
Informática e Ingeniería
de Sistemas

Departamento de

Proyecto Fin de Carrera
Ingeniería en Informática

Videojuego de coches en red para la
evaluación de un sistema P2P de
compartición de información

Víctor J. Rújula Nasarre de Letosa

Directores:
Sergio Ilarri Artigas
Eduardo Mena Nieto

Área de Lenguajes y Sistemas Informáticos
Departamento de Informática e Ingeniería de Sistemas

Escuela de Ingeniería y Arquitectura
Universidad de Zaragoza

Agosto 2013

Videojuego de coches en red para la evaluación de un
sistema P2P de compartición de información

RESUMEN

El objetivo de este proyecto es desarrollar un videojuego cuya utilización permita
evaluar estrategias de gestión de información en redes vehiculares, una tarea actualmente
realizada mediante simuladores, pero que resulta muy costosa debido a la di�cultad de
ajustar correctamente los parámetros usados por las diferentes estrategias.

Con este �n, se ha desarrollado un videojuego de coches para múltiples jugadores
en red, en el que los jugadores tienen que completar diferentes objetivos en misiones de
carácter competitivo mientras circulan por escenarios creados con datos reales obtenidos
mediante el sistema de mapas de carretera OpenStreetMap.

Para facilitar la explotación del juego como método de evaluación, se han añadido
diversos elementos como vehículos no humanos del trá�co, vehículos de servicios de emer-
gencia y plazas de aparcamiento que son ocupadas dinámicamente por el trá�co y los
jugadores.

Ha sido necesario el estudio del sistema de gestión de información VESPA para su
posterior implementación en el juego, así como también el estudio y la aplicación de
diferentes arquitecturas y técnicas de optimización de red y de técnicas de control de los
vehículos no humanos.

El juego ha sido implementado siguiendo una arquitectura de red de tipo cliente-
servidor con predicción en el cliente, usando técnicas como la interpolación, la extrapola-
ción y la compresión delta, haciendo uso de los protocolos TCP y UDP. También se han
de�nido los interfaces necesarios para poder integrar en el juego cualquier estrategia de
gestión de información, a partir de las cuales se ha desarrollado una implementación del
sistema VESPA.

Para facilitar la recogida de datos también se ha desarrollado un servidor dedicado,
para tener un lugar centralizado desde el cual recopilar dichos datos, y otro proceso con
la función de servidor de recogida de estadísticas, el cual recibe la información recopilada
por los diferentes servidores durante las partidas.

Los resultados obtenidos han demostrado que a pesar de que el videojuego puede
suponer una buena herramienta para recopilar mucha información para una gran varie-
dad de escenarios, los resultados obtenidos deben ser tomados con precaución, ya que
la pericia del jugador o los elementos introducidos para aumentar la diversión del juego
pueden alterar los resultados obtenidos.
Por este motivo el videojuego no debe verse como un sustitutivo de los métodos tradi-
cionales de evaluación, como los simuladores, sino como un complemento, ya que puede
ayudar a recopilar con menos esfuerzo los datos que serán utilizados para a�nar el pro-
tocolo y también puede servir para obtener conclusiones iniciales previas a la evaluación
en el simulador.

i

Agradecimientos

Me gustaría agradecer este Proyecto Fin de Carrera a todas las personas que
lo han hecho posible con su apoyo y dedicación.

En primer lugar a mis directores de proyecto Sergio Ilarri y Eduardo Mena,
por su paciencia y su inestimable ayuda, sin la cual este proyecto no hubiera sido
posible. A mis compañeros y amigos de clase, con los que he compartido estos años
de carrera, por hacer que esos momentos de estudio y de prácticas fuesen agradables
y amenos. A mi familia y amigos más cercanos, por su paciencia y por motivarme
para seguir adelante en los momentos más complicados. A mis amigos Dani y Jorge
por su inestimable colaboración cuando fue necesario probar el funcionamiento del
juego con varios jugadores. A mi ex-compañera de piso Megan, por ayudarme en
todas las dudas que me surgieron al traducir los textos y el manual de uso al inglés,
así como al resto de compañeros de piso, por haber sido como una segunda familia
para mí.

Y por supuesto, a la Universidad de Zaragoza y a todos aquellos profesores de
los que he aprendido tanto a lo largo de estos años.

También debo agradecer el uso que realizo en este proyecto de las librerías
JLayer, Xerces, Guava y OpenSteer, y los algoritmos obtenidos del libro Developing
Games In Java, así como también a Josh Woodward y Howarang Van K. por el
uso de su música.

iii

Índice general

1. Introducción 1
1.1. Motivación del proyecto . 1
1.2. Objetivos . 1
1.3. Trabajo previo y herramientas . 2
1.4. Trabajo relacionado . 4
1.5. Estructura de la memoria . 5

2. Videojuego desarrollado 7
2.1. Resumen del juego . 7
2.2. Arquitectura del sistema . 8
2.3. Menús del juego . 10
2.4. Obtención de mapas . 12
2.5. Elementos del terreno . 13
2.6. Física . 14
2.7. Inteligencia arti�cial . 16

2.7.1. Comportamiento de los vehículos 17
2.7.2. Aplicando Steering behaviors 18
2.7.3. Búsqueda de caminos . 19

2.8. Funcionamiento en red . 20
2.8.1. Modelo de red . 21
2.8.2. Predicción del lado cliente 23
2.8.3. Interpolación de entidades 24

2.9. Sistema VESPA . 25
2.10. Menú de pausa . 25
2.11. Sonido . 25
2.12. Modos de juego y gestión de rondas y objetivos 26
2.13. Mensajes durante el juego . 28

3. Explotación 31
3.1. Motivación . 31
3.2. Aplicación . 32

v

3.3. Limitaciones . 34
3.4. Ventajas . 36
3.5. Elementos añadidos al juego . 36
3.6. Posibles mejoras de VESPA y problemas encontrados 38
3.7. Resultados experimentales . 38
3.8. Rendimiento del juego . 42

4. Conclusiones 43
4.1. Conclusiones . 43
4.2. Línea temporal de la realización del proyecto 47
4.3. Trabajo futuro . 50
4.4. Valoración personal . 53

Bibliografía 55

Anexos 59

A. Análisis 61
A.1. Requisitos . 61
A.2. Casos de uso . 64
A.3. Diagrama de navegación . 84
A.4. Prototipado de ventanas . 88
A.5. Modos de juego . 95

B. Diseño 97
B.1. Arquitectura de la aplicación . 97
B.2. Capas de la arquitectura . 99
B.3. Despliegue . 100
B.4. Diagramas de clases . 103

B.4.1. Módulo de salida . 103
B.4.2. Módulo de menús . 106
B.4.3. Módulo gestor de escenarios 110
B.4.4. Módulo de servidor maestro 112
B.4.5. Módulo de servidor estadístico 115
B.4.6. Módulo de estadísticas . 115
B.4.7. Módulo logger . 119
B.4.8. Módulo de menú in-game 119
B.4.9. Módulo de terreno . 122
B.4.10.Módulo gestor de conexiones 123
B.4.11.Módulo de física . 127
B.4.12.Módulo de inteligencia arti�cial 128

vi

B.4.13.Módulo cliente . 129
B.4.14.Módulo servidor . 132

B.5. Game Loop (bucle de juego) . 132
B.5.1. Servidor . 134
B.5.2. Cliente . 136
B.5.3. Actor . 138

B.6. Hilos de ejecución . 139

C. Sobre el videojuego 143
C.1. Menús del juego . 143

C.1.1. Tipografía . 143
C.1.2. Directorio del juego . 144
C.1.3. Prevención de errores . 146
C.1.4. Pantallas de error . 147
C.1.5. Pantallas de mapas . 147
C.1.6. Otros aspectos importantes 148

C.2. Obtención de mapas . 149
C.2.1. OpenStreetMap . 149
C.2.2. Implementación . 151
C.2.3. Problemas encontrados . 153

C.3. Elementos del terreno . 154
C.3.1. Nodos . 155
C.3.2. Caminos . 156
C.3.3. Multipolígonos . 157

C.4. Física y colisiones . 158
C.4.1. Detección de colisión con elementos del terreno 158
C.4.2. Detección de colisión con otros actores 160
C.4.3. Cálculo de la fuerza resultado de una colisión con otros actores162
C.4.4. Aplicación del resultado de la colisión con el terreno 162

C.5. Inteligencia Arti�cial . 164
C.5.1. Steering behaviors . 164
C.5.2. Comportamientos complejos 172
C.5.3. Soluciones a las carencias de la IA 177
C.5.4. Path-�nding . 179
C.5.5. Normas de circulación . 180

C.6. Funcionamiento en red . 180
C.6.1. Funcionamiento básico . 181
C.6.2. Interpolación-extrapolación 184
C.6.3. Predicción . 186
C.6.4. Compresión delta . 188
C.6.5. Envío de solo actores cercanos 188

vii

C.6.6. Optimizaciones . 190
C.6.7. Unión de jugadores a la partida 193

C.7. Modos de juego y gestión de rondas y objetivos 195
C.7.1. Modo tareas . 195
C.7.2. Plazas de aparcamiento . 197
C.7.3. Capacidad de salir del vehículo 199
C.7.4. Modo supervivencia . 199

D. Sobre VESPA y la explotación 201
D.1. Vespa . 201

D.1.1. Breve introducción a VESPA 201
D.1.2. Interfaces desarrolladas . 202
D.1.3. Implementación desarrollada 204
D.1.4. Protocolo de reserva . 216
D.1.5. Necesidades de la implementación 218
D.1.6. Atascos (elaborados para el aprovechamiento de VESPA) . . 219

D.2. Añadidos para la explotación . 221
D.2.1. Servidor dedicado . 221
D.2.2. Servidor de recogida de estadísticas 223
D.2.3. Estadísticas . 227

D.3. Rendimiento del juego . 232

E. Artículo IMMoA'13 235

F. Manual de usuario 245

viii

Índice de �guras

2.1. Juego Rally-X (Namco 1980) en el cual se ha basado este videojuego 8
2.2. Funcionamiento del servidor . 9
2.3. Funcionamiento del cliente . 10
2.4. Diagrama de navegación . 11
2.5. Etapas del cálculo del vector fuerza resultante de una colisión . . . 16
2.6. Detalle del estado Normal de la inteligencia de los vehículos del trá�co 18
2.7. Path-�nding asíncrono . 20
2.8. Flujo de mensajes UDP . 22
2.9. Captura de pantalla en la que se observa la diferencia entre la posi-

ción predicha del vehículo y la real 23
2.10. Predicción e interpolación aplicadas conjuntamente 24
2.11. Diagrama navegación menú de pausa 26
2.12. Diagrama de las clases de la gestión de rondas y objetivos 27
2.13. Diagrama de la gestión de rondas 27
2.14. Captura de pantalla en la que se muestra la explicación de la ronda

y un mensaje GUI . 29

3.1. Despliegue de los componentes en una red 33
3.2. Arquitectura de la la conexión entre el juego y el DMS 35
3.3. Mejoría en el tiempo para aparcar por un humano 40
3.4. Mejoría en tiempo para aparcar por el computador 41
3.5. Comparativa mejoría de tiempo entre humanos y no humanos . . . 41

4.1. Porcentaje de horas de cada tipo de tarea 48
4.2. Porcentaje de tareas de cada iteración 49
4.3. Cronograma del desarrollo de las diferentes iteraciones 49

A.1. Casos de uso: navegación menús . 65
A.2. Casos de uso: partida . 66
A.3. Casos de uso: detalle del modo de juego �capture the �ags� 66
A.4. Casos de uso: detalle del modo de juego �capture the red cars� . . . 67

ix

A.5. Casos de uso: detalle del modo de juego �solve the task� y �task
endurance survival� . 67

A.6. Casos de uso: detalle del modo de juego �parking special mode� . . 68
A.7. Diagrama de navegación (primera iteración) 86
A.8. Diagrama de navegación (última iteración) 87
A.9. Prototipo de ventana inicial . 88
A.10.Prototipo de ventana de unión a partida existente 89
A.11.Prototipo de ventana modi�cación con�guración de red (en unión) . 89
A.12.Prototipo de ventana de error conectando a partida 90
A.13.Prototipo de ventana de sala de espera (en unión) 90
A.14.Prototipo de ventana de crear una nueva partida 91
A.15.Prototipo de ventana modi�car con�guración red (en creación) . . . 91
A.16.Prototipo de ventana de reglas del juego 92
A.17.Prototipo de ventana de gestión de mapas 92
A.18.Prototipo de ventana vista previa mapa 93
A.19.Prototipo de ventana sala de espera (en creación) 93
A.20.Prototipo de ventana con�rmación creación 94
A.21.Prototipo de ventana cargando partida 94
A.22.Prototipo de ventana resumen después de partida 95
A.23.Modos de juego . 95
A.24.Tipos de tarea de los modos de juego 96

B.1. Diagrama de componentes . 98
B.2. Capas de la arquitectura . 100
B.3. Pseudo diagrama de despliegue sin servidor dedicado 101
B.4. Pseudo diagrama de despliegue con servidor dedicado 102
B.5. Clases del módulo de salida . 104
B.6. Detalle de las clases �SpriteCache� y �ResourceCache� 105
B.7. Detalle de la clase dedicada al sonido MP3 105
B.8. Detalle las clases dedicadas al sonido WAV 106
B.9. Clases del módulo de menús . 107
B.10.Detalle de la clase �Contenedor� 108
B.11.Detalle de la clase �PantallaAnimada� 109
B.12.Clases del módulo de gestor de escenarios 110
B.13.Detalle de la clase �GestionDeMapas� 111
B.14.Detalle de las clases �DATstruct�, �Lugar� y �ProcesarXMLCon-

sulta� . 112
B.15.Detalle de la clase �ProcesarXMLMapa� 113
B.16.Clases del módulo de servidor maestro 114
B.17.Clases del módulo de servidor estadístico 116
B.18.Clases del módulo de estadísticas 117

x

B.19.Detalle de la clase �CurrentCon�gInfo (CCI)� 117
B.20.Detalle de las clase �TADEstadisticasAparcamiento� y �Estadisti-

casAparcamiento� . 118
B.21.Clases del módulo de logger . 119
B.22.Clases del módulo de menú in-game 120
B.23.Detalle de la clase �MenuInGameControles� 120
B.24.Detalle de la clase �MenuEscape� y las relacionadas 121
B.25.Clases del módulo de terreno . 122
B.26.Clases del módulo de gestor de conexiones (1 de 2) 124
B.27.Clases del módulo de gestor de conexiones (2 de 2) 124
B.28.Detalle de las clases �UDP_cliente� y �Cliente� 125
B.29.Detalle de las clases �GestorSnaps� y �EventoGUI� 126
B.30.Detalle de una clase acumulador . 126
B.31.Clases del módulo de física . 127
B.32.Clases del módulo de inteligencia arti�cial 128
B.33.Clases del módulo de cliente . 130
B.34.Detalle de la clase �RadarVespa� 131
B.35.Detalle de la clase �MiniMapEvent� 131
B.36.Detalle de la clase �Flecha� . 132
B.37.Clases del módulo de servidor . 133
B.38.Funcionamiento del servidor . 135
B.39.Funcionamiento del cliente . 137
B.40.Herencia de las clases de actores . 139
B.41.Vista general de los hilos de ejecución 141
B.42.Detalle de los hilos de ejecución del servidor 142

C.1. Estructura del directorio de juego 144
C.2. Ejemplo de contenido del �chero �ParamCon�g.txt� 145
C.3. Ejemplo de contenido del �chero �OSM_APIs.txt� 145
C.4. Imagen que se muestra cuando no se ha podido previsualizar el mapa154
C.5. Detección de colisiones con el terreno 159
C.6. Separating Axis theorem . 160
C.7. Captura en la que se muestran los obstáculos a evitar por obstacle

avoidance . 161
C.8. Cálculo del vector fuerza resultante de una colisión 163
C.9. Comportamientos seek y �ee . 166
C.10.Comportamientos pursuit y evasion 167
C.11.Comportamiento obstacle avoidance 168
C.12.Comportamiento wander . 169
C.13.Comportamiento path following . 170
C.14.Comportamiento unaligned collision avoidance 171

xi

C.15.Prioridades en la composición de comportamientos a base de steerings173
C.16.Diagrama de estados IA: visión general 174
C.17.Detalle del estado Normal de la inteligencia de los vehículos enemigos175
C.18.Detalle del estado Normal de la inteligencia de los vehículos del trá�co175
C.19.Detalle del estado Circular y Buscar aparcamiento de la inteligencia

de los vehículos del trá�co . 176
C.20.Camino con primer nodo en sentido opuesto 179
C.21.Interpolación con bu�er de 1 estado 185
C.22.Diferencia entre el último estado recibido y el estado que se pinta

en pantalla, debido al bu�er de interpolación 185
C.23.Efecto de la latencia de red . 187
C.24.Agrupación de booleanos de la clase Opciones 192
C.25.Agrupación de booleanos de la clase Tarea 192
C.26.Agrupación de booleanos de la clase WaitingRoom 192
C.27.Agrupación de booleanos de la clase GameOver 193
C.28.Agrupación de booleanos de la clase DanyoVelocidadYCalle 193
C.29.Secuencia temporal de la unión de jugadores a la partida 194
C.30.Captura mostrando los puntos de parking y los puntos intermedios . 198

D.1. Módulos del sistema VESPA . 202
D.2. Arquitectura de la la conexión entre el juego y el DMS 205
D.3. Estructura de la arquitectura VESPA implementada 206
D.4. Comunicación entre los diferentes módulos implementados 207
D.5. Hilo de ejecución de la detección de un evento 208
D.6. Hilo de ejecución de la recepción de un evento 209
D.7. Hilo de ejecución del gestor de almacenamiento 210
D.8. Hilo de ejecución del procesador de consultas continuas 210
D.9. Atascos representados en el radar 220
D.10.Esquema conexión con servidor dedicado (hay una partida en curso) 225
D.11.Esquema conexión con servidor dedicado (no hay ninguna partida

en curso) . 225
D.12.Esquema conexión sin servidor dedicado 226
D.13.Estructura del directorio de estadísticas 227
D.14.Ejemplo de contenido del �chero �CurrentCon�gInfo.txt� 228
D.15.Ejemplo de contenido del �chero �gameStats.txt� 228
D.16.Ejemplo de contenido del �chero �Player parking.txt� 229
D.17.Ejemplo de contenido del �chero �Tra�c parking.txt� 230
D.18.Ejemplo de contenido del �chero �ALL vehicles.txt� 231
D.19.Rendimiento con servidor dedicado para la con�guración: 2 jugado-

res, 25 trá�co, 4 enemigos, mapa �Trementines� 233

xii

D.20.Rendimiento con servidor no dedicado para la con�guración: 1 ju-
gador, 50 trá�co, 8 enemigos, mapa �Trementines� 234

xiii

xiv

Índice de tablas

3.1. Con�guración de VESPA . 39
3.2. Porcentaje de mejora del tiempo de aparcamiento 40
3.3. Rendimiento obtenido con varias con�guraciones 42

4.1. Separación de horas por tipo de trabajo 47
4.2. Separación de horas por iteración 48

C.1. Estructura de archivo de mapas .dat 153
C.2. Posibles valores del terreno . 164
C.3. Número de usos del cálculo de la distancia entre dos nodos 180
C.4. Problema de no enviar actores lejanos 189
C.5. Solución al envío de actores no lejanos 189
C.6. Traza de funcionamiento del acumulador 191
C.7. Elección de �tipo de llegada� en una tarea 196

D.1. Estructura de evento VESPA implementada 211
D.2. Tamaño mínimo y máximo de envío en red (servidor → cliente)

según tipo de elemento . 233

xv

xvi

Índice de algoritmos

B.1. Game loop . 134
B.2. Bucle del actor . 138
B.3. Método actualizar del actor . 138
D.1. Detección de un evento . 212
D.2. Recepción de un evento . 214
D.3. Hilo de ejecución del gestor de almacenamiento 215
D.4. Hilo de ejecución del procesador de consultas continuas 215
D.5. Métodos del protocolo de reserva 217
D.6. Obtención del vector dirección . 219
D.7. Estructura del servidor dedicado . 224
D.8. Estructura del servidor de recogida de estadísticas 226
D.9. Estructura del hilo que maneja la conexión (Statistics server) 226

xvii

xviii

Capítulo 1

Introducción

En este capítulo se mostrará la motivación existente para la realización de este
Proyecto Fin de Carrera, los objetivos que han sido marcados para el proyecto,
las librerías y herramientas utilizadas para su elaboración y también se analiza-
rá el trabajo relacionado. Finalmente se mostrará la estructura seguida en este
documento.

1.1. Motivación del proyecto

Han sido varias las razones que me llevaron a elegir desarrollar este Proyecto
Fin de Carrera. La primera y principal ha sido el interés personal en el ámbito del
desarrollo de videojuegos, que siempre me ha apasionado. Por otro lado, realizar
un proyecto complejo como es un videojuego, partiendo desde cero y sin tener
ningún conocimiento particular de este ámbito, suponía un gran reto que desea-
ba afrontar porque me permitiría ampliar mis conocimientos en campos diversos
como inteligencia arti�cial, arquitecturas y optimizaciones de red, etc., de las que
poseía unos conocimientos limitados. Además, consideré que la experiencia que me
podía aportar este proyecto aumentaría mis posibilidades de desarrollar mi carrera
profesional en este ámbito.

1.2. Objetivos

El Proyecto Fin de Carrera que se describe en este documento tiene los siguien-
tes objetivos:

Desarrollar un videojuego de coches, que cuente con coches controlados por
el ordenador y otros controlados por jugadores humanos conectados a través
de la red.

1

Desarrollar lo necesario para que se compita en escenarios creados a partir de
datos reales obtenidos de algún sistema que proporcione mapas de carreteras.

Desarrollar una funcionalidad de descarga de mapas, de forma que introdu-
ciendo la localización en la que deseas jugar se descargue una porción de
mapa alrededor del punto elegido.

Integración de los mecanismos de funcionamiento básicos de VESPA, de for-
ma que el videojuego desarrollado permita la evaluación de las ventajas de
contar con este sistema frente a un competidor que no lo tenga. La integra-
ción se realizará de forma que resulte sencillo modi�car el funcionamiento de
VESPA para evaluar el impacto de los cambios.

Además de estos objetivos marcados por la propuesta del Proyecto Fin de Ca-
rrera, también se ha tenido como objetivo lograr que el resultado sea un juego
divertido, con un nivel de di�cultad moderado, de forma que no suponga un pro-
blema para los jugadores más inexpertos pero que a la vez pueda llegar a suponer
un reto para los jugadores experimentados, y que pueda lograr despertar el interés
por seguir jugando de los usuarios que lo prueben.

1.3. Trabajo previo y herramientas

En esta sección se listan las librerías externas y herramientas utilizadas para
el desarrollo del proyecto, acompañadas de una breve descripción del porqué de su
uso.

Código externo

Para la implementación de la inteligencia arti�cial del manejo de vehículos
se han adaptado varios algoritmos contenidos en la librería OpenSteer (Steering
Behaviors for Autonomous Characters)1, en la cual se hayan implementaciones de
varios de los métodos sugeridos en [17].
Concretamente los métodos de esta librería adaptados son los siguientes: Obstacle
avoidance, Path following, Unaligned collision avoidance y Wander.

Librerías usadas

Para el desarrollo del proyecto se ha hecho uso de diversas librerías externas
que han permitido la implementación en un tiempo razonable de ciertas funciones
necesarias que no formaban parte de los objetivos del proyecto:

1http://opensteer.sourceforge.net/

2

http://opensteer.sourceforge.net/

Apache Xerces2 java2, para el análisis y extracción de datos de los docu-
mentos XML obtenidos del servicio OpenStreetMap.

JLayer3, para poder decodi�car y reproducir sonido en MP3. Necesario para
que la música de fondo pueda tener un tamaño reducido.

Guava-12.04, conjunto de librerías de Google de la que hago uso de su clase
ImmutableMap.

Herramientas de desarrollo

Durante el desarrollo de este Proyecto Fin de Carrera se han utilizado las
siguientes herramientas:

NetBeans IDE 6.8, como editor de código y ha sido especialmente bene�-
ciosa la ayuda que proporciona para elaborar interfaces grá�cas.

Subversion, como herramienta de control de versiones.

ClockingIT, como herramienta de gestión de tareas del proyecto.

GIMP 2, editor grá�co usado para la elaboración de elementos grá�cos de
los menús y para la creación y/o edición de los sprites de los elementos del
juego.

Audacity, editor de audio usado para la edición de los efectos de sonido del
juego.

Oracle VM VirtualBox, herramienta de virtualización usada para virtua-
lizar el sistema operativo Mac OS X y poder realizar pruebas para asegurar
la compatibilidad del juego.

CamStudio 2.7 y Adobe Premiere Pro CS4, herramientas de captura y
edición de video usadas para la creación del video de la página web realizada
para el proyecto.

Java VisualVM, herramienta en la que se muestra información detallada
de las aplicaciones java en funcionamiento, usada para analizar las mejoras
de rendimiento que se introducían y analizar cuáles eran las partes del código
que más afectaban al rendimiento.

2http://xerces.apache.org/#xerces2-j
3http://www.javazoom.net/javalayer/javalayer.html
4https://code.google.com/p/guava-libraries/

3

http://xerces.apache.org/#xerces2-j
http://www.javazoom.net/javalayer/javalayer.html
https://code.google.com/p/guava-libraries/

Netem, herramienta que proporciona funcionalidades de emulación de redes
para probar protocolos y emular las propiedades de WANs5. Usada para
simular un entorno de internet o WAN para realizar pruebas mientras se
implementaban las técnicas de optimización de red.

Herramientas de documentación

Además de las anteriormente citadas, también se han usado las siguientes he-
rramientas para la elaboración de la documentación del proyecto:

LATEX, lenguaje usado para la elaboración de este documento.

Visual Paradigm for UML 6.4, Microsoft Visio 2010 y Dia, editores
de diagramas.

1.4. Trabajo relacionado

La idea de bene�ciarse de acciones humanas para mejorar o evaluar sistemas
se ha aplicado previamente en otros videojuegos, como por ejemplo:

ESP game [23], en el cual los jugadores ayudan implícitamente a etiquetar
imágenes mientras juegan.

CodeSpells [8], un videojuego de fantasía en el que los jugadores deben es-
cribir hechizos sirviéndose del lenguaje Java

Planet PI4 [14], un juego multijugador online que pretende servir para probar
arquitecturas P2P para juegos.

Sin embargo aparentemente este es el primer juego que será diseñado para
ayudar a evaluar estrategias de gestión de información para redes vehiculares.

Un juego similar en concepción en cuanto que también permite circular por es-
cenarios reales es Mini Maps6, pero en dicho juego se pinta la vista de satélite de
google maps y se superpone el vehículo, en lugar de crear un escenario a partir de
la información del mapa.
Otro juego, Push-Cars 2: On Europe Streets7 también usa escenarios reales, pero
la diferencia es que no se puede jugar en cualquier localización deseada ya que los
escenarios están pre�jados ya que, aunque a partir de datos reales, están predise-
ñados de antemano.

5http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
6https://apps.facebook.com/minimaps/
7http://www.push-cars.com

4

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://apps.facebook.com/minimaps/
http://www.push-cars.com

1.5. Estructura de la memoria

El contenido de la memoria está distribuido de la siguiente forma:

En el capítulo 2 se expone el trabajo desarrollado para la elaboración del
juego, excluyendo lo realizado para el sitio web o la explotación.

En el capítulo 3 se analiza la posible explotación del juego como método para
probar diferentes técnicas de data sharing y se expone el trabajo realizado
para permitirlo. También se muestra el rendimiento obtenido del videojuego.

En el capítulo 4 se muestran las conclusiones del proyecto, el posible trabajo
futuro de cara a mejorar el juego o la explotación y una breve valoración
personal.

Respecto al contenido de los anexos:

En el anexo A se muestra todo lo referente al análisis realizado.

En el anexo B se muestra todo lo relacionado con la fase de diseño.

El anexo C contiene aspectos sobre el desarrollo del videojuego que no han
podido ser tratados en el capítulo 2 o han sido tratados de forma resumida.

En el anexo D se detalla el funcionamiento y la implementación del sistema
VESPA y todos los aspectos desarrollados para el uso del videojuego como
método de evaluación. También se amplía la información sobre el rendimiento
del juego.

El anexo E contiene el artículo presentado para el workshop IMMoA'13,
realizado conjuntamente con Sergio Ilarri y Eduardo Mena (en inglés).

En el anexo F se proporciona el manual de usuario.

5

6

Capítulo 2

Videojuego desarrollado

En este capítulo se explican las funcionalidades básicas del sistema desarrolla-
do. Debido a la limitada extensión de la memoria, este capítulo estará centrado
únicamente en los aspectos más importantes. Para profundizar más sobre estos
aspectos acudir a los anexos.

2.1. Resumen del juego

Vanet-X es un juego de coches que puede ser jugado por hasta 8 personas
a través de Internet y que permite seleccionar escenarios de localizaciones reales
obtenidos a través del servicio de mapas OpenStreetMap.

El juego está basado en el clásico videojuego Rally-X (Namco 1980) (ver �gura
2.1), en el que el vehículo del jugador debía recoger banderas en un tiempo limitado
mientras huía de los vehículos enemigos que le perseguían insaciablemente, contra
los cuales podía usar nubes de humo de motor con el objetivo de desorientarlos.

Vanet-X cuenta con cuatro modos de juego diferenciados pero que comparten
ciertas características en común.
En todos se sigue un sistema de rondas continuo, inspirado en el existente en
los modos de juego zombis y supervivencia de los últimos videojuegos de la saga
Call of Duty.
Este sistema consiste en que cuando se completa satisfactoriamente una ronda u
oleada, se avanza a la siguiente sin salir del mundo de juego ni con la aparición
de menús intermedios, simplemente informando al jugador que la ronda ha sido
completada y que tiene unos segundos de descanso antes de que de comienzo la
siguiente, pero durante este intervalo de tiempo se puede seguir moviendo libre-
mente por el mundo de juego. De esta forma, se consigue una mayor inmersión
evitando pausas innecesarias.

7

Figura 2.1: Juego Rally-X (Namco 1980) en el cual se ha basado este videojuego

Modos de juego

Capturar la bandera: el más similar al clásico Rally-X. Debes capturar
las banderas en un tiempo limitado mientras coches enemigos te persiguen.

Capturar los coches enemigos: como el anterior no hay banderas y en
lugar de huir de los enemigos debes capturarlos.

Tareas: mientras los coches enemigos te persiguen, y en un tiempo limitado,
debes lograr completar una o varias tareas, que consisten en llegar a pie, en
coche o lograr un aparcamiento cercano a un punto de interés (por ejemplo
una tienda o un museo) o una dirección.

Supervivencia: como el anterior pero al completar los objetivos en lugar de
puntos logras dinero, que gastarás en repostar combustible o en reparaciones
del vehículo. A diferencia de los anteriores modos, al completar la ronda
los enemigos no desaparecen, y además tienden a ser más numerosos contra
más rondas se avance, y también a diferencia del resto de modos de juego,
no completar satisfactoriamente una ronda no supone perder la partida sino
que únicamente se deja de ganar el dinero que el objetivo proporcionaba.

2.2. Arquitectura del sistema

La aplicación Vanet-X integra de forma transparente para el usuario un módulo
cliente y un módulo servidor. Los motivos de la elección de una arquitectura cliente-
servidor se explican en el capítulo 2.8.

8

El diseño que se ha realizado no se ha basado en ningún modelo especí�co exis-
tente, sino que se ha realizado un diseño especí�co para el videojuego desarrollado
(ver �guras 2.2 y 2.3). Para más detalles consultar anexo B.5.

Crear escenario
Crear Gestor de Conexiones
(interactua con los clientes)

Recibir y procesar entradas de los jugadores

Comprobar
objetivos de

la ronda
Enviar estado del "mundo"
y los objetivos actualizados

a los clientes

Enviar señal de
"juego_finalizado"

Enviar información sobre el
juego (puntuaciones, tiempos,

 etc.) a los clientes

Guardar estadísticas
y enviarlas al Servidor

 de estadísticas (si existe)

Inicialización

Game loop

Finalización

juego_finalizado

no(juego_finalizado)

Figura 2.2: Funcionamiento del servidor

Haciéndose una aproximación muy simpli�cada se podría considerar que el
cliente es el encargado de recoger los eventos de teclado del jugador, enviárselos al
servidor para que los procese y, con los resultados que le devuelve, pintar la vista
del cliente del mundo de juego.
Como se explica en el capítulo 2.8.2, esto no es del todo cierto, ya que al introducir
la técnica de la predicción, el cliente también incluye parte de la lógica del juego,
aunque los resultados de la lógica del servidor siguen teniendo prioridad sobre la
del cliente.

Para la implementación del servidor se ha seguido un esquema multihilo (ver
anexo B.6), en el que existe un hilo principal con gran parte de la lógica del juego,
pero además cada actor1 tiene su propio hilo de ejecución donde ejecuta su lógica
asociada.
Además, también existe un hilo donde se ejecuta el gestor de mensajes TCP (ver
capítulo 2.8), y la implementación de VESPA también crea sus propios hilos (cuatro
en la implementación desarrollada).

Por su parte el cliente también es multihilo, a pesar de que en este caso los
actores no tienen sus propios hilos ya que su lógica se ejecuta en el servidor (en

1un actor es una entidad con un comportamiento autónomo

9

Iniciar musica

Crear Gestor de
Conexiones (para

conectar con el servidor)

Enviar y recibir
los datos necesarios

para unirse a una partida

Procesar el estado
actual del juego

Recoger entrada del jugador
y enviarla al servidor

Recibir y procesar la información
sobre el estado actual del juego

 del servidor

Realizar compensación
de latencia de red

Actualizar elementos
locales al cliente

(efectos visuales y
sonoro, etc.)

Actualizar la pantalla
con el estado actual
del mundo (eventos,

vehículos, etc.)

