estimado para el proyecto es el mostrado en la Figura 1.2:

o Mombre de tarea

1 [l PEC Sequridad en SPRINGS
2 =l Aprobracion del Proyecto
3 @ Presentacion Propuesta
4 Aprobacion Propuesta

g

& |E Estudio del Arte

7 [=] Diseiio

1 Definicion de las caracteristicas & implementar
El Disafio de la solucion

10 Documertacion

11 Desarrollo

12 El Pruebas

13 Funcionales

14 Carga

15 Dacumertacion

16 Documentacion Defensa
17 Deposito

18 Defensa

. |ourstion .

227 days
20 days
0 days
20 days

20 days
20 days
3 days
12 days
5 days
30 days
15 days
5 days
5 days
5 days
5 days
1 day

1 day

Start

Mon 091109
Mon 081109
hon 094109
hdon 094109

Mon 17/0510
Mon 140610
hon 1406H0
Thu 170610
Mlon 0507410
Mon 120710
Men 230810
Mon 230810
hon 30/08H0
hon 06090
Men 130910
Mon 2040940
Tue 210840

Finish ~ , |Pre

Tue 210910
Fri 0412109

hon 094109
Fri04M2i09 3

Fri 110610 2
Fri 090710 6
Wiz 1 EBI0EN 0
Fri 020710 &
Fringuo7io 9
Fri 2000810 T
Fri 100910 11
Fri 270810
Frin3maM0 13
Fri 1000910 14
Fri17:0910 12
Mon 2000910 16
Tue 210840 17

September [11 Movermber 21 Jenuary [P &pril 1 June 21 Sugust

07009 | 12010 [16A1 | 21712 | 25001 | 01003 | 05/04 | 105 | 14005 | 19007 | 2306 | 2708

-

4509-11

-

Figura 1.2: Diagrama de Gantt estimado

En dicho diagrama se puede observar la duracién estimada de las principales tareas
de las que se compone el proyecto.

1.4 Contenido de la memoria

En los siguientes capitulos vamos a ir exponiendo cada una de las tareas de las que
se compone el presente proyecto:

e En el Capitulo 2 procederemos a definir los diferentes términos relacionados con la
seguridad en plataformas de agentes méviles pasando, a continuacién, a describir
los mecanismos de seguridad que ofrecen las plataformas de agentes moviles méas
importantes.

e En el Capitulo 3 expondremos la arquitectura de seguridad disenada para
SPRINGS, asi como detalles de su implementacién en la plataforma.

e El Capitulo 4 detalla las pruebas, tanto funcionales como de carga, realizadas a
la plataforma, analizando posibles escenarios de ataque asi como el impacto en el
rendimiento de la plataforma de las medidas implementadas.

e El Capitulo 5 contiene las conclusiones obtenidas del proyecto, asi como guias para
trabajos futuros.

También se incluyen varios apéndices a la presente memoria que contienen
informacién detallada sobre el trabajo realizado:

e En el Apéndice A exponemos el entorno tecnologico del proyecto. Maés
especificamente, se incluye una descripcion de conceptos generales de seguridad
informética, el uso de Java como lenguaje y entorno de ejecucién para muchas
plataformas de agentes moéviles y sus implicaciones en la seguridad de éstas y la
descripcién de los entornos sobre los que se ha realizado el desarrollo y las pruebas
del proyecto.

e En el Apéndice B se muestra el detalle de todas las pruebas funcionales realizadas
a la plataforma, incluyendo opciones de configuracion y logs.

e El Apéndice C incluye el manual del usuario de la plataforma, tanto a nivel de
administraciéon de la misma como a nivel de programacion.

Capitulo 2

Seguridad en plataformas de
agentes moviles

Aunque los frameworks de seguridad para plataformas de agentes moviles son
relativamente modernos, la mayoria de los principios en los que estan basados no lo son.
La caracteristicas fundamentales de una arquitectura de seguridad primitiva son tan
relevantes para una plataforma de agentes moviles como para aplicaciones distribuidas
tradicionales. En concreto, para el caso de plataformas de agentes méviles podemos
indicar los siguientes requisitos:

e Un agente debe poder ser autenticado cuando visite una plataforma de agentes.
e La plataforma debe poder ser autenticada por un agente que la visite.

e Los agentes deben ser capaces de cifrar partes confidenciales de sus datos y de su
cédigo.

e Los datos de los agentes deben estar protegidos de una manipulaciéon no autorizada,
realizada por otros agentes o plataformas.

e El c6digo de un agente no debe ser alterado por la plataforma.

e Un agente debe ser capaz de firmar un contrato para asegurar su responsabilidad,
por ejemplo, realizando una firma digital mediante una clave privada.

e Un agente no debe interferir en la ejecucién de otro agente o en la operaciéon de la
plataforma.

e Una plataforma no debe evitar la ejecuciéon autorizada y/o la migraciéon de un
agente no permitido.

Un resumen de las diferentes capas de seguridad, sus requisitos y su aplicacién en
plataformas de agentes modviles se muestra en la Tabla 2.1:

Capa Requisito Aplicacion
Externa Autenticacion | Los a'gentes y las plataformas se deben
autenticar.
Confidencialidad | Los agentes deben poder cifrar sus datos y su
codigo.
Interna Integridad La plataforma debe evitar la modificacion de los
componentes de la misma.
Integridad Los datos de los agentes deben estar protegidos
Integridad y Privacidad ante manipulaciones no autorizadas.
Responsabilidad | Un agente debe poder disponer de una clave
privada para la firma digital de objetos.
Disponibilidad | Un agente no debe interferir en la ejecucién de

otros agentes ni en la operacion de la plataforma
y la misma no debe evitar la ejecuciéon de los
agentes.

Tabla 2.1: Capas de seguridad en plataformas de agentes moviles

2.1 Clasificacion de ataques

En las plataformas de agentes moéviles existen, principalmente, tres clases de ataques.
Esta clasificacion se realiza de acuerdo a quién es el elemento malicioso (el agente y/o
la plataforma) y, a su vez, quién es el elemento atacado (de la misma forma, el agente
y/o la plataforma) [11, 13, 14].

2.1.1 Agente malicioso atacando a la plataforma

A continuacién se describen algunos tipos de ataques que puede realizar un agente

contra la plataforma:

e Ataques de denegacién de servicio: el agente consume excesivos recursos (tales
como la memoria, la CPU o el ancho de banda de red) del contenedor, haciendo
que ésta no pueda ofrecer sus servicios a otros agentes.

e Acceso no autorizado a datos del contenedor: El agente intenta acceder a datos
confidenciales, ficheros del sistema, almacenes de claves o ficheros de politicas,
o intenta manipular los mecanismos de gestién del contenedor o propiedades del

entorno de ejecucion.

e Masquerading: el agente se hace pasar por otro agente con mas permisos para
conseguir acceso a datos o servicios sensibles.

e Ataques complejos mediante la colaboracion con otros agentes.

2.1.2 Agente malicioso atacando a otros agentes

A continuacion se citan algunos ataques de agentes contra otros agentes.

e Cambiar el estado o tareas de otro agente.
e Leer o manipular los datos de otro agente.

e Enmascarar su identidad para enganar a otros agentes y conseguir acceso a
informacién sensible de otros agentes o usar servicios suplantando la identidad
de otros agentes.

e Retardar o evitar que otro agente pueda realizar las tareas que tuviera que
ejecutar, por ejemplo tardando intencionadamente mas de lo previsto en devolver
la respuesta a una invocacion.

e Ataques de denegacién de servicio contra otros agentes, enviandoles mensajes
basura.

2.1.3 Plataforma atacando agentes

A continuacion se listan una serie de ataques que pueden realizar los contenedores u
otras partes de la plataforma contra los agentes.

e Acceder o modificar a los datos de los agentes: leyendo datos confidenciales (claves
privadas) o manipulando los datos recogidos.

e Acceder o modificar el c6digo de un agente y/o su workflow: leyendo el listado
de migraciones que un agente tiene previsto seguir o sus algoritmos; cambiando el
comportamiento del agente permanentemente o temporalmente para el beneficio
del contenedor malicioso o para dafiar a otros contenedores. Si se pudiera modificar
el codigo de un agente, se podrian “reprogramar” sus acciones, con lo que se podria
cambiar su comportamiento.

e Retrasar la ejecucion de un agente innecesariamente o rechazar su ejecucion incluso
estando autorizado sin informar al contenedor origen.

9

e Ataque de “copiar y pegar”: Un contenedor “copia” porciones de los datos de
un agente y los “pega” en otro agente. Si dichos datos estuvieran cifrados, el
agente podria migrar a otro contenedor donde el descifrado fuera posible y volver
al contenedor original con los datos en claro.

Una plataforma idealmente deberia disponer de medidas de seguridad para prevenir
todos los tipos de ataques anteriormente citados.

2.2 Estudio de medidas de seguridad en plataformas de
agentes moviles existentes

Con el objetivo de estudiar los aspectos de seguridad en plataformas de agentes
moviles, se han examinado con més detalle plataformas de agentes que se estan utilizando
en la actualidad.

Histéricamente han existido numerosas plataformas de agentes méviles, tanto de
c6digo abierto como comerciales. Sin embargo, debido a intereses comerciales de la
empresas que las mantenian parece que muchas de las plataformas de agentes méviles
comerciales ya no estan disponibles para su utilizacién.

Existen también muchas plataformas que fueron desarrolladas con motivos
académicos en proyectos de investigacién y no estdn mantenidas, o que fueron
implementadas para configuraciones especificas y no se pueden utilizar universalmente.
Otras plataformas, simplemente, no ofrecen servicios de migracion.

Debido a lo anteriormente descrito, el estudio propuesto se ha centrado
principalmente dos plataformas de agentes moviles desarrolladas bajo licencia GPL
(General Public License). La primera es SeMoA (Secure Mobile Agents), que es una
plataforma de agentes moéviles de referencia en todos los aspectos de la seguridad de
agentes méviles, incluyendo la proteccion de los agentes frente a nodos maliciosos.
La segunda es JADE (Java Agent DEvelopment Framework), uno de los marcos de
desarrollo de agentes moviles mas utilizados y mejor mantenidos de la actualidad.

De todas formas, tanto por razones histéricas, como por la importancia de las
plataformas también han sido objeto de estudio las plataformas Aglets [15], Voyager
[16] y Tryllian [17].

2.2.1 Caracteristicas de seguridad de SeMoA

SeMoA es una plataforma de codigo abierto de agentes moéviles enfocada a la
seguridad. Fue desarrollada por el Fraunhofer-Institut fiir Graphische Datenverarbeitung,

10

v se ha utilizado en varios proyectos esponsorizados por el Ministerio Federal Aleméan
de Economia y Tecnologia. La plataforma ofrece las funcionalidades basicas para la
migracion, comunicacién y seguimiento/monitorizacién (tracking) de agentes. Su ultima
versiéon data de agosto de 2007. Ademds, SeMoA ofrece una arquitectura de seguridad
muy elaborada con una estructura modular que permite la inclusién de mas mecanismos
de seguridad para evitar ataques contra tanto agentes como servidores.

Los elementos que conforman la plataforma SeMoA son servidores (que ofrecen
servicios), agentes y lo que se denomina el registro [18]. Los servidores se encargan
principalmente de cargar e instalar agentes en la plataforma, de enviar la sefiales de
parada a los agentes, de eliminar agentes, de mantener la separacién y el anonimato entre
los agentes y de ofrecer servicios a los agentes. El registro tiene como funcién publicar
los nombres de los objetos, obtener los objetos por su nombre, buscar los objetos por su
nombre y listar los nombres de los objetos.

SeMoA utiliza transparencia en la localizacién de agentes mediante un sistema propio
denominado ATLAS. Puede utilizar diferentes protocolos de comunicacién entre agentes,
entre los que se encuentran FIPA (Foundation for Intelligent Physical Agents) [19] y
KQML (Knowledge Query and Manipulation Language) [20].

A continuacién se describe la arquitectura de seguridad de la plataforma SeMoA,
como se detalla en [18].

Arquitectura de seguridad

SeMoA ha sido desarrollado sobre JAVA SE (Java Platform Standard Edition) y con
la intencién de proveer de una seguridad adecuada a sistemas de agentes moviles, tanto
a servidores como a agentes. La arquitectura de seguridad de SeMoA se compara a una
cebolla: los agentes tienen que pasar por varias capas de proteccién antes de que sean
admitidos por el sistema de ejecucién (ver Figura 2.1) y de que la primera clase de un
agente sea cargada en la JVM (Java Virtual Machine) del servidor.

La primera (la mas externa) capa de seguridad es un protocolo de seguridad en el
transporte, como TLS (Transport Layer Security) o SSL (Secure Sockets Layer). En
este momento, la implementacion de SSL utilizada es la que viene con el framework
JSSE (Java Secure Socket Extension) de Oracle. Esta capa ofrece una autenticacién
mutua entre servidores de agentes, cifrado transparente y protecciéon de integridad. Las
peticiones de conexién entre objetos autenticados pueden ser aceptadas o rechazadas
segun una politica de seguridad configurable.

La segunda capa consiste en un pipeline de filtros de seguridad. Se soportan pipelines
separados para agentes entrantes y salientes. Cada filtro inspecciona y procesa los
agentes entrantes y salientes, y o los acepta o los rechaza. Este procedimiento de filtrado
se denomina “inspeccién de contenidos”, en analogia a conceptos conocidos de firewalls.

11

Bytecode dinamico:

Carga y filtrado, control Inspeccion de contenidos:
de acceso Filtros, firmas digitals, cifrado

Generacioén dinamica de W Seguridad de la Capa

Proxy, encapsulacién \\‘ de Transporte;
de agentes S 4 autentlcacion, cifrado,
\ //,/ integridad

Nombres implicitos para P
proteccion de privacidad T
y enrutado escalable de

mensajes v

Agente v v v

Administracion, auditorias, logging Servicios
m Entorno
Figura 2.1: Capas de seguridad de SeMoA (adaptado de http://semoa.sourceforge.net)

SeMoA incluye dos pares de filtros complementarios que se encargan de las firmas
digitales y del cifrado selectivo de agentes (verificacion de firmas y descifrado de agentes,
cifrado y firma de agentes). Un filtro adicional al final del pipeline de entrada asigna
un conjunto configurable de permisos a los agentes entrantes, basados en la informacion
obtenida y verificada por los filtros anteriores. Se pueden verificar permisos basandose
en las identidades autenticadas del propietario del agente, del responsable del ltimo
cambio de estado, y de su emisor mas reciente. Los filtros se pueden activar y desactivar
tanto dindmicamente como en el momento de inicializacién del servidor SeMoA.

Después de pasar todos los filtros de seguridad, SeMoA crea una sandbozx para el
agente aceptado. A cada agente se le asigna un grupo de threads y un class loader.
Utilizando el framework de serializacién de Java SeMoA consigue que el thread se bloquee
hasta que no queden mas threads dentro del grupo de threads del agente. Solo entonces,
SeMoA se encarga de cualquier peticién de migracién de ese agente. Este mecanismo
evita que los agentes puedan sobrecargar una red de servidores de agentes al intentar
migrar y evitar terminar su ejecucién al mismo tiempo.

Las clases de un agente son cargadas por su class loader dedicado. Este class
loader permite la carga de clases empaquetadas con el agente, asi como clases de

12

fuentes externas de cdédigo. Todas las clases cargadas son verificadas contra un conjunto
seguro de funciones hash. Las huellas de las clases verificadas deben coincidir con las
huellas firmadas por el propietario del agente. Por lo tanto, solo clases autorizadas por
propietario del agente para ser usadas por su agente son cargadas dentro del namespace
del agente.

Los agentes no pueden compartir clases, por lo que un agente no puede cargar una
clase de otro agente que contenga un Caballo de Troya [21] en su namespace. Sin
embargo, para permitir invocar métodos entre agentes, pueden compartir interfaces. Se
entiende que los interfaces son iguales si sus firmas coinciden. En este caso, el class loader
de un agente devuelve un interfaz cargado previamente en vez de cargar el interfaz del
otro agente otra vez, por lo que los interfaces utilizados por los agentes son compatibles
siempre que sea posible. Por supuesto, este mecanismo solo funciona si los interfaces
de las clases referenciados por dos agentes son idénticas a nivel de bit. Otros esquemas
mejorados, pueden comparar implementaciones del interfaz a nivel de API (Application
Programming Interface). Sin embargo, esto anade una sobrecarga al proceso de carga
de clases. Los objetos de interfaz son gestionados en un Map que es global a todos los
class loaders de los agentes. Ataques de “contaminacién” contra este Map requieren que
se rompan a la vez todas las funciones de hash.

Antes de que una clase sea definida en la JVM, el bytecode de esa clase debe pasar
unos niveles de seguridad similares a los de los agentes entrantes. Cada filtro de clases
puede inspeccionar, rechazar e incluso modificar el bytecode.

Los agentes estan separados del resto de agentes del sistema, no se publican
referencias a instancias de agentes por defecto. El tinico método de compartir instancias
entre agentes es publicarlos en un entorno global. Cada agente obtiene su propia vista
de su entorno, que sigue la pista a los objetos registrados por el agente. Todos los
objetos publicados se empaquetan en proxies que son creados dindmicamente. Si un
agente termina o reclama un objeto publicado, entonces el entorno del agente realiza un
peticién de invalidar su enlace al objeto original al correspondiente prozy. Esto hace que
el objeto original deje de estar disponible, incluso para otros agentes que busquen su
referencia en el entorno global. Esto también hace que el objeto original esté disponible
para el Garbage Collector.

Estructura del agente

En SeMoA, los agentes moéviles son transportados como archivos JAR (Java
ARchive). La especificacion de los ficheros JAR de Oracle extiende la de los archivos ZIP,
incluyendo soporte para firmas digitales, mediante la inclusién al contenido del archivo
ZIP de los ficheros de firmas apropiados. El formato de la firma es PKCS (Public-Key
Cryptography Standards)#7 [22], un estdndar de sintaxis de mensajes cifrados, que esta
construido a partir de estdndares como ASN.1 (Abstract Syntax Notation One) [23],

13

X.501 [24] y X.509 [25]. A su vez, utilizando el estindar PKCS#7, SeMoA extiende el
formato JAR con soporte para cifrado selectivo del contenido del JAR para multiples
receptores. El cifrado y descifrado se realiza de forma transparente a los agentes mediante
los filtros descritos previamente. Para evitar que partes cifradas de un agente sean
copiadas y usadas en conjunto con otros agentes (ataques de copiar y pegar), estos
filtros pueden obtener, de forma no interactiva, las claves de descifrado necesarias.

Cada agente contiene dos firmas digitales. La entidad que firma la parte estatica del
agente (la parte que se mantiene inalterada a lo largo del ciclo de vida del agente) se
entiende como el propietario de pleno derecho de dicho agente (la entidad por la que
el agente estd actuando en su nombre). Cada servidor emisor también firma el agente
completo (tanto la parte estatica como la que contiene datos variables), vinculando el
nuevo estado del agente con su parte estatica.

Los agentes pueden acceder a los datos almacenados en sus partes estaticas y
dindmicas (se puede apreciar en la Figura 2.2). Cuando un agente migra, su estructura
es procesada por los filtros de seguridad de salida, y se vuelve a comprimir en un
fichero JAR para su transporte hacia el servidor de destino. El grafo de los objetos
serializados de la instancia de un agente (es decir, todo el conjunto de datos dindmicos
del agente) también se almacena en la estructura del agente. Las estructuras del
agente pueden almacenarse tanto en almacenamiento persistente como en no persistente,
dependiendo de la configuracion del servidor. La estructura del agente también contiene
las propiedades del agente (pares clave/valor), tales como el nombre del agente en
formato legible, y las fuentes de codigo de donde cargar las clases. Las propiedades
deben ser firmadas por el propietario del agente, para ser protegidas del tampering.

Ademas, SeMoA calcula nombres implicitos para los agentes, aplicando una funcién
SHAT1 a la firma del propietario. Esto hace que los nombres sean globalmente tnicos, a
la par que anénimos. Los nombres implicitos se usan en SeMoA para proveer al agente
de trazabilidad a la vez que de una capacidad de enrutado escalable independiente de la
ubicacién de los mensajes entre agentes.

Seguridad en la ejecucién

SeMoA utiliza el modelo de seguridad de Java 2 para controlar el acceso a objetos
criticos del servidor. Los permisos otorgados a los agentes son definidos por el filtro
de politicas del conjunto de filtros de entrada. Estos permisos son asignados a todas
las clases cargadas por el agente (tanto a las clases propias del agente, como a las
clases remotas cargadas por el agente). SeMoA permite a codigo autorizado revocar los
permisos en tiempo de ejecucion. Las consecuencias de la revocacién son inmediatas y se
aplican a todas las clases del agente. Esto permite limitar el impacto de agentes “fuera
de control” en un servidor, ya que la plataforma podria actuar limitando los permisos
de las clases de un agente.

14

A

| <agent>/ |

[

| SEALINF/ | | METAINF/ | | static/ | | mutable/ |

N N N N N

N /N e N\

v

“sellos”, archivos firmas,

. “ ey agent.properties instances.sar clases
cifrados manifest 9 prop

Figura 2.2: Estructura de un agente SeMoA (adaptado de http://semoa.sourceforge.net)

Limitaciones

SeMoA esté construido sobre una (JVM) estdndar, donde no se han modificado los
paquetes del niicleo de Java. Esto hace que ciertas medidas de seguridad, que se podian
esperar en una plataforma de agentes méviles, no se puedan implementar. Una de las
més importantes es la falta de un control de recursos apropiado en la JVM. Como
consecuencia, SeMoA no es robusto ante una serie de ataques de denegacién de servicio
(DoS (Denial of Service)) como los que provocan una agotamiento de la memoria.

Otro problema es la terminacién forzada de agentes o, mas precisamente, la
terminacién de threads. Todos los métodos que permiten parar threads estan marcados
como “obsoletos” en Java 2 debido a que utilizarlos provoca estados inconsistentes en los
objetos. Incluso si se llama a stop() en el thread de un agente, el agente puede capturar
la excepcién ThreadDeath (o cualquier otra Throwable) que se propague por la pila del
thread y continuar la ejecucién. SeMoA ignora este problema. El servidor SeMoA marca
los agentes que deberian terminar y “confia” en que estos terminen su ejecucion.

La dltima limitacién, pero no menos importante es que hay una serie de clases
en el nicleo de Java que se sincronizan (método synchronize) con clase de un objeto
determinado. Como las clases locales son compartidas y su visibilidad es global a
cualquier agente que adquiera un bloqueo en dicha clase, bloqueard cualquier thread
que intente acceder a la clase.

15

Alguno de estos problemas se puede intentar evitar mediante la reescritura dindmica
del cédigo de ejecucion de los agentes, restricciones en la visibilidad de las clases
principales y la minimizacién de la comparticion de clases. SeMoA no implementa estas
técnicas, ya que los problemas subyacentes pueden ser mitigados utilizando filtros de
facil integracién en su arquitectura.

Por lo tanto, una serie de limitaciones de Java pueden ser utilizadas por agentes
maliciosos para lanzar varios ataques DoS. Sin embargo, para hacer eso, en primer
lugar los agentes deben ejecutarse primero. Para ejecutarse (e incluso antes de que las
clases del agente hayan sido cargadas), los servidores SeMoA verifican la identidad del
propietario del agente basandose en firmas y certificados digitales, con lo que se establece
una relacién de confianza.

Desde el punto de vista de la administracién, la plataforma SeMoA requiere un
buen nivel de conocimientos de la misma, con lo que no es sencilla de configurar ni de
administrar. A esto se le une la falta de documentacion tanto a nivel de administracion
como a nivel de programacién (se proveen ejemplos y una API documentada, pero no
una guia de programacién que facilite el uso de la plataforma a un usuario novato).
Por lo tanto, no consideramos que la plataforma sea “sencilla”, probablemente debido
al nivel de funcionalidad que abarca y sus propuestas de seguridad, que intentan ser lo
més “paranoicas” posibles [26].

2.2.2 Caracteristicas de seguridad de JADE

JADE es una de las plataformas de agentes méviles mas extendidas, utilizadas y
mejor mantenidas del momento (la dltima versiéon es la 4.3.0 de marzo de 2013). A
diferencia de otras plataformas de agentes méviles, no se ha considerado primordial la
implantacién de mecanismos de seguridad en la plataforma, primando otros aspectos,
como la simplicidad en la implantacién de un sistema de agentes méviles y la utilizacién
de estdndares abiertos (como FIPA). Es un framework basado en Java que, ademas,
dispone de varias herramientas graficas que facilitan tanto la gestién de la plataforma
como el desarrollo y depuracién de la misma.

JADE es software libre y es distribuido por Telecom Italia (poseedor de su copyright)
en forma de c6digo abierto bajo los términos LGPL (Lesser General Public License).

La plataforma JADE incluye tanto las librerias necesarias para desarrollar agentes
como el entorno de ejecucion que provee los servicios basicos que deben estar activos en
un dispositivo antes de que se puedan ejecutar los agentes. Cada instancia del entorno
de ejecucion de JADE se denomina contenedor (debido a que “contiene” agentes). El
conjunto de todos los contenedores se denomina plataforma y provee una capa homogénea
que abstrae de la complejidad y la diversidad de la tecnologia necesaria para ejecutar la
plataforma (hardware, sistemas operativos, tipos de red, JVM) a los agentes (y, también,

16

a los desarrolladores de aplicaciones) [27].

Como mecanismo de comunicacion entre agentes, JADE utiliza el estandar FIPA. Los
prozies no existen en JADE, por lo que las btisquedas de agentes se realizan consultando
a un elemento de la plataforma denominado AMS (Agent Management System), segiin
se indica en el estandar FIPA.

Capa de Seguridad JADE-S

La seguridad dentro de JADE se ha desarrollado como un médulo adicional opcional,
no formando parte del nticleo de la plataforma. Este mdédulo se denomina JADE-
S (JADE Security). Las caracteristicas de seguridad que ofrece dicho médulo son:
autenticacién de usuarios, autorizacién de acciones de los agentes por parte de un sistema
de permisos, y firma y cifrado de mensajes [28].

Autenticacién

La autenticacién ofrece la garantia de que el usuario iniciando una plataforma JADE vy,
por lo tanto, los contenedores y los agentes que forman dicha plataforma, sea considerado
legitimo dentro del ambito de seguridad del sistema que integra el contenedor principal
de la plataforma.

En general, una sistema de autenticacién se compone de dos elementos principales:
un Callback Handler, que permite al usuario proveer su nombre de usuario y su clave, y
un Login Module, que comprueba si dicho nombre de usuario y clave son vélidos.

El mecanismo de autenticacién de JADE estd basado en el API JAAS (Java
Authentication and Authorization Service), que permite forzar el control de acceso
diferenciado de usuarios del sistema. El mecanismo JAAS provee un conjunto de Login
Modules, como son los médulos Unix, Windows NT y Kerberos. Los médulos Unix y
Windows NT son dependientes del sistema operativo y estan disefiados para utilizar
la identidad de los usuarios extraida de la sesién actual del sistema operativo. La
operaciéon del médulo Kerberos es independiente del sistema operativo, pero requiere
una configuracion especifica de la plataforma previa a su uso

Junto a todos estos mecanismos, se ofrece también un moédulo especial denominado
Simple. Este moddulo permite una autenticacién bésica contra un fichero de claves en
texto plano y se recomienda su uso simplemente para pruebas.

Actualmente también se proveen los siguientes mecanismos de callback:

e cmdline - el nombre de usuario y la clave se incluyen como pardmetros de

17

configuracion de JADE, tanto a nivel de parametros de linea de comando (-owner
user:pass) como a nivel de fichero de configuraciéon (owner=user:pass).

e text - el contenedor inicial pide el nombre de usuario y la clave por consola.

e dialog - el contenedor inicial muestra un didlogo para introducir el usuario y la
clave.

Si ocurre cualquier problema durante la autenticacion, o si el usuario no puede ser
correctamente autenticado, el sistema saldra y generara el mensaje de error apropiado.

Permisos

Gracias al mecanismo de autenticaciéon previamente descrito, una plataforma basada
en JADE-S se convierte en un sistema multi-usuario donde todos los componentes
(contenedores y agentes) pertenecen a un usuario autenticado. Todas las acciones que
realizan los agentes en la plataforma pueden ser autorizadas o denegadas, de acuerdo
con un conjunto de reglas. De este modo es posible permitir el acceso a los servicios de
la plataforma o a los recursos de las aplicaciones de una forma selectiva. Este conjunto
de reglas suelen estar descritos en un fichero llamado policy.txt, que sigue la sintaxis
estandar de Java/JAAS, pero usa un modelo de politicas extendido que permite una
mayor flexibilidad en un escenario basado en agentes distribuidos.

Reflejando la arquitectura de JADE que incluye un contenedor principal y varios
contenedores periféricos, se pueden utilizar para otorgar permisos a los agentes dos tipos
de ficheros de politicas:

e El fichero de politicas del contenedor principal, que especifica los permisos a nivel
de plataforma, tales como “los agentes del usuario A pueden matar a los agentes
del usuario B”.

e Los ficheros de politicas de los contenedores periféricos (uno por cada contenedor),
que especifican permisos especificos del contenedor, tales como “Los agentes del
usuario A pueden matar a los agentes del usuario B en el contenedor local”.

Los ficheros de politicas de los contenedores también regulan el acceso a recursos
locales (JVM, sistema de ficheros, red, etc...).

Integridad y confidencialidad de la mensajeria

18

La firma y el cifrado garantizan un cierto nivel de seguridad cuando se envian mensajes,
tanto a un agente corriendo en el mismo contenedor como o a uno corriendo en otro
contenedor. Las firmas permiten asegurar la integridad de un mensaje (confianza en que
los datos no se han modificado durante la transmisién) y la identidad del emisor del
mensaje. Por otro lado, el cifrado asegura la confidencialidad del mensaje (confianza en
que solamente el receptor original serd capaz de leer el mensaje en claro). Un mensaje
se compone de dos partes: el envelope, que contiene la informacién relacionada con el
transporte, y el payload, que contiene la informacion sensible.

En JADE-S la “firma” y el “cifrado” siempre se aplican a todo el payload con el
objetivo de proteger toda la informacién importante contenida en el mensaje (contenido,
protocolo, etc). La informacion relacionada con la seguridad (como la firma, el algoritmo
o la clave) se almacena en el envelope. Los usuarios no se encargan de los mecanismos de
firma o de cifrado, sino que simplemente tienen que requerir que sus mensajes se firmen
o comprobar que un mensaje recibido ha sido firmado. Si surge algin problema durante
la firma, el cifrado, la verificacion o el descifrado de los mensajes, estos seran descartados
y se devolverd un mensaje de error al emisor del mensaje.