Detener música
y efectos de sonido

Animar la pantalla
de "game over"

Recibir informacion del
juego para la pantalla final

(puntuaciones de cada
equipo y jugador, tiempos)

Volver al menú
principal

Inicialización

Game loop

Finalización

juego_finalizado

no(juego_finalizado)

Figura 2.3: Funcionamiento del cliente

el cliente se ejecuta su predicción, pero ésta debe estar sincronizada y por ello se
ejecuta en el hilo principal). El gestor de sonido tiene sus propios hilos (uno por
cada sonido simultáneo permitido) y al igual que en el servidor, también existe un
gestor de mensajes TCP en un hilo propio.

2.3. Menús del juego

Como en la práctica totalidad de los juegos, Vanet-X cuenta con un sistema de
menús que permiten con�gurar múltiples aspectos del juego y la partida antes de
comenzarla.

A diferencia de otros tipos de aplicaciones, en un videojuego es muy impor-
tante que los menús sean visualmente agradables e intuitivos, de forma que para
con�gurar los aspectos básicos del juego no sea imprescindible leer el manual de
instrucciones. Por ello en Vanet-X se han seguido las siguientes directrices a la
hora de elaborar el menú:

Usar diversas pantallas con botones en lugar de barras de menús

Dotar de dinamismo al menú. Esto se ha conseguido mediante un fondo en
movimiento en lugar de estático.

10

Mantener similitudes en la estructura de las diferentes pantallas. En este
caso en la mayoría de las pantallas existen los botones �Guardar cambios
y volver�, �Deshacer cambios y volver� y �Establecer valores por defecto�
situadas en la misma posición, así como también los botones para avanzar o
retroceder de pantalla en las que no tienen parámetros con�gurables.

El esquema de las pantallas se puede observar en la �gura 2.4

Inicial

Iniciar partida

Unirse a partida

Opciones

Créditos

Controles

Configuración
avanzada de
red (unión)

Configuración
avanzada de
red (creación)

Configuración
VESPA

Configuración
Avanzada

VESPA

Configuración
reglas del

juego

Gestión
de mapas

Visualizar
mapa

pant. compl.

Información
partida

Error unión

Runtime error

Carga

Desarrollo

Resumen
final

Canvas
juego

Flujo creación/unión
(reversible)

Flujo error
(no reversible)

Flujo opcional
(reversible)

Flujo no reversible

Figura 2.4: Diagrama de navegación

Existen tres �caminos� básicos en el menú:

1. Crear una partida nueva, donde se puede seleccionar modo de juego, esce-
nario y otros parámetros y cuenta con cuatro subpantallas donde se puede
con�gurar los puertos de la comunicación de red, los parámetros de VESPA,
las reglas de la partida y gestionar los mapas de juego.

2. Unirse a una partida ya existente, donde debes introducir la dirección IP del
an�trión y te muestra datos sobre la partida en curso como por ejemplo qué
jugadores están conectados.

11

3. Las opciones globales, donde se controla el volumen, se pueden modi�car los
controles y cambiar la carpeta en la que se guardan los archivos de con�gu-
ración del juego.

También se han creado dos tipos de pantallas de error, que aparecen antes de
la pantalla con el resumen de la partida. La primera se usa en errores durante
la partida, y en ella se imprimen las diferentes trazas de error diferenciadas por
pestañas según el elemento que las haya causado. La otra pantalla de error está
dedicada para errores al intentar conectar a una partida, y su texto se modi�ca
dinámicamente dependiendo del tipo de problema.

Las modi�caciones de los parámetros realizadas en los menús y los nuevos esce-
narios descargados perduran entre diferentes ejecuciones de la aplicación gracias a
que se almacenan en un directorio elegido previamente por el usuario y se cargan
al inicio de la aplicación.

La pantalla de gestión de mapas permite previsualizar cualquier área, descargada
o no, tarea que se realiza obteniendo de una API la imagen en la que se representa
el área seleccionada. Para no tener que pedir una nueva imagen cada vez que
se varíe el tamaño seleccionado, se descarga con el tamaño máximo permitido
en el juego y, mediante una función de recorte, se muestra únicamente el área
proporcional al tamaño elegido.

Para más detalles sobre estos aspectos consultar el anexo C.1.

2.4. Obtención de mapas

Uno de los objetivos principales del proyecto consiste en la posibilidad de
competir en escenarios reales. Esto se ha conseguido mediante el uso de los ma-
pas proporcionados por el servicio OpenStreetMap2 y del servicio de búsqueda
OpenStreetMap Nominatim Tool3, que permite buscar coordenadas a partir de
nombres o direcciones.

La obtención y gestión de estos mapas se realiza desde el menú de la aplicación,
obteniendo los datos mediante una de las APIs de OpenStreetMap.
Para garantizar la obtención de los datos, en lugar de hacer uso de una única API,
se de�ne una lista de APIs, modi�cable por el usuario, que serán usadas en orden
secuencial hasta que una de ellas esté operativa.

2http://www.openstreetmap.org
3http://nominatim.openstreetmap.org

12

http://www.openstreetmap.org
http://nominatim.openstreetmap.org

El proceso de la obtención de un mapa se ha implementado de la siguiente forma:

1. Se hace una petición al servicio OpenStreetMap Nominatim Tool con las
palabras clave de la dirección deseada, y éste devuelve un listado de los
lugares coincidentes. Cada lugar incluye, entre otros datos, el nombre y las
coordenadas.

2. Una vez seleccionado el lugar deseado, se hace una petición al API de OpenS-
treetMap, pidiendo el área creada mediante las coordenadas devueltas el
listado y el valor del radio deseado. El API devolverá un documento con
formato OSM XML4 que contendrá los datos requeridos, y que será el que
se almacene en el directorio habilitado a tal efecto.

Los mapas descargados se muestran en una tabla en la que además del alias
asignado se incluye la dirección en torno a la cual esta creado, el número de no-
dos5 que incluye y el tamaño del área en km2.
Estos mapas y sus previsualizaciones son almacenados para que no sea necesario
volverlos a descargar cada vez que se inicie el programa. De esta forma, es posible
jugar a Vanet-X aun sin tener conexión a internet, solo siendo necesario tener los
mapas descargados en la carpeta correspondiente.
Las previsualizaciones de los mapas que se han buscado pero no descargado tam-
bién son almacenados pero éstos solo durante la ejecución del programa.

Para más detalles sobre estos aspectos consultar el anexo C.2.

2.5. Elementos del terreno

Como se ha explicado anteriormente (Capítulo 2.4), los datos necesarios para
crear los escenarios son obtenidos del servicio de mapas OpenStreetMap.

Existen tres tipos de elementos: nodos, caminos y multipolígonos. Los caminos
están formado por nodos y los multipolígonos están formados por caminos.
De estos elementos, los nodos son los únicos que no tienen representación visual,
usándose solo para formar el resto de elementos. Los caminos y multipolígonos
se organizan en diferentes capas de profundidad de pintado según su etiqueta (es
decir, según sean calles peatonales, zonas residenciales, carriles bici, etc.).

Un lugar de interés es un nodo que tiene dos datos adicionales: una lista con los
tres aparcamientos más cercanos y el valor de la distancia existente desde el nodo

4http://wiki.openstreetmap.org/wiki/OSM_XML
5un nodo es el menor de los datos primitivos que conforman un mapa de OpenStreetMap

13

http://wiki.openstreetmap.org/wiki/OSM_XML

hasta el camino más cercano transitable por los jugadores. Es un concepto intro-
ducido para permitir los objetivos de tipo tarea en los modos de juego �resolver
tareas� y �supervivencia�.

Todos los elementos constan de un identi�cador y las etiquetas obtenidas de
OSM, y a excepción de los nodos, también la capa en la que se pintarán. Además,
cada tipo de elemento está formado por más campos:

Nodo: tiene una posición expresada en pixeles que es el resultado de la
conversión de las coordenadas WGS84 a UTM y éstas a su vez a las del
sistema del juego. También posee dos listados con los nodos con los que está
directamente conectado, uno con los nodos que son accesibles con las reglas
de tránsito de los vehículos enemigos y otro con las de los vehículos del trá�co,
y un tercer listado que contiene la distancia a otros nodos no directamente
conectados, que se va rellenando dinámicamente durante la ejecución y sirve
para evitar la repetición de ciertos cálculos (ver Anexo G.4 y Figura G.1).
Estos cálculos de nodos interconectados se pueden realizar gracias a que
también contiene un listado con los identi�cadores de los caminos en los que
está incluido este nodo.

Camino: cuenta con un listado de los nodos que componen el camino y una
lista con los segmentos rectos entre los nodos. Estos segmentos se utilizan no
solo para el pintado sino también para detectar si los vehículos están sobre
el camino. También se incluyen diversos parámetros con propiedades para la
circulación y el pintado.
Al igual que los lugares de interés, también incluye una lista con los tres
aparcamientos más cercanos.

Multipolígono: dependiendo de la implementación usada (ver Anexo C.3.3)
contiene una estructura que permite que cada camino formante del multipo-
lígono tenga un rol de�nido (anillo interior o exterior del área) o un polígono
representando el área. Además, en ambas implementaciones también existen
diversos parámetros con las propiedades del terreno.

En el anexo C.3 se explican con mayor detalle todos estos aspectos.

2.6. Física

Debido a la simpleza de las físicas necesarias para un juego de este tipo, que
no requiere un gran realismo, no se consideró necesario utilizar un motor de física

14

existente sino que se tomó la decisión de implementar personalmente las funciones
que se consideraron necesarias.

El sistema de físicas implementado puede dividirse en cuatro algoritmos: la
detección de colisiones y la aplicación de fuerzas resultantes de la colisión, ambos
de forma diferenciada para colisiones con el terreno y con los actores.

La detección de colisiones con el terreno consiste en recorrer todos los elementos
que conforman el terreno6 y para cada uno de los elementos se realiza el siguiente
proceso:
Se comprueba si la menor circunferencia capaz de contener al vehículo colisiona con
el menor rectángulo capaz de contener al elemento. Si esta comprobación devuelve
como resultado que no hay colisión, se puede asegurar con total �abilidad y el
coste de procesamiento que ha supuesto es muy bajo. Sin embargo, si devuelve lo
contrario, signi�caría que es posible que exista colisión y para averiguarlo se debe
realizar una segunda comprobación, más costosa, que comprueba si alguno de los
cuatro vértices del vehículo está en el interior del elemento del terreno.

La aplicación de dicha colisión consiste en reconocer las propiedades del terreno
sobre el cual se circula y aplicar las restricciones correspondientes al vehículo:
inmovilizarlo, ralentizarlo, dañarlo, etc. En los anexos C.4.1 y C.4.4 se encuentra
una explicación más detallada al respecto.

La detección de colisiones con los demás actores del juego se realiza de una for-
ma similar:
Se obtiene el menor rectángulo rotado capaz de contener al vehículo, y se comprue-
ba si colisiona con el de algún otro actor. Si se produce esa colisión, signi�ca que
es posible que realmente colisionen, y se realiza una segunda comprobación más
detallada aplicando el Separating Axis theorem7. En el anexo C.4.2 se encuentra
una explicación más detallada al respecto.

Para calcular el resultado de una colisión entre actores primero se debe calcular
la fuerza resultante de suma de las fuerzas de los dos vehículos implicados. Esto
se calcula con el siguiente algoritmo:

1. Se obtienen los vectores velocidad de los dos implicados. Ver Figura 2.5(a)

2. Se realiza una rotación de forma que la línea imaginaria entre los dos impli-
cados quede en el eje Y. Ver Figura 2.5(b)

6como se explica en el apartado 4.3, una mejora importante sería dividir el terreno en una

cuadrícula y solo comprobar los elementos de su zona
7http://en.wikipedia.org/wiki/Hyperplane_separation_theorem#Use_in_collision_

detection

15

http://en.wikipedia.org/wiki/Hyperplane_separation_theorem#Use_in_collision_detection
http://en.wikipedia.org/wiki/Hyperplane_separation_theorem#Use_in_collision_detection

V
2

V
y2

V
2

V
1

V
2

V
1

V
y1

V
resultado

V
1

(a) (b) (c) (d)

Figura 2.5: Etapas del cálculo del vector fuerza resultante de una colisión

3. El vector resultado (provisional) es la componente Y del vector velocidad del
propio vehículo, salvo que se trate de un choque �por alcance� en cuyo caso
se le debe restar la componente Y del vector del otro vehículo. Ver Figura
2.5(c)

4. Para asegurar que no se genere una fuerza de atracción cuando el vector
está en sentido opuesto al otro implicado (sentido negativo de la Y), se debe
asegurar que el valor resultado nunca será mayor a -1 (se ha elegido este valor
en lugar de 0 para asegurar que siempre exista fuerza de repulsión entre los
coches).

5. Se vuelve a rotar el vector resultado invirtiendo la rotación realizada en el
paso 2. Ver Figura 2.5(d)

Esta fuerza resultante es sumada a la del otro vehículo, salvo que aquel se
encontrase en estado �inmóvil�, en cuyo caso en su lugar esa fuerza sería restada a
la del vehículo propio. Posteriormente se establece la velocidad del propio vehículo
a cero.

2.7. Inteligencia arti�cial

En Vanet-X, como cualquier otro juego en el que intervengan actores no contro-
lados por jugadores, se necesita una inteligencia arti�cial que sea capaz de controlar
estos actores. En el caso de este juego, los actores que requieren de una inteligencia
arti�cial son los coches enemigos, las ambulancias y los coches neutrales que con-
forman el trá�co del escenario. Como todos estos actores son vehículos, todos ellos
comparten gran parte de las funciones desarrolladas para la inteligencia, siendo
sus diferencias solo pequeñas variaciones en los comportamientos.

La inteligencia desarrollada consta de tres partes:

16

Unos patrones de comportamiento de alto nivel, en forma de máquina de es-
tados, que indiquen las acciones a realizar en cada momento. (Por ejemplo:
buscar aparcamiento, huir del jugador, alcanzar un punto determinado...).

Unos patrones de manejo de la dirección del vehículo, de forma que indicando
un objetivo y un modo de conducción (huir, perseguir, alcanzar...) el vehículo
sea capaz de lograrlo sin salirse de las zonas permitidas para circular y sin
colisionar contra otros vehículos o elementos �jos del terreno.

Un algoritmo de búsqueda A* capaz de determinar el camino a tomar para
llegar de un punto a otro, teniendo en cuenta las diferentes restricciones de
paso que tienen los diferentes vehículos.

Cada una de las partes hace uso de la siguiente, es decir, los patrones de
comportamiento de alto nivel usan patrones de manejo de la dirección, y éstos a
su vez usan el algoritmo A* del path-�nding.

Para profundizar en más detalle en cada uno de las tres partes anteriormente
mencionadas, dirigirse al anexo C.5.

2.7.1. Comportamiento de los vehículos

Cada vehículo dotado de inteligencia propia posee unos patrones de comporta-
miento que indican que tipo de acciones realizarán. Estos patrones di�eren según
el tipo de vehículo y se componen de combinaciones de steering behaviors, com-
portamientos de bajo nivel explicados en la siguiente subsección.

En esta subsección se analizará únicamente el comportamiento de los vehículos
del trá�co y un movimiento común a todos los vehículos: �desatascarse�, debién-
dose consultar el anexo C.5.2 para el resto de tipos de vehículos.

Desatascarse se trata de salir marcha atrás de una posición en la que se encuen-
tra inmovilizado.
Este comportamiento es necesario ya que a pesar de los esfuerzos por me-
jorar la inteligencia de los vehículos, es común que por diversos motivos un
vehículo pueda acabar estrellado contra los márgenes de la carretera, en cuyo
caso no podrá seguir avanzando ya que no está permitido salirse de las vías
habilitadas.
Este comportamiento establece como objetivo un punto situado a una dis-
tancia determinada justo detrás del vehículo y hace que avance hacia él en
marcha atrás. Una vez se ha conseguido llegar al objetivo (y por lo tanto se
ha desinmovilizado), el comportamiento pasa a estado normal.

17

Circular

Aparcar
Esperar

aparcado

Hay menos coches de los establecidos

buscando aparcamiento

Tiempo para encontrar

aparcamiento excedido
Ves un parking

libre

El parking obje!vo estaba

ocupado o se ha excedido

el !empo para aparcar en él

Aparcas en

el parking

Tiempo de espera

excedido

Buscar

aparcamiento

Figura 2.6: Detalle del estado Normal de la inteligencia de los vehículos del trá�co

Trá�co: Como se muestra en la Figura 2.6, tiene cuatro posibles subestados:

Circular : consiste en elegir un nodo objetivo y alcanzarlo. Este estado
se repite hasta que al vehículo le llegue una señal que indique que hay
menos coches buscando parking de los establecidos. Ver Figura C.19 en
el anexo C.5.2.

Buscar aparcamiento: es el mismo comportamiento que el anterior pero
ahora buscando aparcamientos vacíos. De esta forma si se visualiza un
aparcamiento libre pasará al siguiente estado (Aparcar), mientras que
si en un tiempo establecido no se ha logrado visualizar ninguno vuelve
al estado anterior (Circular). Además, si se recibe un evento VESPA de
parking libre se dirige a la posición del evento (aunque por el camino
puede encontrar otro aparcamiento libre más cercano y aparcar en él).

Aparcar : consiste en realizar la maniobra de aparcamiento sobre el apar-
camiento libre objetivo. Se realiza mediante un comportamiento de lle-
gada para que el vehículo frene al aparcar. Si se logra aparcar se avanza
al siguiente estado (Esperar aparcado) mientras que si no se ha logrado
se retrocede al estado anterior.

Esperar aparcado: consiste en esperar quieto dentro de la plaza de apar-
camiento durante un tiempo determinado. Una vez completado ese tiem-
po se vuelve al estado inicial (Circular).

2.7.2. Aplicando Steering behaviors

El manejo de la dirección del vehículo ha sido realizado mediante el uso de
los steering behaviors : �comportamientos que permiten a los agentes autónomos
navegar por su entorno de una manera improvisada a la vez que realista� [17].

18

Para este proyecto se han implementado los siguientes comportamientos suge-
ridos en [17]: seek, �ee, pursuit, evasion, arrival, obstacle avoidance, wander, path
following y unaligned collision avoidance. Estos comportamientos son explicados
en detalle en el Anexo C.5.1.

Estos comportamientos se pueden combinar entre sí para crear comportamien-
tos más complejos. Esta combinación de comportamientos se ha realizado según el
siguiente método:
Se le asigna una prioridad a cada comportamiento y se evalúan uno a uno en orden
de prioridad. Si un comportamiento concluye que debe realizarse una corrección de
la dirección, se aplica esa corrección y se acaba el comportamiento. En caso de que
no sea necesario un ajuste de la dirección, se evalúa el siguiente comportamiento,
y así sucesivamente hasta encontrar un comportamiento que requiera un cambio
de dirección o hasta haber evaluado todos.

Un ejemplo de esta combinación es el comportamiento que se le aplica a las
ambulancias:
Primero, trata de no salirse de la carretera (path following). Si este comportamiento
evalúa que no son necesarios cambios, trata de no colisionar contra obstáculos �jos
(obstacle avoidance) primero, ni móviles (unaligned collision avoidance) después.
Finalmente, si ninguna corrección ha sido necesaria, trata de avanzar hacia el
objetivo (seek).

2.7.3. Búsqueda de caminos

La última de las tres partes en las que se divide la implementación realizada
de la inteligencia arti�cial es el path-�nding (búsqueda de caminos), que es el
encargado de, a partir de un grafo de nodos que contiene la estructura de las
calles, un nodo inicial y un nodo objetivo, devolver una lista ordenada de nodos
que permitan alcanzar el nodo objetivo.

Como la obtención del resultado usualmente tarda más que el tiempo de ciclo
del juego, la implementación se ha realizado de forma asíncrona, con un hilo de
ejecución dedicado en exclusiva a recibir peticiones, ejecutar el algoritmo y devolver
su resultado cuando esté listo (ver Figura 2.7).

De esta forma, los actores que hayan pedido un camino, en lugar de realizar la
petición y esperar bloqueados a la respuesta, comprueban en cada ciclo si ya está
lista, y en caso contrario, en lugar de no hacer nada, lo cual quedaría muy extraño,
siguen avanzando hacia el objetivo mediante el steering behavior de llegada, de
forma que para cuando obtengan la respuesta del path-�nding, generalmente se
habrán aproximado más al objetivo.

19

Lógica del

actor

- Esperar una pe!ción

- Calcular camino

- Almacenarlo en buffer

Buffer

Pedir camino

Esperar a los datos

Responder

P
a

th
-fin

d
in

g

A
c
to

r

Hilo actor Hilo path-finding

Figura 2.7: Path-�nding asíncrono

2.8. Funcionamiento en red

Como se ha explicado anteriormente, la arquitectura de red de este proyecto
está basada en el modelo de red del Quake3 [13], que fue un gran éxito debido a
su simplicidad y a la facilidad de entenderlo. Los modelos de red de muchos juegos
posteriores son muy similares o están basados en este, como por ejemplo juegos
superventas como Half-life (más conocido por su modi�cación CounterStrike), y
su secuela, que usa el modelo de red del Source Engine [22], el cual también ha
sido tomado como referencia para crear la arquitectura de red de este proyecto.

Las ideas obtenidas del estudio de estos dos modelos son las siguientes:

seguir una estructura cliente-servidor con predicción en el lado del cliente [2,
12, 10, 18]

usar compresión delta sobre el último estado conocido, para reducir el tamaño
de los paquetes enviados [13]

interpolación/extrapolación de las entidades, de forma que se prevengan los
�saltos� cuando no se reciban paquetes de red [22]:

Una vez que estas ideas estaban claras, el siguiente paso fue elegir el protocolo de
red que usaría la aplicación.
En un juego que necesita actualizaciones de estado en tiempo real es importan-
te que los datos lleguen lo más rápido posible, y no necesitamos que se reenvíen
los paquetes perdidos ya que al reenviarlos ya llegarían obsoletos y tendríamos
que desecharlos. Es por este motivo que los modelos citados anteriormente usan
el protocolo UDP, el cual tiene un mejor rendimiento a costa de no implementar
características que si poseen TCP y RMI [21, 12].
En este proyecto, se ha considerado que además de usar UDP para las actualiza-
ciones de estado, se podría combinar con el uso de TCP para ciertas tareas que no
requieren velocidad de transmisión y sí con�abilidad. Por lo tanto, se han usado
conjuntamente los protocolos UDP y TCP de la siguiente manera:

20

UDP se ha usado para las actualizaciones de los �estados� que se envían en
cada ciclo.

TCP se ha usado para el envío del estado inicial al cliente, también para
comunicaciones con clientes que todavía no se han unido al juego (cuando se
quieren unir a la partida, reunir información o recibir las estadísticas �nales)
y para ciertos eventos poco comunes que se envían al cliente (como por
ejemplo actualizaciones de la puntuación o mensajes que informan de logros
nuestros o de otros jugadores8).

Para mejorar la experiencia de juego, se han implementado varias técnicas que
aumentan la �uidez con las que el usuario percibe que funciona el juego. Se trata
de la predicción en el lado cliente y de la interpolación de las entidades.

2.8.1. Modelo de red

Al igual que en los modelos estudiados, se ha seguido un esquema cliente-
servidor, ya que en un juego en tiempo real donde deben enviarse múltiples men-
sajes de estado por segundo, un esquema alternativo Peer-to-peer, donde cada
cliente envía información a todos los demás, es inviable salvo en conexiones extre-
madamente rápidas como redes locales [10].
Concretamente el modelo elegido es cliente-servidor con servidor autoritativo, lo
que signi�ca que el servidor es el único capaz de tomar decisiones que afecten al
estado del juego, dejando al cliente básicamente como un �terminal tonto� cuyas
únicas funciones son recoger los comandos del jugador, transmitirlos al servidor,
y con los datos de su respuesta pintar el mundo de juego (aunque con la técnica
de la interpolación gana más funciones). La razón de esto es que si fuera el cliente
el encargado de realizar las simulaciones y enviarle al servidor su estado, como
por ejemplo su posición actual, sería demasiado fácil que alguien hiciera trampas
logrando que el cliente envíe al servidor datos falsos. [10]

La lógica básica del cliente y el servidor es la siguiente:
Al inicio de cada ciclo los clientes envían al servidor los comandos realizados por el
jugador, el servidor procesa estos comandos, genera el estado del mundo de juego
de esta secuencia o ciclo y lo reenvía al cliente, que con estos datos pinta su vista
del mundo de juego.
Concretamente el intercambio de mensajes entre cliente y servidor es el siguiente
(Ver Figura 2.8):

El cliente envía InputSnapshots que contienen los eventos de teclado, el iden-
ti�cador de jugador al que corresponden, y los siguientes datos de control:

8Vease lo referido a Mensajes GUI en el Capítulo 2.13

21

el número de secuencia del cliente en el que estamos (seq), y el número de
secuencia del servidor del último estado aplicado (ack).

El servidor envía Snapshots que contienen los datos de los actores del juego y
los siguientes datos de control: el número de secuencia del servidor en el que
estamos (seq), el número de secuencia del servidor del estado sobre el cual
se ha hecho la compresión delta (ack), y el número de secuencia del cliente
al que corresponden los últimos eventos de teclado recibidos (last).

Figura 2.8: Flujo de mensajes UDP

Como este envío por parte del servidor del estado del mundo de juego se realiza
25 veces por segundo, y este estado contiene mucha información, realizar esta ta-
rea supondría un ancho de banda inasumible para conexiones a través de internet.
Por ello, como en los modelos anteriormente citados, se aplica la delta-compression
(compresión delta). Ésta consiste en no enviar en cada secuencia el estado al com-
pleto, sino solamente los cambios respecto al último estado del que se ha recibido
un ack por parte del cliente, lo cual supone que el servidor debe guardar cual es el
ultimo ack recibido de cada cliente y también todos los estados enviados a dicho
cliente con una secuencia superior a la de dicho ack. Para más detalles consultar
el anexo C.6.4.

Además de esta técnica, para reducir más el tamaño de los paquetes con el
estado del servidor se ha decidido que solo se envíe al cliente datos sobre los acto-
res que se encuentran a menos de una determinada distancia de él9. Esto supuso
numerosos problemas durante su implementación ya que no se había plani�ca-
do correctamente y se hubo de rehacer múltiples funciones de la interpolación y
predicción para soportarlo, como se explica en el Anexo C.6.5.

9modi�cable mediante �chero de con�guración

22

En los anexos C.6.6 y C.6.7 se explican otras optimizaciones menores realiza-
das y el proceso de unión de un jugador a la partida, con los mensajes de red
intercambiados por cada entidad que interviene.

2.8.2. Predicción del lado cliente

La predicción del lado del cliente es una técnica introducida por primera vez
por John Carmack en el modelo QuakeWorld10 y que tiene como objetivo reducir
la latencia de los movimientos del jugador.

Sin el uso de esta técnica, cuando un jugador realiza un movimiento, al tratarse
de un modelo cliente-servidor con el servidor autoritativo, debe esperar a que el
comando enviado llegue al servidor, y éste le devuelva su nueva posición. Esto
causa que el jugador note un retardo entre sus ordenes y el momento en que se
ven cumplidas (ver �gura 2.9).

Esta técnica consiste en lo siguiente: el cliente cuando reciba un comando del
jugador, además de enviarlo al servidor, debe predecir lo mas �elmente posible el
resultado que le va a ser devuelto, y debe aplicarlo en la vista del cliente. De esta
forma, cuando llegue el resultado del servidor, si la predicción ha sido correcta,
el nuevo estado del jugador coincidirá con el recibido y por lo tanto se habrá
disimulado la latencia entre cliente y servidor.
Esta técnica no signi�ca que el servidor deje de ser autoritativo, ya que siempre
se aplicará el resultado del servidor cuando llegue, de forma que, si la predicción
había sido incorrecta, ésta se verá corregida. Existen diversos métodos para que
corregir esta desviación no suponga cambios demasiado bruscos en el cliente, pero
se ha considerado que estaban fuera del alcance de este proyecto y que el tiempo
de implementarlos sería más útil en otros aspectos del juego.

En el anexo C.6.3 se explica este método en más profundidad.

Figura 2.9: Captura de pantalla en la que se observa la diferencia entre la posición
predicha y la recibida (rectángulo rojo)

10http://es.wikipedia.org/wiki/QuakeWorld

23

http://es.wikipedia.org/wiki/QuakeWorld

2.8.3. Interpolación de entidades

La interpolación de entidades es una técnica que se aplica en el cliente. Con-
siste en no procesar en cada ciclo el estado que recibes sino mantener un bu�er de
estados recibidos pendientes de ser procesados, de forma que, si el estado corres-
pondiente a un ciclo se pierde, se pueda conseguir una aproximación interpolando
entre los valores del último estado procesado y del siguiente estado de los recibidos.
Con este método se consigue evitar los �saltos� que se producen en las posiciones
de los actores cuando falla la recepción de varios estados consecutivos. Como con-
trapartida, esta técnica añade una latencia ya que no procesas directamente los
estados. Por lo tanto teniendo un bu�er de tres estados, y recibiendo un estado
cada 40 ms, se crea arti�cialmente una latencia de 120 ms.

La interpolación se puede realizar siempre que se tengan estados pendientes de
procesar en el bu�er, pero cuando estos se acaban, todavía se puede aplicar otra
técnica complementaria: la extrapolación. Así se hace en el caso del modelo de red
del Source Engine [22].
En Vanet-X se ha tomado una solución diferente: en lugar de extrapolar los datos,
se predice el comportamiento de los actores, con lo cual se obtienen unos resultados
más precisos.
Aún así, contra más paquetes se pierdan más grandes serán los errores de la pre-
dicción. Por ello, se ha tomado la decisión de sólo calcular las cinco primeras
predicciones ya que después no solo el error será muy grande sino que también se
estará cargando de demasiado trabajo a la CPU.

Los valores a partir de los cuales la interpolación y extrapolación dejan de apli-
carse son ajustables mediante el �chero ParamCon�g.txt situado en el directorio
base del juego.

En la Figura 2.10 se puede observar el comportamiento de la interpolación
aplicada junto a la predicción. Para más detalles consultar el anexo C.6.2.

Secuencia Snapshot recibido: 1 2 3 4 5 6 7 8 9 10

Calidad Snapshot recibido: B M M B M M B M M B

Secuencia Snapshot procesado: x x 1 4 7

Snapshots que se deben predecir: 0..1 0..2 1..3 1..4 1..5 4..6 4..7 4..8 7..9 7..10

t

Figura 2.10: Predicción e interpolación (bu�er de 2 estados) aplicadas conjunta-
mente. Leyenda: B: buena, M: mala, X: sin procesar, flecha: interpolación

24

2.9. Sistema VESPA

Esta es una de las partes más importantes del juego por ser uno de los objetivos
del proyecto y también ser, junto al uso de escenarios reales, uno de los elementos
diferenciadores del juego.

Vespa
11 es una VANET (Vehicular Ad Hoc Network), un sistema diseñado

para que los vehículos puedan compartir entre sí información sobre eventos rele-
vantes, como por ejemplo accidentes, plazas de aparcamiento libres, etc.

Este sistema proporciona gran parte de la información que se muestra en el
radar, como la posición de otros jugadores, de coches enemigos, de vehículos en
servicio de emergencias, de obstáculos en la calzada...

La implementación de VESPA ha sido realizada de forma modular para que
con poco esfuerzo puedan ser modi�cadas partes del sistema o incluso sustituir la
implementación entera por otro sistema de intercambio de información. Además,
la implementación está realizada de forma que desde el menú de con�guración
se pueda cambiar todos los parámetros que intervienen en el funcionamiento de
VESPA.

En el Capítulo 3 se profundiza sobre las características desarrolladas para la
evaluación de las técnicas de gestión de datos propuestas en VESPA y en el anexo
D.1 se muestran más detalles sobre el propio sistema y cómo se ha incorporado al
juego.

2.10. Menú de pausa

Se ha desarrollado un típico �menú de pausa� (con la salvedad de que no se
pausa el juego) que puede ser desplegado en cualquier momento de la partida.
Este menú se maneja mediante eventos de ratón, y es pintado sobre una capa
semitransparente que cubre la pantalla de juego. Todo el menú es también semi-
transparente y se integra visualmente con el resto de los elementos del juego (ver
�gura 2.11).

Desde él se puede modi�car (por separado) el volumen de la música y de los
efectos de sonido, mostrar la con�guración actual de los controles de juego y tam-
bién desde él se puede abandonar la partida para volver al menú principal.

2.11. Sonido

Para el sonido se han implementado dos gestores diferenciados: uno para los
efectos, que trabaja con archivos wav, y otro para la música, capaz de usar archivos

11http://www.univ-valenciennes.fr/ROI/SID/tdelot/vespa/index.html

25

http://www.univ-valenciennes.fr/ROI/SID/tdelot/vespa/index.html

Menú
Inicial

Opciones

Mostrar controles

Abandonar partida

Juego

Volver a
la partida
/ ESC

Sí

No / ESC

Ok / ESCHecho
/ ESC Menú

ppal.

Figura 2.11: Diagrama navegación menú de pausa

mp3.
El uso de este segundo gestor de sonido vino motivado por la necesidad de usar
archivos mp3 para la música, por necesidad de espacio, mientras que seguía siendo
interesante también contar con el primer gestor ya que los efectos de sonido en
formato wav tienen una mayor calidad y al ser sonidos tan breves no suponen un
problema de espacio.

El gestor de efectos está basado en el código fuente adjunto de [4]12, modi�cado
para añadirle un control de volumen. Otras características de este gestor son que
también se ha implementado un �ltro 3D (para que el volumen de los sonidos
se vea afectado por la distancia del emisor al oyente) y que tiene tantos hilos de
ejecución como canales de audio son admitidos (por defecto, usa 32).

Por otro lado, el gestor de música se trata de la librería JLayer 13 modi�cada
para admitir el control del volumen y para lograr una reproducción en bucle de la
lista de canciones a reproducir.