IMTPoverSSL

Aparte del plugin JADE-S, existe otro mecanismo de seguridad para la plataforma
JADE. Este mecanismo asegura confidencialidad, integridad de datos y autenticacion
mutua de conexiones entre contenedores JADE mediante la ejecucién de IMTP (Internal
Message Transport Protocol) sobre TLS/SSL, es decir RMI (Java Remote Method
Invocation) [29] sobre SSL [30].

Esta estructura de comunicacién entre contenedores es diferente de la estructura
de comunicacién entre agentes securizada mediante JADE-S. Cada contenedor posee un
certificado que incluye, entre otras cosas, su clave publica. Ademas, todos los certificados
de todos los contenedores de la plataforma se almacenan en el trust store de cada
contenedor. La autenticacién mutua, cifrado y firmas digitales se realizan mediante
el protocolo TLS/SSL: cada contenedor presenta su propio certificado a su interlocutor
en la comunicacién y comprueba si el certificado de la otra parte se encuentra en su
propio trust store. Si se aprueba con éxito la comunicacién, ésta continia con el cifrado
y la firma digital de toda la informacién intercambiada por los contenedores.

Una aplicacién practica del uso de JADE-S y de ITMPoverSSL se encuentra en [31].

Limitaciones

Como pone de manifiesto la Guia de Seguridad de JADE [32], existen una serie de
limitaciones en la plataforma actual. Estas limitaciones son las siguientes:

19

e No existen permisos relacionados con la movilidad. Como consecuencia de esto,
para conseguir un entorno seguro, una plataforma basada en JADE-S no deberia
ofrecer movilidad a los agentes.

e Parte de la comunicaciéon intercambiada por los contenedores (los llamados
comandos horizontales) se transfieren sobre canales seguros (SSL), pero no se
firman. Un agente malicioso o un hacker podria enviar un comando horizontal
falso con el objetivo de hacer que un contenedor remoto se comporte de una forma
que difiera de la que deberia comportarse.

e La mayoria de caracteristicas de seguridad no estdn disponibles para agentes
corriendo en dispositivos de tipo MIDP (Mobile Information Device Profile).

En un principio, se tenia previsto trabajar en solucionar estas limitaciones, pero en los
ultimos afios los expertos en seguridad de la plataforma han abandonado el proyecto, con
lo que algunas caracteristicas no se han mejorado o refactorizado adecuadamente, ni se
han podido realizar pruebas exhaustivas para asegurar su correcto funcionamiento. Con
todo esto, los propios desarrolladores de JADE recomiendan no utilizar esta extensién
de seguridad en entornos en produccién. Dicho anuncio fue publicado por Giovanni
Caire (el desarrollador principal de la plataforma JADE) en la lista de distribucién de
desarrolladores de JADE <jade-develop>':

The latest version of JADE-S is 3.7 (the one you can download from the
add-ons area of the JADE web site).

It works with JADE 4.0.

The main reasons why we do not encourage its usage in a real world
deployment scenario are:

- Some features should be improved/refactored to make them easier to be
used and more performing.

- Its level of testing is not sufficient

- Since some years, our group lost its security experts --> at present we

cannot guarantee its

maintenance/evolution. No need to say that if someone is willing/able to
make it evolve to meet his

requirements, we would be glad to help him taking over the ownership of
the add-on.

A nivel administracion y configuracién de la plataforma, los procedimientos
necesarios son sencillos y estdn bien explicados en la Guia de Seguridad de JADE
[32]. Estos procedimientos son sencillos principalmente debido a que la funcionalidad
ofrecida también lo es. No obstante, a nivel programacién, se requiere invocar a servicios
especificos seguros para el envio y la recepcion de mensajes, lo cual supone tanto una
complejidad afiadida para el programador como un riesgo para el administrador de la
plataforma, ya que por defecto estos métodos no son los utilizados.

1http://comments.gmane.org/gmane.comp.java.jade.devel/9215

20

2.2.3 Caracteristicas de seguridad de Aglets

Aglets es una plataforma de agentes méviles de propdsito general. Aglets [15], es un
sistema de Agentes Méviles basado en Java. Aglets fue desarrollado por IBM Tokyo en
1996 y es mantenida por la comunidad Open Source desde 2001, si bien, el nimero de
nuevas versiones desde entonces ha disminuido considerablemente. Uno de los puntos
fuertes de la plataforma es que sigue el estdndar MASIF [33].

Un aglet es un agente moévil escrito en Java. Se derivan de una clase abstracta
llamada Aglet. Son objetos Java que se pueden mover de un servidor a otro a través de
la red. La plataforma Aglets sigue un paradigma orientado a eventos andlogo al de la
clase Applet de la libreria de Java. Cada aglet implementa una serie de manejadores de
eventos que definen su comportamiento. Los agentes en Aglets son single-threaded y su
modelo de comunicaciones se basa en el paso de mensajes, tanto de forma sincrona como
asincrona. Los agentes en Aglets utilizan prozies (similares a los stubs de RMI) como
abstraccién para referirse a agentes remotos (por ejemplo, para enviarles mensajes).

Si bien Aglets fue una de las primeras plataformas de agentes moviles, ya desde sus
comienzos se tuvo en cuenta la seguridad en la plataforma, utilizando los mecanismos
que se podian aplicar en su época.

Aglets usa una aproximacién de organizacion donde todos los agentes en cierto
dominio se consideran “confiables”, y evalta la autenticidad de un agente dependiendo
del dominio por el que ha estado viajando [34]. Por lo tanto es importante ser capaces
de autenticar al usuario de un agente y a su desarrollador. Es razonablemente sencillo
identificar al desarrollador de un agente mediante la firma digital del codigo.

Dentro de Aglets se ha intentado encontrar un balance entre seguridad, complejidad
y usabilidad que permite su uso en entornos de produccién. Los siguientes mecanismos
de seguridad estdn soportados por Aglets:

e Autenticacién de usuarios y dominios.

e Comprobaciéon de integridad en las comunicaciones entre los servidores de un
dominio.

e Autorizacion similar al modelo de seguridad de JDK (Java Development Kit) 1.2.

Pasamos a describir cada uno de los mecanismos.

Autenticacién de Dominios

Los servidores de Aglets son capaces de autenticar si otro servidor pertenece a cierto
dominio. Todos los servidores que pertenecen a un domino especifico comparten una

21

clave secreta, y se pueden autenticar entre los servidores que pertenecen al dominio
mediante dicha clave usando una funcion MAC (Message Authentication Code). La
ventaja de este método es que este MAC no tiene que ser firmado mediante algoritmos
de cifrado y se puede implementar directamente usando el JDK.

Tras la autenticacion entre los servidores, las credenciales del aglet se envian junto
con el agente. El receptor debera decidir cuanto confia en las credenciales enviadas por
el servidor en base a la informacién obtenida en la autenticacién. En Aglets, el servidor
simplemente confia en las credenciales si éstas fueron enviadas por un servidor en el
mismo dominio.

Para utilizar la autenticacion de dominios, cada usuario (o administrador del
servidor) debe obtener la clave secreta del dominio de la autoridad de seguridad. La
autoridad es responsable de generar las claves para cada servidor especifico. La clave
secreta compartida es firmada con la clave del usuario, por lo que el usuario debe
introducir su clave correctamente para poderla utilizar. El fichero de la clave debe
mantenerse en secreto, ya que no esta cifrado.

Una desventaja es que no se pueden identificar y verificar los servidores que inician
una comunicacién. Si la clave compartida es robada de un servidor del dominio, no hay
forma de diferenciar a los servidores validos de aquellos que se han apropiado de la clave.
Por lo tanto, todos los servidores del dominio se exponen a peligros.

Comprobacién de integridad en las comunicaciones

Como ya se ha explicado, todos los servidores en un mismo dominio de Aglets
comparten una clave secreta. La comprobacién de integridad se puede realizar de la
misma forma que se realiza la autenticaciéon del dominio. El emisor calcula un valor
MIC (Message Integrity Code, andlogo al MAC) del contenido de la clave compartida,
y lo envia junto con el contenido del mensaje. El receptor verifica el MIC usando la
clave compartida, el contenido y el valor. Como solo un servidor que conoce la clave
compartida puede generar el mismo MIC, el receptor valida que el contenido del mensaje
fue enviado por un servidor del mismo dominio y que no ha sido modificado.

Identificacién de Cdédigo

En la actual especificacion de la plataforma Aglets, solo se utiliza el codebase para
la identificacién del agente. En dicha especificacién, no se soporta la firma digital de
codigo.

22

Autorizacion de Aglets

Cuando un agente aglet accede a informacién sensible o a recursos como las
propiedades de Java, threads, y/o a cualquier otro recurso externo como ficheros, se
deben controlar los permisos otorgados al aglet. Los permisos se pueden especificar
mediante un interfaz grafico o directamente editando la base de datos de politicas. El
formato de la base de datos de politicas usado por Aglets estd disefiado para cumplir
con la especificacién de JDK 1.2. Un usuario puede especificar los siguientes permisos
en la base de datos de politicas:

java.io.FilePermission : File read/write/execite
java.net.SocketPermission : Socket resolve/connect/listen/accept
java.awt.AWTPermission : showWindowWithoutWarningBanner,
accessClipboard
java.util.PropertyPermission : Java Property
java.lang.RuntimePermission : queuePrintJob, load library
java.security.SecurityPermission: getPolicy, setSystemScope
java.security.AllPermission : all other permissions
com.ibm.aglets.security.ContextPermission : contextproperty,start,
shutdown
com.ibm.aglets.security.AgletPermission : dispatch, deactivate, etc.
com.ibm.aglets.security.MessagePermission : messaging
Donde:

e com.ibm.aglets.security.ContextPermission: ContextPermission especifica si un
aglet puede acceder a las propiedades del contexto, apagar el contexto, etc. El
nombre para un ContextPermission puede ser uno de los siguientes: “start”,
“retract”, “create.<codebase@classname>", “listener.add”, “listener.remove”,
“property.<key>".

e com.ibm.aglets.security. AgletPermission: esta clase representa el acceso a un
aglet. Un AgletPermission consiste en el nombre de un aglet y un conjunto
de operaciones para dicho aglet.

El nombre del aglet es el nombre de usuario del aglet (por ejemplo, “jorge”, “sergio”,
“anonimo”), y la operacién es el nombre de un método de la clase Aglet (por
ejemplo “dispatch”, “dispose”).

e com.ibm.aglets.security.MessagePermission: esta clase representa el permiso para
enviar un mensaje a un aglet. Un MessagePermission consiste en el nombre del
aglet y un tipo de mensaje.

El nombre del aglet es el nombre de usuario del aglet (por ejemplo, “jorge”,
“sergio”, “anonimo”), y el tipo de mensaje es el tipo de mensaje a enviar. El
tipo de mensaje debe tener como prefijo “message” (por ejemplo, “message.show”,
“message.getResult”).

23

Los Aglets se identifican por su codebase y por su propietario. El desarrollador de
un aglet es, segun la especificacién actual, anénimo, ya que no se soporta la firma digital
de cédigo en la plataforma.

Mas detalles sobre la arquitectura de seguridad de Aglets, incluyendo una
especificacién mas extensa sobre el lenguaje utilizado para la gestién de permisos se
pueden encontrar en [35].

2.2.4 Caracteristicas de seguridad de Tryllian

Tryllian [36] se desarrolld por la companfa homénima en 2001 (la dltima versién
3.2.0, fue distribuida como Open Source en 2005). Sin embargo, a dia de hoy, la pagina
comercial del producto parece que no tiene actividad, y la pagina del proyecto Open
Source (http://www.tryllian.org) ya no existe.

Estd basado en un mecanismo de accién-reacciéon. Permite a los programadores
definir un comportamiento reactivo (basado en un mensaje de entrada) y un
comportamiento proactivo de los agentes. Tryllian propone un modelo de programacién
basado en tareas y la comunicacion entre agentes se realiza mediante paso de mensajes
de acuerdo con el estdndar FIPA. También provee de un servicio de persistencia. La
mayor desventaja de Tryllian es que no ofrece transparencia de localizacién, es decir,
es necesario conocer la direcciéon exacta de un agente para poder comunicarse con el
(si éste ha viajado, légicamente hay que conocer su nueva direccién). Tampoco ofrece
mecanismos para la comunicacién sincrona ni para la invocacién de métodos.

La plataforma Tryllian se conforma de [37]:

e Héabitat. Un héabitat es una coleccién de una o méas habitaciones que comparten
una misma JVM. Provee los servicios de gestion del ciclo de vida de los agentes,
comunicacién movimientos inter-habitat, persistencia de agentes y habitaciones y
un modelo de seguridad bésico.

e Habitaciones. Los agentes solo pueden existir en habitaciones. Las habitaciones
son los entornos en los que los agentes interacttian. También son el sitio donde los
agentes anuncias sus capacidades para que otros agentes las encuentren.

e Agentes. Un agente Tryllian es un componente software que consiste en dos partes:
cuerpo y comportamiento. El cuerpo es la parte que ejecuta el codigo del agente
mediante el envio de mensajes y el movimiento del cédigo del agente por la red.
El comportamiento consiste en las acciones y en el estado del agente.

e Agentes del Sistema. Son agentes especiales que ofrecen los servicios de los
habitats. Los mas importantes son el agente hébitat (permite las comunicaciones
en un habitat), el agente habitacién (ofrece y gestiona informacion sobre los agentes

24

que hay en una habitacién determinada) y el agente transportador (es el punto de
interaccién para que los agentes puedan moverse).

El ADK (Tryllian Agent Development Kit) de Tryllian implementa el modelo
completo de seguridad de Java usando certificados y permisos [37]. Para el desarrollador,
la seguridad se reduce a firmar el agente con la herramienta de firmado de ficheros JAR
provista por el JDK.

Permisos en el Habitat

Al més bajo nivel, el duefio de un habitat tiene que decidir qué acciones un héabitat,
o mas especificamente, un ARE (Tryllian Agent Runtime Environment), puede realizar
en la plataforma que se estd ejecutando: a qué recursos puede acceder, etc. El ARE es
el software de servidor que implementa un hébitat.

Los permisos del ARE no se encuentran directamente relacionados con los permisos
de los agentes. Esto se hace para dotar al ARE de més permisos de los que podrian
disfrutar los agentes sin crear un agujero de seguridad y para separar completamente las
clases de un agente en el ARE de las clases de otros agentes.

Permisos de los Agentes

Para permitir agentes externos en un habitat de una forma segura se necesita
controlar sus permisos. Con el objetivo de decidir qué agente disfrutarda de ciertos
permisos y qué agente no, se tiene que poder determinar dénde se ha originado el agente.
Esto se consigue mediante la inclusién de un certificado dentro de los ficheros del DNA
(Tryllian Definition of New Agent) del agente.

Con este certificado, se puede averiguar quién creo el agente y quién confia en él.
El hébitat determina quién puede entrar en él mediante la asignaciéon de permisos a los
certificados. El mecanismo usado por el ARE es similar al mecanismo utilizado por los
navegadores para los applets [38].

Otros mecanismos de seguridad

El ARE protege a los agentes de otros agentes: los agentes no pueden leer o o
modificar el c6digo o los datos o interceptar los mensajes para otros agentes. Todas
las transmisiones entre habitats se pueden cifrar usando SSL. Esto protege tanto a los
agentes méviles como a sus mensajes. El ARE también asegura que solo los hdbitats en
los que confia pueden comunicarse.

25

Las comunicaciones entre el habitat y las diferentes herramientas del ADK también
se pueden cifrar.

2.2.5 Caracteristicas de seguridad de Voyager

Voyager (http://www.recursionsw.com), fue desarrollado
inicialmente por ObjectSpace en 1997 y actualmente pertenece a Recursion Software
(dltima versién: Voyager 8.0 de 2011). Es un middleware de computacion distribuida
enfocado a simplificar la gestién de comunicaciones remotas de protocolos tradicionales
[39] como CORBA (Common Object Request Broker Architecture) [40] o RMI.

Voyager provee capacidades de envio de mensajes y también permite el movimiento
de agentes a través de la red. Es una plataforma con ciertas funcionalidades que facilitan
el desarrollo de sistemas distribuidos. Ofrece servicios como la generacion dindmica de
proxzies CORBA, de cédigo mévil y de agentes méviles. Los agentes se comunican via
invocaciones remotas de métodos usando prozies. Voyager ofrece a los agentes tiempos
de vida flexibles, pudiéndose configurar cuando se quiere que termine un agente de varias
formas (cuando no tenga mas referencias remotas, cuando haya expirado su tiempo de
vida maximo, etc.).

Como se cita habitualmente en la literatura [41, 42|, uno de los problemas de la
plataforma Voyager es que se trata de un producto comercial que no se encuentra
disponible gratuitamente, lo que puede hacer que muchos investigadores y usuarios eviten
su uso, en favor de otras alternativas mas accesibles. De todas formas, la documentacion
ofrecida por Recursion Software es abundante y de gran calidad y, ademaés, es posible
acceder a un mes de prueba de la plataforma gratuitamente, asi como disponer de un
mes de soporte gratis por parte de Recursion Software, para poder evaluar la plataforma.

En Voyager, una politica de seguridad se aplica a las entidades que se reconocen
dentro de un mismo dominio de seguridad, y otorga permisos y privilegios a dichas
entidades dentro del dominio [43]. Una entidad se autentica contra una politica y el
cbdigo de la aplicacién verifica que un permiso o un privilegio fue otorgado a dicha
entidad (asociada al thread actual).

La seguridad en Voyager provee un marco y una implementacién para crear una
aplicacién distribuida segura mediante mecanismos basados en politicas.

La autenticacion y la verificacién de permisos se realiza mediante un interfaz estandar
provisto por el Voyager Security API utilizando un proveedor de politicas de seguridad
extensible. Mediante la extensiéon de dicho proveedor de seguridad, Voyager puede
utilizar desde mecanismos sencillos de autenticacién mediante usuario y contrasena hasta
certificados con claves publicas/privadas.

26

Confianza entre cédigo y contexto

Voyager sigue el modelo de sandboxr de la JVM, utilizado tipicamente en los
navegadores para los applets. Para que se pueda confiar y, por lo tanto, ejecutar
una clase Java, es necesario que el codigo esté firmado por una autoridad valida. La
sandbor de la JVM provee barreras a través de las cuales el codigo “no confiable” no
se puede ejecutar. Estas barreras se activan mediante la creacién de una instancia
de una subclase de java.net.SecurityManager. Solo puede haber una instancia de
java.net.SecurityManager por JVM.

Desde el momento en que una entidad se autentica en el domino de seguridad de la
plataforma (utilizando el método que haya sido definido), ésta es capaz de comprobar si
tiene los privilegios suficientes para ejecutar una operacién en particular, tanto si esta
ejecutando en local como en una JVM remota.

Principales mecanismos de seguridad

El lenguaje Java y la JVM evitan el acceso a los datos en memoria por parte de otros
procesos y ofrecen verificacién del bytecode durante la carga de las clases.

Para proteger los datos mientras se mueven por una red publica, Voyager permite la
utilizacién del protocolo SSL para proveer tanto privacidad en los datos como integridad
de los mismos durante la transmisién. La comprobacion de integridad de los datos
garantiza que estos no pueden ser modificados durante su transferencia entre servidores.
La privacidad de los datos (o cifrado) hace que no puedan ser leidos en la comunicacién
entre diferentes hosts por un sistema ajeno.

Con el objetivo de evitar el repudio del uso de recursos por parte de una entidad, se
utiliza un mecanismo sencillo de logging que identifica quién esta ejecutando instrucciones
en cada uno de los servidores.

También se permite reemplazar temporalmente los permisos necesarios para la
ejecucién de ciertas partes del codigo. Es decir, si una entidad no tiene permisos
suficientes para hacer una consulta a base de datos, por ejemplo, ésta tiene mecanismos
para pedir permisos temporales para realizar dicho acceso.

2.2.6 Resumen de medidas de seguridad en diferentes plataformas

A modo de resumen, nos gustaria exponer en la Tabla 2.2 cémo se comportan las
plataformas estudiadas segin las principales medidas de seguridad esgrimidas en esta
seccion, y mas detalladamente, segin la Tabla 2.1.

En dicha tabla podemos observar cémo todas las plataformas estudiadas disponen

27

SeMoA Jade Aglets Tryllian Voyager
Autenticaciéon Si Jade-S Si A nivel de JAR | Si, programable
Confidencialidad
- Agentes Si No No No No
- Mensajes Si Jade-S A nivel de dominio No No
- Comunicaciones Si IMTPoverSSL No Si Si
Integridad
- Plataforma Si Si Si Si Si
- Agente Si Si Si Si Si
- Comunicaciones Si IMTPoverSSL No Si Si
Responsabilidad Si No No No No
Disponibilidad JVM JVM JVM JVM JVM

Tabla 2.2: Comparativa de medidas de seguridad en las plataformas estudiadas

de algiin mecanismo de autenticacién. Desde mecanismos completamente programables
como ofrece Voyager a un simple mecanismo basado en firma del JAR del cédigo como
utiliza Tryllian.

Respecto al cifrado de los elementos, tan solo SeMoA es capaz de ofrecer un
mecanismo de cifrado de los agentes. Tanto SeMoA como JADE-S permiten utilizar
métodos para intercambiar informacion cifrada utilizando cifrado de clave asimétrica
entre dos elementos de la plataforma. Aglets también es capaz de cifrar informacion,
pero Unicamente mediante un cifrado con clave simétrica que permite que todos los
miembros de un mismo dominio sean capaces de descifrar un dato, ya que todos los
miembros del dominio tienen conocimiento de la clave de cifrado. Todas las plataformas
exceptuando Aglets son capaces de cifrar el canal de comunicaciones mediante SSL.

Todas las plataformas disponen de sistemas basados en JAAS para controlar
en alguna medida las acciones que los agentes pueden llevar a cabo dentro de los
contenedores. Los controles pueden ser estrictos y completamente extensibles como
ocurre en SeMoA o més basicos como los ofrecidos por Tryllian o Aglets. La JVM
protege el acceso a zonas de memoria no autorizadas entre los procesos asi que, en
principio, ningiin proceso deberia poder acceder y modificar datos de un agente o de un
contenedor en ejecuciéon. Solo Aglets no ofrece un mecanismo de comunicaciones basado
en SSL, con lo que es la tnica plataforma que no puede asegurar la integridad de las
mismas.

SeMoA es la tnica plataforma que dispone de mecanismos de responsabilidad sobre
las acciones efectuadas ya que permite la firma mediante clave privada por parte de un
agente. El resto de plataformas utilizan mecanismos bésicos de logging para analizar
quién esta ejecutando acciones.

Todas las plataformas estudiadas corren sobre un entorno de ejecucién basado en una
JVM sin modificar. Esto hace que los problemas expuestos en la Seccién A.2 respecto
al uso de la JVM les afecten. Para poder mitigar este tipo de ataques de denegacién
de servicio y de abuso de recursos de los contenedores, Java deberia ofrecer mecanismos

28

avanzados de control de recursos.

A nivel de seguridad queda claro que SeMoA es la plataforma de agentes moviles
més avanzada de las estudiadas. Si bien su desarrollo se encuentra paralizado desde que
el director del proyecto dejé el Fraunhofer-Institut fiir Graphische Datenverarbeitung,
aunque su codigo se encuentra disponible como Open Source. Es posible que aun siendo
tan avanzada a nivel de seguridad, la falta de mantenimiento de la plataforma, unida
a la complejidad de uso y de administracién de la misma haga que otras plataformas
menos seguras en teoria (pero quiza lo suficiente a nivel practico) pero mucho mejor
documentadas y mantenidas como JADE o Voyager sean el referente del mercado de
plataformas de agentes moviles.

29

30

Capitulo 3

Arquitectura de Seguridad para
SPRINGS

SPRINGS es una plataforma de agentes méviles, desarrollada por la Universidad de
Zaragoza, cuyo principal foco es la escalabilidad y la fiabilidad en escenarios con un gran
numero de agentes méviles. Al igual que otras plataformas, como Grashopper y Jade,
ofrece una arquitectura basada en regiones. También ofrece total transparencia en la
localizacién 1) para movimientos (el programador no necesita especificar la direccién de
red, sino simplemente el nombre del contexto al que desea viajar) y 2) para invocacién
a métodos y envio de mensajes a otros agentes a través de prozies dindmicos [41].
SPRINGS implementa un mecanismo de movilidad “débil” [44] basado en llamadas a
métodos [12].

La plataforma consta de agentes, contextos y regiones. Los agentes se crean en
contextos, los cuales son entornos de proceso donde los agentes se pueden ejecutar. Los
contextos, ademas, proveen los servicios de comunicacién y movimiento a los agentes. Un
conjunto de contextos definen una regién. Una regién ofrece a los agentes que se estan
ejecutando y a los contextos de un servicio que garantiza un espacio de nombres tinico
a través de un elemento llamado RNS (Region Name Server) cuya funcién es gestionar
los elementos que forman parte de la regién.

SPRINGS esta implementada en Java usando una JVM estandar y utiliza RMI
como mecanismo de comunicacién entre todos sus elementos. Por estar basada en Java,
SPRINGS se beneficia de las medidas de seguridad expuestas en el Apéndice A.2 como,
por ejemplo, la imposibilidad de que se pueda acceder a los datos de un objeto desde
otro thread, aunque puede tener problemas, por ejemplo, ante ataques de denegacién de
servicio.

Cabe resaltar que la arquitectura de seguridad implementada para SPRINGS se ha
disefiado como una extension a la plataforma. SPRINGS no se disené originalmente

31

basdndose en principios de seguridad, sino que se hizo énfasis en la creacion de una
plataforma capaz de gestionar una gran cantidad de agentes moviles de una manera
eficiente [12]. Por esta razén, un requisito bésico para la arquitectura de seguridad de
SPRINGS es que debe poderse activar y desactivar a voluntad por parte del usuario o del
administrador de la plataforma. En caso de que la extensién de seguridad de SPRINGS
se encuentre desactivada, el rendimiento de la plataforma no debe verse penalizado en
gran medida. Dicha desactivacién puede ser deseable en ciertos entornos controlados,
en los que prime la necesidad de rendimiento y no se adviertan riesgos de seguridad a
priori. De todas formas, se recomienda la utilizacién de la extension de seguridad como
practica habitual en el disefio de un sistema de agentes méviles basado en SPRINGS.

En la Figura 3.1 se ilustran las diferentes capas de seguridad que se han disenado para
dotar a la plataforma SPRINGS de los mecanismos de seguridad més importantes para
cumplir con los principios generales de seguridad de sistemas descritos en el Capitulo 2.

Seguridad
| Capa Externa:
[/| 8sL
//// \\\
y o D/
/ / \\ \"\ Autenticacion
4 4 - \\ N | y autorizacion
/) T N |anielde
a8 U W [patatorma
/ / V4 N \
J y \ \
| / ’ \ \ /\
| | / 4 1
| / [Contexto \ \ \
| | 1
| ‘ \‘] ‘ Autenticacion
\ \ \ Acont J | / y autorizacion
\ \ gente L ———+— " |anivelde
| /
b \ \ / ’/’ / contexto
\ \ \\\ e / /
\ \ N P 4
\ - > L /
\\ T //
% 48 Cifrado y
Q « > // .| comprobacién
\\\ - // de integridad
K | - de datos
0 e

Certificados, logging

Figura 3.1: Capas de seguridad de SPRINGS

En dicha figura se muestran los siguientes mecanismos:

e Certificados. Todos los elementos que forman parte de la plataforma disponen
de un certificado o de una estructura creada a partir de un certificado para su
identificacion por el resto de elementos de la plataforma

e Seguridad en la Capa Externa. Todas las comunicaciones entre los elementos de la
plataforma pueden hacer uso del protocolo SSL para evitar que las mismas puedan

32

ser interceptadas y/o alteradas.

e Autenticacién y autorizacién a nivel de plataforma. Se denominan asi a los
mecanismos que se utilizan entre los contextos y el RNS para autenticarse y
permitir el acceso a ciertas funcionalidades como la creacién de agentes y el
movimiento de los mismos.

e Autenticacién y autorizacién a nivel de contexto. Este es el mecanismo a través
del cual un contexto puede aceptar y/o limitar el acceso a sus recursos por parte
de un agente.

e Cifrado y comprobacién de integridad de datos. Son los mecanismos disponibles
para un agente para poder cifrar y comprobar la integridad de datos que él posee
con el objetivo de evitar que se pueda acceder a estos o que puedan ser modificados.

e Logging. Se ha dotado a la plataforma de un mecanismo unificado de logging para
que toda la gestion de logs de lo elementos se realice de una forma homogénea.

A continuacién pasamos a detallar cada una de las medidas de seguridad anunciadas.

3.1 Identificacién - Uso de certificados digitales

Un certificado digital es un documento digital mediante el cual un tercero confiable
(una autoridad de certificacion) garantiza la vinculacién entre la identidad de un sujeto
o entidad y una clave publica [45, 46].

Todos los elementos estructurales de la plataforma SPRINGS (RNS y contextos)
se encuentran identificados univocamente por un certificado digital. Los certificados
digitales utilizados en una regién pueden estar expedidos por una misma CA (Autoridad
de Certificacién) o por varias (o incluso puede tratarse de certificados auto firmados [46]).
Sin embargo es necesario que las JVMs sobre las que corren los elemento de la plataforma
sean capaces de confiar en todos los certificados de las CAs (o, directamente, en los
certificados auto firmados) utilizadas. La gestién de la expedicién de los certificados se
considera una tarea paralela pero ajena al funcionamiento de la plataforma en si. En la
Figura 3.2 se muestra el diagrama de gestién de los certificados en una region.

En el que:
e El administrador de la plataforma debe incluir la clave publica de la CA con la

que se haya firmado el certificado del RNS en el fichero cacerts de la JVM en la
que se vayan a ejecutar tanto el RNS como los contextos.

e El administrador de la plataforma solicita un certificado digital para el RNS a la
CA, que contiene una clave privada que solo serda conocida por él.

33

Administrador Contexto RNS CA

Peticion de Certificado

I

I

I

I
L

I

I

I

I

I

Certificado :

I

i

mE Ll

} Peticion de Certificado

.