2.12. Modos de juego y gestión de rondas y obje-

tivos

Vanet-X tiene varios modos de juego, que si bien tienen ciertos aspectos en
común (sistema basado en rondas, obtener puntos al lograr los objetivos...) tienen
mecánicas diferentes. Para dar soporte a estas diferencias a la vez que se mantiene
la independencia del resto de la implementación sobre el modo de juego en uso, se
ha realizado la siguiente implementación: (Ver Figura 2.12)

Una clase �Ronda� que es el único punto de conexión con el resto del jue-
go, y que utiliza las funciones de la interfaz �IObjetivos� para implementar las
funcionalidades básicas necesarias (decidir si una ronda ha sido superada, estable-
cer cuando comenzará la siguiente ronda, crear los objetivos...). El control de las
rondas se realiza de la forma expresada en la Figura 2.13.

12http://www.brackeen.com/javagamebook/#download
13http://www.javazoom.net/javalayer/javalayer.html

26

http://www.brackeen.com/javagamebook/#download
http://www.javazoom.net/javalayer/javalayer.html

<<Interface>>

IObjetivos

ObjetivosAparcar

ObjetivosRally

ObjetivosSupervivencia

ObjetivosTareas

Ronda

Tarea

Figura 2.12: Diagrama de las clases de la gestión de rondas y objetivos

Preparar siguiente ronda:

1) marcar que empiece en �empo X

2) decidir los obje�vos a crear

Comprobar estado

de la ronda

¿Ronda
acabada?

¿Límite de rondas
superado?

Game Over

Esperar a que

comience la

ronda

Sí

Crear obje�vos

decididos

No

Sí

No

Eliminar

obje�vos

¿Estado

obje�vos?

Pasar de nivel

Revivir/reparar

jugadores y

reponer humos

Fallidos

Conseguidos o

Fallidos por �empo

Conseguidos

¿Estado

obje�vos?

Fallidos por �empo

�empo actual >=

�empo comienzo ronda

Figura 2.13: Diagrama de la gestión de rondas

27

Existen cuatro clases que implementan la interfaz �IObjetivos�, una por cada
modo de juego, adaptando las funciones de�nidas para crear la mecánica de juego
deseada en cada modo.

Para los modos de juegos que no consisten en capturar banderas o vehículos
sino en completar objetivos, se ha creado una nueva estructura llamada �Tarea�
(ver anexo C.7.1), que incluye todos los datos requeridos de un objetivo: tipo de
lugar, tipo de llegada y distancia al primer y tercer aparcamiento más cercano.
También debido a las necesidades de estos modos se han incluido las plazas de
aparcamiento (ver anexo C.7.2) y la posibilidad de abandonar el vehículo (ver
anexo C.7.3).

Por último existe una clase destinada a contener todas las características de
los modos de juego, como por ejemplo: el tipo de objetivo de una ronda (banderas,
enemigos, tareas), el comportamiento de la inteligencia de los enemigos (perseguir,
huir), si los jugadores sufren daños, etc.

2.13. Mensajes durante el juego

Durante la partida, existen varios medios con los que el jugador recibe infor-
mación. Estos son los mensajes GUI y la explicación de la ronda.

Los mensajes GUI son un sistema mediante el cual se le suministra al jugador
información sobre ciertos eventos relevantes como por ejemplo: la unión de un nue-
vo jugador a la partida, los puntos obtenidos por lograr un objetivo, el dinero que
ha costado la reparación del vehículo, un logro de otro jugador, y muchas otras
más.
Estos mensajes están visualmente muy integrados de forma que no molestan en la
conducción pero a la vez son fáciles de percibir. Además, con el sistema desarro-
llado, cada evento puede de�nir su duración en pantalla y esta asegurado que en
caso de acumularse varios mensajes no se superpondrán sino que mantendrán su
orden y se irán mostrando uno a uno dejando un breve lapso de tiempo entre cada
uno para que el cambio de mensaje sea perceptible.

La explicación de la ronda es un sistema que muestra información sobre la
ronda actual. Esto es totalmente necesario ya que, como se ha mencionado ante-
riormente, el sistema de juego funciona mediante un sistema de rondas continuas
sin abandonar la partida para volver a los menús. Por lo tanto resulta necesario
un sistema que muestre durante la partida la información que necesita conocer el
jugador. Esta información depende del modo de juego elegido pero tiene varios ele-
mentos comunes: el número de ronda en la que nos encontramos y el número total
de rondas en caso de que exista un límite, el número de perseguidores enemigos,
el tiempo disponible para completar la ronda, los objetivos de la ronda.

28

Esta explicación se muestra durante el llamado tiempo entre rondas14 inclu-
yendo una cuenta atrás del tiempo restante antes de comenzar la siguiente ronda.
También se muestra parecida información (más resumida) pulsando en cualquier
momento de la partida la tecla Mostrar información (por defecto tecla �Q�).
Todo esto se muestra en una zona rectangular semitransparente ubicada en la zona
central superior de la zona de juego. Esta zona adapta dinámicamente su tamaño
según los datos que deba mostrar.

En la �gura 2.14 se muestra una captura del juego en la que se aprecia la
explicación de la ronda (zona superior, en texto amarillo) y un mensaje GUI (en
texto blanco en la zona inferior).

Figura 2.14: Captura de pantalla en la que se muestra la explicación de la ronda
y un mensaje GUI

14con�gurable desde la pantalla Con�guración de las reglas de juego

29

30

Capítulo 3

Explotación

En esta sección se analiza la explotación del juego como método para probar
diferentes técnicas de data sharing y se expone el trabajo realizado para permitirlo,
así como las ventajas y limitaciones existentes.

3.1. Motivación

Los análisis de diferentes técnicas de data sharing suelen realizarse mediante
el uso de simuladores (p.ej. TraNS [16], SUMO [1], Veins [20], GrooveNet [15], o
VanetMobiSim [11]) ya que realizar pruebas en un escenario real con un número
signi�cativo de vehículos sería un método caro y poco práctico. Aún con el uso
de simuladores, el análisis de estas técnicas puede seguir siendo una tarea ardua
que lleve mucho tiempo, ya que los resultados de muchas técnicas de data sharing
dependen de la elección de ciertos parámetros, y puede no ser fácil determinar cuál
sería una buena elección de estos parámetros.
Por este motivo se ha considerado que, de forma complementaria al uso de simu-
ladores, se podría aplicar una estrategia de crowdsourcing mediante el uso de este
juego de forma que se extraigan ciertas estadísticas de las partidas y los jugadores,
mientras se divierten con un juego de coches, estén en realidad ayudando a calibrar
estrategias de data sharing.

La idea de bene�ciarse de acciones humanas para mejorar o evaluar sistemas no
es nueva, ya que se lleva tiempo usando para tareas demasiado costosas usando los
métodos tradicionales. Ejemplos de esto serían mCrowd [25], que usa los sensores
de los smartphones para participar en tareas colaborativas como la monitorización
del trá�co de carreteras, o reCAPTCHA [24], que se utiliza para evitar el uso
de ciertos servicios por usuarios no humanos a la vez que sirve para mejorar la
digitalización de textos.

31

3.2. Aplicación

Para llevar a cabo la recolección de estadísticas durante la partida se han
habilitado varias opciones (en el �chero de texto de con�guración ParamCon�g.txt)
que habilitan y deshabilitan de forma individual la recolección de distintos tipos
de datos.
Estos tipos de datos que se recopilan son los siguientes (ver Anexo D.2.3 para los
detalles las estadísticas recogidas):

Estadísticas del juego: son las estadísticas que se muestran a los jugadores
al �nalizar la partida y comprende la puntuación de cada jugador, equipo
al que pertenece y estado (habilitado o deshabilitado) de su protocolo DMS
(Data Management Strategy).

Estadísticas de los aparcamientos: se muestra cada aparcamiento realizado,
tanto por jugadores como por vehículos del trá�co, incluyendo el tiempo
requerido, el identi�cador del vehículo que lo realiza, si dicho vehículo tenía
el protocolo DMS activado, con que tipo de protocolo contaba y si dicho
aparcamiento fue facilitado por el uso del DMS.

Estadísticas del protocolo VESPA: muestra de forma individualizada por
vehículo, y también de manera conjunta, diversas estadísticas relacionadas
con el funcionamiento y la e�ciencia del protocolo (p.ej. número de eventos
creados, porcentaje de eventos considerados relevantes, etc.).

Cuando la partida �naliza, estos datos recogidos se almacenan en �cheros en
el computador donde reside el servidor junto con un �chero que contiene la infor-
mación sobre todos los aspectos de la con�guración de la partida, de forma que a
partir del contenido de este �chero sea posible con�gurar una nueva partida con
las mismas condiciones. Este almacenamiento se realiza únicamente en la máquina
servidor y no en los clientes ya que los jugadores no tienen porqué tener interés en
estos datos.

Al realizarse esta recopilación de datos únicamente en el servidor, en el caso
de crearse múltiples partidas en diferentes computadores sería necesario recopilar
de forma manual las estadísticas producidas. Para evitar esto, se han ideado dos
sistemas que permiten un mayor control sobre las estadísticas: la creación de un
servidor de recogida de estadísticas y la creación de un servidor dedicado.

El servidor de recogida de estadísticas es un proceso que está en permanente
ejecución en un computador externo, y al que los servidores se conectarán al �nali-
zar las partidas con la �nalidad de transmitirle las estadísticas recopiladas durante
la partida. (Ver Anexo D.2.2)

32

El otro sistema ideado consiste en el uso del servidor dedicado (ver Anexo
D.2.1), que consiste en un proceso en permanente ejecución en un computador y
que acepta las peticiones de conexión de los clientes (realizadas de la misma forma
que para unirse a una partida normal) y, en el caso de que no haya una instancia
del servidor en funcionamiento, la crea y les redirige para que se unan a dicha
partida. De esta forma, un desarrollador/probador de un protocolo DMS puede
habilitar un lugar en el que los jugadores se puedan unir a una partida de forma
que no necesiten crear partidas propias y centralizando así las estadísticas en dicho
lugar.

Estos dos sistemas son complementarios, de forma que el servidor dedicado al
�nalizar la partida tratará de conectarse con el servidor de recogida de estadísticas,
si es que está activo, para comunicarle las estadísticas obtenidas.

En la Figura 3.1 se muestra la forma en que los diferentes componentes del
juego están distribuidos en la red.

Computer

Servidor Maestro

Servidor

(Juego)

Estadís!cas

Computer

Cliente

(Juego)

Jugador n

Pedir servidor

al que unirte

Conectarse

al servidor

Crear

Guardar estadís!cas del juego

Computer

Servidor Estadís!co

Estadís!cas

Guardar estadís!cas del juego

Enviar estadís!cas

Computer

Terminal

Cambiar parámetros

Y

Conseguir estadís!cas

Interesado en

estadís!cas

Computer

Cliente

(Juego)

Jugador 1

Pedir servidor

al que unirte
Conectarse

al servidor

...

...

Figura 3.1: Despliegue de los componentes en una red

33

Además de estas características previamente mencionadas, se ha realizado la
implementación de VESPA de forma que sea sencillo adaptar el juego para diversos
protocolos o estrategias de gestión de datos. Esto se ha realizado de�niendo las
interfaces y clases abstractas básicas que se necesitan para poder interaccionar
desde el juego con la DMS. Posteriormente se ha realizado una implementación del
sistema VESPA como instanciación de dichos interfaces, haciendo uso del patrón
de diseño Factory method (ver Anexo D.1 para más detalles).

Las más importantes de las interfaces de�nidas son las siguientes:

IDataManagementStrategy : declara los métodos que deben ser imple-
mentados por una DMS para permitir su integración con el videojuego.

IVisible : debe ser implementada por todas aquellas entidades que puedan
ser �observadas� por el DMS.

IVehicle : debe ser implementada por todos los vehículos observables por el
DMS.

IPlayerVehicle : debe ser implementada por todos los vehículos humanos
observables por el DMS.

ITra�cVehicle : debe ser implementada por todos los vehículos del trá�co
observables por el DMS.

Como se puede observar la primera interfaz es usada para que el juego se
comunique con el DMS mientras que las cuatro restantes se usan para que el DMS
pueda acceder a los datos de las entidades del juego. La �gura 3.2 proporciona
una visión de conjunto sobre la conexión entre el juego, las interfaces de�nidas y
la implementación desarrollada.

3.3. Limitaciones

El uso de un juego como método de análisis tiene diversas limitaciones, por lo
que no se plantea su uso como reemplazo del simulador sino como complemento.

Una es la di�cultad de conseguir una simulación precisa y al mismo tiempo un
juego divertido y jugable, ya que la inclusión de regulación semafórica, normas de
circulación o trá�co más realista supondría una mayor �delidad en la obtención
de resultados pero sin embargo podría alterar la dinámica del juego disminuyendo
su capacidad de atraer jugadores y por lo tanto disminuyendo la cantidad de
estadísticas que se podrían obtener.
Así mismo tratar de aumentar la precisión de la simulación, ejecutar protocolos de
gestión de datos complejos o tratar de simular una cantidad de trá�co elevada está

34

Car Interface
IVehicle

Interface
IDataManagementStrategy

TrafficCar

VESPA

IEvent

FactoryDMS

VespaEvent

Interface
IVisible

Interface
IPlayerVehicle

Interface
ITrafficVehicle

Actor

Player

Parking

MiCanvasServidor

SERVER-SIDE

implementa es subclase de se comunica con usa

Figura 3.2: Arquitectura de la la conexión entre el juego y el DMS

35

enfrentado con la obtención de un rendimiento aceptable en el juego (en número
de fotogramas por segundo).

Además otra di�cultad radica en que los resultados obtenidos pueden depender
de la pericia de los jugadores, por lo que comparar resultados sin tener este fac-
tor en cuenta puede conducir a conclusiones erróneas. Por este motivo es preciso
comparar siempre resultados obtenidos con jugadores de similar pericia.
Para solventar esta di�cultad, se ha implementado un sistema de cálculo de ha-
bilidad, que otorga a cada jugador un determinado nivel de pericia basado en su
rapidez completando misiones durante las partidas y se mide en tareas comple-
tadas por unidad de tiempo. Este nivel de pericia se va modi�cando mediante la
participación en nuevas partidas y queda re�ejado en las estadísticas obtenidas, de
forma que puede optarse por comparar solo resultados provenientes de jugadores
de similar nivel de pericia.
Adicionalmente, existe una opción (con�gurable en ParamCon�g.txt) para no per-
mitir unirse a tu partida a jugadores con menos de un determinado nivel de habi-
lidad.

3.4. Ventajas

Las ventajas que aporta este método de análisis son la introducción del com-
ponente humano, que es algo que no está presente en un simulador, y el hecho
de que la utilización masiva del juego podría ayudar a identi�car parámetros o
alternativas de gestión de datos prometedoras que luego podrían veri�carse por
simulación.

Además, en vista de los resultados obtenidos, a pesar de que los valores absolu-
tos di�eren de los obtenidos mediante el simulador, los valores relativos observados
sí que son coherentes.

3.5. Elementos añadidos al juego

Diversos elementos han sido añadidos al juego con el objetivo de facilitar la
explotación del mismo como método de análisis de técnicas de data sharing : las
plazas de aparcamiento, el modo de juego consistente en pruebas de aparcamiento
y el cambio automático de estrategia de gestión de información.

Se añadieron las plazas de aparcamiento, con el �n de contar con un elemento
más en el que medir la e�ciencia de las técnicas de data sharing usadas.
Por motivos de rendimiento se crearon dos tipos de plazas de aparcamiento:
las �reales� y las �falsas�. Las reales son plazas inicialmente vacías que los
vehículos pueden ocupar y desocupar según sus necesidades, mientras que

36

las falsas son plazas que siempre están ocupadas y su inclusión viene de-
terminada para aparentar visualmente la existencia de un gran número de
aparcamientos, reduciendo la monotonía del escenario, sin necesitar aumen-
tar el número de vehículos del trá�co para que las ocupen y desocupen, con
el coste computacional que ello supondría.

Para evitar que el jugador sea capaz de distinguir entre los tipos de plazas,
y por lo tanto sepa que plazas ocupadas se terminarán por desocupar y
cuáles no, se han utilizado diversas técnicas. Como los vehículos del trá�co
no realizan aparcamientos perfectos, se tomó una doble estrategia: por un
lado se evitó que las plazas falsas tuvieran una apariencia de aparcamiento
perfecto, modi�cando el sprite que la representa de forma que el vehículo
que se muestra aparcado esté ligeramente rotado y trasladado respecto a
su posición ideal, y por otro lado, en lo referente a las plazas reales, se
creó un método mediante el cual los vehículos mal aparcados en ellas son
colocados de la forma correcta cuando no exista ningún jugador a menos de
una determinada distancia que pueda observar la traslación cometida.

Para poder obtener resultados comparables a los resultados del simulador de
VESPA, se estableció un ratio �jo entre el número de vehículos que buscan
aparcamiento y el número de plazas existentes. Para conseguirlo, se programó
la inteligencia de los vehículos del trá�co de forma que haya siempre un
número permanente de vehículos buscando aparcamiento y cuando uno de
ellos logre aparcar, otro vehículo que estuviera simplemente circulando se
ponga a buscar aparcamiento inmediatamente.

El tiempo que un vehículo permanece aparcado no es constante y varía entre
20 y 40 segundos, los cuales son valores poco realistas pero que suponen un
tiempo su�ciente como para que el jugador no se quede a la espera de que
se libere una plaza ocupada y a su vez no son lo su�cientemente grandes
como para que en una partida corta apenas se produzcan liberaciones de
aparcamientos.

Se añadió un nuevo modo de juego ideado expresamente para conseguir medir
los tiempos de aparcamiento, de forma que mediante objetivos se facilitase
la toma de datos. Este modo de juego consiste en un sistema de objetivos
en el que cada ronda tiene un doble objetivo que se debe cumplir de forma
secuencial: primero ir a un punto establecido (dado mediante una dirección
o mediante un sitio de interés) y una vez logrado este objetivo, encontrar
aparcamiento cercano (a menos de una distancia establecida por defecto en
500m pero modi�cable en ParamCon�g.txt). Cuando se logra el objetivo de
aparcar, se avanza de ronda y se repite este esquema hasta lograr el número
de rondas seleccionadas en la con�guración de la partida.

37

Este modo de juego se realiza con vida in�nita y sin vehículos enemigos, y
puede ser jugado únicamente en modo competitivo.

Se desarrolló una opción que permite el cambio automático del protocolo
cada cierto número de rondas en una misma partida, ya que se deseaba
poder realizar pruebas con VESPA y el protocolo de reserva activados, con
VESPA y sin protocolo de reserva y, por último, sin VESPA, lo cual suponía
tener que iniciar una nueva partida con cada cambio de protocolo. De esta
forma se permite recolectar datos de diversas con�guraciones en exactamente
el mismo escenario (ya que las situaciones de los aparcamientos son aleatorias
y cambian entre partidas).

3.6. Posibles mejoras de VESPA y problemas en-

contrados

Durante la implementación del sistema VESPA en el juego se han encontrado
los siguientes problemas y posibles mejoras:

Los eventos móviles observados desde un agente externo, como se explica
en el Anexo D.1.5, hacen necesario un método para calcular los vectores de
movilidad y dirección.

Cuando se envía un mensaje y no se obtiene respuesta (bien sea porque no
hay ningún vehículo cercano o no lo consideran relevante) hay que reenviarlo
periodicamente hasta que se obtenga respuesta. Este reenvio puede prolon-
garse durante grandes periodos de tiempo (p.ej. si el vehículo circula por un
camino con una densidad de vehículos muy baja), por lo que podría ser de
utilidad calcular de nuevo la EP1 antes de cada envío ya que puede llegar
un punto en el que ya no sea necesario seguir intentando difundir el evento
porque haya quedado ya obsoleto.

3.7. Resultados experimentales

Con el propósito de evaluar el interés de Vanet-X como método de evaluación de
estrategias de gestión de datos, se han desarrollado varios experimentos. En estos
experimentos se ha evaluado el tiempo que le cuesta a un vehículo encontrar un
aparcamiento libre, ya que los aparcamientos representan un tipo recurso escaso,
perfecto para probar las bondades de las estrategias de gestión de información.

1probabilidad de encuentro, ver Anexo D.1.3

38

La con�guración de los diversos parámetros de VESPA utilizada para la reali-
zación de los experimentos se muestra en la �gura 3.1.

Rango de comunicación 200m.
Vehículos equipados con VESPA 50%
α (coef. penalización sobre la distancia) 1/1500 (∆d ≤ 500m.)
β (coef. penalización sobre el tiempo hasta
la posición más cercana)

1/180 (∆t ≤ 60s.)

γ (coef. penalización sobre la edad del
evento)

1/360 (∆g ≤ 120s.)

ζ (coef. penalización sobre el ángulo) 1/270 (c ≤ 90o)
Umbral de relevancia 75%
Umbral de difusión 75%
Umbral de almacenamiento 60%
Refresco del Query processor cada 2s.
D (tiempo máximo de espera antes de la
redifusión de un mensaje entrante)

1s.

D' (tiempo máximo de espera antes de la
redifusión de un mensaje saliente)

2s.

Tabla 3.1: Con�guración de VESPA

Se han considerado tres estrategias diferentes de compartición de información:

VESPA sin protocolo de reserva (VESPA-P): se ha adaptado la propuesta
de [5], desarrollada en el contexto del sistema VESPA [6].

VESPA con protocolo de reserva (VESPA+P): los recursos escasos, como son
los aparcamientos, pueden causar problemas de competición por un único
recurso. Por ello se ha adaptado el trabajo presentado en [7], que añade un
protocolo que coordina el procedimiento de la reserva del recurso, de forma
que la información sobre dicho aparcamiento sea transmitida a un único
interesado.

Sin compartición de información: los vehículos no reciben ninguna informa-
ción. Solo conocen los aparcamientos que están en su rango de visión.

El escenario utilizado para la realización de los experimentos es un área de 1km2

en torno a la calle �Sophie Oury� en la ciudad de Valenciennes (Francia). En este
escenario se han simulado un número variable de vehículos circulando, y se ha
medido el tiempo que necesitan para encontrar un aparcamiento libre cercano a

39

sus destinos programados. Se ha recogido información durante aproximadamente
14 horas de juego, que han correspondido a 400 aparcamientos realizados por el
jugador.

Los resultados experimentales muestran los bene�cios de contar con el sistema
VESPA, especialmente usando un protocolo de reserva (ver �gura 3.3). También se
puede observar (�gura 3.5) que los vehículos controlados por humanos obtienen un
mayor bene�cio que los que son controlados por el computador. Esto puede deberse
a la implementación de la inteligencia arti�cial realizada, concretamente en lo que
respecta al algoritmo de búsqueda de recursos, que propone destinos aleatorios
dentro de un rango �jo, en lugar de ir incrementando este rango progresivamente.

Vehículos buscando 10 15 20 25
Aparcamientos 10
Ratio vehículos buscando /
aparcamientos libres

1 1.5 2 2.5

No humano con VESPA+P 20% 9% 10% 11%
No humano con VESPA-P 23% 19% 14% 18%
Humano con VESPA+P 26% 28% 32% 28%
Humano con VESPA-P 13% 22% 19% 26%

Tabla 3.2: Porcentaje de mejora del tiempo de aparcamiento

Figura 3.3: Mejoría en el tiempo para aparcar por un humano

A pesar de que se considera necesaria la realización de más test para considerar
los resultados como válidos, los resultados obtenidos son consistentes con otros
resultados experimentales obtenidos previamente mediante el uso del simulador.

40

Figura 3.4: Mejoría en tiempo para aparcar por el computador

Figura 3.5: Comparativa mejoría de tiempo entre humanos y no humanos

41

3.8. Rendimiento del juego

El juego ha sido diseñado para funcionar con un framerate constante de 25 FPS
(fotogramas por segundo), que coincide con la tasa de ciclos de juego por segundo.
Se ha comprobado que usando la con�guración de la partida más exigente de todas
las posibles, este framerate se cumple en el ordenador utilizado para la realización
de las pruebas.

Al tratarse de un juego en red es importante conseguir un tamaño reducido
de los paquetes de red enviados. En la tabla 3.3 se observa el rendimiento medido
para diferentes con�guraciones probadas. Los datos enviados de red se re�eren a
los enviados por el servidor a cada cliente. Los enviados por los clientes al servidor
tienen una tasa �ja (si se cumple el framerate establecido) de 1,45 KB/s.

Núm.
juga-
dores

Veh.
trá�co

Veh.
enemi-
gos

Media
datos
enviados

Máximo
memoria
usada
(servidor)

Máximo
memoria
usada
(cliente)

Media
uso
CPU
(servi-
dor)

Media
uso
CPU
(cliente)

1 10 4 20 KB/s 22 MB 37 MB 3% 10%
1 25 4 35 KB/s 33 MB 15 MB 4% 11%
2 25 4 57 KB/s 20 MB 35 MB 4% 14%
4 25 4 36 KB/s 25 MB 38 MB 5% 16%
1 50 8 57 KB/s 22 MB 35 MB 3% 17%

Tabla 3.3: Rendimiento obtenido con varias con�guraciones

En el anexo D.3 se muestran diversas grá�cas recogidas y se detallan aspectos
como la cantidad de datos enviados por la red por cada tipo de entidad del juego.

42

Capítulo 4

Conclusiones

En este capítulo se recapitulan las conclusiones que se han obtenido de la
realización de este Proyecto Fin de Carrera, repasando las diferentes iteraciones
de su realización y analizando si se han cumplido los objetivos del mismo. También
se presentan diversas líneas de trabajo futuro y una valoración personal del trabajo
realizado.

4.1. Conclusiones

A lo largo de este proyecto se ha desarrollado un videojuego de coches, que
puede ser jugado de forma cooperativa o competitiva por varias personas a través
de la red, con escenarios basados en datos reales obtenidos a través del sistema
OpenStreetMap, y que tiene como objetivo �nal permitir integrar un sistema de
gestión de información en redes vehiculares, siendo elegido el sistema VESPA para
su implementación.

El proyecto ha sido desarrollado siguiendo una metodología de desarrollo basada
en diferentes iteraciones, de forma que se comenzase desarrollando un juego básico
y en cada nueva iteración se le fuesen añadiendo funcionalidades.

Como base para el videojuego, se eligió adaptar el juego Rally-X, un arcade
clásico de la compañía Namco del año 1980 en el que el jugador controla un vehículo
a través de un laberinto de calles y debe tratar de conseguir las banderas repartidas
por el escenario mientras huye de los vehículos enemigos que le persiguen, haciendo
uso del lanzador de humo que permite despistarlos por unos instantes.
Este juego tenía muchas similitudes con el juego Pac-Man (compartían la misma
placa) por lo que en realidad se puede considerar un arcade de laberintos, ya que
el control del coche se limitaba a movimientos en giros de 90o.

43

Se pensó que sería una buena idea adaptar este juego ya que las banderas
podrían representar eventos �jos del sistema VESPA y los vehículos enemigos
representarían eventos móviles. Sin embargo, se decidió modi�car otros aspectos
para adecuarlo al tiempo actual.
De esta manera se cambió el control del vehículo de forma que ahora podría realizar
giros de cualquier ángulo, pudiendo tomar una trayectoria más cerrada cuanto
menos fuera la velocidad a la que circulase.
Otra modi�cación fue sustituir el laberinto sobre el que se circulaba por escenarios
reales obtenidos a través del sistema de mapas OpenStreetMap.
Éstos fueron los objetivos de la primera iteración del juego.

A continuación se muestra el trabajo realizado en las diferentes iteraciones:

1a iteración: se tomó como base un tutorial de realización del clásico Space
Invaders en Java1 y la lectura del libro Developing Games in Java [4], lo cual
aportó los conocimientos básicos sobre la estructura de un juego, el pintado
o la inclusión de sonidos. La inteligencia arti�cial usada para los vehículos
enemigos era muy básica ya que se cometió el error de tratar de realizarla
partiendo desde cero.

2a iteración: consistió en añadir la capacidad de que participen varios ju-
gadores a través de la red. Para ello se buscó información sobre las arquitec-
turas de red usadas habitualmente en videojuegos y se llegó a la conclusión
de que una arquitectura del tipo cliente-servidor con predicción en cliente
era la idónea, contando con la suerte de que este tipo de arquitectura era
la más habitualmente utilizada y se disponía de su�ciente documentación al
respecto proveniente de los juegos Quake3 y Half-Life, los cuales fueron los
pioneros en usarla.
Esta iteración fue una de las más costosas ya que a pesar de los artículos
publicados al respecto, había aspectos insu�cientemente documentados.

3a iteración: el objetivo fue convertir el juego, realizado hasta ahora con un
único hilo de ejecución (exceptuando el sonido), en multi-hilo, de forma que
cada actor tuviera su propio hilo de ejecución. Esto aparentemente entraba
en con�icto con la técnica de predicción usada en la arquitectura de red,
pero sin embargo no fue así, ya que esa técnica se desarrollaba en el cliente,
y en éste no tenía sentido una implementación multi-hilo de los actores ya
que éstos no realizaban tarea alguna más allá del pintado. De esta forma se
realizó una implementación multi-hilo en el servidor y de un único hilo (más

1http://balusoft.wordpress.com/2010/09/26/creando-un-space-invaders-con-

java/

44

http://balusoft.wordpress.com/2010/09/26/creando-un-space-invaders-con-java/
http://balusoft.wordpress.com/2010/09/26/creando-un-space-invaders-con-java/

los del sonido) en el cliente, ya que este último no dejaba de ser un mero
terminal de E/S con algunas capacidades extra.
También se mejoró la representación visual, añadiendo nuevos tipos de te-
rreno como diferentes tipos de caminos (utilizando los diferentes tipos exis-
tentes en OpenStreetMap) o los edi�cios, y se modi�có el sistema de detección
de colisiones con el terreno.

4a iteración: como se ha mencionado anteriormente, la inteligencia desa-
rrollada para el manejo de los vehículos no humanos era muy básica y nada
extensible, por lo que el objetivo de esta iteración consistió en rehacer di-
cha inteligencia. Vistos los resultados del intento de realizar la inteligencia
desde cero, se decidió usar los diferentes comportamientos desarrollados en
el artículo Steering Behaviors For Autonomous Characters [17], que permi-
tían construir comportamientos complejos a partir de ellos y consistían en
una aproximación basada en la diferencia entre el vector de trayectoria del
vehículo y el vector hasta el punto objetivo deseado.
Fue en este momento cuando se vio la necesidad de añadir más vehículos
controlados por el ordenador: los vehículos del trá�co, que servirían para re-
transmitir los eventos VESPA además de para aportar más �vida� al escena-
rio, y las ambulancias, como generador de eventos VESPA del tipo �servicio
de emergencia�.

5a iteración: hasta este momento el juego no contaba con un sistema de
menús y al ejecutarlo ya comenzaba la partida en un mapa pre�jado que se
había obtenido manualmente desde el sitio web de OpenStreetMap. Por ese
motivo esta iteración consistió en dotar al juego de un sistema de pantallas
de menú que permitiese con�gurar diversos aspectos de la partida y permitir
un método de añadir nuevos escenarios desde dentro del propio juego. Para
esto último, se desarrolló la estructura necesaria para el almacenamiento de
los escenarios descargados, ya que se consideró que los escenarios descargados
debían permanecer disponibles para futuras ejecuciones de la aplicación.

6a iteración: consistió en implementar diferentes modos de juego que se
acababan de de�nir en la reunión, para dotar mayor variedad al juego y lograr
modos de juego con mayor diversión. Fue entonces cuando se implementaron
los �lugares de interés�, direcciones y negocios reales que serían utilizados
como objetivo a alcanzar en la partida, en lugar de las banderas, y también
se implementó la funcionalidad de poder salir del vehículo y avanzar a pie.

7a iteración: consistió en la implementación de una versión simpli�cada del
sistema VESPA, añadiendo además todo lo necesario al juego para permitir
su uso, como el radar en el que se mostrarían los eventos. Al �nal de esta

45

iteración se mostró el trabajo realizado hasta el momento al profesor Thierry
Delot (del proyecto VESPA), realizando una presentación en inglés en la
que se anotaron diversas posibles mejoras, que serían implementadas en la
siguiente iteración.

8a iteración: se inició tras una reunión en la que se había realizado una
prueba con los tutores del juego y se de�nieron multitud de ajustes y cam-
bios de mayor calado que debían realizarse, además de nuevas características
consideradas de interés. Se dedicó toda la iteración a realizar estos cambios.
Fue aquí cuando se añadieron características como la cámara de muerte (per-
mite a los jugadores muertos ver la visión del resto de jugadores para que la
espera no sea aburrida) o el menú de pausa.

9a iteración: se desarrolló la implementación completa del sistema VESPA,
sustituyendo a la versión simpli�cada que se había estado usando previamen-
te. Esta iteración fue muy costosa, ya que fue necesaria la lectura de diversos
artículos de VESPA para la comprensión del sistema, y en la implementación
se contaba con el código fuente de una versión no �nal del simulador desarro-
llado para VESPA, el cuál contaba con varios errores por lo que fue necesario
revisar detalladamente todo el código antes de poder usar las funciones que
contenía.

10a iteración: En este momento, con el sistema VESPA ya implementado,
se decidió avanzar en la explotación del juego como método de evaluación de
dicho sistema, comenzando la realización del artículo �nalmente presentado
en IMMoA'13 2. Para ello, se vio necesaria una última iteración en la que
se incluyera un nuevo modo de juego consistente en realizar aparcamientos,
para facilitar la toma de muestras de tiempos de aparcamiento, análisis en el
cuál se iba a centrar dicho artículo. También fue en este momento cuando se
implementó el sistema de atascos, aunque no se llegó a usar para el artículo.

Como se puede comprobar a continuación, se han cumplido todos los objetivos
marcados inicialmente en la propuesta del Proyecto Fin de Carrera.

Se ha desarrollado un videojuego de coches, que cuenta con vehículos con-
trolados por el ordenador mediante la inteligencia arti�cial elaborada, y con
otros vehículos controlados por jugadores humanos, los cuales se unen a la
partida a través de la red.