Certificado

I
\
\
|
|
|
|
|
|
Instalacién de Certificado
I
|
\
|
|
|
|
1
|
|

Instalacién de Certificado
|
g
|
|

NN

-1

Figura 3.2: Identidad, uso de certificados digitales

e El administrador de la plataforma (o el de un contexto, dependiendo de cémo
se esté administrando la plataforma) solicita un nuevo certificado digital para el
contenedor a la misma CA que firmé el certificado digital del RNS o a otra CA.
Si se utiliza un certificado digital firmado por otra CA diferente a la del RNS es
necesario que se incluya la clave publica de dicha CA en el fichero cacerts de las
JVMs en la que se vayan a ejecutar tanto el RNS como los contextos.

Por lo tanto, para simplificar la administraciéon de la plataforma, es recomendable
que todos los certificados utilizados en una region estén firmados por la misma CA.

e El certificado digital del contexto estd firmado con una clave que solo debe ser
conocida por el administrador del contexto y se encuentra expedido con el nombre
tnico del contexto, por lo que solamente ese contexto podra utilizarlo.

Cuando un contexto crea un agente, éste hereda sus credenciales de identificacién del
contexto que lo ha creado. Por lo tanto, como veremos méas adelante en las Secciones 3.3
y 3.4, todas las tareas de autenticacion y autorizacion se realizan a nivel de contexto. La
principal razén para esta decision de arquitectura es facilitar la gestion de la seguridad
en la plataforma. La identificaciéon por agente supondria tener que crear certificados,
distribuirlos e instalarlos en los contextos y en el RNS, asi como gestionar los diferentes
niveles de autorizacion para cada agente en la plataforma. Estas tareas administrativas
harian la gestion de una plataforma orientada a soportar gran niimero de agentes como
es SPRINGS casi imposible. Esta decisién tiene un efecto lateral en el funcionamiento
de la plataforma, no es posible crear un agente sin haber creado un contexto primero.
Todo agente se debe crear dentro de un contexto, del que heredarad sus credenciales de

34

identificacion.

Las reglas generales en las que se basa la identificacion en la plataforma son:

e El RNS se comporta como la autoridad principal de comprobacién de identidades.
Esto es consecuente con la arquitectura centralizada que ofrece SPRINGS, aunque
puede suponer una limitacién en entornos méviles como se expone en [47].

e Cada contexto que se cree y se registre en el RNS debe ofrecer un certificado firmado
por una CA en la que confien las JVMs del resto de elementos de la plataforma.

e La autenticacion de los contextos ante el RNS esta basada en el uso de certificados
validos y de la existencia de dichos certificados en el keystore del RNS, como se
detalla en la Seccién 3.3.

e Los agentes heredan las credenciales de identificacion de los contextos en los que
fueron creados.

En siguientes revisiones de la plataforma seria recomendable abordar temas como la
gestion de la revocacion de certificados o, incluso, la utilizacién de frameworks de gestién
de identidades como OpenlID [48] que quedan fuera del alcance del presente proyecto ya
que, por si mismos, no aportan mas seguridad a la plataforma, sino que facilitan la
gestion de la seguridad de la misma, haciendo posible la delegacién de gestion de las
identidades y su autenticacion por parte de entidades externas.

3.2 Seguridad en la capa externa

Como se ha explicado anteriormente, el mecanismo utilizado para las comunicaciones
entre todos los elementos de la plataforma SPRINGS es RMI.

Por defecto, el mecanismo de comunicacién de RMI, llamado JRMP (Java Remote
Method Protocol), no es seguro. En Java 5.0 se introdujeron dos nuevas clases,
javax.rmi.ssl.Ss1lRMIClientSocketFactory y
javax.rmi.ssl.SslRMIServerSocketFactory que permiten proteger el canal de
comunicaciones entre el cliente y el servidor de una aplicacion basada en RMI usando
los protocolos SSL/TLS [49]. Estas clases ofrecen una forma elegante de proteger las
comunicaciones RMI mediante el uso de JSSE, lo cual asegura la integridad de los datos,
la confidencialidad de los mismos (a través del cifrado) y la autenticacién de clientes y
servidores. Esto se consigue mediante el cifrado de clave simétrica para cifrar los datos
entre el cliente y el servidor, y el cifrado de clave asimétrica (o cifrado mediante clave
publica/privada) para autenticar las identidades de las partes que se quieren comunicar,
asi como para cifrar la clave secreta comin que se utiliza durante el establecimiento de
la sesién SSL [50].

35

Para proteger la capa externa de la plataforma se ha decidido utilizar estos
mecanismos. Con ellos se evita el acceso por parte de cualquier tercero a los informacién
en transito perteneciente a la plataforma.

En la Figura 3.3 se expone como todas la comunicaciones entre los elementos de
la plataforma se pueden proteger mediante RMI-SSL. Tanto las interacciones entre los
contextos y el RNS como las interacciones entre diferentes contextos para el movimiento
y la comunicacion de los agentes se protegen de esta forma.

addContext()
removeContext() RNS
addAgent() “addContext()
removeAgent() \ / removeContext()
isContextAuthorized() | \
verifyOTP()| \ v)
etc. \5’0%/ g Y N
RMI-SSL
Contexto 1 RMI-SSL Contexto 2
Agente 1 Agente 2
moveAgent()
| callAgent()
sendMessage()
etc.

Figura 3.3: Comunicaciones RMI-SSL

Una vez establecidas las comunicaciones SSL correctamente, todos los elementos de
la plataforma pueden comunicarse entre si de una forma segura.

Siguiendo los requisitos previamente comentados, esta capa de seguridad se puede
desactivar mediante cambios en la configuracién. Sin embargo, no se recomienda su
desactivacion, ya que ésta implicaria que todas las comunicaciones de la plataforma se
podrian interceptar, no solo exponiendo los datos de los agentes que viajan por la red
sino el resto de credenciales de autenticacién que se detallan en la Seccién 3.3, pudiendo
facilitar ataques de suplantacién de identidad.

3.3 Autenticaciéon y autorizacién a nivel de plataforma

Con el objetivo de poder controlar qué elementos acceden a la plataforma y qué
acciones son capaces de realizar se han desarrollado unos mecanismos especificos de

36

autenticaciéon y autorizacién a nivel de plataforma. Estos mecanismos ofrecen una
manera sencilla de proteger la plataforma ante ataques por parte de contextos y agentes
“malignos” mediante, por una parte, la limitacién en el acceso a la plataforma y, por
otra, la limitacion en las acciones que estos contextos pueden realizar. Este mecanismo
se podria extender en un futuro para ofrece un control méas detallado sobre las acciones.

La autenticacién dentro de la plataforma dispone de dos vertientes principales:

e Autenticacién y autorizacién de los contextos y de los agentes ante el RNS.

e Autenticacion del RNS frente a los contextos.

La primera trata de controlar qué contextos y qué agentes pueden formar parte de la
plataforma y qué acciones pueden ejecutar en ella y la segunda trata de asegurar que un
contexto solo es contactado por el RNS de su region, y no por ninguna otra entidad que
se pueda hacer pasar por él, evitando ataques por parte de la plataforma a un contexto.

3.3.1 Autenticaciéon y autorizaciéon de los contextos y de los agentes
ante el RNS

Gracias a la autenticacion y autorizacién a nivel de plataforma se puede controlar:

Qué contextos se pueden anadir a la plataforma.

Qué contextos pueden crear y destruir agentes.

Qué agentes pueden realizar llamadas a otros agentes.

Qué agentes pueden viajar a otros contextos.

Este mecanismo basa su funcionamiento en el uso del RNS como una autoridad de
autenticacién que centraliza la gestion de las identidades de los contextos y agentes, asi
como su autenticacion y sus permisos o niveles de autorizacion.

Esta arquitectura centralizada ofrece grandes ventajas en la gestién de la seguridad
de la plataforma como la necesidad de la intervencién en un solo elemento de la misma
para anadir, borrar o modificar las credenciales de nuevos contextos mediante la inclusién
de las claves publicas de los contextos en el keystore del RNS, la confianza en un tnico
elemento de la plataforma para realizar estas funciones, evitando la posibilidad de que
otros elementos puedan modificar las credenciales o los permisos otorgados, etc. Si bien,
desde el punto de vista del rendimiento y la escalabilidad de la plataforma sobre todo
en entornos con dispositivos méviles [47], quizd habria que estudiar el uso de alguna

37

caracteristica adicional para mejorar la eficiencia de una plataforma centralizada. Sin
embargo, dado que el RNS es un elemento ya existente en la plataforma que se utiliza
simplemente para la gestiéon de la misma y no para el propio trabajo de los agentes, es
un elemento ideal para ofrecer esta funcionalidad.

El funcionamiento mostrado en la Figura 3.4, donde se detallan los métodos
invocados, es el siguiente:

keystore
(RNS) Contexto 1 Contexto 2

_—

~_

|

|
b
Certificado Valido

‘ ~Z
ContextSecuritylnformation
|

-
|
|
|
|
|
|
I
|
|
|

Y

addContext()
I
|

|
challenge
L

|
method(ContextAuthentication)

Resultado del método o no autorizado

validate(ContextAuthenticacion,
AuthorizationLevel)

e

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\ |
ContextAuthentication I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

method(ContextAuthentication)

v

-
|
|
|
|
t
|
|
|
|
|
|

—l
|
|
|
|
L
|
|
|

A

Boolean

|
I
|
|
|
|
|
validate(ContextAuthenticacion, AuthorizationLevel)
|
|
|
|
1
|
|
|
I
|
|
|

|
|
|
i
\ IResultado del método o no autorizado
|
|
|
|

\ “true” si el contexto
esta autorizado, “false”
en otro caso

Figura 3.4: Autenticacion y autorizacion de los contextos

e Al arrancar, el RNS analiza el contenido de su keystore y, para cada certificado
valido, crea una estructura del tipo ContextSecurityInformation (Figura
3.5) en la que se se almacena: el nombre del contexto, su clave publica,
un conjunto de permisos y un challenge. Este challenge se trata de una
serie aleatoria de bytes (obtenidos a través de la clase SecureRandom). Por
defecto, cuando se crea un nuevo objeto de este tipo, se le incluye el permiso
springs.security.authorizationLevel.PLATFORM_PERMISSION (la funcién y el
uso de los permisos se explicard més adelante). Todos los objetos del tipo

38

ContextSecurityInformation se almacenan en una estructura privada llamada
_authorizedCtxs del tipo hashtable en el RNS, como se ve en el diagrama de

clases de la Figura 3.6.

Serializable

springs.context ContextAddress

+ NOT_SPECIFIED_CONTEXT_MNAME
- _name

- _protocol

- _hostname

- _numPert

- _cerficate

- =8l

- sefiaVersionUID

+ ContextAddress()
+ ContextAddress()
+ ContextAddress()
+ ContextAddress()
+ increasePorthumber()
+ feplace Hosthame With()
+ getHostame()
+ getlURL()
+ gethame()
+ getProtocol()
and 5 more...

_ca

long X509 Certificate

sefaVersionUID _certificate

byte] Set< Shing =

sefiaVersionUID _cerificate

_challenge |_pemissions

springs security. ContextSecurityinformation

-_ca
- _challenge

- _cerfficate

- _pemissions

- seniaVersionUID

+ ContextSecuntylnformaton()
+ ContextSecuntyinformation()
+ setContextAddress()

+ getContextAddress()

+ getCertificate()

+ getChallenge()

+ verifyToken()

+ hasPemission()

+ setPermission()

Figura 3.5: Clase ContextSecuritylnformation

e Cuando un contexto se quiere unir a una region, realiza una invocacién al método
addContext del interfaz RMI del RNS. Este método devuelve al contexto el
challenge calculado por el RNS.

39

static OTPSet Hashtable< Sting, ContextSecutyinfornation > static Log

_olps _authorizedCixs

Hashtable< Sting, Agentinfornaton > int

logger

KeyStore

_agentLocatonServers |_tadkingFacior|_ks

Spingsms RegionNameServer

_oontexinomaions

auhoizedCixs

- ZagentLocafonServers
-ow

- ZrackingFactor

-k

sl

- Zautentcaton
- Zenaypion

- logger

- _olps

+geContexinios()

+gelNamesRegisteredAgents()

-+ getHbme ConiextAgent)
Context)

M
+gelContexis()
-+removeContext)
+ addAgent)
+removeAgent()
+gelSs|

+getAutenticaton)

#nitalze(y

#selSeality()

- getks)

- newContextAvalabie()

- alocaeLocaionServers()

- contexiUnavaliable()

- contextUnavaliable()

- contextUnavaliable ForTracking()
- watchGontexts()

Boolean

Spings ms RegionName Server ConextWatcher

)

_autenticaton
_enaypion
sl

Figura 3.6: Clase RegionNameServer

Hashtable< Sting, Contextinfornation >

_contextinfornatons

e El contexto crea un objeto del tipo ContextAuthentication (mostrado en la
Figura 3.7) utilizando el challenge recibido desde el RNS como uno de sus
parametros de entrada. El constructor del ContextAuthentication firma con una
funcién criptografica el challenge con la clave privada del contexto y lo almacena

en una variable llamada token.

Seralizable

Sting

Subject

byte[]

long

\ \Ename _subjefc/_ tok%riawersionum

springs securnty. ContextAuthentcation

_hame

_loken

_subject
sefialVersionUID

+ ContextAuthentcaton()
+ gethame()

+ getToken()

+ getSubject()

Figura 3.7: Clase ContextAuthentication

Este token es la informacién bésica para autenticacién del contexto frente al RNS.

40

e En cada subsiguiente operacion que el contexto realiza contra el RNS o contra
otro contexto, éste ha de enviar su objeto ContextAuthentication en la
misma. El sistema que recibe la operacion consulta al RNS si el objeto
ContextAuthentication adjunto a la operacién se encuentra autenticado en el
sistema. Esto se realiza mediante el método isContextAuthorized del RNS.

Dicho método recoge el objeto ContextAuthentication y compara que el token
de dicho objeto ha sido calculado a partir del challenge ofrecido al contexto y su
clave privada.

Si esto es asi, se permite devuelve un valor true y se permite la operacion.

Este procedimiento evita la necesidad de utilizar claves secretas compartidas entre los
sistemas, facilitando la gestion de la plataforma. De la misma forma mejora la seguridad
de la misma, ya que el secreto compartido se crea nuevo cada vez que un contexto se
anade a una region.

Como ya hemos indicado previamente, cuando un contexto crea un agente, éste
hereda el objeto ContextAuthentication del contexto padre. Nadie mas puede acceder
a este objeto privado del agente. A partir de ese momento, el agente se autenticard y
recibird permisos segiin las credenciales de su contexto padre. De esta forma se evita
que el agente pueda ser capaz de ejecutar diferentes acciones dependiendo del contexto
en el que se estd ejecutando. Se requiere que un agente se pueda autenticar de la misma
forma independientemente de en qué contexto se encuentre.

Ya se ha introducido el concepto de permisos previamente al hablar del permiso
springs.security.authorizationLevel.PLATFORM_PERMISSION que anade el RNS
cuando incluye un nuevo objeto ContextSecurityInformation. Este permiso se refiere
a la posibilidad de acceso por parte del elemento determinado a la plataforma. Es decir,
es una especie de permiso especial utilizado para la autenticacién en la plataforma.
Cuando hemos hablado del uso del método isContextAuthorized para la autenticacién,
éste debe recibir el pardmetro
springs.security.authorizationLevel.PLATFORM_PERMISSION.

De la misma forma, la clase springs.security.authorizationLevel ofrece otros
permisos, como se puede ver en el diagrama de clases de la Figura 3.8

En dicha figura, observamos los siguientes permisos:

¢ PLATFORM_ PERMISSION: Es el tipo especial de permiso que se necesita
para la autenticacién. Este permiso lo necesita todo elemento que quiera formar
parte de la plataforma.

¢ AGENT__PERMISSION: Permite la creacion y el borrado de agentes por parte
del contexto. Un contexto solo puede borrar agentes que él mismo haya creado.

41

Senalizable Sting long

CALL_AGENT_PERMISSION
PLATFORM_PERMISSION
MOWVE_AGENT_PERMISSION

AGENT_PERMISSION

sefiaVersionUID

Springs secuity Authorizationlevel

+ PLATFORM_PERMISSION

+ AGENT_PERMISSION

+ MOVE_AGENT_PERMISSION
+ CALL_AGENT_PERMISSION
- sefialVersionUID

Figura 3.8: Clase AuthorizationLevel

e MOVE__AGENT__PERMISSION: Permite que los agentes creados por un
contexto puedan viajar a otros contextos.

e CALL__AGENT_ PERMISSION: Permite que los agentes creados por un
contexto sean capaces de realizar llamadas a otros agentes.

En su arranque, el RNS lee su fichero de configuraciéon. En éste se pueden especificar
los permisos que se quieren otorgar a cada uno de los contextos. En una futura revisién
de la plataforma, se podria permitir la modificaciéon de la lista de permisos mientras el
RNS esté en ejecucién (cambios de configuracion “en caliente”).

Al igual que en el caso de la autenticacién, cada vez que un elemento invoca una
operacién que requiere algun permiso especial (por ejemplo, la creaciéon de un agente),
el contexto realiza una llamada al RNS para validar si el elemento que realiza la peticion
tiene el nivel de permisos necesarios. Si no es asi, no se podré ejecutar la peticiéon. En
caso contrario, se procederd a realizar la operacion.

3.3.2 Autenticacién del RNS frente a los contextos

En la seccién anterior hemos analizado cémo se autentican los contextos y los agentes
ante el RNS y como se pueden autorizar cierto tipo de operaciones en la plataforma.
También es necesario el caso contrario, poder autenticar de algiin modo que el elemento
gestor de la plataforma, es decir, el RNS, ante el resto de elementos de la plataforma.

42

Con esto se conseguiran evitar ataques por parte de otros elementos (por ejemplo, un
agente “maligno”) a un contexto invocdndole métodos restringidos.

Para ello se ha ideado un protocolo sencillo basado en claves generadas y firmadas
por el RNS que se pueden validar por parte de los contextos contactados y, de esta forma,
permitir el acceso al contexto por parte del RNS. Estas claves son del tipo OTP (One
Time Password), es decir, una vez que se han utilizado, se borran para que no puedan
volver a ser usadas [51].

El funcionamiento de este mecanismo se describe en la Figura 3.9, dénde se detallan
los métodos invocados, es el siguiente:

RNS Contexto 1

T
|
|
|

—]

OTP method(challenge)
‘—> P

validateOTP(password) decipher(challenge)

[
remove(OTP) Boolean

“true” sl la clave es
valida, “false” en otro
caso

Resultado del método o no autorizado

Figura 3.9: Autenticacién y autorizacién del RNS

e Cuando el RNS necesita invocar un método de un contexto de su regiéon crea un
objeto de la clase OTP (mostrado en la Figura 3.10), que tiene como parametros
de entrada un identificador de operacién (aleatorio), el nombre del contexto con
el que se quiere contactar y su certificado. En la creacion del OTP se genera una
clave aleatoria (utilizando SecureRandom) y, ésta se cifra con la clave publica del
contexto, creando un challenge. De esta forma nos aseguramos de que solo el
contexto destino podra tener acceso al challenge.

e El challenge junto con el identificador de operacién se envia como pardmetros al
método del contexto invocado por el RNS.

e El contexto, recoge los parametros y descifra, mediante su clave privada, el
challenge enviado.

e El contexto invoca al método verifyOTP del RNS y, éste comprobara si la clave
calculada es la correcta para el contexto y el identificador de operacion. Si es asi,

43

byle]

_password
_challenge

Springs securty OTP

- _password
- _chalenge

+ OTP()
+ verifyPassword()
+ gelChallenge()

Figura 3.10: Clase OTP

se devolvera éxito, se borrara el OTP del RNS y el contexto seguird ejecutando el
cddigo.

Si el OTP hubiera sido generado por otra entidad, al comprobar contra el RNS del
sistema las credenciales éstas no existirian, con lo que el contexto no ejecutaria el
cddigo invocado.

Mediante este protocolo, podemos asegurar que una invocacién remota por parte
del RNS a un método de un contexto es realizada realmente por el RNS y no por
cualquier otro elemento que estuviera intentando acceder a los métodos de un contexto
sin autorizacion, protegiendo al contexto de posibles ataques por parte de terceros.

3.4 Autenticacion a nivel de contexto

Para evitar ataques desde agentes a contextos, a parte de la autenticaciéon y la
autorizacién a nivel de plataforma que hemos explicado previamente, son necesarios
otros mecanismos mas a bajo nivel. El objetivo de estos mecanismos de seguridad es
evitar el acceso no deseado a recursos de los contextos por parte de los agentes que viajan
a los mismos.

44

Mediante este mecanismo, se puede controlar el acceso por parte de los agentes que
viajan a un contexto de recursos tales como:

Sistema de ficheros,
conexiones de red,
sistemas de bases de datos,

propiedades del sistema.

Como hemos visto en las plataformas de agentes mdviles estudiadas en el presente
documento, existen métodos de seguridad inherentes a la JVM para defender una
maquina virtual de coédigo que se ejecute en la misma. El servicio Java que ofrece
esta funcionalidad es el JAAS [52], cuyo funcionamiento esta detallado en el Apéndice

A2

En la implementacion que se ha realizado para SPRINGS de JAAS, se ha optado por
desarrollar dos mecanismos de login y dos contextos de seguridad diferentes, uno para
gestionar los permisos que se quiere otorgar a un contexto en si y otro para los permisos
con los que permitiremos que se ejecuten los agentes dentro de un contexto:

Contexto de seguridad para contextos. Se ha creado un contexto de seguridad
especifico para la seguridad dentro de la JVM de un contexto de SPRINGS.
Para ello se han implementado las clases ContextLogin, ContextLoginModule,
ContextCallbackHandler y PasswordCallback

(Figuras 3.11, 3.12, 3.13 y 3.14).

El login se realiza sencillamente dentro de un contexto utilizando una clave. Si
el login tiene éxito, se crea un Principal de la clase ContextPrincipal (Figura
3.15).

En la creacién de un contexto, se realiza el login y el contexto comienza a ejecutarse
con los permisos que hayan sido configurados. Lo habitual serd que no exista
ninguna limitacién en los permisos con los que se permita ejecutar un contexto.
Estos permisos se definen en el fichero de politicas de seguridad (normalmente
security.policy) de la forma:

grant Principal springs.security.ContextPrincipal "context" {

permission java.security.AllPermission "", "";

};

Contexto de seguridad para agentes. El segundo contexto de seguridad que
se ha creado es especifico para agentes. Para ello se han desarrollado las clases
AgentLogin, AgentLoginModule y ContextAuthenticationCallback (Figuras
3.16, 3.17 y 3.18).

45

Subject

-_subject

springs secunty. Context
Login

+ ContextlLogin)
+ getSubject)

Figura 3.11: Clase ContextLogin

LoginModule Shing CallbackHandler Subject

\ \-ﬁpassword i/ca]bad(Handler -subject

springs secunty. Context
LoginModule

+ inifialize()
+ login()

+ commit()
+ abor()

+ logout()

Figura 3.12: Clase ContextLoginModule

En el momento en el que un agente accede a un contexto y el contexto va a
iniciar un nuevo thread con el cbédigo del agente, se intenta realizar un login
con las credenciales del agente. Para ello se utiliza el objeto de la clase
ContextAuthentication que, como hemos comentado previamente, identifica un
agente utilizando las credenciales del contexto en el que fue creado. En el login, el

46

CallbackHander Sting

t\ /password

springs.secunty. Context
CalbackHandler

+ ContextCallbackHandler()
+ handle()

Figura 3.13: Clase ContextCallbackHandler

Callback Sting

[\ J_password

springs.secunty. Password
Callback

+ PasswordCallback()
+ getPassword()

+ setPasswordy)

+ dearPassword()

Figura 3.14: Clase PasswordCallback

contexto receptor accede al método de autenticacién del RNS y, si tiene éxito, se
permite el login, creando un Principal de la clase AgentPrincipal (Figura 3.19).

El contexto receptor ejecutara el codigo del agente bajo la identidad y con los
permisos del contexto que creé el agente. Se permite configurar el nivel de
autorizacién para cada identidad autorizada en la regién, es decir, para cada
contexto que se haya creado en la misma. El siguiente es un extracto de un fichero
security.policy de ejemplo:

grant Principal springs.security.AgentPrincipal "Test" {
permission java.util.PropertyPermission "user.home", "read";

};

47

Principal Seralizable Shing long

\ [\ C/n ame /-sefiaersionUD

splings.security. Context
Principal

+ ContextPringipal()
+ gethame()

+ equals()

+ hashCode()

+ toSting()

Figura 3.15: Clase ContextPrincipal

Subject

-_subject

sprngs.security. AgentLogin

+ AgentlLogin()
+ getSubiject()

Figura 3.16: Clase AgentLogin

grant Principal springs.security.AgentPrincipal "Test2" {
permission java.io.FilePermission "/etc/passwd", "read";

i

En el ejemplo anterior, vemos que a los agentes identificados como “Test” se
les permite el acceso de lectura a la propiedad “user.home” y que los agentes
identificados como “Test2” son capaces de leer el fichero /etc/passwd del contexto.

Cada thread de ejecucién en el contexto para cada agente se ejecutara con los
permisos definidos.

48

Subject Sefiaizable Sting byte] long

-_Subject -_name /-_token / -sefaVersionUID
springs.securty. Context
Authenfication
LoginModule CallbackHandler
-subject —
+ ContextAuthenticaton()
+ gethlame()
+ gefToken()
+ getSubiject)
-callbackHandler, -cauth
springs security. AgentLogin
Module
+ inifialize()
+ login()
+ commit()
+ abort()
+ logaut)

Figura 3.17: Clase AgentLoginModule

Gracias al uso de JAAS y a la proteccion ofrecida por el SecurityManager de Java,
es posible disponer de un mecanismo de seguridad que permite limitar el impacto que
pueden tener los agentes en un contexto, controlando el uso de recursos locales de un
contexto que pueden realizar los agentes. Si bien, como ya se explicé en la Seccién 2,
es imposible defender un contexto ante ataques de denegacién de servicio con una JVM

estandar.

3.5 Cifrado y comprobaciéon de integridad de datos

Para evitar que ciertos datos puedan ser leidos por otros elementos maliciosos y,

ademas, para poder comprobar que un dato no ha sido alterado en el transcurso de un

viaje de un agente, se ha dotado a la plataforma de un sistema de cifrado y comprobacion

de integridad de datos. Dicho sistema esta basado en el cifrado de clave asimétrica

[53], haciendo uso del sistema de claves publicas y privadas que se ha desplegado en la

plataforma.

49

Sefializable Sting Subject byte] long

b\\gname -_sUbject /-_token / -serialVersionUID

splings secunty Context
Authentication

Callback

+ ContextAuthenticaton)
+ getMame()

+ getToken()

+ getSubject])

-_cauth

springs securty. Context
AuthenticationCallback

+ ContextAuthenticationCallbacdk()
+ getContextAuthenticaton()

+ sefContextAuthentcaton()

+ dearContextAuthenticaion()

Figura 3.18: Clase ContextAuthenticationCallback

Un principio a tener en cuenta en este sistema, tal y como se ha comentado
previamente, es que los agentes como tales no disponen de entidad criptografica propia
como un par de claves publicas/privadas. Con esto se consigue que, en caso de que
de alguna forma algin elemento malicioso pudiera tener acceso a todos los datos de un
agente, éste nunca poseeria la clave privada para poderlos descifrar, con lo que se evitaria
el descifrado directo de los datos. Siendo esto asi, todo el sistema de cifrado se basa en
las claves publicas y privadas de los contextos.

Los contextos ofrecen servicios de cifrado, descifrado y verificacién de integridad de
datos. Un contexto solo permite el servicio de descifrado a los agentes que hayan sido
creados por él mismo. El RNS se encarga de funcionar como un directorio de claves
publicas. Todos los elementos que requieran una clave publica de otro elemento de la
plataforma han de consultarla mediante un método del RNS, como se aprecia en la
Figura 3.20. Con este mecanismo evitamos que un elemento pudiera engafar al sistema
ofreciendo una clave publica falsa con el fin de que el elemento original cifrara un dato
que solo la entidad maliciosa pudiera descifrar. En el caso de que se quiera cifrar un

50

Principal

Senalizable

Sting

stafic inal long

\ \ C/-naumz/-serial\fers-::unl_JID

Springs secunty. AgentPrindpal

+ AgentPrincipal()

+ gethlame()
+ equals()

+ hashCode()

+ ToSting()

Figura 3.19: Clase AgentPrincipal

dato para un agente en especial, lo que se hace es obtener el contexto en el que se cred
el agente y se cifra el dato con la clave publica de dicho contexto.

RNS

keystore
(RNS)

—

LeerCertificados

PublicKeys de Contextos

|
|
|
>
|
|
|
|

getPublicKey(“Contexto 1”)

Contexto 2

encrypt(obj, “Contexto 1”)

Agente 1
(de Contexto 1)

PublicKey(“Contexto 1”)

1
%

|
new EncryptedData(
PublicKey(“Contexto 1”),
PrivateKey(“Contexto 2”))

EncryptedData

L
|
|
|
|

=
|
|
|
|

Figura 3.20: Cifrado y firma de datos

encrypt(obj)

Se crea el nuevo
objeto, cifrado con la
clave publica de
“Contexto 1"y firmado
con la clave privada de
“Contexto 2"

La contrapartida de que los agentes no dispongan de identidades criptogréficas es
que es necesario que un agente viaje a su contexto origen, donde exclusivamente podra
descifrar los datos. Es decir, ni el propio agente serd capaz de descifrar un dato a no
ser que viaje al contexto en el que fue creado. Este mecanismo asegura que un dato
cifrado, aun siendo robado, solo pueda ser descifrado por un agente que haya sido creado

51

en el mismo contexto donde se cred el primer agente, es decir, que pertenezca al mismo
contexto.

La firma y la validacién de los datos se basan en la misma estructura expuesta de
claves asimétricas. En el momento en que se cifra un dato, también se genera una
estructura de firma (mediante el algoritmo “SHA1 con RSA” [54]). Para firmar un dato
se utiliza la clave privada del contexto en el que se estd cifrando el dato. Para verificar
que los datos no han sido alterados es necesario descifrar los mismos y ejecutar un método
de comprobacion de integridad, que validard que los datos son los originales y que no
han sido alterados.

En todo momento el agente puede obtener en qué entidad se ha firmado un dato. La
estructura de datos cifrados se encuentra definida en la clase EncryptedData (detallada
en la Figura 3.21).