Los escenarios utilizados para las partidas están creados con datos reales
obtenidos del sistema cartográ�co OpenStreetMap.

2http://www.dbis.rwth-aachen.de/IMMoA2013/

46

http://www.dbis.rwth-aachen.de/IMMoA2013/

Estos escenarios pueden ser añadidos al juego de forma sencilla desde el
sistema de menús, indicando una localización a través de unas palabras clave
(la dirección) y seleccionando el tamaño del área a descargar.

Se ha de�nido una interfaz que permite utilizar en el juego sistemas de gestión
de información, siendo implementado el sistema VESPA.

Además, conjuntamente a lo realizado en este proyecto, se ha presentado un
artículo (ver anexo E) al workshop IMMoA'13, el cual ha sido realizado en con-
junción con los directores del proyecto Sergio Ilarri y Eduardo Mena.

4.2. Línea temporal de la realización del proyecto

Como ya se ha comentado anteriormente, el desarrollo del proyecto se ha reali-
zado siguiendo una metodología de desarrollo basado en iteraciones. En esta sección
se analizará el tiempo dedicado a cada iteración (tabla 4.2 y �gura 4.2) así como
la visión global dividiendo el tiempo en reuniones, investigación/análisis/diseño,
implementación/pruebas y memoria (tabla 4.1 y �gura 4.1).

Hay que tener en cuenta que cada iteración consiste no solo de implementación
sino también de la investigación, el análisis, el diseño y las pruebas realizadas.
Por ese motivo la duración mostrada en la tabla 4.2 se incluye en los apartados
�investigación/análisis/diseño� e �implementación/pruebas� de la tabla 4.1.

También se muestra en la �gura 4.3 el cronograma del desarrollo de las dife-
rentes iteraciones. Como se puede observar, la extensión temporal de las diferentes
iteraciones di�eren con el valor mostrado en la columna �Duración�. Esto es así
debido a la superposición de la realización del proyecto con diversas activida-
des laborales y también con la realización del artículo presentado en el workshop
IMMoA'13 .

Tarea Horas

Reuniones 27
Investigación/Análisis/Diseño 136
Implementación/Pruebas 497
Medidas de tiempos (Explotación) 51
Memoria 172

Total 883

Tabla 4.1: Separación de horas por tipo de trabajo

47

Iteración Descripción Horas

1 Rally-X, OSM, inteligencia basica 59
2 Red 105
3 Multi-hilo, terrenos, mejora visual 72
4 Inteligencia avanzada 73
5 Menús, gestión escenarios 24
6 Modos de juego 73
7 VESPA simple 21
8 Menú de pausa, cámara de muerte y

múltiples correcciones
79

9 VESPA completo 51
10 Mejoras para explotación 76

Total 633

Tabla 4.2: Separación de horas por iteración

Figura 4.1: Porcentaje de horas de cada tipo de tarea

48

Figura 4.2: Porcentaje de tareas de cada iteración

Figura 4.3: Cronograma del desarrollo de las diferentes iteraciones. Se han marcado
en naranja los periodos de nula dedicación.

49

4.3. Trabajo futuro

A continuación se proponen algunas posibles mejoras futuras, que se pueden
dividir en varias temáticas: red, rendimiento, VESPA, IA y otros.

Sobre aspectos de red

Usar la Codi�cación Hu�man como método de comprimir los paquetes de
red, al igual que se hace en el juego Quake3 y el motor Source [13].

Cambiar el uso del TCP �asíncrono� usado para el envío de datos fuera de
orden por el protocolo UDP con características de reliability implementadas.
Este cambio es muy deseable ya que durante la redacción de esta memoria,
revisando artículos de las fuentes, se descubrió un problema de usar los pro-
tocolos TCP y UDP simultaneamente que había pasado desapercibido.
Todos los artículos relacionados con los aspectos de la comunicación en red
recomendaban encarecidamente usar el protocolo UDP (por los motivos co-
mentados en el Capítulo 2.8.1) y además mencionaban que mezclar el uso de
TCP y UDP podía causar problemas de sincronización [9].
Después de haber leído esos artículos se desarrolló el envío de paquetes de
red durante el game loop mediante el protocolo UDP y en la inicialización
y �nalización (ver Anexo B.5), en las que era la �abilidad y no la veloci-
dad lo primordial, mediante el protocolo TCP. Tiempo después, durante la
optimización del código de red para reducir la cantidad de datos a enviar,
sin recordar las advertencias de los artículos acerca de mezclar ambos proto-
colos, se ideó que ciertos datos que se enviaban solo cada mucho tiempo se
enviasen por TCP para lograr así una ligera mejora en el tamaño de los pa-
quetes enviados en cada ciclo. Los elementos que se decidió enviar por TCP
son: las puntuaciones, la explicación de la ronda y los mensajes durante la
partida (a veces referidos en este documento como mensajes GUI). Durante
la revisión de los artículos de la bibliografía realizada durante la preparación
de este documento se recordó la advertencia del peligro del uso de ambos
protocolos simultáneamente, e investigando más sobre el asunto se descu-
brió un artículo [19] en el que se explicaba que al estar ambos protocolos
implementados sobre la capa IP, el uso de TCP tiende a inducir pérdida de
paquetes en UDP.
Es por esta razón que se debe cambiar de nuevo el envío de esos tres ele-
mentos que actualmente se realiza mediante TCP para volverlo a realizar en
los paquetes �Snapshot� UDP o seguir con el diseño actual pero cambian-
do el uso de TCP por UDP e incorporar funcionalidades que garanticen la
�abilidad de los envíos.

50

Sobre aspectos del rendimiento

Implementar un método que posibilite calcular el rendimiento del ordenador,
para por ejemplo decidir de forma autónoma los parámetros más apropiados
para la partida o el uso o no de las pantallas estáticas mencionadas en el
punto anterior. Una forma de realizar esta funcionalidad podría ser ejecutar
un proceso pesado y medir el tiempo utilizado.

Disponer de diferentes resoluciones grá�cas, prede�nidas de antemano y se-
leccionables por el usuario.

Sobre VESPA

Realizar el cálculo de la Encounter Probability (EP) mediante el uso de mapas
digitales en lugar de mapas geográ�cos.

Usar la implementación real de VESPA como implementación de los interfa-
ces, en lugar de hacer uso de la interfaz desarrollada para el juego.

Hacer una vista general del juego donde se vea todo el área de juego en mi-
niatura de forma que se pueda observar el comportamiento de VESPA (cómo
se envían los eventos, quien los reenvía, etc.). Esta vista general se visualiza-
ría desde un cliente especial que se conectase al servidor. Una funcionalidad
adicional podría ser que se pudiera grabar la secuencia para posteriormente
poder revisionarlo como si de un vídeo se tratara.

Realizar una metodología para automatizar la recogida y procesado a gran
escala de los �cheros de estadísticas de explotación, así como realizar una
evaluación en otros escenarios (con otros tipos de eventos, etc.). Esta exten-
sión podría ser objeto de un Proyecto Fin de Carrera que continuara con el
trabajo en este sentido.

Sobre la IA

Dividir el escenario en regiones para mejorar el rendimiento del algoritmo de
detección de colisiones (para que compruebe las posibles colisiones solo con
los elementos del terreno de tu región) y del algoritmo que averigua cuál es
tu nodo más cercano (usado por la IA).

Hacer que los vehículos del trá�co respeten los sentidos de circulación en los
caminos de doble sentido. Para lograr este objetivo, el algoritmo de path-
�nding debe poder diferenciar los sentidos de las calles (ya está así hecho)
y se debe idear algún método para que el vehículo circule siempre próximo

51

al borde derecho del camino. Un problema que se encontraría sería que al
reducirse a la mitad el espacio por el que circulan, podrían surgir problemas
de maniobrabilidad de la inteligencia de los vehículos.
Otra posibilidad sería utilizar un comportamiento similar al Flow �eld follo-
wing descrito en [17], para asegurar que en cada mitad del camino la �fuerza�
que guiará a los vehículos sea en distinto sentido.

Otros aspectos

Actualmente cada tipo de terreno tiene asociadas unas propiedades (infran-
queable, ralentizar, causar daño, etc.). Sería deseable poder controlar las
propiedades que tendrá cada terreno según un �chero de texto de con�gura-
ción.

Mostrar textos con colores y formato, en lugar de texto plano, en los textos
durante el juego. Por ejemplo para mostrar el color de un equipo en los
mensajes GUI o en la explicación de la ronda. Para lograr esta función se
podría usar la clase AttributedText.

Actualmente, las unidades de medida espacio-tiempo en torno a las cuales
está diseñado el juego son los pixeles, los ciclos de juego y en menor medida
los segundos. Se han utilizado éstas por motivos de sencillez pero sería con-
veniente cambiarlo de modo que se usen únicamente las respectivas unidades
del S.I (metros y segundos). De esta forma garantizaríamos que la velocidad
de los vehículos sea la misma aunque la velocidad del juego (FPS) disminuya.

Usar SandMark 3 para ofuscar el código fuente del juego y así di�cultar que
se puedan hacer trampas en el juego.

Hacer que la música de la partida cambie dinámicamente según la situación
actual. Por ejemplo una música con un ritmo más rápido en situaciones de
peligro. En [4] se muestra un método de crear música adaptativa mediante
el uso de músicas MIDI.

Sería recomendable que existiese una interfaz web con un diseño similar a los
menús del juego desde la que se pudiesen modi�car remotamente los �cheros
�con�g� y �paramCon�g.txt� del servidor dedicado.

3http://sandmark.cs.arizona.edu/

52

http://sandmark.cs.arizona.edu/

4.4. Valoración personal

El trabajo realizado ha sido muy satisfactorio, ya que me ha permitido cumplir
el deseo de elaborar enteramente un videojuego, y además me ha aportado muchos
conocimientos íntimamente ligados a dicho ámbito, así como muchos otros que
seguro me son de gran utilidad en el ejercicio de mi carrera profesional.

Durante la elaboración de este Proyecto Fin de Carrera me encontré con di-
versas di�cultades que me supusieron un empleo de tiempo mayor de lo esperado.
Las más importantes fueron:

(1) la comprobación de que la implementación de VESPA desarrollada fun-
cionaba de forma correcta,

(2) la adaptación del cálculo de la Encounter Probability (EP) de VESPA
a partir del simulador, poco documentado, enteramente en francés, y con
varios fallos (que costó encontrar) ya que no se trataba de la versión �nal, y
la más importante,

(3) el empleo de mucho tiempo de análisis, diseño e implementación de aspec-
tos y características que en siguientes iteraciones se terminaron descartando,
como por ejemplo buscar la forma de que el sonido del motor del coche fuera
dinámico (con cambios de las marchas) o tratar el problema de los edi�cios
que invadían la calzada y que di�cultaban los algoritmos de la IA).

A estas di�cultades habría que añadir la excesiva dilatación en el tiempo de la
realización del proyecto, y su amplitud, que en ocasiones hacía difícil mantener la
visión del conjunto, a pesar de la documentación desarrollada.

Debido a estas di�cultades y a la cantidad de errores iniciales a causa de la
poca documentación existente acerca de algunos temas, en los que fui aprendiendo
a base de errores, el proyecto se dilató excesivamente en el tiempo y hubo algunos
momentos en los que me planteé si la elección del proyecto había sido acertada,
pero la motivación que me suponía realizar un videojuego y el apoyo de mis tutores
me permitió sobrellevar esos momentos de desánimo.

A pesar de esto, considero muy útil toda mi experiencia en la realización del
proyecto, tanto por lo aprendido como por lo trabajado, y me ha supuesto una
gran satisfacción personal ver la evolución del desarrollo del videojuego hasta lo
que es ahora.

53

54

Bibliografía

[1] J. E. Michael Behrisch, Laura Bieker, and D. Krajzewicz. SUMO � Simulation
of Urban MObility: An overview. In The Third International Conference on
Advances in System Simulation (SIMUL'11), pages 63�68. IARIA, 2011.

[2] Yahn W. Bernier. Latency Compensating Methods in Client/Server In-
game Protocol Design and Optimization. In Game Developers Conferen-
ce, 2001. Available at http://web.cs.wpi.edu/~claypool/courses/4513-
B03/papers/games/bernier.pdf.

[3] Benedikt Bitterli. A Verlet based approach for 2D game phy-
sics. http://www.gamedev.net/page/resources/_/technical/math-and-

physics/a-verlet-based-approach-for-2d-game-physics-r2714. Last
accessed August 23, 2013.

[4] David Brackeen, Bret Barker, and Lawrence Vanhelsuwe. Developing Games
in Java. New Riders Publishing, 2003.

[5] N. Cenerario, T. Delot, and S. Ilarri. A Content-Based Dissemination Protocol
for VANETs: Exploiting the Encounter Probability. IEEE Transactions on
Intelligent Transportation Systems, 12(3):771�782, 2011.

[6] T. Delot and S. Ilarri. Data gathering in vehicular networks: The VESPA
experience (invited paper). In Fifth IEEE Workshop On User MObility and
VEhicular Networks (LCN ON-MOVE 2011), pages 801�808. IEEE Computer
Society, 2011.

[7] T. Delot, S. Ilarri, S. Lecomte, and N. Cenerario. Sharing with caution:
Managing parking spaces in vehicular networks. Mobile Information Systems,
9(1):69�98, 2013.

[8] S. Esper, S. R. Foster, and W. G. Griswold. On the nature of �res and how
to spark them when you're not there. In 44th ACM Technical Symposium on
Computer Science Education (SIGCSE'13), pages 305�310. ACM, 2013.

55

http://web.cs.wpi.edu/~claypool/courses/4513-B03/papers/games/bernier.pdf
http://web.cs.wpi.edu/~claypool/courses/4513-B03/papers/games/bernier.pdf
http://www.gamedev.net/page/resources/_/technical/math-and-physics/a-verlet-based-approach-for-2d-game-physics-r2714
http://www.gamedev.net/page/resources/_/technical/math-and-physics/a-verlet-based-approach-for-2d-game-physics-r2714

[9] Glenn Fiedler. UDP vs. TCP. http://gafferongames.com/networking-

for-game-programmers/udp-vs-tcp/. Last accessed August 23, 2013.

[10] Glenn Fiedler. What every programmer needs to know about game networ-
king. http://gafferongames.com/networking-for-game-programmers/

what-every-programmer-needs-to-know-about-game-networking/. Last
accessed August 23, 2013.

[11] J. Harri, F. Filali, C. Bonnet, and M. Fiore. VanetMobiSim: Generating
realistic mobility patterns for VANETs. In Third International Workshop on
Vehicular Ad Hoc Networks (VANET'06), pages 96�97. ADM, 2006.

[12] Brian Hook. Introduction to Multiplayer Game Program-
ming. http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/

IntroductionToMultiplayerGameProgramming. Last accessed August 23,
2013.

[13] Brian Hook. The Quake3 networking model. http://trac.bookofhook.com/
bookofhook/trac.cgi/wiki/Quake3Networking. Last accessed August 23,
2013.

[14] M. Lehn, C. Leng, R. Rehner, T. Triebel, and A. Buchmann. An online
gaming testbed for peer-to-peer architectures. ACM SIGCOMM Computer
Communication Review, 41(4):474�475, 2011.

[15] R. Mangharam, D. S. Weller, and R. Rajkumar. GrooveNet: A hybrid si-
mulator for vehicle-to-vehicle networks. In Second International Workshop
Vehicle-to-VehicleCommunications (V2VCOM'06), pages 1�8, 2006.

[16] M. Piorkowski, M. Raya, A. L. Lugo, P. Papadimitratos, M. Grossglauser,
and J.-P. Hubaux. TraNS: Realistic joint tra�c and network simulator for
VANETs. SIGMOBILE Mobile Computing and Communications Review,
12(1):31�33, 2008.

[17] Craig Reynolds. Steering behaviors for autonomous characters. In Game
Developers Conference, pages 763�782, 1999.

[18] Fabien Sanglard. Quake Engine code review. http://fabiensanglard.net/
quakeSource/quakeSourcePrediction.php. Last accessed August 23, 2013.

[19] Hidenari Sawashima. Characteristics of UDP Packet Loss: E�ect of TCP Traf-
�c. http://www.isoc.org/INET97/proceedings/F3/F3_1.HTM. Last acces-
sed August 23, 2013.

56

http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://fabiensanglard.net/quakeSource/quakeSourcePrediction.php
http://fabiensanglard.net/quakeSource/quakeSourcePrediction.php
http://www.isoc.org/INET97/proceedings/F3/F3_1.HTM

[20] C. Sommer, R. German, and F. Dressler. Bidirectionally coupled network
and road tra�c simulation for improved IVC analysis. IEEE Transactions on
Mobile Computing, 10(1):3�15, 2011.

[21] Nguonly Taing. TCP UDP and RMI Performance Evaluation. http://lycog.
com/performance-evaluation/tcp-udp-rmi-performance-evaluation/.
Last accessed August 23, 2013.

[22] VALVE. Source Multiplayer Networking. https://developer.

valvesoftware.com/wiki/Source_Multiplayer_Networking. Last acces-
sed August 23, 2013.

[23] L. von Ahn and L. Dabbish. Labeling images with a computer game. In SIG-
CHI Conference on Human Factors in Computing Systems (CHI'04), pages
319�326. ACM, 2004.

[24] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. reCAPT-
CHA: Human-based character recognition via web security measures. Science,
321(5895):1465�1468, 2008.

[25] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner. mCrowd: A
platform for mobile crowdsourcing. In Seventh ACM Conference on Embedded
Networked Sensor Systems (SenSys'09), pages 347�348. ACM, 2009.

57

http://lycog.com/performance-evaluation/tcp-udp-rmi-performance-evaluation/
http://lycog.com/performance-evaluation/tcp-udp-rmi-performance-evaluation/
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

58

Anexos

59

Anexo A

Análisis

Para la elaboración de este Proyecto Fin de Carrera se ha seguido una metodo-
logía de desarrollo basada en diferentes iteraciones del producto, de forma que en
cada reunión se establecían los objetivos del siguiente prototipo. Debido a que se
realizaron muchas iteraciones con relativamente pocos cambios entre ellas, en este
anexo se muestran únicamente los diferentes aspectos del análisis correspondiente
a la última iteración (salvo que se indique lo contrario).

A.1. Requisitos

A continuación se muestran los requisitos de la última iteración del juego.

1. Generales

R1.1. La aplicación se tratará de un juego de coches

R1.2. Podrán jugar varios usuarios en una misma partida a través de la red

R1.3. Se elaborarán diversos modos de juego (pruebas de carácter competi-
tivo)

R1.4. Se elaborará una IA para el control de los vehículos no humanos

2. Jugabilidad

R2.1. Se tomará como base para el juego el clásico videojuego Rally-X (Nam-
co 1980)1

R2.1.1. Existirán vehículos enemigos que nos persigan

1http://en.wikipedia.org/wiki/Rally-X

61

http://en.wikipedia.org/wiki/Rally-X

R2.1.2. Existirán banderas que haya que recolectar

R2.1.3. Los jugadores podrán hacer uso de �bombas de humo� que
despistarán a los enemigos

R2.1.4. Los jugadores tendrán una cantidad de combustible limitada
que se recargará conforme se avance de nivel

R2.1.5. Los jugadores tendrán una cantidad de salud limitada que se
recargará conforme se avance de nivel

R2.1.6. El juego dispondrá de diversos niveles en los que se irá avan-
zando hasta ser eliminado

R2.2. Se añadirán elementos para demostrar las ventajas del uso de VANETs

R2.2.1. Existirán otros vehículos no humanos cumpliendo la función de
trá�co

R2.2.2. Existirán plazas de aparcamiento en las cuales podrán aparcar
tanto los vehículos del trá�co como los jugadores

R2.2.3. Existirán vehículos de servicios de emergencia

R2.3. El jugador podrá abandonar el vehículo y avanzar andando

R2.4. El jugador, mientras esté muerto, podrá mover la cámara libremente
por el escenario o ver lo que hacen los otros jugadores, con el objetivo de
amenizar la espera hasta que sea revivido

3. Escenarios

R3.1. Se podrá jugar en diferentes escenarios reales

R3.2. Los escenarios se obtendrán mediante un servicio de mapas online

R3.2.1. Los escenarios se obtendrán a través del servicio OpenStreetMap

R3.3. Se podrán previsualizar los escenarios descargados

R3.4. Se almacenarán y consultarán localmente los mapas y las imágenes de
previsualización de los mismos

62

4. Interfaz

R4.1. Todos los textos del juego se elaborarán en inglés

R4.1. La navegación por los menús de la aplicación se realizará mediante una
interfaz grá�ca

R4.2. El usuario podrá crear una partida nueva

R4.3. El usuario podrá unirse a una partida en red

R4.4. El usuario podrá gestionar los mapas almacenados: añadir, previsuali-
zar y eliminar

R4.5. El juego dispondrá de música tanto durante la navegación por los
menús como durante la partida

R4.6. El usuario podrá subir y bajar el volumen de música, así como también
desconectarla

R4.7. Se creará una pantalla en la que se indiquen datos sobre el autor,
los directores del proyecto y se agradezcan los usos de librerías y melodías
utilizadas.

R4.8. Existirán varias con�guraciones de di�cultad cerradas: alta, media y
baja

R4.9. Se noti�cará a los demás jugadores cuando un jugador se haya desco-
nectado

R4.10. Se mostrará una barra de progreso durante el proceso de carga de la
partida

5. VANETs

R5.1. Se permitirá la integración en el juego de un sistema de gestión de
datos (VANET)

R5.2. En concreto, se integrará el sistema VESPA

R5.3. Se permitirán simular situaciones reales en las que se puedan evaluar
el efecto que podría tener la utilización de un sistema de gestión de datos

R5.4. Se de�nirán los �interfaces� Java básicos (o clases abstractas) necesa-
rias para desde el videojuego poder interaccionar con VESPA

63

R5.5. Se implementará una instanciación de dichos interfaces para poder
probar VESPA en el juego

6. Entorno

R6.1. La aplicación se realizará sobre Java

R6.2. La aplicación podrá ejecutarse como aplicación de escritorio y también
como Applet

R6.3. La aplicación debe funcionar en Windows XP, Linux y Mac OS X

7. Técnicas

R7.1. Se usará el protocolo UDP para la comunicación habitual entre el
cliente y el servidor

R7.2. El cliente y el servidor estarán acoplados en una sola entidad, de forma
que el jugador solo tenga que abrir una instancia para poder jugar

R7.3. La aplicación será multi-hilo

8. Otros

R8.1. El comportamiento de los vehículos no humanos, la IA del juego, de-
berá estar completamente aislado de todo lo demas, de forma que se pueda
cambiar el comportamiento incluso sin reprogramar nada o muy poco (de-
pende del cambio)

R8.2. El usuario se podrá unir a la partida sobre la marcha, durante el
trascurso de una partida

A.2. Casos de uso

En esta sección se mostrarán los diagramas de casos de usos analizados.
El análisis se ha dividido entre, por un lado, la navegación por los menús hasta

iniciar la partida (�gura A.1) y por otro lado la partida en sí.
Además, el análisis de la partida se ha separado en diferentes diagramas: uno
general (�gura A.2), en el que se han simpli�cado todas las acciones del jugador y
otros en los que se detallan dichas acciones según el modo de juego escogido.

64

Modificar

configuración

avanzada

VESPA

Navegación menús

Modificar

configuración

VESPA

Modificar

configuración de

red (creación)

Eliminar mapa

Visualizar mapa

Añadir mapa

Gestionar

mapas

Modificar

reglas

Configurar

creación

partida

Crear una

partida nueva

Modificar

configuración

de red (unión)

Configurar unión

a partida

Unirse a una

partida

existente

Modificar

directorio de

juego

Modificar

volumen

música

Modificar

volumen

efectos

Modificar

controles

Modificar

opciones

Ver créditos

Usuario

<<Extend>>

<<Extend>>
<<Extend>>

<<Extend>>

<<Extend>>

<<Extend>><<Extend>>

<<Extend>>

<<Include>>

<<Extend>><<Include>>

<<Extend>>

<<Extend>>

<<Extend>>
<<Extend>>

Figura A.1: Casos de uso: navegación menús

65

Cuando se

supera el

tiempo límite

por ronda se

finaliza la

partida

Reloj

Juego (simplificado)

Usuario ajeno

Siguiente ronda

Lograr objetivo

Finalizar partida

Abandonar

Ver controles

Modificar volumen

Sacar menú

Realizar acción

Unirse a partida

Iniciar partida

Usuario anfitrión

<<Include>>

<<Extend>>

<<Extend>>

<<Extend>>

<<Extend>>

<<Extend>>

<<Extend>>

<<Extend>>

Figura A.2: Casos de uso: partida

Reincorporarse

Capturar

bandera

Realizar acción

Usuario

Echar humo

Aparcar

Lograr objetivo

Mover

<<Extend>>

<<Extend>>

Figura A.3: Casos de uso: detalle del modo de juego �capture the �ags�

66

Reincorporarse

Usuario

Echar humo

Aparcar

Lograr objetivo

Mover

Dañar

Realizar acción

<<Extend>>

<<Extend>>

Figura A.4: Casos de uso: detalle del modo de juego �capture the red cars�

Reincorporarse
Entrar al

vehículo

Salir del

vehículo

Usuario

Echar humo

Aparcar

Lograr objetivo

Mover

Realizar acción

<<Include>>

<<Extend>>

<<Extend>>

<<Extend>>

Figura A.5: Casos de uso: detalle del modo de juego �solve the task� y �task
endurance survival�

67

Reincorporarse
Entrar al

vehículo

Salir del

vehículo

Echar humo

Aparcar

Lograr objetivo
Mover

Usuario

Realizar acción

<<Include>>

<<Extend>>

<<Extend>>

Figura A.6: Casos de uso: detalle del modo de juego �parking special mode�

68

Menús

Nombre: Ver créditos
Descripción: El usuario visualiza la pantalla que contiene información

sobre el juego, el autor y sobre VESPA
Precondiciones: El usuario se encuentra en la pantalla �inicial� del menú
Postcondiciones: El usuario se encuentra en la pantalla �inicial� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla �créditos�

2. El sistema muestra la pantalla �créditos� al usuario
3. El usuario demanda volver a la pantalla anterior

Nombre: Modi�car opciones
Descripción: El usuario visualiza la pantalla que permite cambiar la con-

�guración del volumen, controles y directorio de juego.
Precondiciones: El usuario se encuentra en la pantalla �inicial� del menú
Postcondiciones: El usuario se encuentra en la pantalla �inicial� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla �créditos�

2. El sistema muestra la pantalla �opciones� al usuario
3. El usuario realiza las modi�caciones deseadas a la con�-
guración
4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 3a. El usuario desea modi�car el volumen de la música
1. Caso de uso �Modi�car volumen música�

3b. El usuario desea modi�car el volumen de los efectos
1. Caso de uso �Modi�car volumen efectos�

3c. El usuario desea modi�car el directorio de juego
1. Caso de uso �Modi�car volumen efectos�

3d. El usuario desea modi�car los controles
1. Caso de uso �Modi�car controles�

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados

Nombre: Modi�car controles
Descripción: El usuario visualiza la pantalla que permite visualizar y

modi�car los controles del juego.
Precondiciones: El usuario se encuentra en la pantalla �opciones� del menú

�continúa en la siguiente página�

69

�continúa de la página anterior�
Postcondiciones: El usuario se encuentra en la pantalla �opciones� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla �controles�

2. El sistema muestra la pantalla �controles� al usuario
3. El usuario realiza las modi�caciones deseadas a la con�-
guración
4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto

1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modi�car volumen música
Descripción: El usuario modi�ca el volumen de la música del juego.
Precondiciones: El usuario se encuentra en la pantalla �opciones� del menú
Postcondiciones: El usuario se encuentra en la pantalla �opciones� del menú
Flujo normal: 1. El usuario realiza las modi�caciones deseadas a la con�-

guración

Nombre: Modi�car volumen efectos
Descripción: El usuario modi�ca el volumen de los efectos del juego.
Precondiciones: El usuario se encuentra en la pantalla �opciones� del menú
Postcondiciones: El usuario se encuentra en la pantalla �opciones� del menú
Flujo normal: 1. El usuario realiza las modi�caciones deseadas a la con�-

guración

Nombre: Modi�car directorio de juego
Descripción: El usuario elige en qué carpeta se guardarán los datos del

juego.
Precondiciones: El usuario se encuentra en la pantalla �opciones� del menú
Postcondiciones: El usuario se encuentra en la pantalla �opciones� del menú
Flujo normal: 1. El usuario demanda la carga de la ventana emergente de

selección de archivos
2. El sistema muestra la pantalla emergente de selección de
archivos al usuario
�continúa en la siguiente página�

70

�continúa de la página anterior�
3. El usuario elige la carpeta deseada
4. El usuario demanda volver a la pantalla anterior acep-
tando los cambios

Flujo alternativo: 4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

cancelando los cambios realizados

Nombre: Unirse a una partida existente
Descripción: El usuario se une a una partida en red en curso
Precondiciones: El usuario se encuentra en la pantalla �inicial� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla �unirse�

2. El sistema muestra la pantalla �unirse� al usuario
3. Caso de uso �Con�gurar unión a partida�
4. El usuario demanda unirse a la partida seleccionada
5. El sistema muestra al usuario la pantalla en la que apa-
rece información de la partida en curso y sus jugadores.
6. El usuario selecciona a qué equipo unirse.
7. El usuario demanda incorporarse a la partida.
8. El sistema cierra el sistema de menús e incorpora al
jugador a la partida en curso.

Flujo alternativo: 3a, 4a, 6a, 7a. El usuario desea volver a la pantalla anterior
1. El usuario demanda volver a la pantalla anterior

cancelando los cambios realizados
5a, 8a. La partida no existe o está completa o no se tiene
su�ciente pericia para unirte

1. El sistema muestra al usuario una pantalla de error
indicándole los motivos del mismo

2. El usuario vuelve a la pantalla �inicial� del menú

Nombre: Con�gurar unión a partida
Descripción: El usuario con�gura los parámetros básicos de unión a la

partida: IP, apodo, activación del DMS
Precondiciones: El usuario se encuentra en la pantalla �unirse� del menú
Postcondiciones: El usuario se encuentra en la pantalla �unirse� del menú
Flujo normal: 1. El usuario modi�ca los parámetros deseados
Flujo alternativo: 1a. El usuario desea volver a la pantalla anterior

1. El usuario demanda volver a la pantalla anterior
�continúa en la siguiente página�

71

�continúa de la página anterior�
cancelando los cambios realizados

1b. El usuario desea modi�car los parámetros avanzados:
con�guración de red

1. Caso de uso �Modi�car con�guración de red (unión)�

Nombre: Modi�car con�guración de red (unión)
Descripción: El usuario con�gura los parámetros avanzados de unión a

la partida: puerto del an�trión y puerto local.
Precondiciones: El usuario se encuentra en la pantalla �unirse� del menú
Postcondiciones: El usuario se encuentra en la pantalla �unirse� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla de con�gu-

ración avanzada de red (en unión)
2. El sistema muestra dicha pantalla al usuario.
3. El usuario modi�ca los parámetros deseados
4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto

1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Crear una partida nueva
Descripción: El usuario se inicia una nueva partida
Precondiciones: El usuario se encuentra en la pantalla �inicial� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla �iniciar�

2. El sistema muestra la pantalla �iniciar� al usuario
3. Caso de uso �Con�gurar creación partida�
4. El usuario demanda comenzar la partida
5. El sistema cierra el sistema de menús e incorpora al
jugador a la partida que se crea.

Flujo alternativo: 3a, 4a. El usuario desea volver a la pantalla anterior
1. El usuario demanda volver a la pantalla anterior

cancelando los cambios realizados
�continúa en la siguiente página�

72

�continúa de la página anterior�
5a. La con�guración seleccionada no es compatible o el apo-
do no es válido o no se ha seleccionado ningún mapa o el
usuario no tiene pericia su�ciente para crear este tipo de
partida

1. El sistema muestra al usuario una ventana emergente
de error indicándole los motivos del mismo

2. Se continúa en el paso 3 del �ujo normal.

Nombre: Con�gurar creación partida
Descripción: El usuario con�gura los parámetros básicos de creación de

la partida: apodo, activación del DMS, mapa y modo de
juego.

Precondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Postcondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Flujo normal: 1. El usuario modi�ca los parámetros deseados
Flujo alternativo: 1a. El usuario desea volver a la pantalla anterior

1. El usuario demanda volver a la pantalla anterior
cancelando los cambios realizados

1b. El usuario desea modi�car la con�guración de red
1. Caso de uso �Modi�car con�guración de red (crea-

ción)�
1c. El usuario desea modi�car la con�guración del sistema
VESPA

1. Caso de uso �Modi�car con�guración VESPA�
1d. El usuario desea modi�car la con�guración de las reglas
del juego

1. Caso de uso �Modi�car reglas�
1e. El usuario desea gestionar los mapas

1. Caso de uso �Gestionar mapas�

Nombre: Modi�car con�guración de red (creación)
Descripción: El usuario con�gura los parámetros de red de creación de

la partida: puerto del an�trión, puerto local y adaptador
de red deseado.

Precondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Postcondiciones: El usuario se encuentra en la pantalla �iniciar� del menú

�continúa en la siguiente página�

73

�continúa de la página anterior�
Flujo normal: 1. El usuario demanda la carga de la pantalla de con�gu-

ración avanzada de red (en creación)
2. El sistema muestra dicha pantalla al usuario
3. El usuario modi�ca los parámetros deseados
4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto

1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modi�car con�guración VESPA
Descripción: El usuario con�gura los parámetros del sistema VESPA.
Precondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Postcondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla de con�gu-

ración de VESPA
2. El sistema muestra dicha pantalla al usuario
3. El usuario modi�ca los parámetros deseados
4. Caso de uso �Modi�car con�guración avanzada VESPA�
5. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 5a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto

1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modi�car con�guración avanzada VESPA
Descripción: El usuario con�gura los parámetros avanzados del sistema

VESPA.
Precondiciones: El usuario se encuentra en la pantalla de con�guración de

VESPA
�continúa en la siguiente página�

74

�continúa de la página anterior�
Postcondiciones: El usuario se encuentra en la pantalla de con�guración de

VESPA
Flujo normal: 1. El usuario demanda la carga de la pantalla de con�gu-

ración avanzada de VESPA
2. El sistema muestra dicha pantalla al usuario
3. El usuario modi�ca los parámetros deseados
4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto

1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modi�car reglas
Descripción: El usuario con�gura los parámetros de di�cultad, número

de vehículos, rondas y equipos, y también los tiempos de
espera y de límite de duración de la ronda.

Precondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Postcondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla de con�gu-

ración de las reglas del juego
2. El sistema muestra dicha pantalla al usuario
3. El usuario modi�ca los parámetros deseados
4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto

1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Gestionar mapas
Descripción: El usuario gestiona los mapas disponibles para la creación

de la partida.
�continúa en la siguiente página�

75

�continúa de la página anterior�
Precondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Postcondiciones: El usuario se encuentra en la pantalla �iniciar� del menú
Flujo normal: 1. El usuario demanda la carga de la pantalla de gestión de

mapas
2. El sistema muestra dicha pantalla al usuario
3. El usuario modi�ca los parámetros deseados
4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo: 3a. El usuario desea descargar un nuevo mapa
1. Caso de uso �Añadir mapa�

3b. El usuario desea visualizar un mapa descargado
1. Caso de uso �Visualizar mapa�

3c. El usuario desea eliminar un mapa descargado
1. Caso de uso �Eliminar mapa�

Nombre: Añadir mapa
Descripción: El usuario añade un nuevo mapa al juego.
Precondiciones: El usuario se encuentra en la pantalla de gestión de mapas
Postcondiciones: El usuario se encuentra en la pantalla de gestión de mapas
Flujo normal: 1. El usuario introduce las palabras clave de la dirección

que desea buscar, un alias y el tamaño deseado y demanda
al sistema la realización de la búsqueda
2. El sistema muestra al usuario una lista con todas las
coincidencias de la búsqueda
3. El usuario elige el mapa deseado de dicha lista.
4. El usuario visualiza y/o descarga el mapa

Flujo alternativo: 2a. No existe ninguna coincidencia
1. Se le informa al usuario de ello.

4a. Se desea visualizar el mapa
1. El usuario demanda visualizar el mapa a descargar
2. El sistema muestra una vista previa de dicho mapa al

usuario
4b. Se desea descargar el mapa

1. El usuario demanda la adición del mapa al juego
2a. El sistema descarga dicho mapa y lo añade a la lista

de mapas disponibles.
2b. El alias ya existe

1. Se informa al jugador resaltando el campo
�continúa en la siguiente página�

76

�continúa de la página anterior�
2c. La dirección elegida ya existe con ese mismo tamaño

1. Se le informa al usuario mediante una ventana
emergente de error

1a, 3a, 4c. El usuario no desea realizar cambios
1. El usuario demanda volver a la pantalla anterior

Nombre: Visualizar mapa
Descripción: El usuario visualiza un mapa ya descargado
Precondiciones: El usuario se encuentra en la pantalla de gestión de mapas
Postcondiciones: El usuario se encuentra en la pantalla de gestión de mapas
Flujo normal: 1. El usuario selecciona de la lista el mapa que desea vi-

sualizar
2. El sistema muestra una vista previa de dicho mapa al
usuario

Nombre: Eliminar mapa
Descripción: El usuario elimina un mapa ya descargado
Precondiciones: El usuario se encuentra en la pantalla de gestión de mapas
Postcondiciones: El usuario se encuentra en la pantalla de gestión de mapas
Flujo normal: 1. El usuario selecciona de la lista el mapa que desea eli-

minar
2. El sistema muestra una ventana emergente pidiendo la
con�rmación del usuario
3. El usuario aprueba la eliminación
4. El sistema elimina dicho mapa de los �cheros de datos
del juego y de la tabla.

Flujo alternativo: 3a. El usuario cancela la eliminación
1. El usuario demanda la cancelación de la operación

Partida (simpli�cado)

Nombre: Iniciar partida
Descripción: Se inicia una nueva partida y el jugador comienza a jugar
Actores: Usuario an�trión
Precondiciones: Menú en pantalla �iniciar� con todos los parámetros ya

con�gurados de forma correcta
�continúa en la siguiente página�

77

�continúa de la página anterior�
Postcondiciones: El sistema cierra el sistema de menús e incorpora al jugador

a la partida que se crea.
Flujo normal: 1. Caso de uso �Crear una partida nueva�

2. Caso de uso �Siguiente ronda�

Nombre: Unirse a partida
Descripción: El jugador se une a una partida en red ya existente
Actores: Usuario ajeno
Precondiciones: Menú en pantalla �unirse� con todos los parámetros ya

con�gurados de forma correcta
Postcondiciones: El sistema cierra el sistema de menús e incorpora al jugador

a la partida deseada.
Flujo normal: 1. Caso de uso �Unirse a una partida existente�

Nombre: Sacar menú
Descripción: Muestra en pantalla el menú de pausa
Actores: Usuario an�trión, usuario ajeno
Precondiciones: El usuario está jugando una partida
Flujo normal: 1. El usuario presiona la tecla encargada de hacer aparecer

el menú
2. El sistema muestra dicho menú.
3. El usuario realiza las operaciones deseadas
4. El usuario vuelve a la partida pulsando de nuevo la tecla
establecida o mediante la pulsación de la opción del menú.

Flujo alternativo: 3a. La operación deseada es modi�car el volumen
1. Caso de uso �Modi�car volumen�

3b. La operación deseada es ver los controles
1. Caso de uso �Ver controles�

3c. La operación deseada es abandonar la partida
1. Caso de uso �Abandonar�

Nombre: Modi�car volumen
Descripción: Modi�ca el volumen de los efectos y/o de la música
Actores: Usuario an�trión, usuario ajeno
Precondiciones: El usuario está con el menú de pausa desplegado
Postcondiciones: El usuario está con el menú de pausa desplegado

�continúa en la siguiente página�

78

�continúa de la página anterior�
Flujo normal: 1. El usuario elige la opción �options� del menú

2. El sistema le muestra la pantalla de dicha opción
3. El usuario sube o baja los niveles del volumen de los
efectos y de la música mediante los botones habilitados
4. El usuario acepta los cambios
5. El sistema muestra la pantalla inicial del menú

Nombre: Ver controles
Descripción: Muestra al usuario las teclas asociadas con los diferentes

controles
Actores: Usuario an�trión, usuario ajeno
Precondiciones: El usuario está con el menú de pausa desplegado
Postcondiciones: El usuario está con el menú de pausa desplegado
Flujo normal: 1. El usuario elige la opción �show controls� del menú

2. El sistema le muestra la pantalla de dicha opción
4. El usuario acepta volver a la pantalla anterior
5. El sistema muestra la pantalla inicial del menú

Nombre: Abandonar
Descripción: El usuario abandona la partida actual
Actores: Usuario an�trión, usuario ajeno
Precondiciones: El usuario está con el menú de pausa desplegado
Postcondiciones: El usuario está con el menú de pausa desplegado
Flujo normal: 1. El usuario elige la opción �end game� del menú

2. El sistema le muestra un mensaje de con�rmación
3. El usuario acepta abandonar la partida
4. El sistema abandona la partida y se carga de nuevo el
sistema de menús mostrándose la pantalla de resumen de
la partida

Flujo alternativo: 3a. El usuario no abandona la partida
1. El usuario elige la opción de continuar jugando

5a. El usuario es el an�trión de la partida
1. Caso de uso �Finalizar partida�

Nombre: Finalizar partida
Descripción: El usuario �naliza la partida actual

�continúa en la siguiente página�

79

�continúa de la página anterior�
Actores: Usuario an�trión, reloj
Precondiciones: El usuario an�trión acaba de abandonar la partida
Postcondiciones: El usuario �naliza la partida para todos los jugadores
Flujo normal: 1. El sistema cierra el servidor de la partida, de forma que

todos los jugadores presentes vuelven a cargar el sistema
de menús y se les muestra la pantalla de resumen de la
partida

Nombre: Siguiente ronda
Descripción: Se avanza a la siguiente ronda de la partida
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso
Postcondiciones: Se aumenta el nivel de ronda de la partida
Flujo normal: 1. El sistema comprueba cuántas rondas se han superado
Flujo alternativo: 2a. número rondas superadas ≥ número límite

1. Caso de uso �Finalizar partida�

Nombre: Lograr objetivo
Descripción: Un usuario ha logrado un objetivo del modo de juego
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso
Postcondiciones: Se elimina un objetivo de la lista de objetivos
Flujo normal: 1. Se elimina el objetivo de la lista de objetivos

2. El sistema comprueba cuantos objetivos quedan
Flujo alternativo: 2a. No quedan objetivos

1. Caso de uso �Siguiente ronda�

Nombre: Realizar acción
Descripción: El usuario, mediante un evento de teclado, modi�ca el es-

tado del actor que le representa en el mundo de juego
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso
Postcondiciones: La acción seleccionada se ve re�ejada en el mundo de juego

(salvo pérdida de paquetes de red)
Flujo normal: 1. El usuario pulsa la tecla asignada a la acción que desea

realizar
�continúa en la siguiente página�

80

�continúa de la página anterior�
2. El sistema re�eja dicha acción en el mundo de juego.

Flujo alternativo: 3a. Mediante dicha acción se ha logrado completar un ob-
jetivo

1. Caso de uso �Lograr objetivo�

Partida (detalle de �Realizar acción�)

Nombre: Echar humo
Descripción: El usuario, mediante un evento de teclado, crea una nube

de humo situada tras el vehículo que le representa.
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso. Cantidad de nubes de humo

restantes mayor que cero.
Postcondiciones: El vehículo que representa al jugador crea una nube de

humo tras él.
Flujo normal: 1. El usuario pulsa la tecla asignada a la acción de echar

humo.
2. El sistema re�eja dicha acción en el mundo de juego.

Nombre: Aparcar
Descripción: El vehículo representado por el usuario estaciona en una

plaza de aparcamiento.
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso. Actor del usuario situado sobre

una plaza de aparcamiento libre.
Postcondiciones: El usuario estaciona en la plaza de aparcamiento. La plaza

de aparcamiento cambia a estado �ocupada�.
Flujo normal: 1. El usuario pulsa la tecla asignada a la acción de aparcar

2. El vehículo del jugador se queda inmóvil
3. La plaza de aparcamiento pasa a estar �ocupada�

Flujo alternativo: 4a. Dicha plaza es uno de los objetivos de la ronda
1. Caso de uso �Lograr objetivo�

5a. Modo de juego �solve the task�, �task endurance sur-
vival� o �parking special mode�

1. Caso de uso �Salir del vehículo�

Nombre: Reincorporarse
�continúa en la siguiente página�

81

�continúa de la página anterior�
Descripción: El vehículo representado por el usuario abandona la plaza

de aparcamiento en la que se encuentra, reincorporándose
a la circulación

Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso. Actor del usuario estacionado

en una plaza de aparcamiento.
Postcondiciones: El usuario abandona la plaza de aparcamiento en la que

se encontraba. La plaza de aparcamiento cambia a estado
�libre�.

Flujo normal: 1. El usuario pulsa la tecla asignada a la acción de aparcar
2. El vehículo del jugador recupera la movilidad
3. La plaza de aparcamiento en la que el jugador estaba
aparcado pasa a estar �libre�

Nombre: Salir del vehículo
Descripción: El actor que representa al usuario abandona el vehículo y

prosigue a pie.
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso. Actor del usuario estacionado

en una plaza de aparcamiento. Modo de juego �solve the
task�, �task endurance survival� o �parking special mo-
de�.

Postcondiciones: �El vehículo del usuario continúa en la misma posición es-
tacionado sobre la plaza de aparcamiento. El jugador pasa
a controlar un hombre a pie, con distintas características
de velocidad, giro, salud, etc.

Flujo normal: 1. El usuario pulsa la tecla asignada a la acción de aparcar
2. El usuario pasa a controlar al conductor del vehículo,
que se mueve a pie.

Nombre: Entrar al vehículo
Descripción: El actor que representa al usuario entra al vehículo
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso. Actor del usuario próximo a

su vehículo estacionado. Modo de juego �solve the task�,
�task endurance survival� o �parking special mode�.
�continúa en la siguiente página�

82

�continúa de la página anterior�
Postcondiciones: El vehículo del usuario continúa en la misma posición es-

tacionado sobre la plaza de aparcamiento. El jugador pasa
a controlar un hombre a pie, con distintas características
de velocidad, giro, salud, etc.

Flujo normal: 1. El usuario pulsa la tecla asignada a la acción de aparcar
2. El usuario pasa a controlar al vehículo
3. Caso de uso �Reincorporarse�

Nombre: Mover
Descripción: El usuario realiza un desplazamiento por el mundo de jue-

go, dado por su actual velocidad y ángulo
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso. El usuario no está estacionado

en una plaza de aparcamiento.
Postcondiciones: El actor que representa al usuario se habrá desplazado (sal-

vo que haya colisionado con los límites de la calzada)
Flujo normal: 1. El usuario pulsa una de las teclas asignadas al control

del vehículo
2. El actor que representa al usuario se desplaza en el mun-
do de juego

Flujo alternativo: 2a. El resultado del desplazamiento sitúa al actor fuera de
los límites de la calzada transitable

1. El actor se desplaza únicamente la cantidad su�ciente
para no salirse de los límites

3a. El resultado del desplazamiento es una colisión contra
otro vehículo al que persigue

1. Caso de uso �Dañar�
3b. El resultado del desplazamiento es una colisión contra
otro vehículo al que no persigue y la vida del usuario no es
in�nita

1. El actor sufre una cantidad establecida de daños.
3c. El resultado del desplazamiento es una colisión con una
bandera

1. Caso de uso �Capturar bandera�
3d. El resultado del desplazamiento es coincide con el radio
de un lugar objetivo

1. Caso de uso �Lograr objetivo�

83

Nombre: Capturar bandera
Descripción: El usuario captura una bandera en el mundo de juego des-

plazándose sobre ella.
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso
Postcondiciones: La bandera desaparece y se suma al usuario la puntuación

correspondiente
Flujo normal: 1. El actor que representa al usuario colisiona con la ban-

dera
2. El sistema elimina dicha bandera del mundo de juego
3. El sistema incrementa la puntuación del usuario en la
cantidad establecida.

Nombre: Dañar
Descripción: El usuario causa daño a otro vehículo colisionando con él
Actores: Usuario an�trión, usuario ajeno
Precondiciones: Existe una partida en curso. Modo de juego �capture the

red cars�
Postcondiciones: El vehículo contra el que colisiona el usuario recibe una

cantidad de daño establecida.
Flujo normal: 1. El actor que representa al usuario colisiona contra otro

vehículo
2. El sistema disminuye la cantidad de vida de dicho vehícu-
lo

Flujo alternativo: 2a. La vida del otro vehículo es menor que la cantidad a
sustraer

1. El sistema elimina al otro vehículo del mundo de juego
2. El sistema incrementa la puntuación del usuario
3a. El otro vehículo es un objetivo de la ronda

1. Caso de uso �Lograr objetivo�

A.3. Diagrama de navegación

En esta sección se muestran el diagrama de pantallas elaborado durante la
primera iteración del juego (Figura A.7) y el elaborado durante la última iteración
(Figura A.8).
Como se puede apreciar en dichas �guras, se realizaron diversos cambios ya que
cada nueva iteración desarrollada a veces requería de nuevas funcionalidades del

84

menú. Los principales cambios desde la versión inicial a la �nal fueron:

Eliminación de las salas de espera, ya que al principio el juego se ideó e
implementó de forma que los jugadores solo se podían unir al comienzo de la
partida, y éstas salas eran necesarias para que el jugador an�trión controlase
la cantidad de jugadores esperando y el resto de jugadores tuviesen una
pantalla en la que esperar al comienzo del juego. En el momento en que se
vio que esta forma de unión, basada en los juegos más clásicos (como las
sagas Age of Empires o Empire Earth) no era la óptima para un juego de
estas características, se cambió por el método de unión sobre la marcha,
utilizado en la gran mayoría de juegos actuales.

Se incrementó el número de pantallas desde las cuales se podía derivar a una
pantalla de error si fuera necesario.

Se añadieron nuevas pantallas para los créditos y las opciones globales, cuyo
contenido estaba incluido inicialmente en otras pantallas menos accesibles,
y también una pantalla secreta, a la que solo se puede acceder con el cono-
cimiento de una combinación de teclas especí�ca, para cambiar durante la
implementación y las pruebas diversos valores que hasta el momento reque-
rían de una recompilación de todo el código lo cual era muy farragoso.

85

Inicial

Iniciar partida

Unirse a partida

Configuración
avanzada de
red (unión)

Configuración
avanzada de
red (creación)

Configuración
VESPA

Configuración
reglas del

juego

Gestión
de mapas

Visualizar
mapa

pant. compl.

Sala de espera
(unión)

Error unión

Carga
Resumen

final
Canvas
juego

Sala de espera
(creación)

Confirmación
creación(1)

(2)

Flujo reversible Flujo no reversible

(1): no todos los jugadores están listos
(2): partida no disponible

Figura A.7: Diagrama de navegación (primera iteración)

86

Inicial

Iniciar partida

Unirse a partida

Opciones

Créditos

Controles

Configuración
avanzada de
red (unión)

Configuración
avanzada de
red (creación)

Configuración
VESPA

Configuración
Avanzada

VESPA

Configuración
reglas del

juego

Gestión
de mapas

Visualizar
mapa

pant. compl.

Información
partida

Error unión

Runtime error

Carga

Desarrollo

Resumen
final

Canvas
juego

Flujo creación/unión
(reversible)

Flujo error
(no reversible)

Flujo opcional
(reversible)

Flujo no reversible

Figura A.8: Diagrama de navegación (última iteración)

87

A.4. Prototipado de ventanas

En las siguientes �guras se muestran los prototipos de las ventanas de menús
realizados durante la primera iteración del juego en la que se consideró el uso
de un sistema menús. Para diseñar dichos menús se realizó un análisis de otros
videojuegos para reconocer cuales son las características fundamentales de sus
menús, obteniéndose dos fundamentales que no suelen estar presentes en otro tipo
de aplicaciones: sonido cuando el ratón se sitúa encima de un botón y fondo del
menú dinámico.

Nótese que durante el desarrollo se usaron Rally-X y NetRally-X como
títulos provisionales del juego.

Figura A.9: Prototipo de ventana inicial

88

Figura A.10: Prototipo de ventana de unión a partida existente

Figura A.11: Prototipo de ventana modi�cación con�guración de red (en unión)

89

Figura A.12: Prototipo de ventana de error conectando a partida

Figura A.13: Prototipo de ventana de sala de espera (en unión)

90

Figura A.14: Prototipo de ventana de crear una nueva partida

Figura A.15: Prototipo de ventana modi�car con�guración red (en creación)

91

Figura A.16: Prototipo de ventana de reglas del juego

Figura A.17: Prototipo de ventana de gestión de mapas

92

Figura A.18: Prototipo de ventana vista previa mapa

Figura A.19: Prototipo de ventana sala de espera (en creación)

93

Figura A.20: Prototipo de ventana con�rmación creación

Figura A.21: Prototipo de ventana cargando partida

94

Figura A.22: Prototipo de ventana resumen después de partida

A.5. Modos de juego

A lo largo de diferentes reuniones y conversaciones por correo electrónico se
analizó que diferentes modos de juego debían desarrollarse. Las tablas que contie-
nen las conclusiones de dichas reuniones se pueden observar en las �guras A.23 y
A.24.

TIPO Jugadores Equipos
Cuando se

acaba
Obje!vo

Enemigos

IA

Compe!dores

humanos

Comportamiento

enemigos

Banderas Perseguir

Enemigos Huir

si Perseguir

no -

1 1 no

2..n 2..n si

1 1 no

2..n 2..n si

1..n 1

2..n2..n

Capturar banderas o

coches enemigos

si no

si

Banderas

Enemigos

por !empo o

por obje!vo

* si

si Huir

PerseguirSeguir un plan finito

Perseguirsi*
por agotarse

el dinero
Seguir un plan infinito

Figura A.23: Modos de juego. Los objetivos marcados como asterisco (*) son tareas
que pueden ser de los diferentes tipos desglosados en la �gura A.24

Como se puede observar en la �gura A.23, todos los modos de juego �nalmente
implementados corresponden a los de esta tabla a excepción del modo de juego

95

Tipo Donde Alias Explicacion

en coche llegar con el coche hasta el obje�vo

aparcar aparcar en una plaza libre cercana

a pie aparcar y llegar a pie hasta el obje�vo

en coche llegar con el coche hasta el obje�vo

aparcar aparcar en una plaza libre cercana

a pie aparcar y llegar a pie hasta el obje�vo

ir a

dirección

negocio

Figura A.24: Tipos de tarea de los modos de juego

de realizar tareas de aparcamiento �parking special mode�, esto es así ya que ese
modo de juego no estaba previsto inicialmente y se desarrolló durante la etapa
�nal del proyecto, con el objetivo de tener un modo de juego que facilitase la
realización de los experimentos asociados a la explotación. Éste modo de juego es
una variación del modo �seguir un plan �nito� con la particularidad de que cada
ronda se divide en dos �subrondas� de forma que en la primera de ellas la tarea es
siempre de tipo �llegada en coche� y la segunda de tipo �lograr aparcamiento�.

96

Anexo B

Diseño

En este capítulo se mostrarán las diferentes capas y módulos que componen
la arquitectura diseñada, junto con las clases más importantes de cada módulo.
También se explicará el despliegue de la aplicación cuando se usan los servidores
dedicados y el servidor de recogida de estadísticas. Por último, se �nalizará expli-
cando el llamado game loop (bucle de juego) y los hilos existentes en la ejecución.

También es importante anotar la autoría externa del diseño visual y sonoro de
los vehículos y otros elementos del juego, si bien en su mayor parte han tenido que
ser modi�cados para ajustarlos a las necesidades del videojuego.

B.1. Arquitectura de la aplicación

La arquitectura de la aplicación permite obtener un diseño a alto nivel del
sistema, identi�cando los módulos de los que consta y las relaciones entre dichos
módulos. El diseño que se ha realizado no se ha basado en ningún modelo espe-
cí�co existente, sino que se ha realizado un diseño especí�co para el videojuego
desarrollado.

En la �gura B.1 se muestran los distintos módulos de los que se compone la
aplicación y sus relaciones. El papel realizado por cada uno de los módulos se
expone a continuación.

Menús: es el módulo que controla los menús del juego y todo lo necesario
para su funcionamiento: obtención de dirección IP, carga de la con�guración
y los parámetros, etc.

Gestor de escenarios: controla la gestión de los escenarios, desde lo relativo
a su almacenamiento hasta su obtención a través de las APIs de OpenStreet-
Map.

97

<<component>>

Servidor

<<component>>

Cliente

<<component>>

Actores

<<component>>

DMS

<<component>>

Interfaz con DMS

<<component>>

Gestor de conexiones

<<component>>

Gestor de rondas

<<component>>

Estadísticas

<<component>>

Servidor maestro

<<component>>

Servidor estadístico

<<component>>

Logger

<<component>>

Salida

<<component>>

Gestor de escenarios

<<component>>

Menús

<<component>>

Física

<<component>>

Inteligencia Artificial

<<component>>

Menú in-game

<<component>>

Terreno

Figura B.1: Diagrama de componentes

Cliente: el núcleo con la parte cliente del juego, que es la representación
visual de la partida y las funciones necesarias para obtener a través de la red
los datos del mundo de juego.

Salida: contiene todo lo relacionado con el sonido(gestor de música mp3 y
gestor de efectos de sonido, con sus correspondientes �ltros) y con la gestión
y representación de sprites.

Menú in-game: es el módulo que controla el menú de pausa que se habilita
durante la partida.

Servidor: el núcleo con la parte servidor del juego. Contiene todo lo relativo
a la partida a excepción de su representación.

Gestor de rondas: gestiona las rondas y los objetivos pendientes y controla
el modo de juego aplicado.

Inteligencia arti�cial: contiene las clases referidas al manejo autónomo de
los vehículos y también lo referente a los algoritmos de path-�nding.

Terreno: es el módulo en el que se de�nen los diferentes tipos de entidades
usadas para la representación de los escenarios.

98

Actores: contiene a todos los actores de la partida.

Física: se encarga de la simulación física de la partida.

Gestor de conexiones: es el módulo que contiene todos los elementos que
intervienen en la transmisión de información a través de la red.

DMS: contiene los interfaces del sistema DMS y la implementación de la
estrategia utilizada (en este caso VESPA).

Interfaz con DMS: contiene los interfaces que deben implementar los ac-
tores para ser accesibles desde el DMS.

Logger: es el módulo que controla la presentación en la consola de diferentes
trazas de ejecución.

Estadísticas: contiene todo lo necesario para la obtención de estadísticas
del juego y del DMS.

Servidor maestro: permite el uso de un servidor dedicado para las partidas
y contiene también el proceso que se usa para la comunicación remota con
dicho servidor.

Servidor estadístico: contiene todo lo relacionado con el servidor de reco-
gida de estadísticas.

B.2. Capas de la arquitectura

Se pueden distinguir dos capas diferenciadas en la arquitectura: la capa del
núcleo y la capa de los suplementos.

Núcleo: Esta capa contiene todos los elementos necesarios para el funciona-
miento del juego. Cualquier cambio dentro de esta capa alterará el funcio-
namiento del juego. Dentro de esta capa se controla tanto lo referente a la
partida como a la navegación por los menús.

Suplementos: Esta capa contiene los elementos que no son imprescindibles
para el funcionamiento del juego y que pueden ser alterados, sustituidos o
eliminados sin afectar al resto de módulos. Un ejemplo es el fácil reemplaza-
miento del módulo DMS (Data Management Strategy) que es explicado con
detalle en el anexo D.1.

En la �gura B.2 se representa la clasi�cación de los distintos módulos del dia-
grama de componentes diferenciados según su capa (en color blanco los módulos
de la capa núcleo y en gris los módulos de la capa suplementos).

99

<<component>>

Servidor

<<component>>

Cliente

<<component>>

Actores

<<component>>

DMS

<<component>>

Interfaz con DMS

<<component>>

Gestor de conexiones

<<component>>

Gestor de rondas

<<component>>

Estadísticas

<<component>>

Servidor maestro

<<component>>

Servidor estadístico

<<component>>

Logger

<<component>>

Salida

<<component>>

Gestor de escenarios

<<component>>

Menús

<<component>>

Física

<<component>>

Inteligencia Artificial

<<component>>

Menú in-game

<<component>>

Terreno

Capa Suplementos

Capa Nucleo

Figura B.2: Capas de la arquitectura

B.3. Despliegue

En esta sección se puede ver el despliegue de los diferentes componentes, des-
glosado en dos �guras (�gura B.3 y �gura B.4) según si se usa o no un servidor
dedicado.

Es importante anotar que todos los componentes de la aplicación se distribu-
yen conjuntamente empaquetados en un �chero JAR, por lo que estos diagramas
muestran únicamente los componentes de los que se hace uso desde cada ubicación.

En el caso de no usar un servidor dedicado (�gura B.3), el jugador an�trión
crea la partida conectándose la parte cliente de la aplicación con la parte servidor
(a través de la red, de igual forma que si la conexión se realizara entre diferentes
computadores). El resto de jugadores se conectarán únicamente sus partes cliente
de la aplicación con la parte servidor del jugador an�trión. Cuando �nalice la
partida, las estadísticas recogidas durante la partida se almacenarán en �cheros
locales del computador del jugador an�trión y también realizará una conexión con
el servidor de recogida de estadísticas, para que en el caso de que éste responda,
enviarle dichas estadísticas.

100

Computador

Cliente

(Juego)

Jugador n

Computador recogida estadís!cas

Servidor Estadís!co

Estadís!cas

Guardar estadís!cas del juego

Miembro del equipo de

recogida de estadís!cas

Computador

Cliente

(Juego)

Jugador 2

...

...

Computador anfitrión

Estadís!cas

Servidor

(Juego)

Cliente

(Juego)

Guardar estadís!cas del juego

Usuario interesado

en estadís!cas

Conectarse

al servidor

Conectarse

al servidor

Enviar estadís!cas

Jugador 1

Conectarse

al servidor

Figura B.3: Pseudo diagrama de despliegue sin servidor dedicado

101

La principal diferencia cuando se hace uso de un servidor dedicado (�gura B.4)
radica en que no existe un jugador an�trión de la partida, sino que todos los juga-
dores son iguales. Estos jugadores no se conectarán directamente con el servidor
de la partida, sino que realizarán una petición al servidor maestro, que convenien-
temente estará recibiendo mensajes en el mismo puerto que lo haría un servidor
normal, y éste les contestará a los clientes enviándoles el puerto en el que se en-
cuentra funcionando el servidor de la partida (que se creará en el caso de que no
estuviese en funcionamiento). Conociendo este puerto, los clientes se conectarán
al servidor de la partida de la misma forma que se conectarían en el caso de no
usar servidor dedicado. Todo este proceso se habrá realizado de forma transparen-
te para el usuario, que habrá de seguir el mismo método que el utilizado para la
conexión con un servidor no dedicado.

Usando servidor dedicado hace acto de presencia un componente más que es
el terminal, el cual consiste en una interfaz que permite modi�car la con�guración
del servidor dedicado de forma remota.

Computador dedicado

Servidor Maestro

Servidor

(Juego)

Estadís!cas

Computador

Cliente

(Juego)

Jugador n

Pedir servidor

al que unirte

Conectarse

al servidor

Crear

Guardar estadís!cas del juego

Computador recogida estadís!cas

Servidor Estadís!co

Estadís!cas

Guardar estadís!cas del juego

Enviar estadís!cas

Computador

Terminal

Cambiar parámetros

Y

Conseguir estadís!cas

Interesado en

estadís!cas

Computador

Cliente

(Juego)

Jugador 1

Pedir servidor

al que unirte
Conectarse

al servidor

...

...

Figura B.4: Pseudo diagrama de despliegue con servidor dedicado

102

B.4. Diagramas de clases

En esta sección pretende establecer una de�nición más especí�ca de cada uno
de los componentes anteriormente descritos, estableciendo para cada uno de ellos
las clases que los componen y cuál es su cometido.

A continuación se detallan todos los módulos mencionado anteriormente (ver
sección B.1) a excepción del módulo �DMS� y el módulo �Interfaz con DMS�, ya
que éstos ya han sido explicados con todo detalle en el anexo D.1.

B.4.1. Módulo de salida

El módulo de salida actúa como controlador de los dispositivos grá�co y sonoro
del computador, facilitando al resto de módulos representar de forma visual y
sonora los elementos del juego.

Este módulo consta dos partes diferenciadas, una dedicada a la representación
grá�ca y otra dedicada a los aspectos sonoros.

La parte dedicada a los grá�cos esta formada por la clase �SpriteCache� que
hereda de �ResourceCache�, la cual es la versión genérica de un recurso que deba
ser utilizado de forma recurrente.
La clase �ResourceCache� permite almacenar recursos de cualquier tipo en una
estructura HashMap de forma que posteriormente sean accedidos con facilidad. La
case �SpriteCache� es la clase derivada para el caso de almacenamiento de recursos
de tipo Bu�eredImage, que son los que nos interesan para la representación visual
de las entidades.

La otra parte del módulo es la dedicada al sonido, la cual a su vez se divide en
las clases relacionadas con la reproducción de sonidos WAV, que se han obtenido
del libro �Developing Games in Java� [4] y en las clases relacionadas con la repro-
ducción de sonidosMP3, para lo cual se ha usado la librería JLayer 1 modi�cándola
para que soporte la reproducción en bucle, las listas de reproducción y el cambio
dinámico de volumen. De ésta parte se ha representado en el diagrama únicamente
la clase �MiPlayer� ya que es la modi�cación respecto a la librería. El resto de
clases del paquete �sonido� están dedicadas a la parte de sonido WAV.

De la parte dedicada al sonido WAV cabe destacar las clases �Filter3d� y
�FilterVolume� ya que son las únicas nuevas desarrolladas respecto a las mostradas
en [4]. Estas clases permiten aplicar a los sonidos un �ltro de distancia y de volumen
respectivamente, siendo el primero utilizado para los efectos sonoros ligados a los
actores de la partida (p.ej. el sonido que emiten las ambulancias, que disminuye con
la distancia) y el segundo utilizado para todos los sonidos, ya que es imprescindible
poder controlar el volumen del juego.

1http://www.javazoom.net/javalayer/javalayer.html

103

http://www.javazoom.net/javalayer/javalayer.html

sonido

util

juego

menus

Filter3d

FilteredSoundStream

FilterVolume

LoopingByteInputStream

Sound

SoundFilter

SoundManager

SoundPlayer

PooledThread

ThreadPool

otros actoresMiCanvas_cliente

Contenedor

ResourceCache

SpriteCache Actor

<<Interface>>

BasicActor

ActorFX

MiPlayer

Figura B.5: Clases del módulo de salida

104

#loadResource(url : URL) : Object

+getSprite(name : String) : BufferedImage

SpriteCache

#resources : HashMap

+ResourceCache()

#loadResource(name : String) : Object

#getResource(name : String) : Object

#loadResource(url : URL) : Object

ResourceCache

Figura B.6: Detalle de las clases �SpriteCache� y �ResourceCache�

+AUDIO_PARAMETER : String = "audioURL"

-playerThread : Thread = null

-playList : ArrayList<String> = null

-playListCursor : int

<<Property>> -volume : float = 1f

-player : AdvancedPlayer = null

-dev : AudioDevice

+MiPlayer()

#getAudioDevice() : AudioDevice

#getAudioStream() : InputStream

+addFileName(name : String) : void

+clearPlayList() : void

#stopPlayer() : void

#play(in : InputStream, dev : AudioDevice) : void

#createPlayerThread() : Thread

+startP() : void

+stop() : void

+destroy() : void

+run() : void

-setVolumeInternal() : void

+setVolume(v : float) : void

MiPlayer

Figura B.7: Detalle de la clase dedicada al sonido MP3

105

+reset() : void

+getRemainingSize() : int

+filter(samples : byte []) : void

+filter(samples : byte [], offset : int, length : int, cut : boolean) : int

+getSample(buffer : byte [], position : int) : short

+setSample(buffer : byte [], position : int, sample : short) : void

SoundFilter

<<Property>> -volume : float

+FilterVolume(volumen : float)

+filter(samples : byte [], offset : int, length : int, cut : boolean) : int

+setVolume(volumen : float) : void

FilterVolume

-NUM_SHIFTING_SAMPLES : int = 500

-maxDistance : int

-lastVolume : float

-source : BasicActor

-listener : BasicActor

+Filter3d(source : BasicActor, listener : BasicActor, maxDistance : int)

+filter(samples : byte [], offset : int, length : int, cut : boolean) : int

Filter3d

Figura B.8: Detalle las clases dedicadas al sonido WAV

B.4.2. Módulo de menús

El módulo de menús es el que contiene todas las clases utilizadas para la re-
presentación y el manejo del menú del juego.