Serializable Sting byte[long Date

-_signatureContext |-_signature
-_dass -_data

-_SignatureTS

-sefalVersionlD T aeatonTs

splings secuity EnaryptedData

+ EnaypledDatar)

+ EncryptedData()

+ deaypt])

+ vernify Signature()

+ getSgnaiure Context()

Figura 3.21: Clase EncryptedData

Desde el punto de vista del usuario o programador de agentes, el uso del sistema es
muy sencillo. El procedimiento se halla descrito en la Figura 3.20. Para cifrar un dato,
tan solo hace falta invocar el método encrypt (O0bject obj) para cifrar un dato que solo
podra ser descifrado en el contexto en el que se cred el agente o encrypt(Object obj,
String agentName) si se quiere cifrar un dato para ser enviado a otro agente (siendo obj
el objeto a cifrar y agentName el nombre del agente destino que lo va a poder descifrar).
El resultado de dicha operacién serd un objeto de la clase EncryptedData.

Para descifrar el objeto, como se explica en la Figura 3.22, es necesario que el
agente viaje al contexto en el que fue creado para que, una vez en él, ejecute el método
decrypt (EncryptedData data) que devuelve el objeto descifrado.

52

Agente 1

Contexto 1 Agente Creado en
(de Contexto 1) “Contexto 1” contiene
I T un dato cifrado pero
} : se encuentra en otro
} : contexto
| I
\ I
} iR
\
} goHome()
|
|
|
‘ decrypt(data) decrypt(data)
[-] ‘
decrypt(data,
PrivateKey(“Contexto 17)) Object
\
>

Figura 3.22: Descifrado de datos

Si, una vez descifrado el objeto, se quiere validar que no ha sido modificado en
transito es necesario invocar el método verifySignature(Object obj, EncryptedData
encryptedObject) que realizara dicha verificacion, como se describe en la Figura 3.23.

keystore

RNS (RNS) Contexto 1 Agente 1 .
(de Contexto 1) |~

[— . Agente contiene un
I . dato ya descifrado
| LeerCertificados pero firmado por el
“Contexto 2"
|

PublicKeys de Contextos

|
|
|
» }
|
|
|
|

verifySignature(obj, encryptedObj) verifySignature(obj, encryptedObj)

T
|
|
|
|
|
|
|
;
|
getPublicKey(“Contexto 2”) }

A

PublicKey(“Contexto 2”)

|
encryptedObj.verifySignature(obj,
PublicKey(“Contexto 2”))

AN
L \ o
| AN |
' AN
AN “true” si la firma del
\\ objeto original se
N corresponde con la del
objeto firmado, “false”

en otro caso

|
|
|
|
|
|
| Boolean
|
|
|
|
|

Figura 3.23: Comprobacién firma de datos

53

Con estos mecanismos podemos proteger la confidencialidad y la integridad de los
datos que lo precisen. Su uso es voluntario por parte del usuario, anadiendo complejidad
a la plataforma solo si el usuario considera conveniente utilizarlos (posiblemente porque
sepa que la plataforma sobre la que va a ejecutar sus agentes puede ser ficilmente
expuesta a ataques). Estos mecanismos se integran perfectamente con el resto de
mecanismos y practicas habituales de la plataforma, con lo que la misma se puede seguir
utilizando de la misma forma por parte de los usuarios.

Debido a que las claves piiblicas se deben obtener desde el RNS para utilizar de
una forma fiable los mecanismos de cifrado y comprobacién de integridad de datos,
es necesario activar esta caracteristica globalmente para toda la region, solo pudiendo
utilizarse si ésta ha sido activada en el RNS.

3.6 Comparativa con otras plataformas de agentes moviles
estudiadas

A modo de resumen, nos gustaria exponer en la Tabla 3.1 cémo se comporta
SPRINGS en comparacién con las plataformas estudiadas en la Seccién 2.2 segin las
principales medidas de seguridad esgrimidas en el Capitulo 2, y mas detalladamente,
seguin la Tabla 2.1.

SeMoA Jade Aglets Tryllian Voyager SPRINGS
Autenticacién Si Jade-S Si A nivel de JAR | Si, programable | Si, bidireccional
Confidencialidad
- Agentes Si No No No No No
- Mensajes Si Jade-S A nivel de dominio No No Si
- Comunicaciones Si IMTPoverSSL No Si Si Si
Integridad
- Plataforma Si Si Si Si Si Si
- Agente Si Si Si Si Si Si
- Comunicaciones Si IMTPoverSSL No Si Si Si
Responsabilidad Si No No No No No
Disponibilidad JVM JVM JVM JVM JVM JVM

Tabla 3.1: Comparativa de medidas de seguridad de SPRINGS y de las plataformas
estudiadas

En la tabla podemos observar como SeMoA sigue siendo la plataforma de agentes
moviles mas segura. Aunque, como se ha explicado previamente, esto es debido a que
es una plataforma disenada desde un principio desde el punto de vista de la seguridad.
Por ejemplo, un agente en SeMoA es un fichero JAR en el que estdn contenidas tanto
las clases de las que se compone el agente como su estado, sus certificados y sus ficheros
de comprobacién de estado con las firmas digitales de cada uno de los elementos. El
movimiento de un agente implica la copia de este fichero JAR, su paso por cada uno
de los filtros de seguridad habilitados, donde se comprueban que tanto el cédigo como
los datos del agente no han sido modificados y que cumplen las medidas de seguridad

54

requeridas, y su posterior carga y ejecucién en el servidor. Sin embargo en SPRINGS
el movimiento de un agente se realiza mediante mecanismos propios de RMI, en los que
se le pasa a un método de un contexto un objeto que contiene el estado del agente y se
cargan remotamente las clases que sean necesarias siguiendo el mecanismo estandar de
carga de clases de RMI.

Vemos cémo dentro del resto de plataformas de propésito general, SPRINGS destaca
por ofrecer medidas de seguridad para solucionar gran parte de los ataques bésicos a una
plataforma de agentes mdviles, ademéas de alguna medida innovadora que la dotan de
defensas ante ataques que el resto de plataformas no pueden evitar como, por ejemplo,
el uso de la autenticacion por parte del RNS para evitar que se pueda acceder a los
métodos de un contexto.

Aun asi, como ya se ha comentado en varias ocasiones en el presente documento,
todas las plataformas se ejecutan sobre JVM no modificadas, con lo que les es imposible
defenderse ante ataques de denegacién de servicio.

55

56

Capitulo 4

Pruebas sobre la plataforma

SPRINGS

En el presente capitulo vamos a pasar a describir las pruebas que hemos realizado a la
plataforma SPRINGS tras la implementacion de los mecanismos de seguridad descritos
en el Capitulo 3.

En primer lugar describiremos las pruebas funcionales sobre cada uno de los
mecanismos implementados, probando que realmente funcionan y simulando la
proteccién que ofrecen ante posibles ataques a la plataforma.

Posteriormente pasaremos a describir las pruebas de carga realizadas, basadas en las
pruebas que se realizaron para evaluar el rendimiento de la plataforma [12]. Primero se
realizaran dichas pruebas sin las medidas de seguridad desarrolladas activas y después
se irdn activando cada una de las medidas para estudiar cémo afectan al rendimiento de
la plataforma.

Por 1ltimo ofrecemos un estudio de escalabilidad de la plataforma con el nivel
maximo de seguridad activo, observando el comportamiento de la misma a medida que
va gestionando mas agentes.

Como complemento a esta seccién se recomienda consultar tanto el Apéndice A, en
el que se describe el entorno tecnolégico sobre el que se han desarrollado las pruebas
como el Apéndice C, que detalla cémo se pueden configurar los diferentes mecanismos
de seguridad en la plataforma.

o7

4.1 Pruebas funcionales

Como se ha presentado previamente, en esta seccién vamos a describir las pruebas
relacionadas con los mecanismos de seguridad implementados viendo cémo estos son
capaces de ofrecer la protecciéon necesaria ante diferentes tipos de ataques posibles que
se puedan realizar.

Segun la clasificacién de ataques, las pruebas que se han realizado contienen cémo
la plataforma se puede defender ante:

e Ataques de acceso a la plataforma por parte de elementos no autorizados,
detallados en los Apéndices B.1, B.2 y B.4.

e Ataques de interceptacién de comunicaciones, tanto a nivel de contextos como a
nivel de agentes. Estos ataques estan detallados en los Apéndices B.3, B.13 y B.14.

e Ataques de contextos contra la plataforma, descritos en los Apéndices B.5, B.6 y
B.7.

e Ataques desde contextos o agentes a otros contextos, definidos en los Apéndices
B.8 y B.10.

e Ataques de denegacién de servicio. Por ejemplo, el realizado en el Apéndice B.15.

Maés especificamente, se han realizado con éxito las siguientes pruebas funcionales en
la plataforma, detalladas en el Apéndice B:

e Acceso a la plataforma de un contexto que no tiene activado SSL.
e Acceso a la plataforma de un contexto que usa un certificado no valido.

e Acceso y/o modificaciéon de comunicaciones entre el RNS y los contextos o entre
contextos.

e Acceso a la plataforma de un contexto cuyo certificado no estd aceptado por el
RNS.

e Creacién de un agente por parte de un contexto que no tiene permisos para ello.
o Movimiento de un agente por parte de un contexto que no tiene permisos para ello.
e Agente realizando llamadas creado en un contexto que no tiene permisos para ello.
e Contexto atacando otro contexto simulando ser el RNS.

e Uso de autenticacién de contexto con la autenticacién de plataforma desactivada.

58

e Acceso a recursos no permitidos por la autorizacién a nivel de contexto.

e Uso de cifrado cuando esta desactivado en la plataforma.

e Uso de cifrado y verificaciéon de integridad de datos.

e Intento de descifrado de datos en un contexto incorrecto.

e Simulacion de robo de dato cifrado e intento de descifrarlo.

e Ataque de denegaciéon de servicio mediante el uso masivo de memoria de un

contexto.

Todas estas pruebas han acabado ofreciendo los resultados esperados. Se puede
consultar el detalle de las mismas en el Apéndice B.

4.2 Resultados Experimentales

En esta seccién vamos a proceder al analisis de las pruebas de carga y de escalabilidad
realizadas a la plataforma. Dichas pruebas estan basadas en las pruebas que se realizaron
para evaluar el rendimiento de la plataforma SPRINGS en su concepcion [12].

4.2.1 Entorno de pruebas

El entorno utilizado en las pruebas de carga es el siguiente:

e Un contexto llamado “Test” en el que se crean agentes, estos esperan un periodo
de “calentamiento” y una vez acabado dicho periodo los agentes entran en un
bucle de llamadas y movimientos. En el caso estudiado, cada agente realiza 50
llamadas a un agente predesignado como su “pareja” y tras cada llamada se mueve
aleatoriamente a un contexto de la region.

e Tres contextos que aceptan a los agentes que han sido creados en el contexto “Test”
y les ofrecen sus servicios. Dichos contextos son “cl”, “c2” y “c3”.

e Un RNS que gestiona toda la regién.

Se puede encontrar mas detalle de las acciones que realizan los contextos y los agentes
de las pruebas de carga en el Apéndice A.4.4.

59

4.2.2 Escenarios funcionales

Se han probado los siguientes escenarios para realizar la comparativa:

e Un escenario en el que no estd activa ninguna medida de seguridad desarrollada.

e Un escenario en el que solo esta activa la capa de seguridad externa en el RNS vy,
por lo tanto, en el resto de contextos. Todas las comunicaciones RMI de la regién
estaran cifradas mediante SSL.

e Un escenario en el que solo se encuentra activa la autorizacién y la autenticacién
a nivel de plataforma. Se le han otorgado permisos de creaciéon de agentes,
movimiento de los mismos y llamada a otros agentes al contexto “Test” en el
RNS donde todos los contextos estan autorizados.

e Un escenario en el que se encuentra activa la autorizacion y la autenticacion a
nivel de plataforma como en el caso anterior y, ademas, se encuentran activados los
mecanismos de autenticacién y autorizacién a nivel de contexto. La configuracion
de dichos mecanismos permite el acceso completo a todos los agentes creados en el
contexto “Test”.

e Un escenario donde se han habilitado todas las medidas de seguridad desarrolladas,
seguin se ha ido explicando en los escenarios anteriores.

En las pruebas de carga se han creado 1500 agentes que deben realizar 50 llamadas
a su agente “pareja” y 50 movimientos a otros contextos antes de terminar su ejecucién
en el contexto “Test”.

Para las pruebas de escalabilidad se ha utilizado el experimento del escenario que
incluye la seguridad méaxima, pero incrementando el niimero de agentes de 100 en 100
hasta 1500.

Cabe destacar que estas pruebas ponen al limite a una plataforma de agentes moviles
por dos razones principales. En primer lugar, por el nimero de agentes que forman parte
de las pruebas y, en segundo lugar, por la dificultad que tienen los agentes para realizar
llamadas a su agente “pareja” ya que éste se estd moviendo continuamente, lo que hace
que sea dificil invocar el método de un agente justo cuando estd en un contexto. El éxito
de dichas operaciones se basa en el reintento de las mismas gracias a los mecanismos que
ofrece la plataforma SPRINGS.

En cada escenario se obtienen las siguientes métricas:

e Tiempo de ejecucion de la prueba. Este tiempo, medido en segundos, nos indica
la velocidad con la que la prueba total se ha realizado, desde que empieza a viajar
el primer agente hasta que acaba su ejecucién el ultimo.

60

e Tiempo de estancia. Mide, en en segundos, la media aritmética del tiempo que cada
uno de los agentes ha debido pasar en un determinado contexto. Este indicador
nos da una medida de la carga que ha tenido que soportar un contexto, ya que
cuanta mas carga, mas tiempo deben estar los agentes en un contexto para poderse
ejecutar. Este tiempo también incluye el tiempo de llamada al agente “pareja”.

e Tiempo de llamada. Este indicador mide en segundos cudnto tiempo tarda un
agente en invocar con éxito a su agente “pareja”, incluyendo todos los reintentos
que sean necesarios.

Se ha intentado obtener la métrica relacionada con el tiempo que tarda un agente en
realizar un movimiento. Para medir dicho tiempo, el cédigo desarrollado implica:

e Antes de invocar un movimiento del agente, se obtiene el tiempo del sistema y se
almacena en un objeto del agente.

e Se procede al movimiento del agente.

e En el método postArrival() del agente, se obtiene el tiempo del sistema (del
nuevo sistema) y se compara con el tiempo almacenado.

En esta udltima comparacion hemos obtenido tiempos negativos. La conclusion
a la que hemos llegado es que, posiblemente, la gestiéon del tiempo de sistema que
realiza el entorno virtualizado utilizado para las pruebas no funciona con la precisiéon
que necesitamos para realizar nuestras mediciones. Hemos probado que, tras varias
sincronizaciones sucesivas mediante un servidor NTP (Network Time Protocol), siempre
obtenemos pequenas correcciones del reloj interno de la maquina virtual del orden de
milisegundos, que es lo que tardan en realizarse la mayoria de los viajes.

Por esta razén hemos decidido omitir del estudio actual las métricas de tiempo de
movimiento, aplazandolas para cuando se pueda disponer de otro entorno de pruebas.

El entorno hardware sobre el que se han realizado las pruebas de carga y escalabilidad
es el descrito en el Apéndice A.4.3.

4.2.3 Resultados y conclusiones de las pruebas de carga

A continuacién se muestran varias figuras con los resultados obtenidos tras la
ejecucion de las pruebas de carga. Figura 4.1 expone los tiempos de ejecucién de las
pruebas, la Figura 4.2 muestra el tiempo de estancia medio en cada contexto por parte
de cada agente y la Figura 4.3 indica el tiempo medio de llamada al agente “pareja” por
parte de cada agente.

61

Analizando la Figura 4.1 observamos un detalle inesperado. Parece razonable que
activando la capa de seguridad externa el tiempo de ejecucién de la prueba se vea
afectado, ya que todas las comunicaciones deben ser precedidas por el handshake de
SSL y cifradas, con lo que se incrementa el tiempo al realizar todas las llamadas. Lo
que no era esperado es que activando los mecanismos de autorizaciéon y autenticacion a
nivel de plataforma obtengamos un mejor rendimiento de la misma. Al activar dichos
mecanismos, cada operacién que requiere autorizaciéon (como puede ser la creacion, el
movimiento o una llamada a otro agente) necesita realizar una consulta previa al RNS
para obtener la autorizacién, introduciendo un intervalo de tiempo de espera del agente
dentro de un contexto, como se puede observar en el incremento del tiempo de estancia
en los contextos de la Figura 4.2. Este tiempo de espera tiene el efecto lateral de
incrementar la probabilidad de acceder a un agente en un contexto por parte de otro
agente, como se vio en las pruebas expuestas en el articulo [12], con lo que el tiempo
total de la prueba desciende al haber mas éxito en la invocacién al resto de agentes.

Tiempo total (s)

300

250

150

100
50 7
0 - T

Sin Nada Autenticacion Autenticaciéon Seguridad
Plataforma Plataformay Maxima
Contextos

Figura 4.1: Pruebas de carga: Tiempo total de ejecucion

Tiempo medio de estancia (s) Tiempo medio de llamada (s)

2,5

15

“'Z‘jlllt °'z:]llIE

1

Sin Nada Autenticacion Autenticacion Seguridad

Plataforma Plataformay Méxima
Contextos

Sin Nada Autenticacion Autenticacion Seguridad
Plataforma Plataformay Maxima
Contextos

Figura 4.2: Pruebas de carga: Tiempo Figura 4.3: Pruebas de carga: Tiempo
medio de estancia medio de invocacién a agente

Por lo demas, los resultados son razonables. En los casos de uso de la capa externa
de seguridad obtenemos un pequeno incremento de los tiempos de finalizacion de las
pruebas, al igual que si utilizamos la autenticacion y autorizaciéon a nivel de contextos,
pero se considera que el impacto en el rendimiento de la plataforma es minimo.

62

4.2.4 Resultados y conclusiones de las pruebas de escalabilidad

A continuacién se muestran varias figuras con los resultados obtenidos tras la
ejecucién de las pruebas de carga. La Figura 4.4 expone los tiempos de ejecucion de las
pruebas, la Figura 4.5 muestra el tiempo de estancia medio en cada contexto por parte
de cada agente y la Figura 4.6 indica el tiempo medio de llamada al agente “pareja” por
parte de cada agente.

Viendo todas las figuras, se puede observar cémo la escalabilidad de la plataforma es
practicamente lineal, incrementandose todos los tiempos medidos linealmente en relacién
con el nimero de agentes existentes en la plataforma.

Tiempo Total

Tiempo (s)

o ©o © ©o © © © o o o
S © @ © & 9 © 9 © 9
4= & ®d § O © K ® & S

1100
1200
1300
1400
1500

-

Numero de Agentes

Figura 4.4: Pruebas de escalabilidad: Tiempo total de ejecucién

Tiempo Medio Estancia Tiempo Medio Llamada

2,5 25
2 Y i 2
1,5 /
: Vi

L E— 05

o o
S o
o o

Tiempo (s)
Tiempo (s)

100
200
300
400
500
0!
700
1000
1100
1200
1300
1400
1500
100
200
300
400
500
0
0
0
900
1000
1100
1200
1300
1400
1500

Nimero de Agentes Numero de Agentes

Figura 4.5: Pruebas de escalabilidad: Figura 4.6: Pruebas de escalabilidad:
Tiempo medio de estancia Tiempo medio de invocacién a agente

A este hecho ayuda el dimensionamiento del servidor que contenga el RNS, debido
a que éste se puede convertir en un cuello de botella al tener que gestionar todas las
peticiones de autorizaciéon y autenticacién de la plataforma. Es importante que el RNS
disponga de los recursos adecuados para permitir un buen funcionamiento de toda la
plataforma.

63

64

Capitulo 5

Conclusiones y trabajo futuro

Este capitulo resume los logros y las conclusiones obtenidas tras la realizacién del
presente Proyecto Fin de Carrera. Para ello, en primer lugar analizaremos los objetivos
cumplidos y los resultados del proyecto, sugiriendo posibles lineas futuras de trabajo.
También realizaremos una valoracién personal sobre el desarrollo del proyecto.

5.1 Objetivos y resultados del proyecto

El presente proyecto ha ido completando cada uno de los objetivos establecidos en
su propuesta. Mas especificamente, hemos llevado a cabo con éxito las siguientes tareas:

e Se ha realizado un estudio de las medidas de seguridad propuestas para plataformas
de agentes moviles, haciendo especial énfasis en los posibles ataques que se podrian
llevar a cabo y diferentes formas de poderlos evitar.

e Hemos estudiado la forma de implementar diferentes mecanismos de seguridad por
parte de las plataformas de agentes méviles mas importantes de la actualidad. En
el estudio, hemos observado cémo debe existir un equilibrio entre las medidas de
seguridad implementadas por una plataforma y su usabilidad y rendimiento, ya
que no siempre la plataforma con las mejores medidas de seguridad es la que mas
aceptacién tiene.

e Se han definido e implementado en SPRINGS las medidas de seguridad mas
importantes para prevenir los ataques mas comunes a una plataforma de
agentes moviles. Hemos dotado a la plataforma de la capacidad de cifrar sus
comunicaciones, de obligar a la autenticacién de cada uno de sus elementos en
la plataforma, permitiendo o denegando la creaciéon de agentes y la capacidad
de movimiento y de realizacién de llamadas de los mismos, de evitar el acceso

65

5.2

a recursos no autorizados de los contextos por parte de los agentes y de la
capacidad de cifrar y comprobar la integridad de los datos a los agentes. En dicha
implementacién se ha buscado ofrecer un funcionamiento sencillo para facilitar el
uso de dichas medidas de seguridad. También se ofrece la posibilidad de poder
activar o desactivar cada una de las medidas a voluntad del administrador de
la plataforma, con el objetivo de minimizar el impacto en el rendimiento de la
plataforma, si éste fuera primordial.

Hemos realizado pruebas funcionales simulando diferentes tipos de ataques
demostrando la efectividad de las diferentes medidas de seguridad desarrolladas.
De la misma forma hemos realizado pruebas de ataques que, con la tecnologia
estandar actual, no se pueden defender, pudiendo causar danos en la plataforma.

Con el objetivo de estudiar el impacto en el rendimiento de la plataforma de
cada una de las medidas implementadas, hemos realizado unas pruebas de carga
activando cada una de las medidas de seguridad basadas en la metodologia de
anteriores pruebas de carga realizadas en la plataforma [12]. En dichas pruebas se
ha visto que, efectivamente, la plataforma puede sufrir un impacto en rendimiento
al utilizar dichas medidas pero que dicho impacto puede y debe ser asumido si se
quiere utilizar la plataforma en un entorno real de producciéon donde los ataques
sean posibles.

Trabajo futuro

Aun habiendo cumplido todos los requisitos de la propuesta del presente Proyecto Fin
de Carrera, se han detectado una serie de mejoras que podrian incrementar la seguridad
de la plataforma SPRINGS. Principalmente se han detectado tres principales areas de
mejora, que son:

e Integracién con plataformas de gestiéon de identidades. En vez de utilizar el

RNS como una entidad de autenticacién, en entornos masivos abiertos a Internet
se podria delegar dicha funcionalidad a otro tipo de servicios de gestién de
identidades, como pueden ser los servicios basados en OpenID [48]

Existen algunos mecanismos de seguridad que no se han podido implementar en el
trascurso del presente proyecto. Algunos de estos mecanismos, como por ejemplo
la gestion ante algin tipo de ataque de denegacién de servicio, podrian intentar
mitigarse. Si bien no todos los ataques de este tipo lo pueden ser, debido a las
limitaciones en la actual maquina virtual de Java, como se explica en la Seccién

A2.

Mejoras en entornos de alta movilidad. Como hemos visto, la arquitectura de
SPRINGS estd centralizada a nivel del RNS. Seria recomendable ofrecer una

66

arquitectura alternativa que evitara la total dependencia (o la mitigara de alguna
forma) de dicho elemento ofreciendo toda la funcionalidad desarrollada.

e El SID tiene previsto ampliar el estudio experimental inicial realizado en este
trabajo.

Las extensiones de seguridad integradas en SPRINGS permitiran al grupo SID de
la Universidad de Zaragoza continuar el desarrollo de la plataforma con soporte para
proteger a los sistemas de agentes moviles de posibles ataques. El grupo SID tiene
intencién de continuar el estudio y extender la arquitectura disefiando e implementando
otras medidas de seguridad que puedan resultar de interés. Posteriormente, se cree que
se estara en condiciones de poder preparar un articulo de investigacién conjunto que
incluya parte del trabajo desarrollado en este proyecto.

Ademés, a través de la pagina web de SPRINGS ! mantenida por el grupo SID, se
permitira el acceso a las extensiones de seguridad desarrolladas.

5.3 Valoracién personal y problemas encontrados

El desarrollo del presente Proyecto Fin de Carrera se podria calificar como un reto. Se
han producido una serie de problemas, principalmente de indole personal, que han hecho
que tanto el tiempo estimado para el desarrollo del mismo, como el esfuerzo dedicado
no haya sido el real. Dichos problemas se podrian resumir en:

e Compatibilizacion del desarrollo del proyecto con contrato laboral a tiempo parcial.
En un principio, el autor pensé que seria posible compatibilizar dichas tareas
pero, debido a una gran exigencia laboral, las tareas se fueron posponiendo y solo
gracias a la paciencia del director del proyecto y a la insistencia y a un esfuerzo
considerable, se ha podido ofrecer el presente resultado.

e Trabajo en remoto. El autor vive fuera de Zaragoza con la dificultad que eso afiade
a aspectos como la comunicacién con el director del proyecto, el acceso a recursos
de la Universidad de Zaragoza, etc.

e Escasa experiencia en desarrollo de software Java. Tras mas de diez afios de
experiencia laboral, el autor nunca habia tenido la necesidad de realizar desarrollos
en el lenguaje de programacion Java, cuyo uso y aprendizaje ha supuesto una
dificultad afiadida a la ejecucién del proyecto.

e Desconocimiento de la tecnologia de agentes moviles, ya que es un paradigma no
implantado a nivel empresarial masivamente.

"http://osiris.cps.unizar.es/SPRINGS

67

e Trabajo sobre una plataforma ya existente. Este hecho tiene sus ventajas e
inconvenientes. Como ventajas encontramos que el trabajo béasico funcional
de la plataforma ya se encuentra realizado. Sin embargo, esto puede haber
requerido decisiones de diseno que no faciliten la implementacién de otro tipo de
caracteristicas. Como desventajas hemos encontrado la complejidad tecnoldgica
de la plataforma ya desarrollada y la falta de documentacién sobre la misma.

La superacién de todos estos problemas hace que la consecucién del reto establecido
sea incluso mas satisfactoria que en condiciones normales.

La contrapartida se encuentra en que la planificacion original del proyecto no se ha
podido cumplir. Incluso, se ha tenido un efecto adverso al tener que parar completamente
el desarrollo del proyecto y retomarlo pasado un tiempo varias veces, obligando a volver a
ejecutar tareas que ya se habian completado previamente. Sin embargo, los tiltimos meses
del proyecto si que han tenido una dedicacién total y esto ha ayudado definitivamente a
la consecucién de los objetivos del mismo.

De la misma forma, creemos que la experiencia laboral previa del autor en entornos
de produccién ha sido muy positiva en la implementacién de ciertos “anadidos” a la
plataforma, como puede ser el nuevo sistema de configuracion o el mecanismo homogéneo
de logging, asi como el uso de herramientas de construcciéon de cédigo y de gestion de
versiones.

A nivel personal, el autor ha aprovechado para adquirir conocimientos en otros
paradigmas “alternativos” de sistemas distribuidos como es el modelo de agentes médviles,
quizé aplicables a trabajos futuros, asi como en el desarrollo de software, especialmente
en el lenguaje de programacién Java.

De la misma forma, ha sido una buena oportunidad para volver al mundo
universitario y analizar cémo funciona el mismo a dia de hoy, pensando en futuras
relaciones y cooperaciones.

68

Apéndices

69

Apéndice A

Entorno Tecnolégico

En este apéndice queremos resefiar las tecnologias utilizadas en la elaboracién del
presente Proyecto Fin de Carrera. Vamos a describir los conceptos generales de seguridad
en informatica y los detalles sobre el uso de Java como lenguaje y entorno de ejecucion
para muchas plataformas de agentes méviles y sus implicaciones en la seguridad de éstas.
Después describiremos el entorno utilizado para el desarrollo del proyecto y el entorno en
el que se han realizado las pruebas funcionales y en las pruebas de carga y escalabilidad

del mismo.

A.1 Conceptos generales de seguridad informatica

A continuaciéon se describen los conceptos bésicos de seguridad en sistemas

informaticos [55, 56]:

e Identificacion. El receptor de un mensaje deber de ser capaz de identificar al emisor

del mismo (Figura A.1).

emisor

Figura A.1: Identificacién del emisor por parte del receptor

71

“Quién
eres?”

receptor

e Autenticacién. El receptor de un mensaje necesita verificar que la identidad que
dice el emisor que tiene es vélida (Figura A.2).

emisor

AN

Figura A.2: Autenticacién del emisor por parte del receptor

e —

“Coémo se que
tu eres quien
dices ser?”

receptor

e Autorizacién. El receptor de un mensaje necesita determinar el nivel de seguridad
al que el emisor tiene acceso (Figura A.2). Esto puede estar relacionado con a qué
operaciones el emisor puede acceder o a qué informacién tiene acceso.

emisor

- »

“Qué puedes
hacer?”

receptor

Figura A.3: El receptor identifica el nivel de autorizacién del emisor

e Integridad. La informacién intercambiada durante la transmisién debe permanecer
inalterada hasta la recepcién de la misma (Figura A.4).

emisor

“Ha cambiado la

informacioén

desde que se

envi6?”

receptor

Figura A.4: La integridad de la informacién es cuestionada por el receptor

e Confidencialidad. La informacién transmitida no debe ser vista mientras esté en
transito, excepto por los servicios autorizados (Figura A.5).

72

& “Ha visto esta

. informacion
emisor —) receptor
alguien no

autorizado?”

Figura A.5: La confidencialidad de la informacién es cuestionada por el receptor

Habitualmente se suele identificar el concepto de seguridad respecto a amenazas
conocidas. En la mayoria de los casos existe una tendencia a identificar la seguridad
con la autorizaciéon y la autenticacién. Estos conceptos se limitan, junto con alguna
caracteristica adicional, a los firewalls y a la autenticacion via usuario y clave a nivel de
aplicativo. Ademas, la criptografia ofrece métodos muy eficientes para ofrecer seguridad
en mensajes y datos. Todos estos aspectos son, obviamente, parte de los mecanismos de
seguridad de los agentes, pero estos agentes, son algunas veces moviles, lo que implica
nuevas amenazas.

En el contexto de la tecnologia de los agentes méviles consideramos tres clases
principales de seguridad [28]:

1. Seguridad externa: Este es el concepto tipico de la seguridad en cualquier
sistema software. Cubre los términos previamente mencionados, como firewall,
autenticaciéon, autorizacion y cifrado. En un enfoque clasico del diseno de sistemas,
este nivel se define como la capa de seguridad de la arquitectura. Su objetivo es la
proteccién contra ataques desde fuera del sistema.

2. Seguridad interna: Se refiere a la integridad de los componentes del software,
una vez que la seguridad externa se ha aplicado pero se ha visto comprometida.
Algunas facetas de dicha clase de seguridad pueden ser la deteccién de intrusos y/o
su neutralizacién. En la arquitectura de un sistema de agentes mdviles, este nivel
se traduciria en médulos software y en una metodologia, pero no en una capa de
la arquitectura.

3. Integridad y privacidad: Esta clase contiene métodos para proteger la integridad
del “estado” del sistema. Es una especie de segunda capa de la seguridad
externa, que deberia permitir al sistema degradarse “elegantemente” una vez que
la seguridad externa se ha visto comprometida o que objetos “maliciosos” forman
parte del sistema. Los métodos necesarios para la proteccion del sistema son
bastante eficaces, teniendo en cuenta el estado del arte de los algoritmos utilizados
en criptografia (AES (Advanced Encryption Standard), funciones hash, firmas
digitales). Este nivel no suele aparecer en ninguna arquitectura de sistemas,
excepto posiblemente como un médulo criptogréfico.

73

En la practica, los aspectos de seguridad se pueden categorizar de acuerdo con los
requisitos generales expuestos a continuacion [11, 13]:

e Autenticacién: Un interlocutor tiene que ser capaz de probar que es quien dice ser.
Basandose en la autenticacion, un interlocutor puede decidir si confia o no en el
otro interlocutor. La autenticaciéon se puede basar en mecanismos de certificados
y firmas digitales.

e Confidencialidad: La informacién tiene que estar protegida contra accesos no
autorizados. La confidencialidad entre interlocutores se consigue normalmente
usando criptografia.

e Integridad: La integridad quiere decir que la informacién no ha sido alterada.
Las funciones de hash, como por ejemplo MD5 (Message-Digest algorithm 5),
permiten que la integridad de un mensaje sea verificada. Se usan habitualmente
en combinacién con firmas digitales o con codigos de autenticacién de mensajes

(MAC).

e Responsabilidad: La responsabilidad se refiere a que cada parte de una
comunicacién “se hace cargo” de todas las acciones que pueda realizar un agente.
Esto se consigue mediante la firma de un “contrato” entre las partes, usando firmas
digitales.

e Disponibilidad: El acceso a un servicio no debe estar restringido de una forma
no prevista. La disponibilidad garantiza un acceso fiable y rapido a los datos y
recursos por parte de las entidades autorizadas.

A.2 Seguridad en Java

El lenguaje Java ha tenido y sigue teniendo un papel muy importante en el desarrollo
de plataformas de agentes méviles. El uso de un lenguaje interpretado facilita la
construccién de un sistema de agentes méviles [57]. En ciertos casos puede ser necesario
el acceso a variables globales y/o a punteros con la direccién de la instruccién que se estd
ejecutando en determinado momento o a la direccién de la pila de un proceso. La forma
mas sencilla de hacer esto es utilizando una maquina virtual que ejecute un lenguaje
interpretado. Originalmente se crearon lenguajes interpretados con tal propésito como
Telescript [58], si bien a lo largo de los anos no han trascendido. También se utilizaron
otros lenguajes interpretados como Agent TCL [59], siendo la plataforma D’Agents [60]
la més representantiva escrita en dicho lenguaje.

Java, aun siendo un lenguaje de propédsito general, dispone de una serie de
caracteristicas que lo hacen idéneo para la construccion de sistemas de agentes méviles,
que son las siguientes:

74

e Independencia de plataforma. El lenguaje Java fue disefiado con el objetivo de
“escribir una vez, ejecutar en cualquier sitio" [61]. El c6digo Java se compila en
un cédigo maquina especifico, llamado Bytecode, que se interpreta por la JVM.
Existen JVMs para la mayoria de sistemas operativos que existen con lo que el
codigo escrito deberia poder ejecutarse en gran cantidad de maquinas sin necesidad
de ser recompilado.

e Disefio orientado a objetos. Java es un lenguaje orientado a objetos que facilita la
extension de partes de una plataforma como puede ser un agente. De esta forma
se facilita el mantenimiento de proyectos grandes con muchos subsistemas.

e Serializacion. Java ofrece un mecanismo de serializacion integrado. La serializacién
se utiliza para almacenar el estado actual de un programa para, por ejemplo,
enviarlo a través de la red. Esto ofrece una manera estiandar de enviar agentes
moviles por la red. También se puede utilizar para hacer persistente el estado de
ejecucién de un agente para almacenarlos o para pausarlos.

e Redes. El lenguaje Java ofrece al programador una serie de métodos para realizar
cualquier tipo de comunicacién a través de la red. Estos métodos pertenecen a
clases que forman parte del core de Java.

e Seguridad. Java ofrece una extensa serie de mecanismos de seguridad [62, 63]
que pueden ser utilizados, adaptados o extendidos para su uso por plataformas de
agentes méviles.

e Reflection. Java ofrece acceso a los métodos y variables de un objeto durante su
ejecuciéon. Las librerias estindar de Java contienen el paquete java.lang.reflect
que cubre el acceso a métodos, asi como a variables globales de un objeto
ejecutandose en la JVM.

Aun asi, existen ciertas desventajas en el uso de Java que suelen ser debidas a su
independencia de plataforma:

e Puntero de ejecucién. No se puede acceder a la pila de un programa en Java. Si un
programa es serializado, solo sus variables globales serédn serializadas, pero no su
estado de ejecucion. Este problema hace que las plataformas desarrolladas en Java
no puedan implementar la conocida como “strong mobility” teniendo que utilizarse
la “weak mobility” [44] ya que no es posible recuperar el estado de ejecucién de la
pila y restaurarlo.

e Control de recursos. Otra desventaja es la falta de control recursos (como memoria
o uso de CPU por parte de threads) en la JVM. No existe, por ejemplo, un método
kill o destroy para un thread. Solo se puede configurar en la creacién de un
thread el tipo de prioridad del mismo frente a la ejecucion de otros threads, pero

75

no se puede evitar que determinado programa haga un uso no apropiado de los
recursos de la JVM.

Como se ha mencionado previamente, Java ofrece una serie de mecanismos de
seguridad incluidos por defecto en el plataforma. Dichos mecanismos incluyen [63]:

e El Verificador de bytecode. Como hemos comentado, todo el codigo fuente Java se
compila en una especie de c6digo méaquina intermedio denominado bytecode. Dicho
cddigo es el que posteriormente se ejecuta en la JVM. Cuando se va a cargar el
bytecode en la JVM se verifica la correccién del mismo mediante el verificador de
bytecode. Dicho verificador se asegura de que los ficheros de clases siguen las reglas
del lenguaje Java. El verificador también comprueba que todas las asignaciones de
memoria son correctas, impidiendo accesos no permitidos [64].

e El Classloader. Es la clase responsable de buscar y cargar las clases Java en
tiempo de ejecucién. Se pueden crear tantos Classloaders como se considere
oportunos, modificando el comportamiento de los mismos segin sea necesario [65].
Por ejemplo, se puede necesitar que un Classloader solo cargue clases de ciertos
servidores, no pudiendo cargarse clases de sitios no permitidos.

o El Access Controller. Permite o evita la mayoria de accesos del core de Java a
sistema, operativo, basandose en politicas de seguridad definidas por el usuario o
por el administrador de sistemas.

o El Security Manager. Es el interfaz principal entre el core de java y el sistema
operativo. Tiene la responsabilidad dltima de permitir o denegar el acceso a todos
los recursos del sistema. Sin embargo existe principalmente por razones histoéricas,
delegando toda su funcionalidad en el Access Controller.

e El paquete de seguridad. Las clases contenidas en el paquete java.security [66]
al igual que las de las extensiones de seguridad permiten anadir caracteristicas
de seguridad a una aplicacién. Estas clases ofrecen, entre otras, las siguientes
funcionalidades:

— Interfaz para proveedores de seguridad. Mediante este interfaz se pueden
utilizar diferentes implementaciones de seguridad.

— Hashes de mensajes.
— Gestion de claves y certificados.

— Firmas digitales.

Cifrado mediante el uso de JCE (Java Cryptography Extension) y de JSSE.

Autenticacion mediante el uso de JAAS.

76

Como se puede comprobar, Java ofrece un extenso listado de medidas de seguridad
siendo éstas, ademas, facilmente extensibles y programables. Esto hace del lenguaje Java
una plataforma ideal para el desarrollo de un sistema de agentes moviles seguro. Si bien,
como se ha comentado previamente, existe un problema importante con la gestién de
recursos que hace que las plataformas de agentes moviles basadas en la JVM estandar
no puedan defenderse correctamente ante ciertos ataques de denegacion de servicio y de
abuso de recursos de la plataforma [67].

Debido al uso que tiene en las plataformas de agentes méviles, destacamos el paquete
JAAS. El objetivo principal de JAAS es gestionar la emisién de permisos y, a su vez,
realizar las comprobaciones de seguridad necesarias para dichos permisos [68].

JAAS forma parte del framework de seguridad de Java desde la versién 1.4 y estuvo
disponible como un paquete opcional desde J2SE 1.3. La mayoria de clases se encuentran
en el paquete javax.security.auth. Las tres clases principales son LoginContext,
Subject y PrivilegedAction [69].

En JAAS la autenticacion se realiza a través del login, que, si se ejecuta con
éxito, provee un conjunto de permisos y, por lo tanto, de autorizaciones. Los logins
se encuentran relacionados con un contexto determinado que representa un escenario
en la aplicacién (estamos hablando de contextos de seguridad a nivel de JAAS, no
de los contextos como contenedores en SPRINGS). Mediante el uso de contextos se
permite crear un sistema modular, donde en cada escenario se pueden utilizar métodos
de login especificos. JAAS implementa la versién Java del framework PAM (Pluggable
Authetication Module) muy utilizado en sistemas UNIX [52]. Mediante él, se permiten
definir tantos métodos de autenticacién como se consideren necesarios de una forma
“apilada”, permitiendo definir el flujo de autenticaciéon en la invocacién a cada uno de
los moédulos.

Los permisos son derechos a ejecutar una accién sobre un elemento. Por ejemplo,
un permiso puede ser “todas las clases del paquete hola.mundo pueden abrir sockets a
la direccién www.hola.mundo”. Existen una serie de permisos ya definidos en las clases
internas de Java, como pueden ser los pertenecientes a los paquetes [70]:

java.security.AllPermission
java.security.SecurityPermission
java.security.UnresolvedPermission
java.awt.AWTPermission
java.jio.FilePermission
java.io.SerializablePermission
java.lang.reflect.ReflectPermission
java.lang.RuntimePermission
java.net.NetPermission
java.net.SocketPermission
java.sql.SQLPermission

java.util .PropertyPermission
java.util.logging.LoggingPermission
javax.net.ssl.SSLPermission

7

javax.security.auth.AuthPermission
javax.security.auth.PrivateCredentialPermission
javax.security.auth.kerberos.DelegationPermission
javax.security.auth.kerberos.ServicePermission
javax.sound.sampled. AudioPermission

No obstante, se pueden crear permisos nuevos mediante la extensién de la clase
java.security.Permission.

Cuando un proceso ejecuta acciones protegidas, ese cédigo acaba invocando al
SecurityManager (y, por lo tanto, al AccessControler), que comprueba si se dispone de
los permisos necesarios. Habitualmente se realizaria la comprobacién contra el conjunto
de permisos del sistema. Para invocar a JAAS es necesario que las acciones protegidas
que se quiere que se invoquen bajo el conjunto de permisos de una identidad autenticada
en el JAAS se ejecuten mediante los métodos doAs o doAsPrivileged [63].

A.3 Entorno de desarrollo

En esta seccién vamos a describir el entorno tecnolégico sobre el que se ha
desarrollado el presente proyecto.

A.3.1 Lenguaje de programacion Java

La plataforma de programacion y ejecucién sobre la que se ha desarrollado el proyecto
ha sido Java de Oracle Corp. Mas detalladamente, se ha desarrollado en su tramo final
sobre un JDK con la siguiente version:

java version "1.6.0_51"
Java(TM) SE Runtime Environment (build 1.6.0_51-b11-457-11M4509)
Java HotSpot (TM) 64-Bit Server VM (build 20.51-b01-457, mixed mode)

A.3.2 Hardware de desarrollo

El proyecto se ha desarrollado en su parte principal sobre un sistema Apple Macbook
Pro [71] con las caracteristicas de la Tabla A.1.

A.3.3 Herramientas adicionales

Como editores de texto se han utilizado Macvim [72], tanto para cédigo como para
documentacion, y Eclipse [73], como editor de cédigo exclusivamente.

78

Modelo Apple Macbook Pro 13"
Procesador Intel i7 2.9GHz (Dual Core)
Memoria 8GB DDRS3
Sistema Operativo | Mac OS X 10.8.4
Virtualizador Oracle VirtualBox 4.2.12

Tabla A.1: Caracteristicas de maquina de desarrollo

Al ser entregada la plataforma, ésta se construia a través de una serie de scripts
desarrollados en Bash. Sin embargo se ha preferido utilizar una manera mas estandar
y modular de realizar la compilacion del cédigo de la plataforma mediante el software
Apache Ant [74]. Dicho software se utiliza para la compilacién de cédigo y para la
generacién de documentacién a nivel de APIs a través de Javadoc [75]. Para generar
documentacion sobre el API més extensa que incluye diagramas UML (Unified Modeling
Language), también se utiliza el software Doxygen [76].

Para controlar el versionado del cédigo y de la documentacién, se ha creado también
un repositorio de cédigo utilizando el software subversion [77] alojado en un servidor
perteneciente al proyecto Zonazener [78].

El presente documento ha sido escrito utilizando LaTex [79].

A.4 Entorno de pruebas

A continuacién vamos a describir cada uno de los elementos tecnolégicos utilizados
durante el desarrollo de las pruebas realizadas en la plataforma.

A.4.1 Software de gestion de certificados digitales

Para la gestién de certificados digitales hemos utilizado el software EJBCA [80]. Con
él, hemos gestionado la CA utilizada en los entornos de pruebas para crear los certificados
digitales utilizados tanto por el RNS como por los contextos.

A.4.2 MaAquinas virtuales para pruebas funcionales

Con el objeto de ofrecer un entorno lo mas similar posible a un entorno final pero
mucho més flexible y utilizable en un tinico sistema informético (el descrito en la Seccién
A.3) para realizar las pruebas funcionales de la plataforma, se ha implantado un sistema
basado en maquinas virtuales. Concretamente, se utiliza el software de virtualizacién
VirtualBox [81], en su versién 4.2.12 para Mac OS X.

79

Sobre dicho entorno se han creado varios servidores virtuales con las caracteristicas
de la Tabla A.2, cada uno conteniendo uno de los contextos de las pruebas funcionales.

Procesador 1 procesador virtual
Memoria 1GB
Sistema Operativo | Linux Debian 5.0
Versién de JAVA | 1.6.0-26-b03

Tabla A.2: Caracteristicas de servidor virtual

De esta forma, hemos sido capaces de simular las caracteristicas propias de ejecucion
de la plataforma simulando varios servidores diferentes siendo, ademads, capaces de
realizar tareas como capturas de trafico de red mientras las pruebas se ejecutan realmente
en un unico sistema fisico.

A.4.3 Hardware utilizado en las pruebas de carga y escalabilidad

Las pruebas de carga realizadas en la plataforma se han ejecutado utilizando hardware
disponible en el Laboratorio 1.03a del Edificio Ada Byron del Campus Rio Ebro de la
Universidad de Zaragoza.

Se ha utilizado tres PCs de dicho laboratorio en conjunto con el ordenador utilizado
para el desarrollo del presente proyecto.

Debido a la diversidad de Sistemas Operativos y al acceso limitado a la administracion
de los mismos, se ha decidido utilizar una capa de virtualizacion similar a la descrita
para las pruebas funcionales en el entorno de las pruebas de carga, basada en el software
Oracle VirtualBox.

El hardware utilizado ha sido:

e Apple MacBook Pro. Intel i7 2.9GHz (Dual Core), 8GB RAM, Mac OS X 10.8.4,
Oracle VirtualBox 4.2.12.

e PC 1. Intel i5 3GHz (Dual Core). 16GB RAM, Microsoft Windows 7 Profesional
SP1, Oracle VirtualBox 4.2.16.

e PC 2. Intel i5 3GHz (Dual Core). 16GB RAM, Microsoft Windows 7 Profesional
SP1, Oracle VirtualBox 4.2.16.

e PC 3. Intel i5 3GHz (Dual Core). 16GB RAM, Microsoft Windows 7 Enterprise
SP1, Oracle VirtualBox 4.2.16.

Todos los dispositivos tiene adaptadores de red Ethernet a 1 Gigabit/s; sin embargo,

80

el switch al que se encuentran conectados funciona a 100Mbit/s. El entorno de pruebas
se muestra en el diagrama de la Figura A.6.

springs-2
(contexto
P “c1”)
PC-1
springQ @HQSQ
(RNS) (ctin;;(to
C:
Portatil Desarrollo PC-2
— Ethernet
Springs: 100Mbit/s
(contexto
“Tesfy
ﬁrings—4
(contexto
“c3”)
PC-3

Figura A.6: Entorno de pruebas

En el Apple MacBook Pro se estan ejecutando dos maéaquinas virtuales con las
siguientes caracteristicas:

e springs-1. 3 procesadores virtuales, IGB RAM, Linux Debian 5.0, Java 1.6.0-26-
b03. Ejecuta la instancia del RNS en las pruebas.

e springs-5. 1 procesador virtual, 1IGB RAM, Linux Debian 5.0, Java 1.6.0-26-b03.
Ejecuta la instancia del contexto Test en las pruebas.

En el PC 1 se ejecuta:

e springs-2. 4 procesadores virtuales, IGB RAM, Linux Debian 5.0, Java 1.6.0-26-
b03. Ejecuta la instancia del contexto “cl” en las pruebas.

En el PC 2 se ejecuta:

e springs-3. 4 procesadores virtuales, 1GB RAM, Linux Debian 5.0, Java 1.6.0-26-
b03. Ejecuta la instancia del contexto “c2” en las pruebas.

En el PC 3 se ejecuta:

81

e springs-4. 4 procesadores virtuales, 1GB RAM, Linux Debian 5.0, Java 1.6.0-26-
b03. Ejecuta la instancia del contexto “c3” en las pruebas.

En la Figura A.6 podemos encontrar un diagrama que contiene el entorno utilizado
para las pruebas.

A.4.4 Agente y contexto para pruebas de carga

El contexto “Test” es un contexto de la clase LoadTestContext. En dicha clase
definimos el funcionamiento del contexto. Basicamente, el contexto acepta como
parametros de entrada el nimero de agentes a crear, el nimero de contextos de prueba
existentes, el nimero de movimientos que deben realizar los agentes, si el contexto debe
utilizar SSL o autenticacién y el tiempo que debe esperar el contexto (warm-up time)
para comenzar la prueba. También se incluye un script llamado TestLauncher que
facilita el lanzamiento del contexto “Test”. Su invocacion es como sigue:
$./TestLauncher
Mandatory arguments missing:

-aNN Number of agents

-cNN Number of contexts

-mNN Number of movements

-s Activate SSL

= Activate Authentication

-wNN Time to wait for the creation of the agents

En ella podemos ver como introducir los parametros de entrada previamente
definidos. Una vez introducidos y analizados dichos parametros, la clase realiza las
siguientes acciones:

e Intenta leer la informacién referente a su keystore y la almacena en el objeto ks.

e Crea un nuevo contexto con los parametros de entrada definidos en el arranque y
el keystore si fuera necesario.

e Crea una lista que contiene todos los agentes que formaran parte de la prueba para
definir quién sera el agente “pareja” de cada uno.

e Inicia un bucle en el que se van creando cada uno de los agentes, indicando en cada
caso quién es el agente “pareja” del agente, el nimero de contextos que existen,
el nimero de movimientos que tiene que realizar el agente y el tiempo que debe
esperar para iniciar su funcionamiento.

Los agentes creados pertenecen a la clase LoadTestAgent. Dichos agentes realizan
las siguientes funciones:

82

e Al ser creados, esperan el tiempo definido por el pardmetro warmUpTime.

e Una vez terminado dicho intervalo, deciden aleatoriamente a qué contexto de los
posibles va a viajar y se mueve a dicho contexto para ejecutar el método travel ().

e El método travel() en primer lugar, analiza si ya se han realizado todos los
movimientos requeridos. Si es as{ hace que el agente se mueva al contexto en el
que fue creado para ejecutar el método end ().

e Si el agente no debe volver todavia a su contexto, intenta realizar una llamada al
método hello() de su agente “pareja” Si no lo consigue, se reintenta.

e Una vez realizada la llamada al agente “pareja”, el agente se mueve a uno de los
contextos disponibles, elegido aleatoriamente, para ejecutar de nuevo el método
travel(), previo incremento de la variable que almacena el nimero de viajes
realizados.

e Cuando el agente termina, vuelve al contexto en el que fue creado y ejecuta el
método end (), se imprimen las estadisticas de tiempos de estancia en cada uno de
los contextos y de tiempos de llamada para su posterior analisis.

A.4.5 Script de andlisis de resultados de pruebas de carga

Se ha desarrollado un script (llamado get_stats.pl) en el lenguaje de programacién
Perl [82] para el analisis de los resultados de las pruebas de carga.

Dicho script lee los logs generados en el contexto “Test” y calcula las estadisticas
necesarias para realizar el analisis. Dichas estadisticas son las siguientes:

Test Conditionmns:

Number of agents: 1500

Number of contexts: 3

Number of Movements: 50

Test Results:

Number of agents created 1500

Number of finished agents: 1500

Test start time: 2013-09-01T11:34:27

Test end time: 2013-09-01T11:47:58

Time elapsed (s): 810

Number of stays: 75000

Average staying time (ms): 8008.08157333333
Median staying time (ms): 639

Mode staying time (ms): 16

Std deviation staying time (ms): 23745.205270202
Number of calls: 75000

Average call time (ms): 5470.29910666667
Median call time (ms): 66

Mode call time (ms): 10

Std deviation call time (ms): 21155.288896229

83

Estas estadisticas son las que se han utilizado para realizar el andlisis y las figuras
de las Seccién 4.2.

84

Apéndice B

Pruebas funcionales

En este apéndice vamos a detallar todas las pruebas funcionales realizadas sobre la
plataforma.

Para facilitar la lectura y la consulta de esta seccidon se ha decidido realizar una
organizaciéon homogénea en la presentacién de las pruebas. En primer lugar se expondra
un tipo de ataque a algtin elemento de la plataforma. A continuacién se explicard qué
medida o medidas de seguridad desarrolladas evitaran el ataque descrito. Posteriormente
se describiré el escenario de realizaciéon de las pruebas y su ejecucion, pasando al analisis
del resultado.

B.1 Acceso a la plataforma de un contexto que no tiene
activado SSL

En esta prueba se demostrara cémo, si la capa de seguridad externa estd activada en
una regién, no es posible acceder a la misma sin utilizar SSL.

Para ello utilizaremos:

e Un servidor ejecutando un RNS con la capa de seguridad activa mediante la
siguiente configuracién:

[security]

ssl = true
keystore = ../etc/rns.keystore
keystorePass = springs

e Un servidor ejecutando un contexto “cl-maligno” con la siguiente configuracién:

85

[security]

ssl = false

Una vez arrancado el RNS, al lanzar el contexto “cl-maligno” vemos cémo se aborta
su ejecucién obteniendo lo siguiente en su log:

2013-08-20 22:50:25,566 -- INFO -- Context SSL is false
2013-08-20 22:50:25,566 -- INFO -- Context Authentication is false
2013-08-20 22:50:30,777 -- ERROR -- Error starting context springs.

context.ContextStartingException: cl-maligno: Error communicating with
RNS springs.common.CommunicationException: cl-maligno: Security
enabled in only one end: non-JRMP server at remote endpoint

Indicando que ha habido un error en la comunicaciéon con el RNS debido a que la
capa de seguridad (SSL) solo esta activa en el lado del RNS.

B.2 Acceso a la plataforma de un contexto que usa un
certificado no valido

En esta prueba se demostrarda cémo la capa de seguridad externa defiende a la
plataforma de accesos de contextos que estén utilizando un certificado no aceptado (la
JVM no confia en la entidad que firmé el certificado del cliente) por el RNS.

Para ello utilizaremos:

e Un servidor ejecutando el RNS con un certificado firmado por la CA “springsCA”:

keytool -keystore rns.keystore -storetype JCEKS -list -v
Enter keystore password:

Keystore type: JCEKS
Keystore provider: SunJCE

Alias name: authkey

Creation date: Sep 10, 2012

Entry type: PrivateKeyEntry

Certificate chain length: 2

Certificate [1]:

Owner: C=es, L=zaragoza, O=unizar, 0U=springs, CN=rmns

Issuer: C=ES, L=zaragoza, O=unizar, 0U=springs, CN=springsCA

Serial number: 5a29306e2a453006

Valid from: Mon Sep 10 18:55:01 CEST 2012 until: Wed Sep 10 18:55:01
CEST 2014

86

Certificate fingerprints:
MD5 : DB:F9:DA:F3:BF:DB:BD:95:43:42:71:51:CD:AA:AB:24
SHA1: A2:9B:DE:CB:2E:72:CD:93:F9:43:AD:6F:6F:D0:3A:60:1F:E6
:4C:45
Signature algorithm name: SHAlwithRSA
Version: 3

Certificate [2]:
Owner: C=ES, L=zaragoza, O=unizar, 0OU=springs, CN=springsCA
Issuer: C=ES, L=zaragoza, O=unizar, 0U=springs, CN=springsCA
Serial number: 3e8f7eb6a8ebacédb
Valid from: Wed Sep 05 20:33:40 CEST 2012 until: Mon Sep 05 20:30:25
CEST 2022
Certificate fingerprints:
MD5: 9D:80:A8:34:2B:B3:A1:ED:9A:2E:E9:7F:21:23:E0:15
SHA1: F8:1C:0E:0B:49:9A:84:20:8A:88:7B:75:9A:BD:23:9D:81:9A
:4A:4C
Signature algorithm name: SHAlwithRSA
Version: 3

La clave publica de la CA esta incluida en el fichero cacerts de la maquina virtual
que ejecuta el RNS.

keytool -keystore /System/Library/Java/Support/CoreDeploy.bundle/
Contents/Home/lib/security/cacerts -list

springsca, Jun 24, 2013, trustedCertEntry,
Certificate fingerprint (MD5): 9D:80:A8:34:2B:B3:A1:ED:9A:2E:E9:7F
:21:23:E0:15

La configuracién relevante del RNS es:

[security]

ssl = true
keystore = ../etc/rns.keystore
keystorePass = springs

Un servidor ejecutando un contexto “cl-maligno” tiene como certificado:

keytool -keystore cl-maligno.keystore -storetype JCEKS -list -v
Enter keystore password:

Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 1 entry

Alias name: cl-maligno

87

Creation date: Aug 20, 2013
Entry type: PrivateKeyEntry
Certificate chain length: 2
Certificate [1]:
Owner: C=es, L=zaragoza, O=unizar, 0U=springs, CN=cl-maligno
Issuer: C=ES, L=zaragoza, O=unizar, 0U=springs, CN=malignoCA
Serial number: 28adf6551ed69928
Valid from: Tue Aug 20 19:12:40 CEST 2013 until: Mon May 12 19:11:56
CEST 2014
Certificate fingerprints:
MD5: 66:0B:62:A6:7F:A7:17:5E:9D:F0:F3:4B:3C:80:A4:61
SHA1: 36:4E:F3:BC:E7:0F:E8:A4:23:71:02:79:E5:5C:CF:DF:94:C6
:9C:4F
Signature algorithm name: SHA256withRSA
Version: 3

Certificate [2]:
Owner: C=ES, L=zaragoza, O=unizar, 0U=springs, CN=malignoCA
Issuer: C=ES, L=zaragoza, 0O=unizar, 0U=springs, CN=malignoCA
Serial number: 1b8d1f818cabb56¢
Valid from: Tue Aug 20 19:11:56 CEST 2013 until: Mon May 12 19:11:56
CEST 2014
Certificate fingerprints:
MD5: 3D:CD:C7:C1:BB:7A:0F:BB:45:9A:78:BA:B5:BD:B2:9E
SHA1: F3:27:5B:22:44:3F:B9:CF:E8:81:27:B4:13:67:97:58:D4:E4
:C6: AT
Signature algorithm name: SHA256withRSA
Version: 3

La CA “malignoCA” no se encuentra en el fichero cacerts de la JVM del RNS.

La configuracién relevante del contexto “cl-maligno” es:

[security]l

ssl = true
keystore = ../etc/cl-maligno.keystore
keystorePass = springs

Una vez arrancado el RNS, al lanzar el contexto “cl-maligno” vemos como se aborta
su ejecucién obteniendo lo siguiente en el log:

2013-08-20 21:13:24,867 -- INFO -- Context SSL is true
2013-08-20 21:13:24,867 -- INFO -- Context Authentication is false
2013-08-20 21:13:31,280 -- ERROR -- Error starting context springs.

context.ContextStartingException: cl-maligno: Error communicating with
RNS springs.common.CommunicationException: cl-maligno: Security
enabled in only one end: error during JRMP connection establishment;
nested exception is:
javax.net.ssl.SSLHandshakeException: Received fatal alert:
bad_certificate

88

Indicando que ha habido un problema con la gestion de certificados SSL entre el
contexto y el RNS y, por lo tanto, el contexto “cl-maligno” no ha podido ejecutarse.

B.3 Acceso y/o modificacién de comunicaciones entre el
RNS y los contextos o entre contextos

En esta prueba se demostrard como cuando la capa de seguridad externa se encuentra
activada en una regién no es posible acceder a los datos intercambiados entre un contexto
y el RNS o entre diferentes contextos.