Las clases principales son �Contenedor� y �PantallaAnimada�.
La clase �Contenedor� es instanciada desde �VentanaPPal�, que es la clase inicial
del juego cuando se ejecuta como Applet (cuando se ejecuta como aplicación de
escritorio la clase inicial es �StartClass�, que salvo que se requiera un servidor
dedicado, servidor estadístico o terminal, crea una instancia de �VentanaPPal�).
La clase �Contenedor� contiene el JPanel en el que se mostrarán las pantallas de
los menús y es la encargada de iniciar el cliente y el servidor.
La clase �PantallaAnimada� es la superclase de la que derivan todas las pantallas
de los menús y contiene el comportamiento básico de las pantallas.

Dentro de este módulo también se incluyen una serie de clases necesarias para
realizar ciertos cometidos del menú, como redimensionar una imagen JPEG, com-
probar si dicha imagen no está dañada, simpli�car una cadena de texto eliminando
los caracteres no latinos, etc. Todas estas clases se sitúan en el paquete �util�.

Otro paquete contenido es �workers�, que contiene las clases derivadas de
�SwingWorker� de las que hacen uso las pantallas para realizar tareas costosas
en tiempo sin congelar el hilo de ejecución que las muestra.

El paquete �red� contiene las clases que se necesitan para obtener los datos
de la información de la partida (durante su trascurso o en su �nalización) para
representarla en la pantallas de sala de espera (al unirte) y en la pantalla con el
resumen de la partida (al �nalizarse).

Por último, también existen las clases �Parametros� y �ParametrosCon�g�

106

Parametros

ParametrosVespa Controles

ParametrosConfig

WrapperCarga

MiCanvas_servidor

pantallas

util

red

workers

VentanaPPal

TrainedSkills

Contenedor

StartClass

MiCanvas_cliente

MyKeyListener

PantallaAnimada

PantallaCarga

PantallaCreditos

PantallaDesarrollo

PantallaInicial

PantallaIniciar

PantallaIniciarMapas

PantallaIniciarRed

PantallaIniciarReglas

PantallaIniciarVespa

PantallaIniciarVespaPagina2

PantallaOpciones

PantallaOpcionesControles

PantallaResumenFinal

PantallaRuntimeError

PantallaUnirte

PantallaUnirteError

PantallaUnirteRed

PantallaUnirteSalaDeEspera

PantallaVerMapa

GameOver

GameOverInfoListaPlayers

WaitingRoom

WaitingRoomInfoListaPlayers

InetAddresses

IPAddressValidator KonamiCode

RXCardLayout

StringSimplifier

WorkerAddMap

WorkerGetPublicIP

WorkerSearchMap

WorkerUnirteJoin

WorkerViewMapCrear

WorkerViewMapTabla

Figura B.9: Clases del módulo de menús

107

-cards : JPanel

-bi : BufferedImage

-rop : RescaleOp

-imgFondoCalle : BufferedImage

+altura : int = 960

-translateTimer : Timer

-pane : Container

<<Property>> -imgTiraBlanca : BufferedImage

<<Property>> -imgFondoCoche : BufferedImage

-tcanvas : Thread

-PLAYBACK_FORMAT : AudioFormat = new AudioFormat(44100,16,1,true,false)

-volumenEfectos : float

-volumenMusica : float

+parametros : Parametros

+ventana : VentanaPPal

+soundManagerEfectos : SoundManager

-soundManagerMusica : MiPlayer

+sonidoOver : Sound

+sonidoClick : Sound

+ipAddressValidator : IPAddressValidator

+Contenedor(pan : Container, ventan : VentanaPPal, tipoLlamada : int, parametro : Parametros)

+translate(translate : int) : void

+borrar() : void

-initSounds() : void

-startMusic() : void

+lanzarJuego() : void

-lanzarServidor(carga : PantallaCarga, serverReady : Semaphore) : void

+lanzarCliente(carga : PantallaCarga, serverReady : Semaphore) : void

+setSoundVolume(volumen : float) : void

+setMusicVolume(volumen : float) : void

+pintarCargando() : PantallaCarga

+calcularModoDeJuego(modoJuego1 : int, modoJuego2 : int, modoJuego3 : int) : byte

+calcularModoDeJuegoInverso(modo : int) : int []

+getImgTiraBlanca() : BufferedImage

+getImgFondoCoche() : BufferedImage

Contenedor

Figura B.10: Detalle de la clase �Contenedor�

108

-cards : JPanel

#bi : BufferedImage

#rop : RescaleOp

#imgFondoCalle : BufferedImage

#ventana : VentanaPPal

+contenedor : Contenedor

#mkl : MyKeyListener

+PantallaAnimada(cards : JPanel, ventana : VentanaPPal, bi : BufferedImage, rop : RescaleOp, imgF...

-initComponents() : void

+crearImagenOpaca(imageSrc : URL) : BufferedImage

+crearImagenTransparenteBI(imageSrc : URL) : BufferedImage

+crearImagenTransparenteROP(opacity : float) : RescaleOp

+pintarImagenOpaca(g : Graphics, img : BufferedImage, observer : ImageObserver) : void

+pintarImagenTransparente(g2 : Graphics, img : BufferedImage, rp : RescaleOp, x : int, y : int) : void

+cambiarPantalla(ventana : String) : void

#sonidoOver() : void

#sonidoClick() : void

#labelMouseEntered(evt : MouseEvent, label : JLabel) : void

#labelMouseExited(evt : MouseEvent, label : JLabel) : void

#buttonMouseEntered(evt : MouseEvent, label : JLabel) : void

#buttonMouseExited(evt : MouseEvent, label : JLabel) : void

#buttonMousePressed(evt : MouseEvent, label : JLabel) : void

#buttonMouseReleased(evt : MouseEvent, label : JLabel) : void

#pintarCuadrado(panel : JPanel, g : Graphics) : void

#pintarCuadradoOpaco(panel : JPanel, g : Graphics, c : Color) : void

+isFocusable() : boolean

#volverAtras() : void

#iniciarKeyListener(contenedor : Container) : void

#iniciarMouseMotionListener(contenedor : Container, mmml : MouseMotionListener) : void

#guardarConfigEnFichero() : void

#cargarConfigDeFichero() : boolean

PantallaAnimada

Figura B.11: Detalle de la clase �PantallaAnimada�

109

que contienen los valores de con�guración almacenados en las pantallas y los va-
lores descritos mediante el �chero de texto ParamCon�g.txt respectivamente. La
clase �TrainedSkills� es la que contiene las funciones y estructura necesarias para
el cálculo de la pericia del jugador (ver 3.3), y la clase �WrapperCarga� es la uti-
lizada para poder transmitir el estado actual de carga de la partida desde la clase
�Cliente� a la barra de progreso de la pantalla de carga.

B.4.3. Módulo gestor de escenarios

El módulo gestor de escenarios contiene las clases que permiten el manejo y
almacenamiento de los mapas.

workers

mapas

util

juego

WorkerAddMap

WorkerSearchMap

WorkerViewMapCrear

WorkerViewMapTablaHTTPRequestPoster

ImageResizer JPEGTest

GestionDeMapas

DATstruct

Lugar

ProcesarXmlConsulta

ProcesarXmlMapa

ProcesarXmlMapaSoloContar

MiCanvas_servidor

Figura B.12: Clases del módulo de gestor de escenarios

La clase �GestionDeMapas� es la principal y contiene funciones para crear los
diferentes tipos de �cheros necesarios (ver anexo C.2.2) y procesarlos, así como
todas las funciones que se requieren desde la pantalla del menú �Con�guración
avanzada de mapas� (listar los mapas, descargar uno nuevo, descargar la visuali-
zación, etc.). También contiene el listado de APIs que podrán ser usadas para la
obtención de los �cheros.

110

<<Property>> -path : String

-pathTemp : String

<<Property>> -listadoMapas : ArrayList<DATstruct> = new ArrayList()

-listadoAPIs : ArrayList<String>

+GestionDeMapas(p : String)

+getTempPath() : String

+visualizarMapa(elLugar : Lugar, radio : float, temp : boolean) : String

+bajarMapa(alias : String, direccion : String, radio : float, elLugar : Lugar) : String

-crearFicheroDAT(name : String, alias : String, direccion : String, radio : float, lat : float, lon : float, m2 : double, n...

-crearFicheroXML(name : String, lat : float, lon : float, radio : float) : boolean

-createXMLfromAPI(name : String, centroLat : double, centroLon : double, radio : float, textoAPI : String) : boolean

-crearFicheroJPG(name : String, lat : float, lon : float, radio : float, temp : boolean) : void

+listarMapas() : boolean

-buscarArchivosDat() : ArrayList<String>

+procesarDat(name : String, path : String) : DATstruct

+obtenerBordes(name : String) : Float []

-existeFicheroDAT(name : String) : boolean

-existeFicheroXML(name : String) : boolean

-existeFicheroJPG(name : String, temp : boolean) : boolean

+borrarMapa(name : String) : void

+borrarFichero(name : String, sufijo : String) : void

-copiarDefaultMaps(path : String) : void

-copiarMapa(path : String, name : String) : void

-procesarList() : ArrayList<String>

+calcularEscaladoRadio(val : float, max : float) : float

+calcularEscaladoEspacio(disponible : float, actual : float) : float

+calcularM2(elLugar : Lugar, radio : double) : double

+sliderValueToRadio(val : int, max : int) : float

+nearMeridian(lon : float, radio : double) : boolean

+checkMapExists(string : String) : boolean

+printMapNames() : void

-getAPIs() : ArrayList<String>

-leerFicheroAPIs() : ArrayList<String>

-crearFicheroAPIs() : void

+getListadoMapasString() : String

+getNumeroMapas() : int

+getNameFromOrdinal(val : int) : String

+setPath(p : String) : void

+getPath() : String

+getListadoMapas() : ArrayList<DATstruct>

GestionDeMapas

Figura B.13: Detalle de la clase �GestionDeMapas�

111

La clase �DATstruct� contiene la estructura de almacenamiento de los ma-
pas, mientras que la clase �Lugar� tiene la estructura de almacenamiento de las
peticiones de obtención de dichos mapas.

+name : String

+alias : String

+direccion : String

+radio : float

+id : long

+tipo : String

+lat : float

+lon : float

+m2 : double

+numCaminos : int

+numNodos : int

DATstruct

+id : long

+lat : float

+lon : float

+nombre : String

+Lugar(id : long, lat : float, lon : float, nombre : String)

Lugar

-dom : Document

<<Property>> ~lugares : Hashtable

+ProcesarXmlConsulta(uri : String)

-imprimirResultados() : void

-parsearArchivoXml(uri : String) : void

-parsearDocumento() : void

-obtenerLugar(elemento : Element) : Lugar

+getLugares() : Hashtable

ProcesarXmlConsulta

Figura B.14: Detalle de las clases �DATstruct�, �Lugar� y �ProcesarXMLConsul-
ta�

Las clases �ProcesarXML...� se utilizan para procesar el contenido de los �-
cheros XML descargados que contienen el listado de resultados de la búsqueda
�ProcesarXMLConsulta� y los datos del escenario en formato OSM. La diferencia
entre las clases �ProcesarXMLMapa� y �ProcesarXMLMapaSoloContar� radica
en que esta última es la utilizada para calcular el número de nodos del escenario
y mostrarlo en la tabla de la pantalla del menú, mientras que la primera es la
utilizada para cargar los datos al mundo de juego.

B.4.4. Módulo de servidor maestro

El módulo de servidor maestro contiene las clases necesarias para el funciona-
miento del servidor dedicado y del terminal cliente con el que se puede modi�car
sus parámetros.

La clase �MasterServer� es la encargada de la inicialización del servidor maestro
y la con�guración del directorio. Recibe conexiones TCP de los terminales e inicia
el servidor de la partida cuando es requerido.
Para tratar con las conexiones de los terminales, con cada nueva conexión crea
un hilo de ejecución con una instancia de la clase �HiloMasterServer�. Esta clase
tiene las funciones necesarias para modi�car la con�guración de la partida.

112

<<Property>> -nodos : Hashtable

<<Property>> -caminos : Hashtable

<<Property>> -capas : ArrayList

<<Property>> -multipolygons : Hashtable

<<Property>> -bordes : Float[]

-file : String

-tempVal : String

#servidor : MiCanvas_servidor

-tempNodo : Nodo

-tempCamino : Camino

-tempMultiPolygon : MultiPolygon

+ProcesarXmlMapa(servidor : MiCanvas_servidor, fileName : String)

-imprimirResultados() : void

-parsearArchivoXml() : void

+startElement(uri : String, localName : String, qName : String, attributes : Attributes) : void

+characters(ch : char [], start : int, length : int) : void

+endElement(uri : String, localName : String, qName : String) : void

+getLugares() : ArrayList<LugarInteres>

+getNodos() : Hashtable

+getCaminos() : Hashtable

+getMultipolygons() : Hashtable

+getCapas() : ArrayList

+getBordes() : Float []

ProcesarXmlMapa

Figura B.15: Detalle de la clase �ProcesarXMLMapa�

113

masterServermenus

juego Main

Configuracion

ConfiguracionP

ConfiguracionVHiloMasterServer

MasterClient

MasterServer

Parametros

ParametrosConfig

MiCanvas_servidor

mapas

StartClass

GestionDeMapas

Figura B.16: Clases del módulo de servidor maestro

114

La clase �MasterClient� es la encargada de realizar la conexión mediante TCP
con el servidor maestro y tiene las funciones necesarias para obtener y modi�car
la con�guración actual de las partidas que inicie dicho servidor.

Si los parámetros usados así lo requieren, tanto �MasterServer� como �Mas-
terClient� son instanciadas desde la clase �StartClass�, que es la clase inicial de
la aplicación cuando esta no se ejecuta como Applet.

B.4.5. Módulo de servidor estadístico

El módulo de servidor estadístico contiene las clases necesarias para el desplie-
gue del servidor de recogida de estadísticas y el envío y recepción de éstas.

La clase �StatServer� se encarga de iniciar el proceso y escuchar peticiones de
conexión, creando instancias de la clase �HiloStatServer� cuando dichas peticiones
de conexión son aceptadas.

La clase �HiloStatServer� contiene funciones para recibir los diferentes tipos
de estructuras de estadísticas por parte de los servidores.

Por último la clase �EnvíoEstadísticas� es una clase en la cual se de�nen mé-
todos (estáticos) para que los servidores puedan enviar los diferentes tipos de
estadísticas a los servidores de recogida de estadísticas.

B.4.6. Módulo de estadísticas

El módulo de estadísticas contiene las clases que permiten la creación de las
diferentes estructuras de estadísticas (de aparcamiento, de juego y de VESPA) y la
estructura que contiene el resumen de la con�guración actual de la partida. Ade-
más también contiene las funciones necesarias para almacenar en �cheros dichas
estructuras de forma legible al usuario.

Para cada tipo de �chero que se desea generar cuando las estadísticas estén
activadas, se tiene una clase en la que se contiene su estructura �TADEstadis-
ticasAparcamiento�, �TADEstadisticasJuego�, �EstadisticasVespa (EV)� y �Cu-
rrentCon�gInfo (CCI)�, para estadísticas de aparcamiento, de la partida, de VES-
PA y para el resumen de la con�guración respectivamente.
Para cada uno de estos tipos se tiene una clase con las funciones necesarias para
limpiar el directorio donde se almacenan los �cheros y crear el �chero, además de
los métodos llamados desde el juego y mediante los cuales se calculan las estadís-
ticas.

Las estadísticas de aparcamiento tienen dos clases asociadas �TADEstadistica-
sAparcamiento� y �TADEstadisticasAparcamientoTC� cuya diferencia es que la
primera es llamada por los jugadores humanos mientras que la última está ideada
para vehículos del trá�co, por lo que la función que incluyen para anotar un apar-

115

StatServer

Main

+host : String

+port : int

+CCI : int

+EA : int

+EATC : int

+EVP : int

+EV : int

+EVR : int

+EJ : int

-sendUUID(socket : Socket, uuid : UUID) : void

-sendType(socket : Socket, type : int) : void

+enviarCCI(cci : CCI, uuid : UUID) : void

+enviarEA(ea : ArrayList<TADEstadisticasAparcamiento>, uuid : UUID, tc : boolean) : void

+enviarEV(ev : EV, uuid : UUID, player : boolean) : void

+enviarEVR(evr : EV, uuid : UUID) : void

+enviarEJ(ej : ArrayList<TADEstadisticasJuego>, uuid : UUID, tc : boolean) : void

EnvioEstadisticas

-s : Socket

-path : String

+HiloStatServer(socket : Socket, path : String)

+run() : void

+receiveCCI(cliente : Socket) : CCI

+receiveEA(cliente : Socket) : ArrayList<TADEstadisticasAparcamiento>

+receiveEV(cliente : Socket) : EV

+receiveEJ(cliente : Socket) : ArrayList<TADEstadisticasJuego>

HiloStatServer
-continueRunning : boolean

-sv_socket : ServerSocket

-port : int

-path : String

+StatServer()

+run() : void

-mainLoop() : void

-initTcp(port : int) : void

+closeTcp() : void

+aceptarCliente() : Socket

-createFolder() : void

StatServer

+main(args : String []) : void

StartClass

Figura B.17: Clases del módulo de servidor estadístico

116

estadisticas menus

CurrentConfigInfo

CCI

EstadisticasAparcamiento

EstadisticasAparcamientoTC

EstadisticasJuego

TADEstadisticasJuego

EstadisticasVESPA

EV

TADEstadisticasAparcamiento

Parametros

mapas

GestionDeMapas

DATstruct

Figura B.18: Clases del módulo de estadísticas

+StatisticsOn : boolean

-pathName : String

+createCleanFolder(uri : String, date : String) : void

+createFolder(path : String, uuid : String) : void

+writeFile(p : Parametros, mDJ : byte, numPlayers : int, timeElapsed : int, mapData : DATstruct) : void

+writeFile(cci : CCI, path : String, uuid : String) : void

-protocol2String(p : int) : String

+getPath() : String

CurrentConfigInfo

Figura B.19: Detalle de la clase �CurrentCon�gInfo (CCI)�

117

-pathName : String

-lista : ArrayList<TADEstadisticasAparcamiento>

+createCleanFolder(uri : String, date : String) : void

+createFolder(path : String, uuid : String) : void

-cleanValues() : void

+writeFile() : void

+writeFile(path : String, uuid : String, laLista : ArrayList<TADEstadisticasAparcamiento>) : void

+writeFile(laLista : ArrayList<TADEstadisticasAparcamiento>) : void

+objetivoConseguido(id : int, tiempo : int, frames : int, vespaEnabled : boolean, aparcadoEnVespa : ...

+getLista() : ArrayList<TADEstadisticasAparcamiento>

EstadisticasAparcamiento

+id : int

+tiempo : float

+frames : float

+vespaEnabled : boolean

+aparcadoEnVespa : boolean

+protocolo : int

+TADEstadisticasAparcamiento(i : int, t : int, f : int, vE : boolean, aEV : boolean, p : int)

TADEstadisticasAparcamiento

Figura B.20: Detalle de las clase �TADEstadisticasAparcamiento� y �Estadistica-
sAparcamiento�

118

camiento exitoso varía, así como también el formato con el que se representará en
el �chero.

Las estadísticas de VESPA se almacenan tanto individualizadas para cada
vehículo como de forma agregada para toda la partida, por lo que la clase �Es-
tadisticasVESPA� se diferencia de las demás en que incluye un método para la
agregación de los datos y también otro para la representación en �chero con dife-
rente formato.

B.4.7. Módulo logger

El módulo logger permite la activación o desactivación de la impresión por
pantalla de diversas trazas de ejecución.

-enabled : boolean = false

+print(txt : String) : void

LoggerPrediccion

-enabled : boolean = false

+print(txt : String) : void

LoggerInterpolacion

Figura B.21: Clases del módulo de logger

Consiste de únicamente dos clases, pensadas para las trazas referentes a la
predicción y a la interpolación, pero es fácilmente expandible añadiendo una nueva
clase para cada nuevo tipo de traza.

También es fácilmente expandible para que se seleccione si la traza se pintará
por pantalla (como actualmente) o en �chero.

B.4.8. Módulo de menú in-game

El módulo de menú in-game contiene las clases necesarias para mostrar el menú
de pausa y permitir navegar por él mediante los eventos del ratón y la tecla escape.

Este módulo se compone de cuatro clases (�Principal�, �Opciones�, �Contro-
les� y �SalirCon�rmación�) que contienen la estructura de las diferentes pantallas
del menú (principal, opciones, controles y abandonar) y otras cuatro (�MenuInGa-
mePrincipal�, �MenuInGameOpciones�, �MenuInGameControles� y �MenuInGa-
meSalirCon�rmacion�) con las respectivas acciones de pintado y manejo de dichas
pantallas.
Además, la clase �MenuEscape� contiene la estructura de pantallas y es con la
que se comunican las clases de manejo.

La clase �MiBoton� es la que contiene la estructura de la representación de los
botones utilizados en las pantallas.

119

MenuEscape

Principal

Controles

AccionesYTeclas

SalirConfirmacion

Opciones

MiBoton

MenuInGameControles

MenuInGameOpciones

MenuInGamePrincipal

MenuInGameSalirConfirmacion

MiCanvas_cliente

1

-menuInGameOpciones

1-menuInGameSalir

1

-menuEscape

1

-menuInGamePrincipal

1

-menuInGameControles

Figura B.22: Clases del módulo de menú in-game

+ACCION_LENGTH : int

+TECLA_LENGTH : int

+BOTON_LENGTH : int

-cliente : MiCanvas_cliente

-menuEscape : MenuEscape

+MenuInGameControles(cli : MiCanvas_cliente, me : MenuEscape)

+mouseClicked(e : MouseEvent) : void

+mousePressed(e : MouseEvent) : void

+mouseReleased(e : MouseEvent) : void

+cl_paintMenuEscape(g : Graphics2D) : void

-accionClicked(texto : String) : void

MenuInGameControles

Figura B.23: Detalle de la clase �MenuInGameControles�

120

+principal : Principal

+controles : Controles

+salirConfirmacion : SalirConfirmacion

+opciones : Opciones

+MenuEscape()

MenuEscape

+botones : ArrayList<MiBoton>

+Principal()

Principal

+botonOK : MiBoton

+controles : AccionesYTeclas

+Controles()

Controles

-listaAcciones : ArrayList<String>

-listaTeclas : ArrayList<String>

+AccionesYTeclas()

+addAccionYTecla(accion : String, tecla : String) : void

+getAccion(i : int) : String

+getTecla(i : int) : String

+size() : int

AccionesYTeclas

+botonSi : MiBoton

+botonNo : MiBoton

+SalirConfirmacion()

SalirConfirmacion

+botonHecho : MiBoton

+botonMusicaMas : MiBoton

+botonMusicaMenos : MiBoton

+botonEfectosMas : MiBoton

+botonEfectosMenos : MiBoton

+Opciones()

Opciones

+texto : String

+rectangulo : Rectangle

+highlighted : boolean

+MiBoton(txt : String)

MiBoton

Figura B.24: Detalle de la clase �MenuEscape� y las relacionadas

121

B.4.9. Módulo de terreno

El módulo de terreno es el encargado de soportar la representación de los
distintos elementos que conforman los elementos estáticos del escenario.

Camino

DanyoVelocidadYCalle

LugarInteres

MultiPolygonJoinedWay

PolyData

Nodo

DFSAlgorithm

1

+efecto

*-outerWays

*

+nodosVecinosHashSet

*-nodes

*+misNodos *

-ways

1 +efecto

*

+nodosVecinosTCHash...

*-innerWays

Figura B.25: Clases del módulo de terreno

En éste módulo hay que destacar tres clases: �Nodo�, �Camino� y �MultiPoly-
gon�. Son las clases que representan a los respectivos tipos de datos de OpenS-
treetMap y contienen las funciones necesarias para su creación y manejo.

Hay que destacar que un multipolígono está formado por caminos y éste a su vez
está formado por nodos. Además cada nodo tiene una lista con sus nodos vecinos
(nodosVecinosHashSet) y otra lista casi idéntica (nodosVecinosTCHashSet) pero
en la que solo aparecen los nodos accesibles con las restricciones de los vehículos del
trá�co (que no pueden circular por los mismos tipos de terreno que los jugadores
y enemigos).

122

La clase �LugarInteres� es una subclase de �Nodo� y contiene la estructura y
los métodos necesarios para que pueda ser elegido como objetivo en los modos de
juego que funcionan mediante tareas (por ejemplo pintar el radio del objetivo o
calcular sus plazas de aparcamiento cercanas).

La clase �DanyoVelocidadYCalle� contiene el tipo de efecto causante por el te-
rreno: ralentización de velocidad, infranqueable, causa daños, etc. y además tam-
bién contiene la calle a la que pertenece. Esta clase se usa para no tener que
recalcular los efectos sobre los vehículos cada vez que se detecte que un elemento
del terreno está en colisión con un vehículo.

Por último también existe la clase �DFSAlgorithm� que contiene un algoritmo
de búsqueda primero en profundidad usado para calcular los �sectores� en los que
se divide el escenario, es decir, que nodos son accesibles desde otros nodos. Esto se
usa para evitar representar nodos que pertenecen a caminos a los que es imposible
que los vehículos accedan.

Para más información ver anexo C.3.

B.4.10. Módulo gestor de conexiones

El módulo gestor de conexiones contiene todas las clases implicadas en el envío
y recepción de datos a través de los protocolos TCP y UDP.

Este módulo puede dividirse en dos partes: las clases de uso general en toda la
aplicación (paquete �conexion�) y las clases que solo se usan durante la partida
(paquete �juego.red�).

Respecto a los primeros, las clases �TCP_servidor�, �TCP_cliente� y �TCP_-
master_related� contienen las funciones usadas para la comunicación mediante el
protocolo TCP para el servidor, el cliente y el servidor dedicado y su terminal
respectivamente. Todas ellas implementan la interfaz �TCP_comun�, que única-
mente contiene los valores asociados a los tipos de mensaje que son comunes a
todas las implementaciones.
Las clases �UDP_servidor� y �UDP_cliente� son las clases equivalentes para el
protocolo UDP.

La clase �Cliente� es la encargada de almacenar en el servidor los datos de cada
cliente conectado. No solo se almacena la IP y puerto sino también la secuencia
del último paquete recibido y enviado y una lista donde se almacenan los últimos
estados enviados para poder realizar la descompresión delta.

La clase �GestorTCPCliente� crea un hilo de ejecución en el cliente y se encarga
de realizar la petición de unión a la partida y, más adelante, recibir los datos de
cada nueva ronda, la información de �nalización de la partida y también los eventos
GUI que se muestran al jugador.

La clase �GestorConexiones� es la versión análoga para el servidor, dedicándose
a enviar dichos datos también se encarga de gestionar la unión de jugadores a la

123

conexion juego

Cliente

GestorConexiones

GestorSnaps

GestorTCPCliente

TCP_cliente

<<Interface>>

TCP_comun

TCP_master_related

TCP_servidor

UDP_clienteUDP_servidor

MiCanvas_servidor

red

util

MiCanvas_cliente

EventoGUI

FullSnapshot

InputSnapshot

Snapshot

SnapYBueno

Figura B.26: Clases del módulo de gestor de conexiones (1 de 2)

AcumuladorActor

AcumuladorAmbulance

AcumuladorCar AcumuladorFlagAcumuladorHumo

AcumuladorLO AcumuladorLRP

AcumuladorObstaculoAcumuladorParking

AcumuladorPlayerAcumuladorRedCar AcumuladorTrafficCar

Figura B.27: Clases del módulo de gestor de conexiones (2 de 2)

124

+timeoutTime : int

+blockTime : int

-socket : DatagramSocket

-cliente : MiCanvas_cliente

-tiempoUltimaRecepcion : long

+UDP_cliente(cliente : MiCanvas_cliente)

+initClient() : void

+closeClient() : void

+sendInputSnapshot(inputSnapshot : InputSnapshot) : void

+receiveSnapshot() : Snapshot

+cl_conexionPerdida() : boolean

UDP_cliente

+InetAddress : InetAddress

+port : int

+lastAckState : int

+lastState : int

-oldStates : HashMap

+Cliente(InetAddress : InetAddress, port : int, lastAckState : int)

+getOldState(sequence : int) : Snapshot

+addOldState(lastState : Snapshot, sequence : int) : void

+setLastAckState(lastAckState : int) : void

+setLastState(lastState : int) : void

Cliente

Figura B.28: Detalle de las clases �UDP_cliente� y �Cliente�

partida y de proporcionarles el estado inicial de la partida (FullSnapshot).

Respecto a las clases que se usan durante la partida, �FullSnapshot�, �Snaps-
hot� e �InputSnapshot� contienen la estructura de los paquetes de datos transmi-
tidos entre clientes y servidor.
La primera contiene el estado inicial del juego, es decir, los elementos estáticos que
no van a cambiar durante el trascurso de la partida y que por lo tanto solo serán
necesarios de enviar cuando el jugador se conecte.
La segunda contiene el estado actual del juego: los elementos dinámicos que pue-
den variar (p.ej. los vehículos o los objetivos).
La tercera contiene los eventos de teclado recogidos en el cliente y que deben
transmitirse al servidor en cada ciclo.

La clase �SnapYBueno� es una simple estructura formada por un �Snapshot�
y un valor booleano, que indica si es correcto según el sistema de control de �ujo.
Se usa en el cliente para almacenar los snapshots pendientes de procesar. La clase
�GestorSnaps� es la encargada de realizar este control de �ujo de paquetes.

La clase �EventoGUI� contiene la estructura utilizada para los mensajes que
se muestran en pantalla al jugador cuando ocurren ciertos eventos, y contiene
también los métodos necesarios para su creación.

Dentro de las clases usadas durante la partida también se encuentran los acu-
muladores, que son clases creadas para solucionar el problema causado por el envío
de únicamente actores cercanos (ver anexo C.6.5). Estas clases están contenidas
en el paquete �juego.red.acumuladores� y se dispone de una clase por cada tipo
de objeto que se ha de enviar solo en ciertas ocasiones.

125

+DURACION : int

+text : ArrayList<String>

+length : int

+EventoGUI()

+EventoGUI(l : int)

+addLine(t : String) : void

EventoGUI +bufferRecibidos : ArrayList<SnapYBueno>

+ultimoBueno : Snapshot

+GestorSnaps(ultimoBueno : Snapshot)

-setUltimoBueno(ultimoBueno : Snapshot) : void

+addRecibido(ultimoRecibido : SnapYBueno) : void

+esperar() : boolean

+removeOne() : SnapYBueno

+checkSnapshot(newState : Snapshot) : boolean

-sequence_more_recent(s1 : int, s2 : int) : boolean

GestorSnaps

Figura B.29: Detalle de las clases �GestorSnaps� y �EventoGUI�

+changed_angle : boolean

+changed_globalX : boolean

+changed_globalY : boolean

+changed_speed : boolean

+changed_currentFrameServidor : boolean

+changed_frameSpeed : boolean

+changed_tServidor : boolean

-secuenciaReseteo : Integer

+AcumuladorActor()

+acumularCambios(a : Actor) : void

#resetearCambios() : void

+markForReset(sequence : int) : void

-isMarkedForReset(sequence : int) : boolean

+resetIfRequired(sequence : int) : void

AcumuladorActor

Figura B.30: Detalle de una clase acumulador

126

B.4.11. Módulo de física

El módulo de física contiene las funciones y estructuras que permiten realizar
tareas como la detección de colisiones.

util

fisica

+Position2D()

+Position2D(a : float, b : float)

+Position2D(v : Position2D)

+isZero() : boolean

+parallelComponent(unitBasis : Position2D) : Position2D

+perpendicularComponent(unitBasis : Position2D) : Position2D

+dot(v : Position2D) : float

+rotate(theta : float) : Position2D

+translate(dx : float, dy : float) : Position2D

+addition(v : Position2D) : Position2D

+subtraction(v : Position2D) : Position2D

+multiplication(s : float) : Position2D

+division(s : float) : Position2D

+length() : float

+lengthSquared() : float

+interpolate(alpha : float, x0 : Position2D, x1 : Position2D) : Position2D

+distance(a : Position2D, b : Position2D) : float

+normalize() : Position2D

+intermediatePoint(a : Position2D, b : Position2D) : Position2D

+writeExternal(out : ObjectOutput) : void

+readExternal(in : ObjectInput) : void

Position2D

+detectCollision(B1 : PhysicsRectangle, B2 : PhysicsRectangle) : boolean

-IntervalDistance(MinA : float, MaxA : float, MinB : float, MaxB : float) : float

Fisica

+a : float

+b : float

+FloatPair(a : float, b : float)

FloatPair

+depth : float

+normal : Position2D

CollisionInfo

+v1 : Position2D

+v2 : Position2D

+Edge(v1 : Position2D, v2 : Position2D)

Edge

+VertexCount : int = 4

+EdgeCount : int = 2

+edges : Edge[] = new Edge[EdgeCount]

+vertices : Position2D[] = new Position2D[VertexCount]

+vertices[] : Position2D[] = new Position2D[VertexCount]

+edges[] : Edge[] = new Edge[EdgeCount]

+PhysicsRectangle(center : Position2D, width : int, height : int, angle : float)

+projectToAxis(Axis : Position2D) : FloatPair

PhysicsRectangle

* +vertices[]

1

+v1

1

+v2

1

+nor...