En una comunicacion RMI sin SSL se puede observar mediante una captura de red
realizada con una herramienta como Tepdump [83] como el tréfico no estd cifrado. En la
siguiente captura visualizada segin su volcado ASCII se puede observar a simple vista
como el trafico no se encuentra cifrado:

JRMI..KN..192.168.56.2...... 192, 168 BBcBcoo ol oooc®@P 0000000000060 0000000000000 D.M
.;.t..RegionNameServerQ....w....5....@.8Uq..sr.)springs.rns.
RegionNameServer RMIImpl_Stub........... pxr..java.rmi.server.RemoteStub...... e

....pXr..java.rmi.server.RemoteObject.a...a3....pxpw6.
UnicastRef.
192.168.2.101..°.Q.E.\..K..5....@.8Uq...xRST..5....@.8Uq..

Si bien es complicado decodificar trafico RMI, si se obtienen los ficheros de clases
especificos si que se podria tener acceso a los datos serializados y poder leerlos o, incluso,
modificarlos.

Con una herramienta como Wireshark [84] podemos analizar el trafico de una forma
sencilla tal y como se muestra en la Figura B.1.

No. |Source |Destmat\on ‘Protoco\‘Length‘lnfO
2192.168.56.1 192.168.56.2 TCP 78 ndmp > 33251 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MS5=1460 WS=16 TSval=813933398 TSecr=4207654 SACK PERM=1
3192.168.56.2 192.168.56.1 TCP 66 33251 > ndmp [ACK] Seq=1 Ack=1 Win=5856 Len=0 TSval=4207654 TSecr=813933398
4102.168.56.1 192.168.56.2 TCP 66 [TCP Window Update] ndmp > 23251 [ACK] Seq=1 Ack=1 Win=131760 Len=0 TSval=813933308 TSecr=4207654
5192.168.56.2 192.168.56.1 RMI 73 JRMI, Version: 2, StreamProtocol
6192.168.56.1 192.168.56.2 TCP 66 ndmp > 33251 [ACK] Seq=1 Ack=8 Win=131760 Len=0 TSval=813933399 TSecr=4207654
7192.168.56.1 192.168.56.2 RMI 85 JRMI, ProtocolAck
8192.168.56.2 192.168.56.1 TCP 66 33251 > ndmp [ACK] Seq=8 Ack=20 Win=5856 Len=0 TSval=4207655 TSecr=813933401
©192.168.56.2 192.168.56.1 RMI 84 Continuation
10 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33251 [ACK] Seq=20 Ack=26 Win=121728 Len=0 TSval=813933402 TSecr=4207655
11 192.168.56.2 192.168.56.1 RMI 126 JRMI, Call
12 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33251 [ACK] Seq=20 Ack=86 Win=131680 Len=0 TSval=813933405 TSecr=4207656
13 192.168.56.1 192.168.56.2 RMI 290 JRMI, ReturnData
14 192.168.56.2 192.168.56.1 RMI 67 JRMI, Ping
15 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33251 [ACK] Seq=244 Ack=87 Win=131680 Len=0 TSval=813933451 TSecr=4207668
16 192.168.56.1 192.168.56.2 RMI 67 JRMI, PingAck
17 192.168.56.2 192.168.56.1 RMI 81 JRMI, DgcAck
18 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33251 [ACK] Seq=245 Ack=102 Win=131664 Len=0 TSval=813933451 TSecr=4207668

Figura B.1: Captura de red trafico RMI no cifrado

El escenario que vamos a utilizar en esta prueba es el siguiente:

e Un servidor ejecutando un RNS con la capa de seguridad activa mediante la
siguiente configuracién:

89

[security]

ssl = true
keystore = ../etc/rns.keystore
keystorePass = springs

El keystore del RNS esta configurado como el de la prueba del Apéndice B.2.

Un servidor ejecutando un contexto “cl” con la siguiente configuracion:

[security]

ssl = true
keystore = ../etc/cl.keystore
keystorePass = springs

El keystore del contexto “cl” contiene los siguientes certificados:

keytool -keystore cl.keystore -storetype JCEKS -list -v
Enter keystore password:

Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 1 entry

Alias name: cli
Creation date: Sep 10, 2012
Entry type: PrivateKeyEntry
Certificate chain length: 2
Certificate[1]:
Owner: C=es, L=zaragoza, O=unizar, 0U=springs, CN=cl
Issuer: C=ES, L=zaragoza, O=unizar, 0U=springs, CN=springsCA
Serial number: 34948d415309ble6
Valid from: Mon Sep 10 19:07:29 CEST 2012 until: Wed Sep 10 19:07:29
CEST 2014
Certificate fingerprints:
MD5 : 17:36:31:0A:0C:80:51:84:3A:69:1C:A0:D6:A2:59:E6
SHA1: 4A:F5:47:27:77:9B:97:DD:CD:F1:40:56:F8:B6:F0:F1:A4:CB
:22:E2
Signature algorithm name: SHAlwithRSA
Version: 3

Certificate [2]:
Owner: C=ES, L=zaragoza, O=unizar, 0U=springs, CN=springsCA
Issuer: C=ES, L=zaragoza, O=unizar, 0U=springs, CN=springsCA
Serial number: 3e8f7eb6a8ebacdb
Valid from: Wed Sep 05 20:33:40 CEST 2012 until: Mon Sep 05 20:30:25
CEST 2022
Certificate fingerprints:
MD5: 9D:80:A8:34:2B:B3:A1:ED:9A:2E:E9:7F:21:23:E0:15
SHA1: F8:1C:0E:0B:49:9A:84:20:8A:88:7B:75:9A:BD:23:9D:81:94A
:4A:4C

90

Signature algorithm name: SHA1withRSA
Version: 3

Es decir, su certificado estd firmado por la misma CA que el RNS. Ademés, tanto
la JVM del RNS como la del contexto confian en la clave ptblica de dicha CA.

e Un administrador que, simulando un tercero “maligno”, tenga acceso al trafico de
red.

En este escenario, una vez arrancado el RNS y viendo como estd activa su
configuracién de SSL en el log:

2013-08-21 13:03:40,791 -- INFO -- Started RNS at port 10000!
2013-08-21 13:03:40,791 -- INFO -- SSL is set to true

Procederemos a realizar una captura de trafico en uno de los servidores, capturando
el trafico entre el contexto y el RNS mediante un comando como el siguiente:

tcpdump -i ethl -s O port 10000 -w ctx-rmns.cap

En este momento, arrancaremos el contexto “cl” viendo en su log que se ha activado
el mecanismo de SSL y que arranca correctamente (es decir, es capaz de comunicarse
con éxito con el RNS mediante RMI-SSL):

2013-08-21 13:03:40,538 -- INFO -- Context SSL is true
2013-08-21 13:03:40,538 -- INFO -- Context Authentication is false
2013-08-21 13:03:46,411 -- INFO -- Started context at port 9501!

En este momento vamos a analizar el trafico capturado por nuestro “atacante”. En
primer lugar observamos cémo Wireshark lo detecta como trafico SSL en la Figura B.2.

Si realizamos un volcado ASCII del trafico, de la misma forma que lo hemos realizado
con el trafico no cifrado, observamos lo siguiente:

e Sive JooBoo?
.............. @coooooo0o0occoanoano0n00000 0l @e..0..” . {M.2=..x.J..=.t.H.A.........M
R EIEE H=QH,1...........
v. R 9..... r..q..... q xq L 9..6 0 [Z)On*E0.0
..x . H..
..... OW1.0...U....springsCA1.0...U....springsl1.0
.U.
..unizar1.0...U....zaragozal.0...U....ESO..
1209101655017Z.
140910165501Z0Q1.0
.U....rns1.0...U....springs1.0
oo
..unizar1.0...U....zaragozal.0...U....es0..0
Lk LHL .
......... 0.......m..<v..r..P....w.%.R.Y...p<.."[f;N..z...”...?R.4./.Db b
g.-W g.<V..... bAsS.q.=.t
&p..l.}<....L £

91

No. Source Destination ‘ Protocol| Length ‘ Info
2192.168.56.1 192.168.56.2 TCP 78 ndmp = 33272 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=16 TSval=818852444 TSecr=5463371 SACK_PERM=1
3192.168.56.2 192.168.56.1 TCP 66 33272 > ndmp [ACK] Seq=1 Ack=1 Win=5856 Len=0 TSval=5453371 TSecr=818852444
4192.168.56.1 192.168.56.2 TCP 66 [TCP Window Update] ndmp > 33272 [ACK] Seg=1 Ack=1 Win=131760 Len=0 TSval=818852444 TSecr=5463371
5192.168.56.2 192.168.56.1 SSLv2 169 client Hello
6192.168.56.1 192.168.56.2 TCP 66 ndmp > 33272 [ACK] Seq=1 Ack=104 Win=131664 Len=0 TSval=818852447 TSecr=5463372
7 192.168.56.1 192.168.56.2 TLSV1 1497 server Helle, certificate, Server Hello Done
8192.168.56.2 192.168.56.1 TCP 66 33272 > ndmp [ACK] Seq=104 Ack=1432 Win=8736 Len=0 TSval=5463397 TSecr=818852544
9192.168.56.2 192.168.56.1 TLSvl 205 Client Key Exchange
10 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33272 [ACK] Seq=1432 Ack=243 Win=131520 Len=0 TSval=818852564 TSecr=5463402
11 192.168.56.2 192.168.56.1 TLSvl 72 change Cipher Spec
12 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33272 [ACK] Seq=1432 Ack=249 Win=131520 Len=0 TSval=818852570 TSecr=5463403
13 192.168.56.2 192.168.56.1 TLSwl 103 Encrypted Handshake Message
14 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33272 [ACK] Seq=1432 Ack=286 Win=131472 Len=0 TSval=818852573 TSecr=5463404
15 192.168.56.1 192.168.56.2 TLSvl 72 change Cipher Spec
16 192.168.56.1 192.168.56.2 TLSvl 102 Encrypted Handshake Message
17 192.168.56.2 192.168.56.1 TCP 66 33272 > ndmp [ACK] Seq=286 Ack=1475 Win=8736 Len=0 TSval=5463424 TSecr=818852647
18 192.168.56.2 192.168.56.1 TLSv1 94 application Data
19 192.168.56.1 192.168.56.2 TCP 66 ndmp = 33272 [ACK] Seq=1475 Ack=314 Win=131440 Len=0 TSval=818852648 TSecr=5463424
20 192.168.56.1 192.168.56.2 TLSvl 106 application Data
21 192.168.56.2 192.168.56.1 TLSvl 105 Application Data
22 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33272 [ACK] Seq=1515 Ack=353 Win=131408 Len=0 TSval=818852648 TSecr=5463424
23192.168.56.2 192.168.56.1 TLSvl 147 Application Data
24 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33272 [ACK] Seq=1515 Ack=434 Win=131328 Len=0 TSval=818852651 TSecr=5463425
25192.168.56.1 192.168.56.2 TLSvl 372 application Data
26 192.168.56.2 192.168.56.1 TCP 66 33272 > ndmp [ACK] Seq=434 Ack=1821 Win=11616 Len=0 TSval=5463438 TSecr=818852664
27 192.168.56.2 192.168.56.1 TLSvl 88 Application Data
28 192.168.56.1 192.168.56.2 TCP 66 ndmp > 33272 [ACK] Seq=1821 Ack=456 Win=131312 Len=0 TSval=818852781 TSecr=5463458
20192.168.56.1 192.168.56.2 TLSvl 88 Application Data
30 192.168.56.2 192.168.56.1 TCP 66 33272 > ndmp [ACK] Seq=456 Ack=1843 Win=11616 Len=0 TSval=5463459 TSecr=818852781
31 192.168.56.2 192.168.56.1 TLSvl 102 #pplication Data
32 192.168.56.1 192.168.56.2 TCP 66 ndmp = 33272 [ACK] Seq=1843 Ack=492 Win=131264 Len=0 TSval=818852781 TSecr=5463458

h.pMJ.Cx....
.u0s0...U
L..J...0.
0oo®

c.j.. . J*a
sooodBooo
c0@o0 0000 o

..0W1.0...U..

..unizar1.0...U.
120905183340Z.
220905183025Z0W1

)

o o0&

.H

7

.unizarl

Xq.
6 0290 3R q

.0...0.

.9%...fy...n.MI.
yeweeee....DB\2>.

..LH™.

5 .

Figura B.2: Captura de red trafico RMI cifrado

ooWo

..6..wM

R N

LV

cocooocococooco@oooWooooooc@c®ooolWoifoc®ooolllooaooahlO
...0...U0.%..0

eeiiii......C.0gW.?7g.......1..f.....T...NIU.T.yP5.

..xA....k..NCN.K..L....A.N..t#..0

L...>0~. .. KO

..springsCA1.0...U....springs1.0

...zaragozal.0...U....ESO..

.0...U....springsCA1.0...U..

voo0o0lPa8oocoo

cool oMEs .o

...U.#..0.

...{a...ul.

>
..bc.n.

,-b.4..

(>....

no. .
..H.

i‘P.

...m
8..}

dAu.

r.....-

oo ool

..2

..C/

6...~

.springs1.0

..zaragozal.0...U....ES0..0

50000 D0BUo0a
..(..(."u.."t.D..kE....&..@....n.)c........../74
6000000B@0B0cccWaoococlocacoadd@@cocooodaco@acocl

L.MLo. . %00.........0...0...........0

LRtk
...y..i.Wg.N..C{................Fv..q..a.S.]i....
$5.5..0..x..G1.....W..U+Ft..L\a.8. .‘vA@.@....‘..R...&.

0000000000000 ocoociRolioilooltboollosoBilAooo B

o Xe... o (o2 00008 L kx [BLL 0T Q1
500000000020 aPoo0o0o00000lcolboo0o0oNollocoooFoooooooo00000
.g\.....f.....8..L..M. 600000000@0Boo
...gy..D....n...-

c
z.{.[.
c...f.....C...H..bA..RC.....7,..M“.?.%?w....8....1IG
’].S...YP.s9Tu6................".E.h.3.g.B@{.iU..F
...EI8.I....8,..12\..1.

92

En el que se puede observar a simple vista como la comunicacién ha cambiado
completamente comparada con la anterior comunicacién sin cifrar, pasando a ser
completamente binaria siguiendo el protocolo SSL.

De la misma forma que se ha demostrado que se protegen las comunicaciones entre un
contexto y el RNS, se protegen también el resto de comunicaciones RMI de la plataforma.
Especialmente importantes son las que se refieren a la comunicacién entre agentes y al
movimiento de agentes entre contextos.

B.4 Acceso a la plataforma de un contexto cuyo certificado
no esta aceptado por el RNS

En esta prueba un contexto “maligno” con un certificado no aceptado por el RNS
intentard acceder a la plataforma. Gracias al mecanismo de seguridad de autenticacion
a nivel de plataforma se evitard su acceso, protegiendo a la plataforma de ataques de
contextos no permitidos.

El escenario de pruebas comprende:

e Un servidor ejecutando un RNS con el mecanismo de autenticacién activo mediante
la siguiente configuracion:

[securityl
authentication = true

keystore = ../etc/rns.keystore
keystorePass = springs

e Un servidor ejecutando un contexto llamado “cl-maligno” con un certificado que
no se encuentra en el keystore de RNS.

Al arrancar el RNS observamos cémo se activan los mecanismos de autenticacion a
nivel de plataforma leyendo en el log lo siguiente:

2013-08-22 12:55:18,719 -- INFO -- Started RNS at port 10000!

2013-08-22 12:55:18,719 -- INFO -- SSL is set to false

2013-08-22 12:55:18,719 -- INFO -- Platform Authentication is set to true
2013-08-22 12:55:18,719 -- INFO -- Platform Encryption is set to false

Cuando arrancamos el contexto “cl-maligno” observamos el siguiente mensaje de
error en su log:

93

2013-08-22 12:55:19,543 -- INFO -- Context SSL is false

2013-08-22 12:55:19,543 -- INFO -- Context Authentication is false

2013-08-22 12:55:24,646 -- ERROR -- Error starting context springs.
context.ContextStartingException: cl-maligno: Error communicating with
RNS java.rmi.ServerException: RemoteException occurred in server
thread; nested exception is:

java.rmi.RemoteException: The context certificate is not

authorized

Indicando que el certificado del contexto no ha sido autorizado.

En el RNS vemos el siguiente mensaje de error:

2013-08-22 12:55:24,609 -- DEBUG -- Adding context cl-maligno with URL
192.168.56.2:9501
2013-08-22 12:55:24,609 -- ERROR -- The context cl-maligno certificate is

not authorized

Para que conste a nivel de RNS el intento de ataque a la plataforma.

B.5 Creacién de un agente por parte de un contexto que
no tiene permisos para ello

En esta prueba se demostrarda cémo se puede evitar que determinado contexto
sea capaz de crear agentes mediante los mecanismos de seguridad de autenticacién y
autorizacién a nivel de plataforma.

Para realizar dicha prueba, contamos con:

e Un servidor ejecutando un RNS con el mecanismo de autenticacién activo mediante
la siguiente configuracion:

[security]
authentication = true

keystore = ../etc/rns.keystore
keystorePass = springs

Notese que no existen lineas de configuracion de permisos. Esto indica que no hay
ningin permiso otorgado.

e Un servidor ejecutando un contexto llamado “Test” que intenta crear un agente
mediante el siguiente cédigo fuente:

try {
Context _RMIImpl.create (LOCAL_CONTEXT_NAME, PORT_TEST,
PORT_CLASS_SERVER,

94

RNS_ADDRESS, false, false, ks);
Context context = Context_RMIImpl.instance();
logger.info ("Started context in port " + PORT_TEST + "!");

logger.info("Creating MovingAgentExample...");
MovingAgentExample ag = new MovingAgentExample () ;
context.createAgent (ag, "MovingAgentExample");
logger.info ("Created MovingAgentExample!");

} catch (Exception e) {
logger .error ("Problem with context " + e.toString());
System.exit (-1);

Una vez que el RNS estd arrancado se lanza el contexto “Test” en cuyo log se puede
ver el siguiente mensaje de error:

2013-08-22 13:28:48,710 -- INFO -- Started context in port 12000!
2013-08-22 13:28:48,710 -- INFO -- Creating MovingAgentExample...
2013-08-22 13:28:48,717 -- ERROR -- Problem with context springs.security

.SecurityException: Test: Context not allowed to createAgent method

Terminando su ejecucién. En el log del RNS se observa lo siguiente:

2013-08-22 13:28:48,578 -- INFO -- Added context Test with URL
192.168.56.2:12000

2013-08-22 13:28:48,657 -- INFO -- The context Test has been authorized
by the RNS

2013-08-22 13:28:48,657 -- INFO -- The context Test is allowed to
PlatformPermission

2013-08-22 13:28:48,671 -- INFO -- The context Test has been authorized
by the RNS

2013-08-22 13:28:48,671 -- ERROR -- The context Test is not allowed to

AgentPermission

En el que se puede ver cémo el contexto “Test” se crea y se anade a la plataforma
correctamente pero, cuando intenta crear un agente, el contexto no esta autorizado y se
le devuelve un error.

B.6 Movimiento de un agente por parte de un contexto
que no tiene permisos para ello

En esta prueba se demostrard cémo se puede evitar que determinados contextos sean
capaces de crear agentes que se puedan mover, mediante los mecanismos de seguridad
de autenticacién y autorizacién a nivel de plataforma.

Para realizar dicha prueba, contamos con:

95

e Un servidor ejecutando un RNS con el mecanismo de autenticacién activo mediante
la siguiente configuracion:

[security]l

authentication = true
authentication.agentPermission = Test
keystore = ../etc/rns.keystore
keystorePass = springs

5 xi i 16 rmiti i6
Nétese que existe una linea de configuracion para permitir la creacion de agentes
al contexto “Test”, pero no se permite nada mas.

e Un servidor ejecutando un contexto llamado “cl1”.

e Un servidor ejecutando un contexto llamado “Test” que crea un agente en cuyo
cbdigo se realiza la peticiéon de movimiento al contexto “c1” de la forma:

public void main ()

{
try {
travell () ;
} catch (AgentmovementException e) {
logger .error (e.toString());
System.exit (-1);
}
}
public void travell() throws AgentMovementException
{
logger.info (getNameWithContext () + ": I’m going to move to C1");
logger.info (getNameWithContext () + ": my home is at " +
getHomeAddress ()) ;
moveTo ("cl1", "travel2");
return;
}

En primer lugar lanzamos tanto el RNS como el contexto “c1”. Después ejecutamos
el contexto “Test” que crea el agente “MovingAgentExample” correctamente pero,

posteriormente, da

2013-08-22 14:28:
2013-08-22 14:28:
2013-08-22 14:28:

the RNS! (2

2013-08-22 14:28:

2013-08-22 14:28

un error. Esta secuencia de eventos se ve en el log de la forma:

context manager'!

2013-08-22 14:28
2013-08-22 14:28
move to C1

02,194 -- INFO -- Started context in port 12000!

02,194 -- INFO -- Creating MovingAgentExample...

02,288 -- INFO -- Registered agent MovingAgentExample at
locationServers assigned)

02,302 -- INFO -- Registered agent MovingAgentExample!
:02,302 -- INFO -- Created agent MovingAgentExample in
:02,302 -- INFO -- Created MovingAgentExample!

:02,381 -- INFO -- MovingAgentExample@Test: I’m going to

96

2013-08-22 14:28:02,381 -- INFO -- MovingAgentExample@Test: my home is at
rmi://192.168.56.3:12000

2013-08-22 14:28:02,387 -- ERROR -- springs.agent.AgentMovementException:
Test: Context not allowed to access moveAgent method

Si observamos el log del RNS vemos cémo también se notifica la denegacion de
permisos de movimiento al agente creado por el contexto “Test”.

2013-08-22 14:28:02,204 -- INFO -- Agent MovingAgentExample added to Test

2013-08-22 14:28:02,304 -- INFO -- The context Test has been authorized
by the RNS

2013-08-22 14:28:02,304 -- DEBUG -- The context Test requests permission
for MoveAgentPermission

2013-08-22 14:28:02,304 -- ERROR -- The context Test is not allowed to

MoveAgentPermission

De esta forma se puede evitar que un contexto cree agentes que se puedan mover a
otros contextos y, potencialmente, atacarlos.

B.7 Agente realizando llamadas creado en un contexto que
no tiene permisos para ello

En esta prueba se demostrard como se puede evitar, mediante el mecanismo de
autenticaciéon y autorizacién a nivel de plataforma, que un contexto determinado sea
capaz de crear agentes que puedan realizar llamadas a otros agentes.

El escenario de la prueba es el siguiente:

e Un servidor ejecutando un RNS con el mecanismo de autenticacién activo mediante
la siguiente configuracién:

[security]

authentication = true
authentication.agentPermission = Test, Test2
keystore = ../etc/rns.keystore

keystorePass = springs

Notese que existe una linea de configuraciéon para permitir la creacion de agentes
a los contextos “Test” y “Test”, pero no se permite nada mas.

e Un servidor ejecutando un contexto llamado “Test” que crea un agente llamado
“ReceivingAgentExample”. Este agente lo inico que hace es esperar en un bucle
infinito a que alguien invoque su método hello() que hace que el contexto imprima
un mensaje de texto.

97

e Un servidor ejecutando un contexto llamado “Test” va a crear un agente
en cuyo cbédigo se realiza una llamada al método hello() del agente
“ReceivingAgentExample”, cuyo cbédigo relevante es como el siguiente:

callAgentMethod ("ReceivingAgentExample", "hello");

En primer lugar lanzamos tanto el RNS como el contexto “Test”, esperando a que se
cree el agente “ReceivingAgentExample”. Después ejecutamos el contexto “Test2” que
crea el agente “CallingAgentExample” correctamente pero, posteriormente, da un error
al invocar al método callAgentMethod (). Esta secuencia de eventos se ve en el log de
la forma:

2013-08-22 18:16:20,792 -- INFO -- Started context in port 12001!
2013-08-22 18:16:20,792 -- INFO -- Creating CallingAgentExample...
2013-08-22 18:16:20,895 -- INFO -- Registered agent CallingAgentExample!
2013-08-22 18:16:20,897 -- INFO -- Created CallingAgentExample!
2013-08-22 18:16:30,909 -- INFO -- CallingAgentExample: calling hello...
2013-08-22 18:16:30,915 -- ERROR -- springs.security.SecurityException:

Test2: Context not allowed to access callAgentMethod on
ReceivingAgentExample

Si observamos el log del RNS vemos cémo también se notifica la denegacién de
permisos de llamada al agente creado por el contexto “Test2”.

2013-08-22 18:16:30,805 -- DEBUG -- The context Test2 requests permission
for CallAgentPermission
2013-08-22 18:16:30,805 -- ERROR -- The context Test2 is not allowed to

CallAgentPermission

De esta forma se puede evitar que un contexto cree agentes que se puedan realizar
ataques mediante la invocacién a métodos de otros agentes.

B.8 Contexto atacando otro contexto simulando ser el
RINS

En esta prueba se demostrard céomo se puede evitar, mediante el mecanismo de
autenticacién y autorizacion a nivel de plataforma, que un contexto determinado sea
capaz invocar métodos permitidos solo al RNS de otro contexto.

El escenario de la prueba es el siguiente:

e Un servidor ejecutando un RNS con el mecanismo de autenticacién activo mediante
la siguiente configuracién:

98

[security]

authentication = true
keystore = ../etc/rns.keystore
keystorePass = springs

e Un servidor ejecutando el contexto “cl”, que serd la victima del ataque.

e Un servidor ejecutando el contexto “Test” que ejecutard el siguiente codigo:

ContextAddress ca = new ContextAddress("cl", "rmi://springs-1:9501",
false) ;

byte[] challenge = null;
String operationId = "BadGuy";

ReferenceServer.getContextManager (ca).addContext (ca, challenge,
operationId);

En dicho cédigo se observa cémo se realiza una busqueda en el sistema por el
ContextManager del contexto “cl” y se invoca al método addContext () de dicho
ContextManager.

Para realizar la prueba lanzamos tanto el RNS como el contexto “c1”. Acto seguido
ejecutamos el contexto “Test’, en cuyo log vemos lo siguiente:

013-08-22 19:29:55,668 -- INFO -- Started context in port 12000!

2013-08-22 19:29:55,668 -- DEBUG -- Contacting remote agent
ContextManager at rmi://springs-1:9501

2013-08-22 19:29:55,689 -- ERROR -- Problem with context java.rmi.

ServerException: RemoteException occurred in server thread; nested
exception is:
java.rmi.RemoteException: springs.security.SecurityException: cl:
OTP not allowed by the RNS

En €l se nos dice que el OTP utilizado no ha sido autorizado por el RNS, es decir,
que el RNS no ha generado el challenge referente al OTP enviado.

En el log del contexto “cl1” vemos:

2013-08-22 19:29:55,664 -- ERROR -- OTP is not allowed by RNS

Y en el log del RNS también se nos avisa del mal uso del OTP:

2013-08-22 19:29:55,575 -- DEBUG -- Verifying OTP for cl-BadGuy
2013-08-22 19:29:55,575 -- ERROR -- The context cl has not been granted
the OTP

Como se ha demostrado, no es posible acceder a métodos reservados del
ContextManager de un contexto a no ser que se hayan obtenido las credenciales
necesarias previamente.

99

B.9 Uso de autenticacion de contexto con la autenticacion
de plataforma desactivada

En esta prueba veremos cémo la autenticacion y autorizaciéon a nivel de contexto
se desactivan si la autenticacion y autorizaciéon a nivel de plataforma lo estan. Esto se
hace asi ya que para autenticar a un agente por parte del contexto, es necesario tener
el mecanismo de autenticacién a nivel de plataforma y, sin éste, no podriamos definir si
un agente es quien realmente dice que es.

El escenario de la prueba es el siguiente:

e Un servidor ejecutando un RNS con el mecanismo de autenticacion desactivado.

e Un servidor ejecutando un contexto “cl”, con el mecanismo de autenticacién a
nivel de contexto activado. El script de arranque del contexto es el siguiente:

export CLASSPATH=../../../lib/log4j-1.2.15.jar:../../../jar/springs.

jar:../classes

export PATH=$JAVA_HOME:$PATH

java -Djava.security.policy=../etc/security.policy -Djava.security.
auth.login.config=../etc/jaas.config springs.context.

ContextLauncher \$x*

Es decir, utiliza los ficheros de configuraciéon jaas.config

Agent
{

springs.security.AgentLoginModule required;
ks
contexts
{

springs.security.ContextLoginModule required;
1

que define los plugins de autenticacién que se utilizan en SPRINGS y el fichero
security.policy:

/ **

* A minimal set of permissions needed for the stock server to run.
*/

grant {

permission javax.security.auth.AuthPermission "
createlLoginContext";

permission javax.security.auth.AuthPermission "doAs";
permission javax.security.auth.AuthPermission "doAsPrivileged";

permission javax.security.auth.AuthPermission "modifyPrincipals

permission javax.security.auth.AuthPermission "getSubject";
permission javax.security.auth.AuthPermission "
createloginContext.Agent";

100

permission java.net.SocketPermission "*", "accept, connect,
resolve";

};

grant Principal springs.security.AgentPrincipal "Test" {

};

grant Principal springs.security.ContextPrincipal "context" {
permission java.security.AllPermission "", "";

};

que define qué permisos se encuentran autorizados en el contexto. Por defecto se
deben definir una serie de permisos para que el propio mecanismo de autenticacién
funcione y después, se pueden definir secciones para limitar el acceso a los recursos
del servidor por parte del propio contexto y por parte de los agentes que viajen a
él. En esta configuracién hemos definido que los agentes que hayan sido creados
en el contexto “Test” no tienen ningin permiso adicional.

El fichero de configuracion del contexto contiene lo siguiente:

[security]

authentication = true
keystore = ../etc/cl.keystore
keystorePass = springs

e Un servidor con un contexto llamado “Test” que ejecuta un agente llamado
“MovingAgentExample” que viaja al contexto “cl”, intenta leer el fichero
/tmp/secreto y, después, volverd al contexto “Test”.

En la prueba lanzamos el RNS y el contexto “c1”. En el log del contexto “c1” vemos
el siguiente mensaje de error indicando que la autenticacién a nivel de plataforma esta
desactivada, con lo que la autenticacién y autorizacién a nivel de contexto también lo
estara:

2013-08-23 11:01:42,927 -- ERROR -- Disabling ContextAuthentication as we
are not able to authenticate with the RNS

En este momento lanzamos el contexto “Test”, que
crea el agente “MovingAgentExample” que, en el contexto “cl”, deja lo siguiente en
el log:

2013-08-23 11:01:48,146 -- INFO -- MovingAgentExample@cl: postArrival
(11:01:48:146)

2013-08-23 11:01:48,146 -- INFO -- MovingAgentExample@cl: I’ve arrived in
Cc1

2013-08-23 11:01:48,147 -- INFO -- MovingAgentExample@cl: my home is at
rmi://192.168.56.3:12000

2013-08-23 11:01:48,147 -- INFO -- MovingAgentExample@cl: I am going to

read /tmp/secreto

101

2013-08-23 11:01:48,147 -- INFO -- Going to read file

2013-08-23 11:01:48,147 -- INFO -- Esto es un secreto!!!

2013-08-23 11:01:48,147 -- INFO -- MovingAgentExample@cl: I’m going to
move home

2013-08-23 11:01:48,149 -- INFO -- MovingAgentExample@cl: preDeparture
from rmi://192.168.56.2:9501 to rmi://192.168.56.3:12000(11:01:48:149)

2013-08-23 11:01:48,158 -- INFO -- MovingAgentExample@cl: postDeparture

(11:01:48:158)

Es decir, observamos cémo el agente si que ha tenido acceso al fichero /tmp/secreto
del contexto “cl1” y ha sido capaz de leerlo.

B.10 Acceso a recursos no permitidos por la autorizacion
a nivel de contexto

En esta prueba veremos cémo el mecanismo de autenticaciéon y autorizaciéon a nivel
de contexto es capaz de evitar el acceso a los recursos de un contexto por parte de un
agente. Con estas medidas logramos proteger a los contextos de ataques que puedan
llevar a cabo agentes que viajen a ellos.

El escenario de la prueba es el mismo que el de la Secciéon B.9. La tnica diferencia es
que, en este caso, si que tendremos activado el mecanismo de autenticacién y autorizacion
a nivel de plataforma, con la siguiente configuraciéon del RNS:

[security]

authentication = true
authentication.agentPermission = Test
authentication.moveAgentPermission = Test
keystore = ../etc/rns.keystore
keystorePass = springs

Ejecutamos tanto el RNS como el contexto “cl”, no recibiendo en esta ocasién el
mensaje de error diciendo que la autenticacion a nivel de plataforma no estd activa:

2013-08-23 12:06:01,073 -- INFO -- Context SSL is false
2013-08-23 12:06:01,073 -- INFO -- Context Authentication is true
2013-08-23 12:06:06,281 -- INFO -- Started context at port 9501!

A continuacién ejecutamos

el contexto “Test” que crea el agente “MovingAgentExample”. Cuando éste llega al
contexto “cl” procede a intentar leer el fichero /tmp/secreto protegido, obteniéndose
el siguiente log:

2013-08-23 12:06:15,924 -- INFO -- Agent Subject: Principal: (
AgentPrincipal: name=Test) logged into the system

102

2013-08-23 12:06:15,925 -- INFO -- MovingAgentExample@cl: postArrival
(12:06:15:925)

2013-08-23 12:06:15,925 -- INFO -- MovingAgentExample@cl: I’ve arrived in
C1

2013-08-23 12:06:15,925 -- INFO -- MovingAgentExample@cl: my home is at
rmi://192.168.56.3:12000

2013-08-23 12:06:15,925 -- INFO -- MovingAgentExample@cl: I am going to
read /tmp/secreto

2013-08-23 12:06:15,925 -- INFO -- Going to read file

2013-08-23 12:06:15,926 -- ERROR -- Problem reading file! java.security.

AccessControlException: access denied (java.io.FilePermission /tmp/
secreto read)

2013-08-23 12:06:15,926 -- INFO -- MovingAgentExample@cl: I’m going to
move home

2013-08-23 12:06:15,931 -- INFO -- MovingAgentExample@cl: preDeparture
from rmi://192.168.56.2:9501 to rmi://192.168.56.3:12000(12:06:15:930)

2013-08-23 12:06:15,955 -- INFO -- MovingAgentExample@cl: postDeparture

(12:06:15:955)

En dicho log observamos como, en primer lugar, el agente realiza el login en el
contexto, tras ser aceptado procede a su ejecucién. Durante la ejecucién, éste intenta
acceder al fichero /tmp/secreto pero su acceso es impedido por el contexto.

B.11 Uso de cifrado cuando estd desactivado en la
plataforma

En esta prueba veremos cémo no es posible utilizar las funciones de cifrado de la
plataforma si éste estd desactivado a nivel de RNS.

Para ello, el escenario requerido es el siguiente:

e Un servidor ejecutando el RNS con la opcién de cifrado global desactivada de la
forma:

[security]

encryption = false
keystore = ../etc/rns.keystore
keystorePass = springs

e Un servidor ejecutando un contexto llamado “c1”.

e Un servidor ejecutando un contexto llamado “Test” en el que se crea un agente
llamado “MovingAgentExample” cuyo c6digo contiene lo siguiente:

private String fraseSecreta = "Esta es una frase secreta";
private EncryptedData secreto;

103

secreto = encrypt(fraseSecreta);

Para realizar la prueba ejecutaremos el RNS, donde en su log podemos observar la
siguiente linea indicando que el cifrado a nivel de plataforma esta desactivado:

2013-08-23 15:56:30,387 -- INFO -- Platform Encryption is set to false

Acto seguido, lanzamos los contextos “cl” y “Test’. En este ultimo, vemos como al
crearse el agente “MovingAgentExample” y utilizar la funciéon de cifrado previamente
descrita, se devuelve una excepcién:

2013-08-23 15:59:27,734 -- ERROR -- springs.security.SecurityException:
Test: Encryption disabled on region

De esta forma se puede evitar el uso de las funciones de cifrado y validacién de

contenidos en la plataforma.

B.12 Uso de cifrado y verificacion de integridad de datos

En esta prueba comprobaremos que los métodos de cifrado y verificacion de integridad
de datos funcionan correctamente.

Para ello, el escenario requerido es el siguiente:

e Un servidor ejecutando el RNS con la opcién de cifrado global activada de la forma:

[security]

encryption = true
keystore = ../etc/rns.keystore
keystorePass = springs

e Un servidor ejecutando un contexto llamado “c1”.

e Un servidor ejecutando un contexto llamado “Test” en el que se crea un agente
llamado “MovingAgentExample”, cuyo cédigo hace que el agente viaje al contexto
“cl”, donde cifra un dato:

secreto = encrypt(fraseSecreta);

Después realiza un viaje al contexto donde fue creado para poder descifrar el secreto
de la forma:

String datosEnClaro = (String) decrypt(secreto);

104

A su vez comprueba que los datos no han sido alterados en el transito con el
siguiente c6digo:

Boolean verify = verifySignature(datosEnClaro, secreto);

Para realizar la prueba ejecutaremos el RNS, donde en su log podemos observar la
siguiente linea indicando que el cifrado a nivel de plataforma esté activado:

2013-08-23 16:38:13,717 -- INFO -- Platform Encryption is set to true

Acto seguido, lanzamos los contextos “cl” y “Test’. En los logs de ambos vamos
viendo el comportamiento programado en el codigo del agente “MovingAgentExample”.
En primer lugar el agente se mueve al contexto “cl” donde realiza el cifrado de los datos:

2013-08-23 18:34:04,063 -- INFO -- MovingAgentExample@cl Secreto cifrado,
firmado por ci

Después el agente viaja a su contexto original donde descifra e imprime los datos:

2013-08-23 18:34:04,083 -- INFO -- MovingAgentExample@Test Vamos a
intentar leer los datos cifrados
2013-08-23 18:34:04,245 -- INFO -- MovingAgentExample@Test los datos en

claro son: Esta es una frase secreta

Una vez realizadas dichas acciones verifica la integridad de los datos cifrados:

2013-08-23 18:34:04,253 -- INFO -- MovingAgentExample@Test los datos son
los originales true

De esta forma hemos comprobado cémo se realiza el cifrado, el descifrado y la
verificacién de integridad de datos en la plataforma. En caso de que una estructura
cifrada fuera accesible por parte de un agente o de un contexto “maligno” estos solo
podrian ser descifrados por un agente que hubiera sido creado en el mismo contexto en
el que se cred el agente que sufrié el robo de datos.

B.13 Intento de descifrado de datos en un contexto
incorrecto

En esta prueba veremos como no es posible descifrar los datos de un agente en
cualquier contexto. Esto solo se puede realizar en el contexto que cre6 al agente.

Para ello utilizaremos el escenario de pruebas de la Seccién B.12. La tnica
modificacion es el codigo del agente MovingAgentExample en el que, en vez de realizar el
descifrado de los datos en el contexto “Test”, éste se va a intentar realizar en el contexto
“Cl 77.

105

Ejecutando la prueba de la misma forma que lo hicimos en la Seccién B.12 con el
nuevo agente, ahora obtenemos el siguiente mensaje de error en el log del contexto “cl1”:

2013-08-23 18:53:32,853 -- ERROR -- Exception: springs.security.
SecurityException: cl: Agent is not allowed to decrypt in this context

Con esta prueba hemos podido verificar que un dato cifrado para un agente no es
posible descifrarlo en cualquier contexto, sino que es necesario que se haga en el contexto
que creb el agente.

B.14 Simulaciéon de robo de dato cifrado e intento de
descifrarlo

En esta prueba vamos a simular el robo de un dato cifrado de un agente y vamos a
intentar descifrarlo de alguna forma.

Para ello vamos a basarnos en el escenario de pruebas de la Seccién B.12, pero vamos
a modificar el codigo del agente “MovingAgentExample” haciendo que el cifrado de los
datos los realice para un agente de otro contexto que no es el suyo de la forma:

secreto = encrypt(fraseSecreta, "C1");

También pondremos cédigo para descifrar el dato cifrado tanto en el viaje al contexto
“cl” como en su contexto original.

Una vez ejecutados tanto el RNS como los contextos “cl” y “Test” vamos a analizar
los mensajes del log de los contextos. En primer lugar vemos que el cifrado del dato se
realiza correctamente:

2013-08-23 19:13:54,854 -- INFO -- MovingAgentExample@cl Secreto cifrado,
firmado por ci

A continuacién vemos el intento de descifrado del dato en el contexto “cl”:

2013-08-23 19:13:54,855 -- ERROR -- Exception: springs.security.
SecurityException: cl: Agent is not allowed to decrypt in this context

El cual, como hemos visto previamente, devuelve un mensaje de error indicando que
no se puede utilizar el método de descifrado de un contexto que no sea el que ha creado
el agente.

Para finalizar, tras el movimiento del agente a su contexto original, éste es el resultado
de descifrado del dato en dicho contexto:

2013-08-23 19:13:55,066 -- ERROR -- Exception: springs.security.
SecurityException: Test: Not possible to decrypt! javax.crypto.
BadPaddingException: Data must start with zero

106

Indicando que, como estaba previsto, no es posible descifrar un dato cifrado con
la clave publica de un contexto en otro contexto, haciendo imposible descifrar un dato
cifrado tras robarselo a un agente.

B.15 Ataque de uso masivo de memoria de un contexto

A continuacién vamos a detallar un ataque para el que la plataforma actual, debido
a ejecutarse sobre la JVM estdndar, no tiene forma de protegerse a dia de hoy. El ataque
consiste en el uso masivo de toda la memoria disponible de un contexto haciendo que
dicho contexto aborte su ejecucion.

El escenario de la prueba es el siguiente:

e Un servidor ejecutando el RNS.

e Un servidor ejecutando un contexto llamado “c1”.

e Un servidor ejecutando un contexto llamado “Test” que crea un agente con el
siguiente codigo:

public class MovingAgentExample extends SpringsAgent_RMIImpl

{
public
public

public
{
3

public
{

static Log logger = new Log();
static List<byte[]> list = new ArrayList<bytel[]l>();

MovingAgentExample () throws RemoteException

void main ()

try {
travell () ;
} catch (Exception e) {

logger .error(e.toString ());
System.exit (-1);

}

}
public void travell () throws Exception
{

logger.info(getNameWithContext() + ": I’m going to move to C1
¥

logger.info(getNameWithContext () + ": my home is at " +
getHomeAddress ()) ;

moveTo ("cl1", "travel2");

return;
}

107

public void travel2() throws AgentMovementException

{
logger.info(getNameWithContext() + ": I’ve arrived in C1");
while (true) {
BigInteger bil = new BigInteger ("10000000000000000") ;
byte[] bl = bil.toByteArray();
list.add(bl);
}
}

En dicho cédigo se ve cémo el agente, en primer lugar, viaja al contexto “cl” en
el que entra en un bucle infinito que va anadiendo elementos a una lista de arrays
de bytes.

Para realizar la prueba, en primer lugar, ejecutamos tanto el RNS como el
contexto “cl”. A continuacién lanzamos el contexto “Test” que crea el agente
“MovingAgentExample”. Tras pocos segundos de ejecucion de dicho agente en el contexto
“cl” obtenemos el siguiente mensaje:
java.lang.0OutOfMemoryError: Java heap space

at java.lang.AbstractStringBuilder.<init>(AbstractStringBuilder.
java:45)

at java.lang.StringBuilder .<init>(StringBuilder. java:68)

at springs.util.SpringsException.getMessage(SpringsException. java
:117)

at java.lang.Throwable.getLocalizedMessage (Throwable. java:267)

at java.lang.Throwable.toString(Throwable. java:343)

at springs.context.threads.AgentExecutor.run(AgentExecutor. java
:149)

Indicando que el contexto “c1” ha dejado de funcionar debido a la falta de memoria.
Este ataque junto con ataques de uso de CPU del contexto o invasién masiva de agentes
en un contexto no se pueden defender con la plataforma actual, siendo recomendable
estudiar qué métodos o qué JVM se podria utilizar en la plataforma para defenderse de
ellos.

108

Apéndice C

Manual de Usuario

En el presente capitulo vamos a detallar los procedimientos necesarios para la correcta
utilizacién de los mecanismos de seguridad de la plataforma SPRINGS.

En primer lugar describiremos los procedimientos de administracion de la plataforma
pasando posteriormente a comentar las modificaciones méas importantes en el uso del
API de SPRINGS para hacer uso de los mecanismos de seguridad de una manera
programatica.

C.1 Administracién de la plataforma

Se ha dotado a la plataforma de varios mecanismos para facilitar su administracién.
Principalmente se ha desarrollado una gestién de la configuraciéon del RNS y de los
contextos a través de ficheros de configuracion. Ademas se ha mejorado el logging de la
plataforma utilizando un mecanismo estdndar como es el ofrecido por Log4j [85] para
todos los elementos.

Vamos a detallar los mecanismos de gestiéon de certificados, los procedimientos de
administracion del RNS para, después, describir los de los contextos.

C.1.1 Gestion de certificados digitales y keystores

Como ya describimos en la Secciéon 3.1, todos los elementos estructurales de la
plataforma SPRINGS estan identificados univocamente por un certificado digital. En
Java, la forma estandar de almacenar los certificados digitales es utilizar los llamados
keystores [63]. A continuacién vamos a detallar los procedimientos méas utilizados para
la gestion de certificados digitales y keystores en la plataforma.

109

Importacién de clave publica de una CA en el sistema

Es necesario que la JVM confie en la CA que ha expedido los certificados utilizados
en la plataforma. Para ello hay que importar la clave publica de la CA en el fichero
cacerts de la maquina, cuya clave por defecto es “changeit”, mediante la herramienta
keytool de la forma:

keytool -import -alias nombreCA -keystore ruta_completa/cacerts -v -
file clavePublica.pem

Por ejemplo, para realizar dicha operacion bajo el sistema operativo Mac OS X
importando la clave publica de la CA que hemos creado para las pruebas de SPRINGS,
el comando que debemos ejecutar es el siguiente:

keytool -import -alias springsCA -keystore /System/Library/Java/Support

/CoreDeploy.bundle/Contents/Home/lib/security/cacerts -v -file
Downloads/springsCA.cacert.pem

Ante la pregunta de si queremos confiar en la clave publica, deberemos decir que si
y, de esta forma, nuestra JVM ya confiard en la CA.

Creacion de keystore para RNS

El procedimiento para crear un keystore para el RNS, dado un certificado digital en
formato PKCS#12 [46] es el siguiente:
$ keytool -importkeystore -srckeystore rns.pl2 -destkeystore rns.keystore

-srcstoretype PKCS12 -deststoretype JCEKS -srcalias rns -destalias
authkey

Es importante que el alias dentro del keystore del certificado sea auth ya que es el
que el RNS leerd para cargarlo como certificado propio.

Creacion de keystore para contexto

El procedimiento para crear un keystore para un contexto, dado un certificado digital
en formato pl12 [46] es el siguiente:
$ keytool -importkeystore -srckeystore nombre.pl2 -destkeystore nombre.

keystore -srcstoretype PKCS12 -deststoretype JCEKS -srcalias nombre -
destalias nombre

Es importante que el alias dentro del keystore del certificado sea el mismo que el
nombre del contexto ya que es el que el contexto leerd para cargarlo como certificado
propio.

110

Importacién de la clave publica de un contexto en el RNS

Para importar las claves publicas de los contextos en el RNS para su uso en la
autenticacién a nivel de plataforma y/o en el cifrado, es necesario seguir el siguiente
procedimiento.

1. En primer lugar, dado un certificado en formato PKCS#12, debemos extraer
su clave publica en formato DER (Distinguished Encoding Rules) utilizando la
herramienta openssl [86] de la forma:

$ openssl pkcsl2 -in nombre.pl2 -out nombre.pem -nodes
$ openssl x509 -outform der -in nombre.pem -out nombre.der

2. A continuacién procedemos a la importacién de la clave publica en el keystore del
RNS de la forma:

$ keytool -keystore rns.keystore -storetype JCEKS -import -file
nombre.der -alias nombre

Como hemos explicado previamente, es importante que el alias de la clave publica
en el keystore se corresponda con el nombre del contexto.

C.1.2 Procedimientos de administracién del RNS

Para realizar una correcta gestiéon de los mecanismos de seguridad del RNS vamos a
pasar a detallar sus principales procedimientos de administracién.

Script de arranque

Con el objetivo de facilitar el arranque del RNS se ofrece un script que se encarga de
configurar todas las variables necesarias para la correcta ejecucién del proceso. Dicho
script se llama RNSLauncher. El contenido del mismo es el siguiente:
export CLASSPATH=1ib/log4j-1.2.15. jar:jar/springs. jar:classes

export PATH=$JAVA_HOME:$PATH
java springs.rns.RegionNameServerLauncher $*

En él podemos ver cémo podemos ajustar las variables CLASSPATH y PATH para
apuntarlas a las rutas correctas donde tengamos tanto el fichero JAR con el cédigo
de la plataforma como otras clases de agentes necesarias.

El script requiere un parametro indicando la ruta del fichero de configuracion del
RNS:

111

bin/RNSLauncher
Mandatory arguments missing:
-c configuration file

Una vez introducido el parametro indicando la ruta del fichero de configuracion, el
RNS lo leera y se ejecutara.

Si arranca el RNS con éxito podremos ver una linea en el log (si estd activado) como
la siguiente:

2013-08-27 09:24:24,169 -- INFO -- Started RNS at port 10000!

Fichero de configuracion

Se ha incluido en la plataforma un sistema de ficheros de configuracion basado en
propiedades de Java. El fichero se encuentra dividido en secciones en las que se pueden
configurar diferentes propiedades de la forma:

propiedad = valor

A continuacién vamos a pasar a describir las secciones del fichero de configuraciéon
del RNS con todas las propiedades que podemos configurar.

Seccion “general”

En esta seccion se pueden configurar los aspectos generales del RNS. Mas
detalladamente podemos configurar la siguiente propiedad que indica el puerto en el
que el RNS escuchara peticiones:

port = integer

Seccién “log”

En esta seccion se configuran los aspectos referentes al log de la plataforma. Como
hemos comentado, el log de la plataforma se basa en el paquete Log4j para el que se
pueden encontrar todas las opciones de configuracién en [87]. El siguiente es un ejemplo
de configuracién del log:

[log]
log4j.rootLogger = INFO, Al

log4j.appender.Al.layout = org.apache.log4j.PatternlLayout
log4j.appender.Al.layout.ConversionPattern = %d -- %p -- %m/n

112

log4j.appender.Al = org.apache.log4j.RollingFileAppender
log4j .appender.Al.File = log/rmns.log
log4j.appender.Al.MaxBackupIndex = 1

En dicho ejemplo estamos configurando el logging del RNS para que se envie todo
lo que tenga prioridad “INFO” al fichero “log/rns.log” en modo append, es decir, se van
anadiendo contenidos.

Seccidon “security”

En esta secciéon vamos a poder configurar todas las medidas de seguridad de la
plataforma dependientes del RNS. Mas especificamente podemos configurar las siguientes
funcionalidades:

e ssl

La propiedad ssl indica si la plataforma va a utilizar el mecanismo de seguridad
de la capa externa (RMI sobre SSL) definido en la Seccién 3.2.

ssl = boolean

En el arranque se podra ver una linea en el log indicando que la plataforma esta
utilizando SSL:

2013-08-27 09:25:54,048 -- INFO -- Started RNS at port 10000!
2013-08-27 09:25:54,048 -- INFO -- SSL is set to true

e authentication

La propiedad authentication indica si la plataforma va a utilizar el mecanismo
de autenticacion y autorizacién a nivel de plataforma definido en la Secciéon 3.3.

authentication = boolean

Si dicha propiedad es true, se habilitan las tres siguientes propiedades:

authentication.agentPermission = string
authentication.moveAgentPermission = string
authentication.callAgentPermission = string

Dichas propiedades indican el conjunto de permisos a otorgar, segin lo explicado
en la Seccién 3.3. En cada propiedad se puede incluir el listado de contextos a los
que se les otorga un permiso. Los contextos en el listado deben ir separados por
comas.

Por ejemplo, si queremos darle permisos de creacién de agentes a los contextos “cl”
y “c2”, permisos de movimiento de agentes a los agentes creados en el contexto
“cl” y permisos de llamada a otros agentes a los agentes creados en el contexto
“c2”, las lineas del fichero de configuracion serian las siguientes:

113

authentication = true

authentication.agentPermission = cl, c2
authentication.moveAgentPermission = cl
authentication.callAgentPermission = c2

Una configuracién asi la veriamos reflejada en el log de la siguiente forma:

2013-08-27 09:26:44,650 -- DEBUG -- Starting RNS at port 10000...

2013-08-27 09:26:44,658 -- DEBUG -- Setting up permission
AGENT_PERMISSION to ci

2013-08-27 09:26:44,658 -- DEBUG -- Setting up permission
AGENT_PERMISSION to c2

2013-08-27 09:26:44,658 -- DEBUG -- Setting up permission
MOVE_AGENT_PERMISSION to ci

2013-08-27 09:26:44,658 -- DEBUG -- Setting up permission
CALL_AGENT_PERMISSION to c2

2013-08-27 09:26:49,927 -- INFO -- Started RNS at port 10000!

2013-08-27 09:26:49,927 -- INFO -- SSL is set to true

2013-08-27 09:26:49,927 -- INFO -- Platform Authentication is set to

true
encryption

Para habilitar o deshabilitar el cifrado a nivel de plataforma se utiliza la siguiente
propiedad:

encryption = boolean

Con lo que, si dicha propiedad tiene el valor true, se permitira el uso de las funciones
de cifrado y comprobacién de integridad de datos definidas en la Seccién 3.5.

Podremos comprobar la activacion de la capacidad de cifrado de la plataforma en
el arranque del RNS buscando la siguiente linea en el log:

2013-08-27 09:30:17,171 -- INFO -- Platform Encryption is set to
true

keystore

Todas las funcionalidades que requieren certificados digitales necesitan la
configuracion de un keystore para el RNS. Por lo tanto, si alguna de las propiedades
de seguridad (ssl, authentication o encryption) tiene valor true es necesario
configurar un keystore valido. Dicho keystore se configura de la siguiente manera:

keystore = string
keystorePass = string

Donde para la propiedad keystore debemos poner el nombre con la ruta completa

del keystore a utilizar y en la propiedad keystorePass pondremos la clave que
protege dicho keystore.

114

C.1.3 Procedimientos de administracién de los contextos

A continuacién se detallan los principales procedimientos de administraciéon de los
contextos.

Script de arranque

Para facilitar el arranque de un contexto genérico se puede invocar un script de
arranque que configura todas las variables necesarias para la correcta ejecucién del
proceso. Dicho script se llama ContextLauncher. El contenido del mismo es el siguiente:
export CLASSPATH=1ib/log4j-1.2.15. jar:jar/springs.jar:classes
export PATH=$JAVA_HOME:$PATH

java -Djava.security.policy=etc/security.policy -Djava.security.auth.
login.config=etc/jaas.conf springs.context.ContextLauncher $*

En dicho script podemos configurar las variables CLASSPATH y PATH para adecuarlas
a las rutas donde tengamos tanto el fichero JAR con el cédigo de la plataforma como
otras clases necesarias.

El script requiere un parametro indicando la ruta del fichero de configuracion del
contexto:
bin/ContextLauncher

Mandatory arguments missing:
-c configuration file

Una vez introducido dicho parametro obligatorio, el contexto leerd dicho fichero y se
ejecutara.

Si el contexto arranca con éxito podremos ver una linea como la siguiente en el log
(si éste se encuentra activado):

2013-08-26 16:35:55,871 -- INFO -- Started context at port 9501!

Ficheros de configuracion

Al igual que en el RNS, se pueden configurar los aspectos béasicos de un contexto
mediante un fichero de configuracion principal. Como se puede ver en el script de
arranque, también existen otros dos ficheros de configuracién que se utilizan en el caso
de que esté activada la autenticacion y autorizacion a nivel de contexto como veremos
mas adelante.

A continuacién vamos a describir las secciones en las que se divide el fichero de
configuracién principal del contexto.

115

Seccién “general”

En esta seccién se pueden configurar los aspectos generales del contexto. Maés
detalladamente podemos configurar las siguientes propiedades:

port = integer

Indica el puerto en el que el contexto escuchard peticiones.

name = string

Indica el nombre tnico en la region que adoptara el contexto.

addressRNS = string

Configura la direccion donde el RNS se encuentra escuchando peticiones. Por
ejemplo, puede ser del tipo addressRNS = rmi://host:10000.

portClassServer = integer

Indica el puerto en el que estard escuchando el servidor de clases.

En un arranque correcto del contexto, se podran ver las siguientes lineas en el log:

2013-08-26 16:36:41,690 -- DEBUG -- Launched RMI registry at port 9501!

2013-08-26 16:36:41,700 -- DEBUG -- Communicating new context to RNS at
rmi://host:10000. ..

2013-08-26 16:36:41,702 -- DEBUG -- Contacting remote agent
RegionNameServer at rmi://host:10000

2013-08-26 16:36:42,068 -- DEBUG -- Communicated new context to RNS at
rmi://host:10000!

2013-08-26 16:36:42,069 -- DEBUG -- Creating ContextManager at port 9501
with ssl = true...

2013-08-26 16:36:42,073 -- DEBUG -- Created ContextManager at port 9501
with ssl = true!

2013-08-26 16:36:42,073 -- INFO -- Started context at port 9501!

Seccién “log”

En esta seccion se configuran los aspectos referentes al log de la plataforma. Como
hemos comentado, el log de la plataforma se basa en el paquete Log4j para el que se
pueden encontrar todas la opciones de configuracién en [87]. El siguiente es un ejemplo
de configuracion del log:

[log]

log4j.rootLogger=DEBUG, Al
log4j.appender.Al.layout=org.apache.log4j.PatternlLayout

116

log4j.appender.Al.layout.ConversionPattern=Jd -- %p -- %m/n
log4j.appender.Al=org.apache.log4j.RollingFileAppender
log4j.appender.Al.File=1log/cl.log

En dicho ejemplo estamos configurando el logging del contexto para que se envie todo
lo que tenga prioridad “DEBUG” al fichero “log/cl.log” en modo append, es decir, se
van anadiendo contenidos.

Seccidén “security”

En esta seccion vamos a poder configurar todas las medidas de seguridad del contexto.
Depende de qué medida se trate, es necesario que el resto de elementos de la plataforma
(principalmente el RNS) también la tengan activa. Mas especificamente podemos
configurar las siguientes funcionalidades:

e ssl

La propiedad ssl indica si el contexto debe utilizar el mecanismo de seguridad
de la capa externa (RMI sobre SSL) definido en la Seccién 3.2. Hay que tener
en cuenta que si el RNS tiene activo este mecanismo, el resto de contextos de la
plataforma deben tenerlo también para comunicarse con él.

ssl = boolean

En el arranque se podra ver un linea en el log indicando que el contexto esta
utilizando SSL:

2013-08-26 16:36:42,073 -- DEBUG -- Created ContextManager at port
9501 with ssl = true!

e authentication

La propiedad authentication indica si el contexto va a utilizar el mecanismo
de autenticacién y autorizacion a nivel de contexto definido en la Seccién 3.4.
Hay que tener en cuenta que si la plataforma tiene desactivada la autenticacién
y la autorizacion a nivel de plataforma no es posible autenticar a los agentes que
viajan a un contexto, con lo que la autenticacién a nivel de contexto se desactiva
automaticamente, no importando el valor que contenga la propiedad:

authentication = boolean
Si dicha propiedad es true, se habilita el uso de dos ficheros adicionales
de configuracién en los que se definen las medidas de seguridad a aplicar.

Estos ficheros de configuracién son los definidos en el script de arranque
del contexto segin las opciones -Djava.security.auth.login.config ¥

117

-Djava.security.policy de la invocacion a
springs.context.ContextLauncher.