*+edges[]

Figura B.31: Clases del módulo de física

La clase �Fisica� realiza la detección de colisiones entre actores (no con ele-
mentos del terreno) y hace uso de la clase �PhysicsRectangle� que contiene los
ejes y vértices que representan al actor y tiene funciones para proyectar dicha re-
presentación sobre los ejes (necesario para calcular la colisión según el teorema
Separating Axis theorem (ver anexo C.4.2).

127

B.4.12. Módulo de inteligencia arti�cial

El módulo de inteligencia arti�cial realiza los cálculos de path-�nding (paquete
�astar�) y del control de la conducción del vehículo.

juego

util

Position2D MiListaSincronizada

actores
MiCanvas_servidor

inteligencia

terreno

NodoCar Camino

Peticion

NodoyNodo

Resultado

ObstaculoEsferico

PathWay

MapPointToPathReturnValue

SteeringBehaviors

ResultCNAP

SteeringYDesired

astar

HiloPathFinding

AStarAlgorithm

AStarNode

AStarNodeComparator

listaOut

listaResultadosIAlistaPeticionesIA

listaIn

me

steer

pathWay

cameFrom

camino

camino target
source

node

Figura B.32: Clases del módulo de inteligencia arti�cial

Dentro del paquete �astar� se encuentra la clase �AStarAlgorithm� que, me-
diante el uso de las clases �AStarNode� (representación de un nodo) y �AStarNo-
deComparator� (comparador de nodos), realiza una búsqueda A* sobre los nodos
que forman los caminos del terreno para encontrar la ruta más corta entre dos
puntos.

Ésta clase es llamada desde la clase �HiloPathFinding�, que tiene un hilo de

128

ejecución propio y recibe a través de la clase �MiListaSincronizada� peticiones
(clase �Peticion�) de path-�nding, las computa y cuando el resultado está listo
devuelve el resultado (clase �Resultado�) a través del mismo medio.

Respecto al control de la conducción, las clase más importante de las que
intervienen es �SteeringBehaviors�, que contiene los métodos invocados desde el
vehículo para la realización de los diferentes comportamientos indicados en [17] y
en su mayor parte desarrollados en OpenSteer 2 (ver C.5.1).

�SteeringYDesired� es una estructura donde se tiene el vector que indica el giro
a realizar junto al vector que indica la dirección a la que se encuentra el objetivo.

�ObstaculoEsferico� contiene una posición en dos dimensiones y un radio y
se asocia con las entidades que deben ser esquivadas por los diferentes comporta-
mientos desarrollados.

Por último �PathWay�, �MapPointToPathReturnValue� y �ResultCNAP� son
clases que se han obtenido de la implementación de la librería OpenSteer y son
usadas por los métodos que implementan los diferentes comportamientos de control
del vehículo.

B.4.13. Módulo cliente

Este módulo se compone de todos los elementos que intervienen en la parte
cliente de la aplicación y no encajan en el resto de módulos.

En la �gura B.33 se da una vista general de la interacción de la clase �MiCan-
vas_cliente� con el resto de clases del módulo y también las relaciones con el resto
de módulos que no hayan sido vistas todavía.

La clase principal es �MiCanvas_cliente� y contiene métodos para el pintado
del mundo de juego y la interfaz grá�ca de usuario, el tratamiento de red (incluyen-
do la interpolación, extrapolación y predicción), la captura de eventos del teclado,
el manejo de las entidades locales, las acciones realizadas en el cliente para liberar
de gasto de procesamiento al servidor (cálculo de aparcamientos cercanos, etc.).

Dentro de este módulo hay muchas otras clases de apoyo, la mayoría en el
paquete �juego.otros�.

Una de estas clases es �RadarVespa�, que permite representar el radar y con-
tiene métodos para pintar en él diversos tipos de elementos.
Una clase asociada a ésta es �MiniMapEvent�, que tiene la representación de los
eventos proporcionados por VESPA con la mínima información necesaria (ya que
será transmitida a través de la red).

La clase �Flecha� contiene la estructura y funciones necesarias para calcular y
mostrar en pantalla las �echas que indican la posición de los objetivos y enemigos
respecto del jugador.

2http://opensteer.sourceforge.net/

129

http://opensteer.sourceforge.net/

MiCanvas_cliente

otros

actores

red

rondaYObjetivos

<<Interface>>

Stage

terreno

util

Actor

ActorFX

<<Interface>>

BasicActor

Car

OnlyPosition

Player

Flecha

<<Enum>>

TipoObjetivoMiniMapEvent

PosicionPlayerSinPrediccion

RadarVespa
ResourceCache

SpriteCache

EventoGUI

FullSnapshot

InputSnapshot

Snapshot

ExplicacionRonda

ExplicacionRondaSalaDeEspera

ModosDeJuego

Opciones

Tarea

CaminoDanyoVelocidadYCalleMultiPolygon Nodo

Angulos

SnapYBueno

TextStroke

Figura B.33: Clases del módulo de cliente

130

-mapWidth : float

-mapHeight : float

-maxA : int

-maxB : int

-scale : float

-cliente : MiCanvas_cliente

-a : int

-b : int

-offsetA : int

-offsetB : int

-comienzoX : int

-comienzoY : int

#spriteCache : SpriteCache

+RadarVespa(c : MiCanvas_cliente, maxWidth : int, maxHeight : int, width : float, height : float, comienzoX ...

+paintBackground(g : Graphics2D) : Rectangle

+paintEvents(g : Graphics2D, listaPuntitos : List<RadarRepresentationOfEvent>) : ArrayList<MiniMapEvent>

+paintTooltipsEvents(g : Graphics2D, lista : ArrayList<MiniMapEvent>, mouseX : int, mouseY : int) : void

-drawToolTip(g : Graphics2D, x : int, y : int, text : String) : void

+paintOnlyMyPlayer(g : Graphics2D, jugador : Player) : void

+paintGasolineras(g : Graphics2D, gasolineras : ConcurrentHashMap) : void

+paintPuestosPerritos(g : Graphics2D, puestosPerritos : ConcurrentHashMap) : void

+paintLugares(g : Graphics2D, lugares : ArrayList<Tarea>) : void

+paintOff(g : Graphics2D) : void

RadarVespa

Figura B.34: Detalle de la clase �RadarVespa�

+x : int

+y : int

+width : int

+height : int

+typ : RadarRepresentationOfEvent

+MiniMapEvent(x : int, y : int, w : int, h : int, typ : RadarRepresentationOfEvent)

+contains(mx : int, my : int) : boolean

+typ2String(cliente : MiCanvas_cliente) : String

MiniMapEvent

Figura B.35: Detalle de la clase �MiniMapEvent�

131

-angle : short

-spriteNames : String[]

-currentFrame : byte

-width : int

-height : int

-objetivo : Object

-jugador : Player

-red : float

-green : float

-blue : float

-tipoActor : TipoObjetivo

-spriteCache : SpriteCache

-attribute : SpriteCache

+Flecha(cliente : MiCanvas_cliente, j : Player, color : Color)

-setSpriteNames(names : String []) : void

+paint(g : Graphics2D) : void

+setObjetivoA(actor : OnlyPosition) : void

+setObjetivoL(l : LugarInteres) : void

+setObjetivoD(c : Float) : void

-calcularAngulo() : void

Flecha

Figura B.36: Detalle de la clase �Flecha�

B.4.14. Módulo servidor

Este módulo se compone de todos los elementos que intervienen en la parte
servidor de la aplicación y no encajan en el resto de módulos.

En la �gura B.37 se da una vista general de la interacción de la clase �MiCan-
vas_servidor� con el resto de clases del módulo y también las relaciones con el
resto de módulos que no hayan sido vistas todavía.

La clase principal es �MiCanvas_servidor�, que contiene métodos para el tra-
tamiento de red, inicialización del mundo de juego, cálculo de puntuaciones e
inicialización y �nalización del servidor.

Esta clase interactúa con el resto de módulos previamente citados.

B.5. Game Loop (bucle de juego)

El game loop es una secuencia presente en todos los juegos que generalmente
consiste en obtener los comandos del jugador, actualizar el estado del juego, realizar
las tareas de la IA, reproducir los efectos de sonido y pintar el juego.3 Esta secuencia
se ejecuta in�nitas veces hasta que se acabe la partida.

3http://www.koonsolo.com/news/dewitters-gameloop/

132

http://www.koonsolo.com/news/dewitters-gameloop/

<<Interface>>

Stage

MiCanvas_servidor

rondaYObjetivos

terreno

actores

red

inteligencia

otros

fisica

ExplicacionRonda

ExplicacionRondaSalaDeEspera

<<Interface>>

IObjetivos

ModosDeJuego

ObjetivosAparcar

ObjetivosRally

ObjetivosSupervivencia

ObjetivosTareas

Opciones

Ronda

Tarea

Camino

DFSAlgorithm

LugarInteres

<<Enum>>

TipoLugar

Nodo

PosYAngle

Actor

<<Interface>>

BasicActor

Car

Parking

Player

HistoricoJugador

EventoGUI

FullSnapshot

Snapshot

HiloPathFinding

SpriteCache

Fisica

FloatPairCollisionInfo

Edge

PhysicsRectangle

Figura B.37: Clases del módulo de servidor

133

En http://www.koonsolo.com/news/dewitters-gameloop/ se muestran va-
rios posibles diseños del game loop, de los cuales se escogió realizar el primero de
ellos: FPS dependientes de la velocidad del juego (constante) por ser una solución
fácil de implementar y que mantiene la sencillez del código, lo cual es importante
ya que al tratarse de un juego en red y como también se van a introducir conceptos
como la predicción e interpolación, se va a complicar mucho el código . Además,
contando con que todos los ordenadores implicados (servidor y clientes) tienen po-
tencia su�ciente para conseguir los FPS establecidos, la velocidad en todos ellos
será la misma.

En el Algoritmo B.1 se observa el código básico tanto en el cliente como en el
servidor. En actualizar juego se realiza todo lo necesario para actualizar el mundo
de juego (distinto según si es el cliente o el servidor) y en mostrar objetos en
pantalla (solo lado cliente) se pinta el mundo de juego en pantalla. En las siguientes
secciones (Anexos B.5.1 y B.5.2) se explica en detalle el contenido de estas dos
funciones así como también de inicialización y �nalización.

Algoritmo B.1: Game loop

inicializacion
while(el juego continua)
{
actualizar juego
mostrar objetos en pantalla <−− Solo en el cliente

}
�nalización

B.5.1. Servidor

El servidor tiene el siguiente esquema de funcionamiento (ver Figura B.38):

inicialización: se crea el escenario (nodos, caminos, aparcamientos, gasoline-
ras...) y después se crea el gestor de conexiones, el cual es el encargado de
recibir las peticiones de conexión de los clientes y enviarles el estado de juego
actual para que se puedan unir. Esta fase de inicialización acaba cuando el
primer cliente se une a la partida.

actualizar juego: recibe los comandos de los jugadores (enviados medianteUDP)
y los procesa. Después llama al gestor de rondas para que compruebe el es-
tado de los objetivos y dictamine si se debe avanzar de ronda o si el juego
se ha acabado. Finalmente envía a los clientes los datos actualizados de los

134

http://www.koonsolo.com/news/dewitters-gameloop/

Crear escenario
Crear Gestor de Conexiones
(interactua con los clientes)

Recibir y procesar entradas de los jugadores

Comprobar
objetivos de

la ronda
Enviar estado del "mundo"
y los objetivos actualizados

a los clientes

Enviar señal de
"juego_finalizado"

Enviar información sobre el
juego (puntuaciones, tiempos,

 etc.) a los clientes

Guardar estadísticas
y enviarlas al Servidor

 de estadísticas (si existe)

Inicialización

Game loop

Finalización

juego_finalizado

no(juego_finalizado)

Figura B.38: Funcionamiento del servidor

135

actores en sus cercanías y, en el caso de haberse modi�cado, los objetivos de
la ronda.

�nalización: se envía a los clientes una señal de que el juego ha acabado, y
cuando se ha recibido el ack de todos ellos, se les envía las estadísticas
�nales de la partida (puntuación, tiempo...). Finalmente, si la con�guración
actual así lo requiere, se guardarán en �cheros las estadísticas de explotación
recogidas, y si el servidor de recogida de estadísticas está operativo, también
se le enviarán a él (ver Capítulo 3).

Hay que destacar que al tener cada actor un hilo de ejecución propio, la actua-
lización de su estado no se realiza dentro de la lógica del hilo del servidor sino que
se realiza de forma asíncrona.

Otro aspecto importante es que a cada cliente no se le envían los datos de todos
los actores sino solamente de aquellos que por su cercanía tengan interés para él.
Se profundizará más en este aspecto en el Anexo C.6)

B.5.2. Cliente

El cliente tiene el siguiente esquema de funcionamiento (ver Figura B.39):

inicialización: primero se inicia la música de la partida (la del menú se ha �na-
lizado al crear la clase cliente). Después se crea el gestor de conexión TCP,
que es el que iniciará la petición de conexión al servidor. Se enviarán y re-
cibirán todos los datos requeridos para unirte a la partida y se procesarán
para que el estado de juego sea el mismo que del servidor.

actualizar juego: se recogen de teclado los comandos de los jugadores y se en-
vían al servidor. Se recibe del servidor el estado actualizado del juego y se
almacena en un bu�er. Se extrae el estado más antiguo de los almacenados en
el bu�er (se eliminan después de extraerlos) y se le aplica la descompresión
delta para obtener los datos que contiene. Después se aplica la predicción
e interpolación (ver Anexo C.6), se hace la comprobación de colisiones de
los actores FX (son aquellos que solo existen en el cliente por representar
efectos visuales o sonoros) y se actualiza su estado.

mostrar objetos en pantalla: se pintan todos los elementos del juego en pan-
talla.

�nalización: se detiene la música y los efectos de sonido, pintas la animación
de �n de la partida y esperas a recibir las estadísticas �nales de la parti-
da. Finalmente cargas las pantallas de los menús, mostrando inicialmente la
pantalla de estadísticas o la de error en caso de que haya ocurrido alguno.

136

Iniciar musica

Crear Gestor de
Conexiones (para

conectar con el servidor)

Enviar y recibir
los datos necesarios

para unirse a una partida

Procesar el estado
actual del juego

Recoger entrada del jugador
y enviarla al servidor

Recibir y procesar la información
sobre el estado actual del juego

 del servidor

Realizar compensación
de latencia de red

Actualizar elementos
locales al cliente

(efectos visuales y
sonoro, etc.)

Actualizar la pantalla
con el estado actual
del mundo (eventos,

vehículos, etc.)

Detener música
y efectos de sonido

Animar la pantalla
de "game over"

Recibir informacion del
juego para la pantalla final

(puntuaciones de cada
equipo y jugador, tiempos)

Volver al menú
principal

Inicialización

Game loop

Finalización

juego_finalizado

no(juego_finalizado)

Figura B.39: Funcionamiento del cliente

137

B.5.3. Actor

Cada actor tiene el siguiente esquema de funcionamiento (ver Algoritmo B.2):
Tiene un bucle similar al game loop del cliente y servidor, que �nalizará cuando el
actor muera o se acabe la partida, y que contiene un método actualizar al que se
le llama una vez por ciclo (la misma velocidad que el bucle del servidor) y cuando
se �naliza el bucle se llama a la función eliminarse, que elimina al actor de las
listas en las que está incluido y si era uno de los objetivos de la ronda lo da por
completado, además según su clase también detiene el hilo de path-�nding y los
de VESPA.

Algoritmo B.2: Bucle del actor

while(vivo & no(partida acabada))
{
actualizar

}
eliminarse

El método actualizar tiene el funcionamiento que se puede ver en el Algorit-
mo B.3, y básicamente consiste en comprobar si el actor sigue vivo (se comprueba
al comienzo de cada ciclo) y si lo está se llama a las funciones actualizar y com-
probar colisiones que realizan las acciones del actor y comprueban si existe alguna
colisión con otro actor respectivamente.

Algoritmo B.3: Método actualizar del actor

if (está marcado para eliminación)
{
vivo = falso

}
else
{
actuar
comprobar colisiones

}

Este bucle del actor se ejecuta en el servidor, ya que en el cliente solo se
reciben los datos calculados. Sin embargo, existen ciertos aspectos de los actores
(normalmente relacionados con su pintado) que se calculan en el mismo cliente, por
no necesitar un resultado que sea consistente en todos los clientes. Estas acciones

138

se ejecutan desde la función actuar FX. Ejemplos de estas acciones son los cambios
de luces en la sirena de la ambulancia o el cambio de sprite del humo.

Existen dos tipos de actores: los actores de la clase Actor (p.ej. vehículos, humos,
gasolineras...), que son los actores que tienen que existir en todos los clientes con
su estado sincronizado con el servidor, y los actores de la clase ActorFX, que
representan efectos visuales o sonoros y solo existen en el cliente que necesita
representarlos (p.ej. explosiones, símbolos de mareo al colisionar con el humo...).
Ambos tipos implementan el interfaz BasicActor ya que es la que usa el sonido
(que puede ser generado por actores de ambas clases) (ver Figura B.40). El bucle
de los actores FX es igual al de los actores normales exceptuando que no llaman
a la función comprobar colisiones, ya que no tienen consistencia física (de tenerla
dejarían de ser actores FX y necesitarían ser actores normales para que el servidor
sincronice su estado con todos los clientes).

<<Interface>>

BasicActor

Actor Actor FX

Figura B.40: Las clases Actor y ActorFX implementan la interfaz BasicActor

B.6. Hilos de ejecución

En esta sección se van a explicar que hilos existen durante la ejecución y cómo
están comunicados unos con otros. Los diferentes hilos de ejecución se pueden
dividir en hilos de la interfaz, hilos del cliente e hilos del servidor.

El esquema de ejecución es el siguiente (ver Figura B.41):
Cuando se inicia el juego, se crea la clase VentanaPPal (encargada de cargar la
con�guración almacenada y crear los directorios si es necesario), la cual termina
pasando el control a la clase Contenedor, que es en la que se muestran las pantallas
de los menús. La clase Contenedor crea un hilo adicional para el gestor de música

139

(clase MiPlayer), y un número de hilos determinado (dependiente de la con�gu-
ración de audio) para el gestor de sonidos FX (clase SoundManager).
Cuando desde el menú se elija la opción de crear una partida nueva, el hilo prin-
cipal creará la clase Cliente y se creará un hilo adicional con la clase Servidor.
Además, el hilo del gestor de música llegará a su �nal y se creará uno nuevo con
la música deseada (la forma de cambiar de canción es cerrar el hilo y crear uno
nuevo).
Cuando la opción de menú elegida no sea crear una nueva partida sino unirse a
una partida existente, se omitirá la creación del servidor y su hilo.

Dentro del cliente, se creará un nuevo hilo en el que se ejecutará el gestor de
conexiones TCP (clase GestorTCPcliente), y cuando la partida llegue a su �n, el
hilo principal (clase Cliente) enviará señales de interrupción a este hilo así como
a todos los demás dependientes del cliente (gestor de sonidos y gestor de música).
Finalmente, una vez interrumpidos todos, el cliente volverá a invocar al menú
principal (clase Contenedor) sobre su mismo hilo.

Por su parte el servidor (ver Figura B.42) tiene como similitud la creación de
un gestor de conexiones TCP (clase GestorConexiones), pero no tiene hilos de
sonido ya que es una parte que se ejecuta únicamente en el cliente.
Además, a diferencia del cliente, en el servidor cada actor tiene su propio hilo de
ejecución, los cuales seguirán funcionando hasta que el actor sea eliminado de la
partida (por ejemplo por haberse destruido) o el valor del servidor que indica si la
partida ha �nalizado se vuelva cierto.
Algunos actores a su vez crean nuevos hilos, caso del hilo de path-�nding y los
hilos de VESPA (dependientes de la implementación, ver capítulo D.1), siendo los
actores los responsables de enviarles una señal de interrupción cuando el hilo del
actor vaya a ser eliminado.
A diferencia del cliente, que al acabar devuelve el hilo de ejecución al menú prin-
cipal, el servidor al �nalizarse termina su hilo de ejecución.

La comunicación entre los diferentes hilos, más allá del envío de interrupciones
ya citado, se realiza siempre sobre variables comunes, utilizando sincronización de
bloques.

140

VentanaPPal

Contenedor

MiPlayer SoundManager

ServidorCliente

GestorTCPcliente

MiPlayer

Interrupt Interrupt InterruptPartida acabada

Figura B.41: Vista general de los hilos de ejecución

141

Servidor

Hilos VESPA

RedCar i

Hilos VESPA Hilo Path-findi...

Parking i Gasolinera i PuestoPerritos i TrafficCar i

Hilos VESPA Hilo Path-findi...

GestorConexion...

Player i

Hilos VESPA

Ambulancia i

Inicio ronda

Se conecta

primer jugador

Interrupt InterruptInterruptInterruptInterruptInterrupt InterruptPartida acabada

Figura B.42: Detalle de los hilos de ejecución del servidor

142

Anexo C

Sobre el videojuego

En este anexo se tratarán en detalle todos aquellos aspectos sobre el desarrollo
del videojuego que no han podido ser tratados en el capítulo 2 o han sido tratados
de forma resumida.

C.1. Menús del juego

En esta sección se verán todas aquellas cuestiones que por motivo de espacio
no pudieron ser explicadas en el capítulo correspondiente (2.3).

C.1.1. Tipografía

Los menús del juego se diseñaron para utilizar la tipografía OCR-B 10BT, dado
que ésta poseía el aspecto idóneo para la imagen que se buscaba transmitir. Sin
embargo, debido a los derechos de autor, no es posible redistribuir dicha fuente
tipográ�ca, y además incluso dándose la posibilidad de redistribuirla, no todos los
usuarios desearían instalarla como requisito previo para jugar. Es por esto que
al ejecutar el juego, si se detecta que dicha fuente está instalada en el sistema, se
usará, sin embargo si no se encuentra instalada, Java elegirá una fuente alternativa
(de la misma familia a ser posible) para sustituirla.

Por esta razón, y al ser la fuente escogida poco común, es probable que la
mayoría de usuarios vean las pantallas de menús con una apariencia distinta a
la diseñada. Para evitar esto, se pensó que una forma de solucionar este proble-
ma sería sustituir todos los textos por imágenes de dichos textos en la tipografía
deseada, pero se descartó por la complicación que supone y por el inconveniente
de tener tantas imágenes cargadas en memoria.
En lugar de esto, �nalmente se decidió únicamente comprobar que no existan erro-
res de diseño con la tipografía Arial, que es la tipografía sustituta en los tres

143

sistemas operativos para los que se diseñó el juego: Mac OS, Windows y Ubuntu.

C.1.2. Directorio del juego

La gran mayoría de los juegos requiere guardar distintos parámetros y con�gu-
raciones. Como ellos, Vanet-X usa un directorio de juego en el que se almacenan
los mapas descargados y la con�guración de los diferentes parámetros de juego.

Siempre que se inicia la aplicación se comprueba si existe el directorio de juego
por defecto y en caso contrario crea el sistema de archivos necesario, mostrándose
una ventana emergente en la que se informa al usuario que directorio se va a usar
(y en el caso de que se haya creado nuevo, indicándoselo).
El directorio de juego por defecto está situado en la carpeta por defecto del usuario
proporcionada por el sistema operativo. En sistemas Windows esta carpeta es Mis
Documentos, mientras que en sistemas Unix se sitúa en el directorio $HOME.

Aunque siempre se inicia el juego con el directorio por defecto, en los menús se
puede cambiar cual es el directorio en uso. Al cambiar de directorio se reinicia el
interfaz por lo que se cargan los valores almacenados en los �cheros de con�guración
del �chero elegido.
Si el directorio elegido estaba vacío, se crea el sistema de archivos con los valores
de con�guración por defecto.

El sistema de archivos tiene la siguiente estructura (Figura C.1):

Directorio base

Maps

Stats

temp

OSM_APIs.txt

$nombre_mapa_1$.jpg

$nombre_mapa_2$.jpg

$nombre_mapa_1$.xml

$nombre_mapa_1$.dat

paramConfig.txt

config

searchresult$random$.tmp

Figura C.1: Estructura del directorio de juego

144

En el directorio base el �chero con�g, en el que se guardan todos los pará-
metros modi�cables mediante las pantallas de menú, y el �chero de texto
ParamCon�g.txt, que contiene otros parámetros, modi�cables por el usua-
rio, relacionados con el rendimiento del juego y opciones de habilitación de
diversas características como las estadísticas (ver Figura C.2).

#radioMaxMapa

0.0050

#radioPeqMapa

0.0030

#MaxBytesUDP

6000

#MaxExtrapolation

5

#MaxInterpolation

2

#NUM_PARKINGS_FIJOS

30

#NUM_PARKINGS

15

#NUM_FX

20

#timeoutWaitingPlayers

60

#framesPropagacionExplosion

5

#maxTC

50

#maxRC

8

#maxNodos

10000

#WOLFSON (ON=1)

0

#maxPlayers

8

#cochesBuscandoParking

30

#TIEMPO_CAMBIO

20000

#MARGEN_TIEMPO_CAMBIO

20000

#RADIO_PARKING_VALIDO

500

#PARKING_PROTOCOL (0=Time,1=Distance,2=EP,3=Null)

3

#DISTANCIA_CERCA

7000

#debugRadar (ON=1)

1

#VESPA_StatisticsOn (ON=1)

1

#Parking_Player_StatisticsOn (ON=1)

1

#Parking_Traffic_StatisticsOn (ON=1)

1

#Game_StatisticsOn (ON=1)

1

.
.
.

.
.
.

Figura C.2: Ejemplo de contenido del �chero �ParamCon�g.txt�

Una carpeta Maps, en cuyo interior se guardan los �cheros .dat, .jpg y .xml
en los que se contienen los datos de cada mapa descargado, y también un
�chero de texto OSM_APIs.txt (ver Figura C.3) que contiene las url de las
APIs de descarga de mapas, para que el usuario pueda modi�carlas.

http://jxapi.openstreetmap.org/xapi/api/0.6/map?bbox=

http://www.overpass-api.de/api/xapi?map?bbox=

Figura C.3: Ejemplo de contenido del �chero �OSM_APIs.txt�

Una carpeta Stats en la que se guardan las estadísticas recogidas durante
las partidas. En la sección D.2.3 se ve detalladamente los elementos de su
interior.

145

Una carpeta temp que contiene los �cheros temporales creados durante la
ejecución, como son los resultados de las búsquedas y las previsualizaciones
de los mapas no descargados, y que se eliminan automáticamente al cerrar
la aplicación.

C.1.3. Prevención de errores

Se han implementado diversos métodos para impedir acciones en los menús
que puedan causar errores en la ejecución del juego. El primero de ellos es la
comprobación de los campos de texto.

Tanto al pulsar los botones de navegación de avanzar de pantalla y guardar
cambios, como cuando un campo de texto pierde el foco, se hace uso de la clase
javax.swing.InputVeri�er para comprobar si los campos de la pantalla actual son
correctos. En caso negativo el campo incorrecto se marca con fondo rojo y en algu-
nos casos también se crea una ventana emergente avisando de dicha incorrección.

Algunas acciones tienen unos tiempos de espera considerables, y por ello en esos
casos usando la clase javax.swing.SwingWorker se desligó la acción del hilo EDT
(Event Dispatch Thread) para que no lo bloquease y no diese la apariencia de que
la interfaz se ha quedado �congelada�. Esto tiene el peligro de que cómo se tiene el
control de la interfaz mientras se ejecutan las acciones deseadas, el usuario puede
realizar acciones cuya ejecución antes de haber terminado la ejecución de la otra
acción en curso puede causar errores.
Es por ello que mientras exista una ejecución en curso, se bloquean los botones que
podrían causar comportamientos indeseados si son pulsados a la vez. Un ejemplo
sería pulsar el botón de unirte a una partida y mientras esperas a que se ejecute
volverle a pulsar (lo cual sería muy común debido a la característica impaciencia
de la mayoría de usuarios).

Otro posible error es iniciar una partida sin tener seleccionado ningún escenario
(por no tener ninguno descargado), posible error que se previene dirigiendo en
ese caso al jugador a la pantalla Con�guración avanzada de mapas para que se
descargue un mapa.

Por último, existe un posible error que solo puede sucederle al creador de la
partida, y que consiste en después de �nalizar una partida, crear rápidamente otra
nueva, sin dejar tiempo a que el �lado servidor� de la aplicación termine de enviar
las estadísticas al resto de jugadores y �nalice, en cuyo caso en la nueva partida
aparecería un error indicando que los puertos escogidos están ya asociados.
Para evitar este problema, se establece un tiempo mínimo desde que abandonas

146

una partida hasta que el botón para crear una nueva responde a los eventos del
usuario.

C.1.4. Pantallas de error

Cuando aparece un error crítico durante una partida, que hace que se tenga
que �nalizar y volver al menú, no solo se imprime la traza del error por la salida
de error por defecto, sino que también se crea una pantalla de error, anterior a
la pantalla de estadísticas, en la que se imprimen las diferentes trazas de error
diferenciadas por pestañas según el elemento que las haya causado.

Si por el contrario, aparece un error pero no es crítico, se continúa jugando la
partida pero se muestra un mensaje permanente en la esquina inferior izquierda de
la pantalla avisando al jugador de la existencia de ese error y de que por esa razón
pueden darse comportamientos extraños. Cuando �nalmente el jugador abandone
la partida, también aparecerá la pantalla de error anteriormente citada con los
errores y los elementos en los que han tenido lugar.

También existe otra pantalla de error diferente que aparece en los casos en los
que ha habido un error al intentar unirte a una partida.
Este error puede tener diferentes causas (la partida está completa, no existe, las
versiones de juego del servidor y el cliente no coinciden...) y es por ello que esta
pantalla tiene una zona de texto cuyo contenido es modi�cable dinámicamente y,
en función de la causa del error de conexión, se mostraran diferentes textos.

C.1.5. Pantallas de mapas

En la pantalla Con�guración avanzada de mapas, además de poder añadir y
eliminar mapas, se ha elaborado una opción para poder previsualizar el mapa
seleccionado o el área que se desea descargar. Esta previsualización se realiza ob-
teniendo de una API la imagen en la que se representa el área seleccionada.
Esta imagen se presenta en tamaño reducido en dicha pantalla, y pulsando sobre
ella se accede a una nueva pantalla en la que se visualiza la imagen a un mayor
tamaño. Mientras que el tamaño reducido siempre es el mismo, en la pantalla de
ampliación la imagen no se amplía mas allá de su tamaño original, solamente se
reduce en caso de que sea necesario para que encaje en el espacio disponible.

Cuando se desea previsualizar un mapa descargado, como la vista previa se ha
descargado a la vez que los datos OSM XML, no hay más que elegir esa imagen y
mostrarla.
Sin embargo, cuando se desea previsualizar el área de la búsqueda actual, cómo
existe un control deslizante para ajustar el tamaño a descargar, la forma de no tener
que pedir una nueva imagen a la API cada vez que se varíe el tamaño seleccionado

147

es descargando la imagen con el tamaño máximo que se permite seleccionar y
luego mediante una función de recorte, mostrar únicamente el área proporcional
al tamaño elegido actualmente.

C.1.6. Otros aspectos importantes

Un aspecto importante de la implementación es que todas las pantallas de los
menús se cargan en memoria al inicio de la ejecución, de forma que se evita tiempo
de espera por carga cuando se navega entre los menús.
Cuando se inicia una partida, se descargan de memoria, ya que no van a ser usadas
hasta que la partida �nalice, momento en que se volverán a cargar.

Otro elemento importante de la implementación es que se ha añadido un número
de versión al juego para que cuando te conectes a un servidor se compruebe que
ambos funcionan bajo la misma versión de la aplicación. Esta comprobación se
realiza inicialmente al pulsar el botón Unirte de la pantalla Unirte a una partida
existente, ya que cuando se pide al servidor la información de la partida que se
mostrará en la pantalla Sala de espera, la cual contiene información de la partida
en curso y los jugadores conectados, también se aprovecha para comprobar que las
versiones del juego sean idénticas.

La comprobación no solo se realiza en este momento, sino que se comprueba
en todas las ocasiones en las que se vuelve a realizar alguna petición al servidor
antes de unirte (botones Actualizar y Unirte de la pantalla sala de espera). Esto
es así ya que, aunque es una posibilidad muy remota, podría darse el caso de que
mientras esperas en la sala de espera, el servidor haya �nalizado la partida, y se
cree otra nueva en la misma dirección IP con otra versión diferente del juego.

También hay que anotar que en la sala de espera, en el caso de tratarse de una
partida competitiva, se pide al usuario seleccionar el equipo al que desea unirse,
estando siempre seleccionado por defecto el equipo que tiene menos jugadores, lo
cual se ha podido calcular gracias a la información que el servidor ha proporcionado
a petición del usuario.

Otro aspecto adicional es que durante el desarrollo del juego se requería poder
cambiar diversos parámetros desde el mismo juego evitando así la necesidad de
recompilar cada vez. Estos parámetros no deberían ser modi�cables en la versión
�nal, ya que principalmente era para probar ciertos aspectos que estaban todavía
en fase de pruebas. Una vez acabadas dichas pruebas se decidió que era buena idea
mantenerlos, y por ello se ideó una pantalla que estuviese oculta y sólo se mostrase
con �nes de desarrollo.

148

Para esta tarea se ideó usar el Konami Code1, que es usado en muchos videojuegos
y sitios web2 para acceder a trucos o características ocultas.