El fichero de configuracion definido en la opcién
-Djava.security.auth.login.config es un fichero de configuracién cuyo
contenido, en principio, es constante ya que, en la version actual de la plataforma,
no existen mas que dos métodos de login, uno para los contextos y otro para los
agentes. El contenido de dicho fichero de configuracién debe de ser el siguiente:

Agent
{

springs.security.AgentLoginModule required;
s
contexts
{

springs.security.ContextLoginModule required;
1

El segundo fichero de configuracion, correspondiente a la opciéon de configuracién
-Djava.security.policy es el fichero estdndar security.policy [68] de la JVM
en el que podemos configurar a qué recursos tiene acceso la maquina virtual sobre
la que corre el contexto. En SPRINGS dicho fichero de configuracién dispone de
varias secciones. En primer lugar una comun necesaria para que los mecanismos
de autenticacion funcionen:

grant {
permission javax.security.auth.AuthPermission
createLoginContext";
permission javax.security.auth.AuthPermission "doAs";
permission javax.security.auth.AuthPermission "doAsPrivileged";

permission javax.security.auth.AuthPermission "modifyPrincipals

".
s

permission javax.security.auth.AuthPermission "getSubject";

permission javax.security.auth.AuthPermission "

createloginContext.Agent";
permission java.net.SocketPermission "host", "accept, connect,
resolve";

i

Es importante permitir las conexiones de red hacia y desde el servidor en el que
reside el RNS

La siguiente seccién del fichero se corresponde a los permisos con los que queremos
que se ejecute el cdédigo del contexto SPRINGS en si. Habitualmente le daremos
todos los permisos posibles de la forma:

grant Principal springs.security.ContextPrincipal "context" {

permission java.security.AllPermission "", "";

i

Por dltimo podremos definir tantas secciones referentes a agentes como queramos
controlar. Un ejemplo como el siguiente muestra que para cada agente creado en
el contexto “Test”, permitimos el acceso en modo lectura al fichero /etc/passwd:

118

grant Principal springs.security.AgentPrincipal "Test" {
permission java.io.FilePermission "/etc/passwd", "read";

};

En el fichero podremos poner tantas secciones grant Principal como queramos
y, en ellas, podremos configurar tantos permisos como se necesiten.

Conviene hacer notar que los permisos son “en positivo”, es decir, por defecto, un
agente perteneciente a un Principal configurado no tiene acceso a ningin recurso
(salvo a los recursos accesibles mediante los permisos de la seccién comin) excepto
a los recursos que se le configuren dentro de su Principal.

Se pueden encontrar més detalles sobre la gestion particular de permisos en [70].

e keystore

Todas las funcionalidades que requieren -certificados digitales necesitan la
configuracién de un keystore para el contexto. Por lo tanto, si alguna de las
propiedades de seguridad (ssl o authentication) tiene valor true es necesario
configurar un keystore valido. Dicho keystore se configura de la siguiente manera:

keystore = string
keystorePass = string

Donde para la propiedad keystore debemos poner el nombre con la ruta completa
del keystore a utilizar y en la propiedad keystorePass pondremos la clave que
protege dicho keystore.

C.2 Guia del programador

La mayoria de los mecanismos de seguridad desarrollados estan implementados a nivel
interno de la plataforma, gestionados por el administrador de la misma. Sin embargo
existen varias operaciones que un programador de agentes sobre la plataforma SPRINGS
deberia conocer para poder utilizar algunas funciones de seguridad.

Principalmente vamos a indicar como un programador puede crear un contexto que
utilice los mecanismos de seguridad desarrollados y cémo puede utilizar los mecanismos
de cifrado, descifrado y validacién de integridad de datos durante la programacién de
agentes moviles. De la misma forma también describimos como utilizar el mecanismo de
logging implementado en toda la plataforma.

C.2.1 Uso de mecanismo de logging

Para ofrecer un mecanismo de logging unificado en toda la plataforma, utilizable tanto
a nivel de contexto como a nivel de agente, se ha desarrollado la clase springs.util.Log,

119

que ofrece los siguientes métodos para escribir en el log segin la severidad del mensaje
que queremos imprimir:

/ **

* Logs a line with trace severity
* @param line the line.

* @see java.lang.String

*/

public void trace(String line);

/ *x
* Logs a line with debug severity
* @param line the line.
* O@see java.lang.String
*/
public void debug(String line);

/ **

* Logs a line with info severity
* Q@param line the line.

* @see java.lang.String

*/

public void info(String line);

/ **

* Logs a line with warn severity
* Q@param line the line.

* @see java.lang.String

*/

public void warn(String line);

/ *x

* Logs a line with error severity
* @param line the line.

* O@see java.lang.String

*/

public void error(String line);

/ * %
* Logs a line with fatal severity
* Q@param line the line.
* @see java.lang.String
*/
public void fatal(String line);

Para poder utilizar dichos métodos, tan solo hay que instanciar un objeto de la clase
Log de la forma:

Log logger = new Log(configFile);

Donde configFile es el nombre del fichero de configuracién del contexto o del RNS.

120

C.2.2 Interfaz para la creacién de contextos

Para poder crear y lanzar un contexto seguro a nivel programatico, se ha creado un
método especifico que permite crear el contexto e introducir todas las opciones necesarias.
Dicho método estatico de la clase springs.context.Context_RMIImpl es:

public static void create(final String name, final int portNumber, final
int portClassServer , final String addressRNS, final Boolean ssl,
Boolean authentication, final KeyStore ks) throws
ContextStartingException;

El cual acepta los siguientes parametros:

e name. Es el nombre con el que queremos crear el contexto.

e portNumber. Es el niimero de puerto en el que estara escuchando el contexto.
e portClassServer. El puerto en el que se debe lanzar el ClassServer.

e addressRNS. La direccién en la que el RNS acepta peticiones.

e ssl. Si se debe utilizar el mecanismo de seguridad de la capa externa. En caso de
que esta opcién no sea congruente con la misma opcién configurada en el RNS de
la regién, se devolvera una excepciéon del tipo ContextStartingException.

e authentication. Si se deben utilizar los mecanismos de autenticacién y
autorizaciéon a nivel de contexto.

e ks. Kl keystore donde se almacena el certificado del contexto.

Si se utiliza este método seremos capaces de crear un contexto que utilice las medidas
de seguridad implementadas.

C.2.3 Uso de funciones de cifrado en un agente

Otro mecanismo al que se tiene acceso desde el punto de vista del programador de
agentes de la plataforma, es al cifrado, descifrado y validacién de integridad de datos.
Para cifrar un objeto se pueden utilizar los siguientes métodos de un agente:
public EncryptedData encrypt(Object obj) throws SecurityException;

public EncryptedData encrypt(Object obj, String agentName) throws
SecurityException;

El primer método se debe utilizar para cifrar datos para ser leidos por el mismo
agente en el contexto en el que se cred y el segundo para cifrar datos para ser enviados
a otros agentes.

121

A continuacién presentamos un ejemplo del cifrado de un dato para ser utilizado por
el propio agente:

public static Log logger = new Log();
private String fraseSecreta = "Esta es una frase secreta";
private EncryptedData secreto;

public void main ()
{
try {
secreto = encrypt(fraseSecreta) ;
logger.info(getNameWithContext () + " Secreto cifrado, firmado por "
+
secreto.getSignatureContext ());
} catch (Exception e) {
logger.error(e.toString());

3
}

El siguiente ejemplo muestra cémo podemos cifrar un dato para que pueda ser leido
por el agente “Agente-17:

public static Log logger = new Log();

private String fraseSecreta = "Esta es una frase secreta";
private EncryptedData secreto;

public void main ()

{
try {
secreto = encrypt(fraseSecreta, "Agente-1");
logger.info(getNameWithContext () + " Secreto cifrado, firmado por "
+
secreto.getSignatureContext ());
} catch (Exception e) {
logger.error(e.toString());
}
}

Los datos cifrados se encuentran en un objeto de la clase
springs.security.EncryptedData pero no son accesibles directamente desde un
agente.

Para descifrar un dato es necesario que el agente viaje al contexto en el que fue creado
y, una vez alli, ejecute el siguiente método:

public Object decrypt(final EncryptedData data) throws SecurityException;

Que devolvera el objeto original.

122

Siguiendo con el ejemplo anterior, si se quiere descifrar el dato cifrado previamente,
lo siguiente es lo que habria que hacer:

private EncryptedData secreto;

goHome ("end") ;

return;
}
public void end ()
{
// Esta rutina se ha de ejecutar en el contexto en el que fue creado
el agente.
String datosEnClaro = null;
try {
logger.info(getNameWithContext () + " Vamos a intentar leer 1los
datos cifrados");
datosEnClaro = (String) decrypt(secreto);
logger.info (getNameWithContext () + " los datos en claro son: " +
datosEnClaro) ;
} catch (Exception e) {
logger.error ("Exception: " + e.toString());
}
}

Si ademas se quiere validar que los datos no han sido modificados desde el momento
en el que se cifraron, conviene utilizar el método de verificacion de la firma digital del
dato cifrado:

public Boolean verifySignature(Object obj, EncryptedData encryptedObject)
throws SecurityException;

Cuyos parametros son el objeto descifrado y la estructura de datos cifrada,
devolviéndose al usuario true si los datos cifrados no se han modificado en transito
o false en caso contrario.

A continuacién se muestra un ejemplo de la comprobacién de integridad de un dato:

private EncryptedData secreto;

public void end ()

{
String datosEnClaro = null;
try {
logger.info(getNameWithContext () + " Vamos a intentar leer los datos

cifrados") ;
datosEnClaro = (String) decrypt(secreto);
logger.info (getNameWithContext () + " los datos en claro son: "
+ datosEnClaro) ;
} catch (Exception e) {
logger .error ("Exception: " + e.toString());

123

logger.info (getNameWithContext () + " Vamos a verificar los datos
cifrados");
try {
Boolean verify = verifySignature(datosEnClaro, secreto);
logger.info (getNameWithContext () + " los datos son los originales
" + verify);
} catch (Exception e) {
logger.error ("Exception: " + e.toString());

}

124

Bibliografia

Danny B. Lange. “Mobile Objects and Mobile Agents: The Future of Distributed
Computing?” In: Proceedings of The European Conference on Object-Oriented
Programming. 1998.

Tommy Thorn. “Programming languages for mobile code”. In: ACM Computing
Surveys (CSUR) 29.3 (1997), pp. 213-239.

Danny B. Lange and Mitsuru Oshima. “Seven Good Reasons for Mobile Agents”.
In: Communications of ACM 42.3 (1999).

S. Papastavrou, G. Samaras, and E. Pitoura. “Mobile Agents for WWW
Distributed Database Access”. In: Proceedings 15th International Data Engineering
Conference. Sydney, Australia, 1999, pp. 228-237.

Serge Fenet and Salima Hassas. “A Distributed Intrusion Detection and Response
System Based on Mobile Autonomous Agents Using Social Insects Communication
Paradigm”. In: First International Workshop on Security of Mobile Multiagent
Systems, Autonomous Agents Conference. May 2001.

Timon C. Du, Eldon Y. Li, and An-Pin Chang. “Mobile agents in distributed
network management”. In: Communications of ACM 46.7 (July 2003), pp. 127—
132.

Giovanni Vigna, ed. Mobile Agents and Security. London, UK, UK: Springer-
Verlag, 1998. 1SBN: 3-540-64792-9.

N. Borselius. “Mobile agent security”. In: FElectronics and Communication
Engineering Journal 14.5 (Oct. 2002), pp. 211-218.

David M. Chess, Colin G. Harrison, and Aaron Kershenbaum. Mobile agents: Are
they a good idea? Tech. rep. RC 19887. IBM Research Report, Oct. 1994.

G. Vigna. “Mobile Agents: Ten Reasons For Failure”. In: Proceedings of Mobile
Data Management 200/. Berkeley, CA, Jan. 2004, pp. 298-299.

Wayne Jansen and Tom Karygiannis. Mobile Agent Security. Tech. rep. NIST
special publication 800-19. Gaithersburg, US: National Institute of Standards and
Technology, Computer Security Division, 1994. URL: http://citeseer.ist.psu.
edu/jansenOOnist.html.

125

http://citeseer.ist.psu.edu/jansen00nist.html
http://citeseer.ist.psu.edu/jansen00nist.html

[12]

[16]

S. Ilarri, R. Trillo, and E. Mena. “SPRINGS: a scalable platform for highly
mobile agents in distributed computing environments”. In: Proceedings of the
2006 International Symposium on on World of Wireless, Mobile and Multimedia
Networks. Los Alamitos, CA, June 2006, pp. 633-637.

Peter Braun and Wilhelm Rossak. Mobile agents. Basic concepts, mobility models
and the tracy toolkit. depunkt.verlag, 2005.

W. A. Jansen. “Countermeasures for mobile agent security”. In: Computer
Communications 23.5 (2000), pp. 1667-1676.

Danny B. Lange et al. “Aglets: Programming Mobile Agents in Java.” In:
WWCA. Ed. by Takashi Masuda, Yoshifumi Masunaga, and Michiharu Tsukamoto.
Vol. 1274. Lecture Notes in Computer Science. Springer, Jan. 3, 2002, pp. 253—-266.
ISBN: 3-540-63343-X. URL: http://dblp.uni-trier.de/db/conf/wwca/wwca9d7.
html#LangeOKK97.

G. Glass. “Mobility”. In: ed. by Dejan Miloji¢i&cacute, Frederick Douglis, and
Richard Wheeler. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1999. Chap. ObjectSpace Voyager core package technical overview, pp. 611—
627. 1SBN: 0-201-37928-7. URL: http://dl.acm.org/citation.cfm?id=303461.
342806.

Haiping Xu and Sol M. Shatz. “ADK: An Agent Development Kit Based on a
Formal Design Model for Multi-Agent Systems”. In: Autom. Softw. Eng. 10.4
(2003), pp. 337-365.

Volker Roth and Mehrdad Jalali-Sohi. “Concepts and Architecture of a Security-
Centric Mobile Agent Server”. In: Proceedings of the Fifth International

Symposium on Autonomous Decentralized Systems. ISADS ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 435—. I1SBN: 0-7695-1065-5.

ACL Fipa. “FIPA ACL Message Structure Specification”. In: Foundation for
Intelligent Physical Agents, hitp://www.fipa.org/specs/fipa00061/SC00061G.html
(30.6. 2004) (2002).

Tim Finin et al. “KQML as an agent communication language”. In: Proceedings
of the third international conference on Information and knowledge management.
ACM. 1994, pp. 456—463.

Carl E Landwehr et al. “A taxonomy of computer program security flaws”. In:
ACM Computing Surveys (CSUR) 26.3 (1994), pp. 211-254.

Burt Kaliski. “PKCS# 7: Cryptographic Message Syntax Version 1.5”. In: (1998).
John Larmouth. ASN. 1 complete. Morgan Kaufmann, 2000.

International Telecommunication Union. The Directory — Models. 1TU-T
Recommendation X.501. Nov. 1993.

Dave Cooper. “Internet X. 509 public key infrastructure certificate and certificate
revocation list (CRL) profile”. In: (2008).

126

http://dblp.uni-trier.de/db/conf/wwca/wwca97.html#LangeOKK97
http://dblp.uni-trier.de/db/conf/wwca/wwca97.html#LangeOKK97
http://dl.acm.org/citation.cfm?id=303461.342806
http://dl.acm.org/citation.cfm?id=303461.342806

[26]

U. Pinsdorf and V. Roth. “Mobile agent interoperability patterns and practice”. In:
Engineering of Computer-Based Systems, 2002. Proceedings. Ninth Annual IEEE
International Conference and Workshop on the. IEEE. 2002, pp. 238-244. ISBN:
0769515495.

F. Bellifemine et al. “JADE: A White Paper”. In: EXP in search of innovation
3.3 (2003), pp. 6-19. URL: http : / / jade . tilab . com / papers / 2003 /
WhitePaperJADEEXP.pdf.

Regine Endsuleit and Jacques Calmet. “A security analysis on JADE(-S) V. 3.27.
In: Proceedings of NordSec. 2005, pp. 20-28.

Troy Bryan Downing. Java RMI: remote method invocation. IDG Books
Worldwide, Inc., 1998.

Giosue Vitaglione. Mutual-authenticated SSL IMTP connections. Telecom Italia
LAB, 2004. URL: http://jade.tilab.com/doc/tutorials/SSL-IMTP/SSL-
IMTP.doc.

Xosé A. Vila Sobrino, A. Schuster, and Adolfo Riera. “Security for a Multi-Agent
System based on JADE.” In: Computers and Security 26.5 (2007), pp. 391-400.
URL: http://dblp.uni-trier.de/db/ journals/compsec/compsec26.html#
SobrinoSRO7.

JADE security guide. JADE Board. 2005. URL: http://jade.tilab.com.

D.S. Miloji¢i¢, F. Douglis, and R. Wheeler. Mobility: processes, computers, and
agents. ACM Press Series. Addison-Wesley, 1999. 1SBN: 9780201379280. URL: http:
//books.google.es/books?id=JbxQAAAAMAAJ.

Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono. “Aglets specification 1.1
draft”. In: Whitepaper Draft 0.65, Sept 8 (1998).

Gilinter Karjoth, Danny B Lange, and Mitsuru Oshima. “A security model for
aglets”. In: Internet Computing, IEEE 1.4 (1997), pp. 68-77.

Haiping Xu and Sol M Shatz. “Adk: An agent development kit based on a formal
design model for multi-agent systems”. In: Automated Software Engineering 10.4
(2003), pp. 337-365.

BV Tryllian. “Agent Development Kit”. In: (2001).
Diana Dong. “Java Applet Security”. In: (2004).

Graham Glass. “Overview of voyager: Objectspace’s product family for state-of-
the-art distributed computing”. In: CTO ObjectSpace (1999).

Steve Vinoski. “CORBA: Integrating diverse applications within distributed
heterogeneous environments”. In: Communications Magazine, IEEE 35.2 (1997),
pp. 46-55.

Raquel Trillo, Sergio Ilarri, and Eduardo Mena. “Comparison and performance
evaluation of mobile agent platforms”. In: Autonomic and Autonomous Systems,
2007. ICAS07. Third International Conference on. IEEE. 2007, pp. 41-41.

127

http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf
http://jade.tilab.com/papers/2003/WhitePaperJADEEXP.pdf
http://jade.tilab.com/doc/tutorials/SSL-IMTP/SSL-IMTP.doc
http://jade.tilab.com/doc/tutorials/SSL-IMTP/SSL-IMTP.doc
http://dblp.uni-trier.de/db/journals/compsec/compsec26.html#SobrinoSR07
http://dblp.uni-trier.de/db/journals/compsec/compsec26.html#SobrinoSR07
http://jade.tilab.com
http://books.google.es/books?id=JbxQAAAAMAAJ
http://books.google.es/books?id=JbxQAAAAMAAJ

[42]

[43]

[45]

[46]

Ritu Gupta and Gaurav Kansal. “A Survey on Comparative Study of Mobile Agent
Platforms”. In: International Journal of Engineering Science and Technology 3.3
(2011), pp. 1943-1948.

Voyager Security Developer’s Guide wversion 1.2 for Voyager 8.0. Recursion
Software Inc. 2011. URL: http://www.recursionsw. com/products/voyager-
tech-docs/.

Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. “Weak and strong
mobility in mobile agent applications”. In: Proceedings of the 2nd International
Conference and Exhibition on The Practical Application of Java (PA JAVA 2000),
Manchester (UK). 2000.

S.A. Brands. Rethinking public key infrastructures and digital certificates: building
in privacy. MIT Press, 2000. 1SBN: 9780262024914. URL: http://books.google.
com/books?id=U8VUaUiYohIC.

D. Cooper et al. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280 (Proposed Standard).
Internet Engineering Task Force, May 2008. URL: http://www.ietf.org/rfc/
rfcb5280.txt.

Oscar Urra et al. “Mobile Agents and Mobile Devices: Friendship or Difficult
Relationship?” In: Journal of Physical Agents 3.2 (2009), pp. 27-37.

David Recordon and Drummond Reed. “OpenlD 2.0: a platform for user-centric
identity management”. In: Proceedings of the second ACM workshop on Digital
identity management. DIM ’06. Alexandria, Virginia, USA: ACM, 2006, pp. 11—
16. 1sBN: 1-59593-547-9. DOI: http://doi.acm.org/10.1145/1179529.1179532.
URL: http://doi.acm.org/10.1145/1179529.1179532.

Luis Miguel Alventosa. Using the SSL/TLS-based RMI Socket Factories in J2SE
5.0. May 2006. URL: https://blogs.oracle.com/lmalventosa/entry/using_
the_ssl_tls_based.

Krishnan Viswanath. The New RMI. Oct. 2005. URL: https://today.java.net/
pub/a/today/2005/10/06/the-new-rmi.html.

Neil Haller et al. A one-time password system. Tech. rep. RFC 1938, May, 1996.

Java Authentication. Authorization Service (JAAS). Reference Guide for the J2SE
Development Kit 5.0. 2001.

Gustavus J Simmons. “Symmetric and asymmetric encryption”. In: ACM
Computing Surveys (CSUR) 11.4 (1979), pp. 305-330.

J Jonsson and B Kaliski. “RFC 3447: Public-key cryptography standards (pkes)#
1: Rsa cryptography specifications version 2.17. In: Request for Comments (RFC)
3447 (2003).

Gary Stoneburner. SP 800-33. Underlying Technical Models for Information
Technology Security. Tech. rep. Gaithersburg, MD, United States, 2001.

128

http://www.recursionsw.com/products/voyager-tech-docs/
http://www.recursionsw.com/products/voyager-tech-docs/
http://books.google.com/books?id=U8VUaUiYohIC
http://books.google.com/books?id=U8VUaUiYohIC
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://dx.doi.org/http://doi.acm.org/10.1145/1179529.1179532
http://doi.acm.org/10.1145/1179529.1179532
https://blogs.oracle.com/lmalventosa/entry/using_the_ssl_tls_based
https://blogs.oracle.com/lmalventosa/entry/using_the_ssl_tls_based
https://today.java.net/pub/a/today/2005/10/06/the-new-rmi.html
https://today.java.net/pub/a/today/2005/10/06/the-new-rmi.html

Kai Rannenberg. “Recent Development in Information Technology Security
Evaluation-The Need for Evaluation Criteria for Multilateral Security.” In: Security
and Control of Information Technology in Society. 1993, pp. 113-128.

Gianpaolo Cugola et al. “Analyzing mobile code languages”. In: Mobile Object
Systems Towards the Programmable Internet. Springer, 1997, pp. 91-109.

James E White. “Telescript technology: The foundation for the electronic
marketplace”. In: General Magic white paper 282 (1994).

Robert S Gray. “Agent Tcl: A flexible and secure mobile-agent system”. In: (1997).

Robert S Gray et al. “D’Agents: Security in a multiple-language, mobile-agent
system”. In: Mobile agents and security. Springer, 1998, pp. 154—187.

Douglas Kramer. “The Java Platform”. In: White Paper, Sun Microsystems,
Mountain View, CA (1996).

Li Gong. “Java 2 platform security architecture”. In: Sun
Microsystems (http://java.sun.com/j2se/1.4.2/docs/quide/security/spec/security-
spec.doc.html) (2002).

S. Oaks. Java security. Java series. O’Reilly, 2001. 1SBN: 9780596001575. URL:
http://books.google.com.au/books?id=EhX9BjH;jIM4C.

Xavier Leroy. “Java bytecode verification: an overview”. In: Computer aided
verification. Springer. 2001, pp. 265-285.

Sheng Liang and Gilad Bracha. “Dynamic class loading in the Java virtual
machine”. In: ACM SIGPLAN Notices 33.10 (1998), pp. 36-44.

Oracle. Java Security Package. URL: http://docs.oracle.com/javase/6/docs/
api/java/security/package-summary.html.

Walter Binder and Volker Roth. “Security Risks in Java-based Mobile Code
Systems”. In: Scalable Computing: Practice and Experience 7.4 (2001).

Michael Coté. Jaas in action. 2010.

Giacomo Cabri, Luca Ferrari, and Letizia Leonardi. “Applying security policies
through agent roles: A JAAS based approach”. In: Science of Computer
Programming 59.1 (2006), pp. 127-146.

Oracle. Permissions in the Java™ SE 6 Development Kit (JDK). URL: http :
/ / docs . oracle . com / javase / 6 / docs / technotes / guides / security /
permissions.html.

Apple. Macbook Pro. URL: https://www.apple.com/macbook-pro/.
Bjorn Winckler. Macvim. URL: https://code.google.com/p/macvim/.
IDE Eclipse. The Eclipse Foundation. 2007.

Apache Ant. The Apache Ant Project. 2010.

129

http://books.google.com.au/books?id=EhX9BjHj9M4C
http://docs.oracle.com/javase/6/docs/api/java/security/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/security/package-summary.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
https://www.apple.com/macbook-pro/
https://code.google.com/p/macvim/

9

oo
—_

Douglas Kramer. “API documentation from source code comments: a case study of
Javadoc”. In: Proceedings of the 17th annual international conference on Computer
documentation. ACM. 1999, pp. 147-153.

Dimitri van Heesch. Dozygen: Source code documentation generator tool. 2008.

Ben Collins-Sussman. “The subversion project: buiding a better CVS”. In: Linux
Journal 2002.94 (2002), p. 3.

Jorge Sainz Vela. Zonazener. 2003. URL: http://www.zonazener.com.
Leslie Lamport and A LaTEX. Document Preparation System. 1986.

Juan Manuel Alor Osorio. “Evaluacién de la herramienta EJBCA para un
Prestador de Servicios de Certificacién”. In: (2011).

VM Oracle. VirtualBoxz. 2011. URL: https://www.virtualbox.org.
Larry Wall et al. The Perl programming language. 1994.
Van Jacobson, Craig Leres, Steven McCanne, et al. Tepdump. 1989.

Gerald Combs et al. “Wireshark”. In: Web page: http://www.wireshark.org/last
modified (2007), pp. 12-02.

Ceki Gulcu. “Short introduction to log4j”. In: (2002).

Eric A Young, Tim J Hudson, and Ralf S Engelschall. “OpenSSL”. In: World Wide
Web, http://www.openssl.org/, Last visited 9 (2001).

M Chauhuan. “Logging with Log4j-An Efficient Way to Log Java Applications”.
In: Dewveloper.com,
http://www.developer.com/java/ent/article.php/10933 3097221 3 ().

130

http://www.zonazener.com
https://www.virtualbox.org

	1 Introducción
	1.1 Entorno tecnológico sobre agentes móviles
	1.2 Objetivos del proyecto
	1.3 Planificación estimada del proyecto
	1.4 Contenido de la memoria

	2 Seguridad en plataformas de agentes móviles
	2.1 Clasificación de ataques
	2.1.1 Agente malicioso atacando a la plataforma
	2.1.2 Agente malicioso atacando a otros agentes
	2.1.3 Plataforma atacando agentes

	2.2 Estudio de medidas de seguridad en plataformas de agentes móviles existentes
	2.2.1 Características de seguridad de SeMoA
	Arquitectura de seguridad
	Estructura del agente
	Seguridad en la ejecución
	Limitaciones

	2.2.2 Características de seguridad de JADE
	Capa de Seguridad JADE-S
	IMTPoverSSL
	Limitaciones

	2.2.3 Características de seguridad de Aglets
	Autenticación de Dominios
	Comprobación de integridad en las comunicaciones
	Identificación de Código
	Autorización de Aglets

	2.2.4 Características de seguridad de Tryllian
	Permisos en el Hábitat
	Permisos de los Agentes
	Otros mecanismos de seguridad

	2.2.5 Características de seguridad de Voyager
	Confianza entre código y contexto
	Principales mecanismos de seguridad

	2.2.6 Resumen de medidas de seguridad en diferentes plataformas

	3 Arquitectura de Seguridad para SPRINGS
	3.1 Identificación - Uso de certificados digitales
	3.2 Seguridad en la capa externa
	3.3 Autenticación y autorización a nivel de plataforma
	3.3.1 Autenticación y autorización de los contextos y de los agentes ante el RNS
	3.3.2 Autenticación del RNS frente a los contextos

	3.4 Autenticación a nivel de contexto
	3.5 Cifrado y comprobación de integridad de datos
	3.6 Comparativa con otras plataformas de agentes móviles estudiadas

	4 Pruebas sobre la plataforma SPRINGS
	4.1 Pruebas funcionales
	4.2 Resultados Experimentales
	4.2.1 Entorno de pruebas
	4.2.2 Escenarios funcionales
	4.2.3 Resultados y conclusiones de las pruebas de carga
	4.2.4 Resultados y conclusiones de las pruebas de escalabilidad

	5 Conclusiones y trabajo futuro
	5.1 Objetivos y resultados del proyecto
	5.2 Trabajo futuro
	5.3 Valoración personal y problemas encontrados

	A Entorno Tecnológico
	A.1 Conceptos generales de seguridad informática
	A.2 Seguridad en Java
	A.3 Entorno de desarrollo
	A.3.1 Lenguaje de programación Java
	A.3.2 Hardware de desarrollo
	A.3.3 Herramientas adicionales

	A.4 Entorno de pruebas
	A.4.1 Software de gestión de certificados digitales
	A.4.2 Máquinas virtuales para pruebas funcionales
	A.4.3 Hardware utilizado en las pruebas de carga y escalabilidad
	A.4.4 Agente y contexto para pruebas de carga
	A.4.5 Script de análisis de resultados de pruebas de carga

	B Pruebas funcionales
	B.1 Acceso a la plataforma de un contexto que no tiene activado SSL
	B.2 Acceso a la plataforma de un contexto que usa un certificado no válido
	B.3 Acceso y/o modificación de comunicaciones entre el RNS y los contextos o entre contextos
	B.4 Acceso a la plataforma de un contexto cuyo certificado no está aceptado por el RNS
	B.5 Creación de un agente por parte de un contexto que no tiene permisos para ello
	B.6 Movimiento de un agente por parte de un contexto que no tiene permisos para ello
	B.7 Agente realizando llamadas creado en un contexto que no tiene permisos para ello
	B.8 Contexto atacando otro contexto simulando ser el RNS
	B.9 Uso de autenticación de contexto con la autenticación de plataforma desactivada
	B.10 Acceso a recursos no permitidos por la autorización a nivel de contexto
	B.11 Uso de cifrado cuando está desactivado en la plataforma
	B.12 Uso de cifrado y verificación de integridad de datos
	B.13 Intento de descifrado de datos en un contexto incorrecto
	B.14 Simulación de robo de dato cifrado e intento de descifrarlo
	B.15 Ataque de uso masivo de memoria de un contexto

	C Manual de Usuario
	C.1 Administración de la plataforma
	C.1.1 Gestión de certificados digitales y keystores
	Importación de clave pública de una CA en el sistema
	Creación de keystore para RNS
	Creación de keystore para contexto
	Importación de la clave pública de un contexto en el RNS

	C.1.2 Procedimientos de administración del RNS
	Script de arranque
	Fichero de configuración

	C.1.3 Procedimientos de administración de los contextos
	Script de arranque
	Ficheros de configuración

	C.2 Guía del programador
	C.2.1 Uso de mecanismo de logging
	C.2.2 Interfaz para la creación de contextos
	C.2.3 Uso de funciones de cifrado en un agente

	Bibliografía