También es importante destacar que el diseño de los menús se ha realizado
usando el layout nulo ya que como la ventana de la aplicación tiene un tamaño
�jo, los componentes no variarán de posición ni de tamaño, y por esa razón se ha
considerado innecesario usar otro layout más complejo.

C.2. Obtención de mapas

Como se ha explicado en el capítulo 2.4, para cumplir el segundo y tercer
objetivo del Proyecto Fin de Carrera (�desarrollar lo necesario para que se compita
en escenarios creados a partir de datos reales obtenidos de algún sistema que
proporcione mapas de carreteras� y �desarrollar una funcionalidad de descarga
de mapas, de forma que introduciendo la localización en la que deseas jugar se
descargue una porción de mapa alrededor del punto elegido�) se escogió el servicio
OpenStreetMap, por ser gratuito y tratarse de un proyecto colaborativo con un
uso en expansión.

En esta sección se mostrarán los detalles del estudio del sistema OpenStreet-
Map, la implementación realizada y los problemas que se encontraron durante
dicha implementación.

C.2.1. OpenStreetMap

Según la correspondiente entrada de la wiki de OpenStreetMap3, existen varias
fuentes donde conseguir los datos, los cuales se encuentran en formato OSM XML4.
Estas fuentes son la propia API principal5, Xapi (OSM Extended API)6 y Overpass
API7, cuyas diferencias se explican a continuación:

API principal se trata del método de acceder a los datos usado por las aplica-
ciones que requieren capacidades de edición, ya que es el único método que
no se realiza con acceso de solo lectura. Para evitar su sobrecarga, tiene la
descarga de datos limitada a áreas menores de 0,25 grados cuadrados y se

1http://en.wikipedia.org/wiki/Konami_Code
2http://konamicodesites.com/
3http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs
4http://wiki.openstreetmap.org/wiki/OSM_XML
5http://wiki.openstreetmap.org/wiki/API
6http://wiki.openstreetmap.org/wiki/Xapi
7http://wiki.openstreetmap.org/wiki/Overpass_API

149

http://en.wikipedia.org/wiki/Konami_Code
http://konamicodesites.com/
http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs
http://wiki.openstreetmap.org/wiki/OSM_XML
http://wiki.openstreetmap.org/wiki/API
http://wiki.openstreetmap.org/wiki/Xapi
http://wiki.openstreetmap.org/wiki/Overpass_API

recomienda que las aplicaciones que no tengan capacidades de edición usen
los otros métodos en lugar de éste.

Xapi es un protocolo de API de solo lectura, muy similar a la API principal.
Tiene diversas mejoras de rendimiento y tiene un mayor límite de descarga
de datos: 10 grados cuadrados. Los datos que devuelve son compatibles con
el protocolo de la API principal.

Overpass API al igual que Xapi, es un protocolo de API de solo lectura, ideado
no para la edición sino para el consumo de datos. Su principal diferencia de
los otros dos métodos es que posee un poderoso lenguaje de consulta aunque
tiene una capa de compatibilidad con las consultas de Xapi.

A diferencia de la API principal, cuyo acceso se realiza siempre sobre la misma
URL, los otros dos métodos tienen implementaciones funcionando en varios servi-
dores, los cuales pueden variar con el paso del tiempo y pueden sufrir sobrecargas
o caídas de servicio con mayor frecuencia. Por este motivo, para garantizar que se
logra usar al menos un servicio que funcione, en Vanet-X se hace uso de una lista,
modi�cable por el usuario, de APIs externas, las cuales se intentan usar de forma
secuencial hasta hallar una que esté operativa, y �nalmente, si ninguna lo estaba,
se hace uso de la API principal.

Al igual que existen diferentes APIs para conseguir los datos en formato OSM
XML, también existen diferentes servicios que te permiten lograr imágenes estáti-
cas del mapa. En la correspondiente entrada de la wiki de OpenStreetMap8 existe
una tabla comparativa entre las características de estos servicios.

En este proyecto se ha usado OSM Static maps API 9 por ser el que más se
adaptaba al resultado que se quería obtener, que era conseguir el mapa mediante
una caja que delimite sus coordenadas y mediante el zoom que se quiere aplicar.
En el momento de decidir qué servicio usar, este era el único que contaba con
estas características, ya que los demás en lugar de delimitar el área por una caja
de coordenadas, lo hacían solo mediante el zoom y estableciendo los pixeles de la
imagen resultante.
El motivo de que se necesitase poder delimitar el área por coordenadas era que
se quería conseguir mostrar en la imagen exactamente el área descargada en OSM
XML, o al menos de forma lo más aproximada posible.

Cómo se ha mencionado anteriormente, los datos de OpenStreetMap se descar-
gan en formato OSM XML, por lo que para tratarlos se necesita usar un parser

8http://wiki.openstreetmap.org/wiki/Static_map_images#Comparison_Matrix
9http://pafciu17.dev.openstreetmap.org/

150

http://wiki.openstreetmap.org/wiki/Static_map_images#Comparison_Matrix
http://pafciu17.dev.openstreetmap.org/

XML.
Se eligió usar XERCES Java Parser dado que es muy completo, soporta com-
pletamente las APIs XML de Java SAX, DOM y JAXP, y se distribuye bajo la
licencia Apache 2.0. La elección del API XML fue SAX ya que por e�ciencia es
la única opción si se desea manipular documentos XML demasiado grandes, como
podría ser el caso. Además como no guarda el documento entero en memoria, es
una solución muy rápida y e�ciente.

Para usar los datos descargados, dado que usan coordenadas geográ�cas en for-
mato WGS84, se ha necesitado realizar una conversión a coordenadas UTM (Uni-
versal Transverse Mercator), que en lugar de expresarse en longitud y latitud se
expresan en metros. Una vez realizada esta conversión, y después de aplicar un
modi�cador para adaptarlas a las unidades de medida del juego, las coordenadas
ya pueden ser utilizadas en nuestro plano de juego.

Como realizar esta conversión entre sistemas de coordenadas es una labor com-
pleja, se hizo uso del código proporcionado abiertamente por Chuck Taylor en su
sitio web10. Como este código esta realizado en lenguaje JavaScript, se realizó una
conversión para adaptarlo al lenguaje Java en el que se ha desarrollado el resto
del proyecto.

C.2.2. Implementación

El proceso de la obtención de un mapa se ha implementado de la siguiente
forma:

1. Se hace una petición HTTP GET con las palabras clave de la dirección que
deseas al servicio OpenStreetMap Nominatim Tool, el cual devuelve un listado
de los lugares coincidentes con las búsqueda realizada. Cada lugar incluye el
nombre, coordenadas y otros datos que no nos son relevantes.

2. Una vez seleccionada del listado la localización deseada, se hace una petición
de mapa al API elegido con los datos de la �bounding box� que delimitará el
área. Esta �caja delimitadora� se forma a partir de las coordenadas propor-
cionadas por el listado y el valor del radio deseado por el usuario, obtenido
a través de los menús del juego. El API devolverá un documento con for-
mato OSM XML que contendrá los datos requeridos. Si el API al que se ha
realizado la petición no funciona correctamente, se repite el proceso con el
siguiente API del listado de APIs.

10http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html

151

http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html

3. Una vez obtenidos los datos en formato OSM XML, se parsean para intro-
ducirlos en la estructura de nodos, caminos y multipolígonos de Vanet-X.
Además, mientras se introducen, se realizan también acciones asociadas co-
mo dividir los elementos del terreno en diversas capas para su pintado o
calcular los bordes del escenario.

Es importante apuntar que a pesar de que el formato de los datos es el mismo
independientemente del API utilizado, ciertas etiquetas opcionales pueden variar,
como sucede con la etiqueta �bounds�, que indica los bordes del área descargada
pero que sólo está presente en los datos descargados de la API principal de OpenS-
treetMap. Por esta razón, cuando se parsean los datos, se comprueba la existencia
de esta etiqueta y si no está presente se obtiene este dato del �chero .dat creado
al descargar el mapa.

Los mapas descargados se almacenan y consultan localmente, de forma que una
vez descargados ya no es necesario volver a conectarse a la API ni para obtener
los datos en formato OSM XML ni para obtener la imagen de vista previa de la
zona descargada. De esta forma, es posible jugar a Vanet-X aun sin tener cone-
xión a internet, solo siendo necesario tener los mapas descargados en la carpeta
correspondiente.

Cuando te descargas un nuevo mapa, se consigue mediante las correspondientes
APIs los datos OSM XML y la imagen de la vista previa, y se guardan en la
carpeta �Maps� del directorio de juego en los �cheros nombre_del_mapa.xml y
nombre_del_mapa.jpg respectivamente. El nombre del mapa se obtiene mediante
la función hash de la dirección concatenada con el radio del mapa, de esta forma
se evita poder volver a descargar un mapa cuya área sea la misma que otro ya
existente.

Además de estos dos �cheros, se crea nombre_del_mapa.dat, que tiene la es-
tructura mostrada en la Tabla C.1 y con sus datos es posible volver a obtener la
imagen de vista previa y los datos OSM XML en caso de haber sido eliminados.
Los �cheros de este tipo son los usados por el menú para crear la tabla de mapas
disponibles.

El sistema está diseñado de forma que cuando se requiere usar un mapa selec-
cionado, bien sea para visualizar su vista previa o para usarlo en una nueva partida,
o se actualiza la lista de mapas del menú, si los �cheros .xml o .jpg no existen, se
usan los datos del �chero .dat para descargarlos y almacenarlos de nuevo.

Una decisión de diseño tomada fue la inclusión de varios mapas prede�nidos
para que el usuario no estuviera obligado a descargarse un mapa para empezar a
jugar, de forma que se disminuyese el intervalo de tiempo necesario para empezar
a jugar desde que se inicia el juego por vez primera.

152

Alias
Dirección
Radio
Latitud
Longitud
Área (en m2)
Número de elementos �way�
Número de elementos �node�

Tabla C.1: Estructura de archivo de mapas .dat

Los mapas elegidos lo fueron por tener una gama de diferentes tamaños y haberse
realizado en ellos múltiples pruebas que garantizasen una buena jugabilidad.
También se decidió durante la fase de diseño que estos mapas no pudieran ser
eliminados, objetivo que no se implementó de forma exacta sino que se optó por
crear de nuevo los �cheros cada vez que se inicie el juego. Asi nos aseguramos que
aunque hubiesen sido eliminados de forma manual desde el explorador del sistema
operativo, los mapas estarían siempre presentes para empezar una nueva partida.

Otra de las decisiones de diseño fue establecer unos límites para la descarga
de mapas. No límites de cantidad sino de tamaño de elementos y área del mapa
descargado.

Como establecer un límite es una tarea muy difícil ya que depende mucho de
la potencia del ordenador, se ideó mostrar en la tabla de mapas descargados el
número de elementos y el tamaño de cada mapa y así el usuario, basándose en
su experiencia previa con otros mapas, pueda comparar esos datos y predecir el
rendimiento que experimentará.

A pesar de esto, �nalmente se decidió establecer también un límite basándome
en la potencia de un ordenador medio, pero fácilmente modi�cable mediante un
�chero de texto de con�guración. Este límite establecido es de una cantidad de
elementos inferior o igual a 10, 000 y una extensión menor o igual a 0,005o de
longitud/latitud, lo cual varía dependiendo de la localización pero en la latitud de
España es aproximadamente 1km2.

C.2.3. Problemas encontrados

Uno de los problemas encontrados fue que al �nal del desarrollo de este Pro-
yecto Fin de Carrera, OpenStreetMap cambió el tipo de los identi�cadores de los
elementos que forman la estructura OSM XML del tipo Integer a Long, causan-
do que tuviera que modi�car el parser XML y la estructura interna utilizada en

153

Vanet-X para adaptarla a la nueva realidad.
Otro problema encontrado fue que durante varias horas el servicio mediante el

cual se obtienen las imágenes de previsualización de los mapas (OSM Static maps
API) dejó de estar operativo. Gracias a esto se vio que el sistema desarrollado no
estaba hecho a prueba de fallos y se mejoró añadiendo las siguientes características:

Si la función de búsqueda por nombre (OpenStreetMap Nominatim Tool) no
funciona, en el combo box en el que debería aparecer el listado de posibles
coincidencias aparece un texto indicando el error y no deja añadir el mapa.

Si la función de descarga del OSM XML no funciona, cuando pulsas el botón
de agregar mapa aparece una ventana emergente informando del error. Ade-
más, cuando se actualiza la lista y falta un mapa e intenta descargarlo, se
borra el mapa del listado para que deje de estar seleccionable y no se pueda
iniciar la partida con él.

Si lo que no funciona es la función de previsualizar el mapa, se genera una
imagen corrupta. Cada vez que se debe mostrar una imagen, el sistema ana-
liza si es correcto y en caso contrario se muestra una imagen de error (como
la de la Figura C.4).

Figura C.4: Imagen que se muestra cuando no se ha podido previsualizar el mapa

C.3. Elementos del terreno

En Vanet-X los elementos del terreno están estructurados de forma muy similar
a la estructura seguida por el proyecto OpenStreetMap para poder realizar una
conversión sencilla.

Existen tres tipos de elementos: nodos, caminos y multipolígonos. Los caminos
están formados por nodos y los multipolígonos están formados por caminos. Los
únicos elementos renderizables son los caminos y los multipolígonos, y se dividen
en capas (dieciséis) para que según el elemento al que representen (de�nido por sus
etiquetas) se pinten por encima o por debajo de otros elementos. Así por ejemplo
cualquier tipo de carretera o camino se pintará en las capas 5 a 13 (dependiendo
de su tipo), mientras que un elemento de tipo �barrier� (barrera) se pintará en la
capa 15, por lo que siempre se verá �encima� de la carretera.

154

El criterio seguido para la ordenación de las capas ha sido en parte inspirado por el
utilizado en el proyecto JOSM 11 pero modi�cado para conseguir una visualización
acorde a las necesidades del juego (ya que el proyecto JOSM está pensado para
ser pintado como mapa). El ancho de cada tipo vía también ha sido realizado
inspirado por las relaciones utilizadas en los mapas del proyecto JOSM 12.

Como los datos descargados de OpenStreetMap representan un área �nita, se
han de establecer unos límites al escenario de juego. Estos límites son atravesa-
bles, pero más allá de ellos el mapa terminará bruscamente ya que fuera del área
descargada sólo se continúan los caminos iniciados en el interior, pero no se crean
nuevos.
Por ello, se representan visualmente como unas líneas rojas discontinuas y al atra-
vesarlos aparece un aviso en la pantalla en el que se advierte de que te encuentras
fuera del área mapeada y este aviso permanece hasta que te reincorporas al interior
de la zona delimitada del escenario.

C.3.1. Nodos

Un nodo tiene la siguiente estructura:
Tiene un identi�cador (el mismo que el del elemento �node� de OSM al que re-
presentan), un listado con las etiquetas también obtenidas de OSM y una posición
expresada en pixeles que es el resultado de la conversión de las coordenadas WGS84
a UTM y éstas a su vez a las del sistema del juego, donde 10 pixeles equivalen a
un metro y se toma como referencia (0,0) la esquina superior izquierda de la caja
delimitadora del área descargada.
También tiene dos listados con los nodos con los que está directamente conectado,
uno con los nodos que son accesibles con las reglas de tránsito de los vehículos
enemigos y otro con las de los vehículos del trá�co. Además también se incluye un
listado que contiene la distancia a otros nodos no directamente conectados, que se
va rellenando dinámicamente durante la ejecución y sirve para evitar la repetición
de ciertos cálculos (ver sección C.5.4 y Figura C.3).
Otro dato que incluye, y es muy importante, es un listado con los identi�cadores
de los caminos en los que está incluido este nodo. Gracias a este dato se pueden
calcular los nodos interconectados.
Por último, también se incluye a que �sector� pertenece.

11http://josm.openstreetmap.de
12http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/

data/osm/visitor/paint/MapPainter.java?rev=4628

155

http://josm.openstreetmap.de
http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/MapPainter.java?rev=4628
http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/MapPainter.java?rev=4628

Los �sectores� es un concepto introducido para asegurar que todos los vehículos
que aparezcan en nodos pertenecientes al mismo sector podrán llegar a encontrarse.
El concepto es el siguiente: se dividen todos los nodos en diversos sectores, de forma
que un nodo estará en el mismo sector que todos los demás nodos a los que sea
posible acceder desde él en el grafo de nodos interconectados. Es decir, si dos nodos
están en diferente sector signi�ca que para realizar el recorrido entre uno y otro
en algún momento será necesario salirse de los caminos y circular campo a través.

Una vez calculados todos los sectores, se elige como sector �bueno� el que tiene
un mayor número de nodos, y este sector será el único en el que podrán aparecer
los actores. De esta forma se garantiza que un vehículo enemigo que te persiga
siempre podrá llegar a alcanzarte.

Un lugar de interés es un nodo que tiene dos datos adicionales: una lista con
los tres aparcamientos más cercanos y el valor de la distancia existente desde el
nodo hasta el camino más cercano transitable por los jugadores. Es un concepto
introducido para permitir los objetivos de tipo tarea en los modos de juego de
resolver tareas y de supervivencia.

Los nodos elegidos para ser lugar de interés son los que representan bancos,
tiendas, restaurantes, hoteles, y otros puntos de interés.

C.3.2. Caminos

Los caminos pueden ser de dos tipos: áreas, cuyos nodos inicial y �nal coin-
ciden y forman un camino cerrado, o verdaderos caminos, con un inicio y �nal
diferenciados. La diferencia es únicamente estética ya que se pintan de diferente
forma pero mantienen en común el resto de características.

La estructura es la siguiente:
Un camino cuenta con el identi�cador y las etiquetas obtenidas del elemento �way�
de OSM al que hace referencia. También cuenta con un listado de los nodos que
componen el camino y una lista con los segmentos rectos entre los nodos, que se
utilizan para pintar, calcular si los vehículos están sobre el camino y para crear los
puntos intermedios donde se crearán las plazas de aparcamiento y los puestos de
comida.
Estos mismos segmentos rectos que forman el camino también están representados,
aunque con distinto formato, en una lista que usa el steering behavior de path
following para mantenerse sobre la calzada.

Otros datos que también están presentes son el ancho, el color o la capa a la que
pertenece, así como otros muchos parámetros con propiedades para la circulación

156

(por ejemplo indicando si el camino es transitable por los vehículos del trá�co o si
se trata de una calle de sentido único).

Un valor muy importante son las propiedades del terreno, es decir, el �efecto�
que produce sobre los vehículos: infranqueable, ralentiza la velocidad del vehículo,
causa daño a los vehículos, etc.

Al igual que los nodos, también debido a la inclusión de los modos de juegos
donde aparecen tareas como objetivos, se ha incluido una lista con los tres aparca-
mientos más cercanos, en este caso al punto medio del primer segmento del camino,
ya que es este el que se utiliza como objetivo de las misiones de tareas.

C.3.3. Multipolígonos

Los multipolígonos son las estructuras con las que se representan las áreas
complejas, bien por el gran número de caminos que la componen o por necesitar
de�nir áreas en el interior de otras áreas (por ejemplo un patio de luces en el
interior de un edi�cio).
Es la única de las relaciones OSM representadas en el juego.

Para crear esta estructura en el juego, debido a su complejidad, se copió la
implementación utilizada en el proyecto JOSM 13, aunque se simpli�có ligeramente.

Además de esta implementación, también se desarrolló otra alternativa más
simple (sin permitir roles en los componentes) que pudiera ser utilizada en los
casos en los que la otra implementación no da buenos resultados (por ejemplo en
los ríos). Las dos implementaciones comparten la estructura utilizada y el valor de
una variable es la que determina que implementación es la usada.

La estructura general de un multipolígono, independientemente de cuál de las
dos implementaciones se use, es la siguiente:
Al igual que los otros elementos, cuenta con el identi�cador y las etiquetas obte-
nidas del elemento de OSM al que hace referencia, y como los caminos, también
cuenta con la capa en la que se debe pintar y con las propiedades del terreno al
que representa.

Si la implementación utilizada es la de JOSM, cuenta con una lista de elemen-
tos �PolyData�, los cuales tienen una estructura que permite que cada camino
formante del multipolígono tenga un rol de�nido, que puede ser anillo interior o
exterior del área. Sin embargo si la implementación es la simple, se cuenta con
una variable que contiene el polígono representando el área, la cual no puede tener
huecos ni contar con varios anillos interiores o exteriores.

13http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/

data/osm/visitor/paint/relations/Multipolygon.java?rev=4628

157

http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/relations/Multipolygon.java?rev=4628
http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/relations/Multipolygon.java?rev=4628

C.4. Física y colisiones

Como se ha explicado en el capítulo 2.6, el sistema encargado de las físicas del
juego puede dividirse en cuatro algoritmos: detección de colisiones (con el terreno
o con los actores) y aplicación de fuerzas resultantes de la colisión (también de
forma diferenciada para colisiones con el terreno y colisiones con los actores).

A continuación se explican estos algoritmos en detalle.

C.4.1. Detección de colisión con elementos del terreno

Es necesario conocer sobre qué elemento del terreno se encuentra un vehículo, ya
que dependiendo de sus propiedades el vehículo deberá reaccionar de una manera
u otra. Para averiguarlo se utiliza el siguiente algoritmo:

Para cada elemento del terreno, se llama a una función (diferente si se trata de
un camino o de un multipolígono) en la que, conociendo el centro de la posición
del vehículo, el radio de la menor circunferencia capaz de contenerlo y los cuatro
vértices del menor rectángulo rotado que lo contiene, se realiza primero un pri-
mer cálculo en el que se comprueba si el menor rectángulo capaz de contener al
elemento del terreno (�bounding box�) colisiona con la menor circunferencia que
contiene al vehículo.
Este cálculo es capaz de determinar con total seguridad si no existe colisión, aho-
rrándonos realizar cálculos más complejos. Sin embargo, si el resultado del cálculo
es que sí que colisiona, se debe realizar un segundo cálculo, éste más costoso, en
el que se comprueba si alguno de los cuatro vértices del rectángulo rotado que
representa al vehículo está contenido dentro del elemento del terreno.
Con este segundo cálculo ya se puede determinar de�nitivamente si existe o no la
colisión.

Este proceso se realiza con todos los elementos del terreno, no sólo con la
primera colisión coincidente ya que puede que exista otra colisión con un terreno
con propiedades más restrictivas (como se explica más adelante en esta misma
sección). Sin embargo, en cuanto se han registrado que el vehículo va a sufrir las
más restrictivas de las propiedades (�velocidad: sin problemas�, �infranqueable:
sí� y �obras: sí�) ya se puede dejar de continuar con la búsqueda ya que nunca se
encontrará una colisión cuyas propiedades sobrescriban estas.

Otra optimización realizada es omitir todos los elementos de la capa que con-
tiene los edi�cios, ya que se decidió que se pintaran por debajo de las capas que
contienen los caminos transitables y que no fueran colisionables. Esta decisión se
tomó ya que la idea inicial de que fueran colisionables presentaba un gran proble-
ma, y era que en muchos casos estaban situados invadiendo la calzada por lo que
existían caminos que se estrechaban o se interrumpían por los edi�cios complicando
exageradamente el algoritmo de path-�nding necesario.

158

Figura C.5: Detección de colisiones con el terreno. En esta captura los bordes de los
�bounding box� están pintados de diferente color según si realmente existe colisión
(verde), existe colisión con el boundig box (amarillo) o no existe colisión (no hay
línea). Además en el caso de existir colisión se pinta de rojo los segmentos del
camino.

159

C.4.2. Detección de colisión con otros actores

La detección de colisiones con otros actores sigue un esquema similar al anterior
en cuanto a que primero se realiza una comprobación poco costosa que es capaz de
descartar la colisión, y en caso de que no la descarte, se realiza una segunda com-
probación en detalle que sí que es capaz de determinar con exactitud la existencia
de colisión.

La primera comprobación consiste en comprobar si las menores circunferencias
capaces de comprender a los vehículos se intersectan.

La segunda comprobación consiste en aplicar el Separating Axis theorem, el cual
a�rma que si dos polígonos conversos no colisionan, existe un eje perpendicular a
una arista de uno de los polígonos en el cual la proyección de los objetos no se
superpone.14 Ver Figura C.6.

A.SI & A.II

A.SD & A.ID

SI

SI

II

II

ID

ID

SD

SD

B.II

B.ID

B.SI

B.SD

Eje 1

Pro
yecció

n d
e A

Pro
yecció

n d
e B

A

B

Figura C.6: Separating Axis theorem

14http://www.codezealot.org/archives/55#sat-algo

160

http://www.codezealot.org/archives/55#sat-algo

El algoritmo utilizado se ha basado en el propuesto en el articulo �A Verlet
based approach for 2D game physics� de Benedikt Bitterli [3], simpli�cándolo ya
que en nuestro caso los polígonos son siempre rectángulos.

Por norma general las circunferencias y rectángulos rotados utilizados para la
detección de colisiones están situados de forma que abarquen el actor deseado por
completo. Sin embargo, en el caso de las falsas plazas de aparcamiento (�falsas� ya
que siempre están ocupadas), es deseable que la colisión se realice con el vehículo
aparcado (que en realidad no existe como elemento independiente sino que forma
parte del aparcamiento). Por esta razón se modi�can el rectángulo y la circunfe-
rencia para que coincidan con la imagen del vehículo aparcado, como se puede ver
en la Figura C.7.

Figura C.7: Captura en la que se observa el rectángulo rotado (verde) y la circun-
ferencia (rojo) que contienen la zona colisionable del parking. También se aprecia
la circunferencia que marca el obstáculo que debe evitar el steering behavior de
obstacle avoidance (azul)

161

C.4.3. Cálculo de la fuerza resultado de una colisión con
otros actores

El algoritmo que calcula la fuerza que se debe aplicar en una colisión con un
actor es el siguiente:

1. Calculas la fuerza resultante de las fuerzas de los dos vehículos implicados.

2. Si el otro vehículo está en estado �inmovil� te restas la fuerza calculada en
el paso 1. En caso contrario le sumas esa fuerza al otro vehículo.

3. Estableces la velocidad del vehículo a cero.

El cálculo de la fuerza resultante descrito en el paso 1 se calcula de la siguiente
manera:

1. Obtenemos los vectores velocidad de los dos implicados. Ver Figura C.8.a

2. Realizamos una rotación de forma que la línea imaginaria entre los dos im-
plicados quede en el eje Y. Ver Figura C.8.b

3. El vector resultado (provisional) es la componente Y del vector velocidad de
mi vehículo, salvo que se trate de un choque �por alcance� en cuyo caso se le
debe restar la componente Y del vector del otro vehículo. Ver Figura C.8.c

4. Para asegurar que no se genere una fuerza de atracción cuando el vector
está en sentido opuesto al otro implicado (sentido negativo de la Y), se debe
asegurar que el valor resultado nunca será mayor a -1.
(Es -1 y no 0 porque así nos aseguramos de que siempre exista fuerza de
repulsión entre los coches).

5. Se vuelve a rotar el vector resultado invirtiendo la rotación realizada en el
paso 2. Ver Figura C.8.d

C.4.4. Aplicación del resultado de la colisión con el terreno

La resolución de la colisión con un elemento del terreno es diferente, y mucho
más simple, que la realizada en las colisiones con otros actores.

El algoritmo que analiza si existe colisión con algún elemento del terreno (es
decir, circulas sobre él), en el caso de que se produzca colisión, devuelve una estruc-
tura que contiene las propiedades del terreno: si causa daño, velocidad permitida,
si es infranqueable y si se trata de un tramo en obras.

162

V
2

V
y2

V
2

V
1

V
2

V
1

V
y1

V
resultado

V
1

(a) (b)

(c) (d)

Figura C.8: Cálculo del vector fuerza resultante de una colisión

163

Como el vehículo puede colisionar con varios elementos del terreno simultánea-
mente, las propiedades que devuelve el algoritmo son los máximos de cada valor
perjudicial (daño, infranqueable y obras) y el menor valor velocidad de todos los
elementos sobre los que está circulando. Por ejemplo, si el vehículo circula sobre
una carretera residencial en obras que atraviesa un curso de agua, el valor de la ve-
locidad se obtendrá de la carretera ya que tendrá un valor �camino sin problemas�
(el mejor valor posible).

Con este valor del terreno que devuelve el algoritmo, se realizan las siguientes
comprobaciones:

Si el vehículo colisiona con un terreno para el que no es apto (salvo que se
trate de una plaza de aparcamiento), se marca al vehículo como inmóvil, se le
establece velocidad nula, y se mueve a la posición del ciclo anterior (la justo
anterior a la colisión). Al marcar el vehículo como inmóvil no se volverá a
efectuar las comprobaciones de colisión con el terreno hasta que no vuelva a
moverse (concretamente se mueva más de 1,25 metros).

Si el valor �velocidad� de terreno es �ralentizar�, se le marca al vehículo
una variable para que en el siguiente ciclo su movimiento se vea reducido a
la mitad.

En la Tabla C.2 se muestra una relación de los posibles valores del terreno.

�Velocidad� detener, ralentizar, sin problemas
�Obras� sí, no
�Infranqueable� sí, no
�Daño� extremo, ligero, no

Tabla C.2: Posibles valores del terreno

C.5. Inteligencia Arti�cial

En esta sección se ofrece una visión detallada de la inteligencia arti�cial desa-
rrollada para el juego.

C.5.1. Steering behaviors

Como se ha explicado en el capítulo 2.7.2, se han utilizado los llamados Steering
behaviors, comportamientos básicos de movimiento de los actores. Todos ellos se
han obtenido de [17].

164

Los comportamientos implementados son los siguientes:

Seek (buscar) es el comportamiento básico en función del cual se pueden crear
los demás. Consiste en dirigir el vehículo hacía el objetivo. Esto lo logra
ajustando la dirección de forma que la velocidad está radialmente alineada
con el objetivo. La velocidad deseada es un vector en dirección del vehículo
al objetivo, cuya longitud puede ser la velocidad actual del vehículo o la
velocidad máxima (en Vanet-X se ha usado la velocidad máxima). Nótese
que si se aplicase esta velocidad deseada, el vehículo empezaría a orbitar
en torno al objetivo, ya que es una fuerza de atracción. El vector dirección
deseado (marcado como dirección seek) se obtiene como la diferencia de la
velocidad deseada y la velocidad actual del vehículo. Ver Figura C.9.

Flee (huir) es el comportamiento inverso a seek. En lugar de dirigir el vehículo
hacia el objetivo lo dirige en el sentido contrario, de forma que se aleje lo
máximo posible del objteivo. Ver Figura C.9.

Pursuit (persecución) es similar a seek pero el objetivo es móvil en lugar de �jo.
Consiste en aplicar el comportamiento seek con la posición futura predicha
del objetivo. Esta predicción se realiza suponiendo que el objetivo no varíe su
trayectoria, y se calcula su posición futura calculando la distancia recorrida
en un tiempo T y añadiéndosela a la actual. Es muy importante establecer
un T apropiado, T = D × c es considerado un valor apropiado, siendo D la
distancia entre los dos vehículos y c un parámetro de giro. Ver Figura C.10.

Evasion (evasión) es el comportamiento inverso a pursuit, es decir, usando �ee
en lugar de seek. Ver Figura C.10.

Arrival (llegada) tiene el mismo comportamiento que seek mientras estás lejos
del objetivo. La diferencia radica en que disminuye la velocidad conforme te
acercas al objetivo hasta llegar a detenerse sobre él.

Obstacle avoidance (evitación de obstáculos) dota al vehículo de la habili-
dad para esquivar obstáculos de su entorno. Consiste en mantener una zona
delante del vehículo en la que compruebas si hay algún obstáculo y en caso de
que lo haya se aplica un cambio de trayectoria en sentido contrario. De esta
forma, a diferencia del resultado si se hubiera aplicado �ee, solo se cambia
la trayectoria en caso de que alguno de los obstáculos efectivamente esté en
la trayectoria del vehículo. Para representar los obstáculos se usan esferas
que los contengan, y siempre tiene prioridad la más cercana al jugador (si
hay más de una que colisiona con la trayectoria solo se tiene en cuenta la
primera). Ver Figura C.11.

165

velocidad

actual

dirección

seek

dirección

�ee

velocidad deseada

(seek)

velocidad deseada

(�ee)

camino seek

camino �ee

objetivo

Figura C.9: Comportamientos seek y �ee

166

pursuit

evasion

ahora

futuro

presa

Figura C.10: Comportamientos pursuit y evasion

167

B

A
C

Figura C.11: Comportamiento obstacle avoidance: el obstáculo B es el primero en
la trayectoria por lo que se aplica una fuerza para evitarlo.

168

Wander (deambular) genera una trayectoria aleatoria. En lugar de generar una
fuerza aleatoria en cada ciclo, lo cual generaría una trayectoria demasiado
nerviosa, se mantiene �memoria� de cuál ha sido la fuerza anterior para
generar unas transiciones suaves. Esto se realiza de la siguiente manera: se
genera una esfera ligeramente avanzada respecto al vehículo, y la fuerza que
se genere será el vector desde el vehículo hasta un punto del perímetro de la
esfera. Para producir la fuerza del siguiente ciclo se añade un desplazamiento
aleatorio al valor anterior, y la suma se constriñe de nuevo al perímetro de
la esfera. En la Figura C.12 se puede observar que la fuerza máxima de giro
viene dada por la esfera grande y la cantidad del desplazamiento aleatorio
(esfera pequeña) determina la velocidad con la que cambia.

Figura C.12: Comportamiento wander

Path following (seguimiento de ruta) permite que un vehículo circule por un
camino sin salirse. No hay que confundirlo con obligar a un vehículo a ir
exactamente por el camino, como si fuera sobre un raíl, sino que este com-
portamiento produce un resultado más natural, ya que el vehículo puede
seguir la trayectoria que quiera siempre que no se salga del camino.
En la implementación utilizada se representa el camino como una polilínea

169

con un radio, como si de un �tubo� se tratara. El objetivo de este compor-
tamiento es mover el vehículo por dentro de este camino sin salirse del radio
del �tubo�. Si el vehículo no está inicialmente dentro, la primera acción es
acercarse al camino, y después seguirlo.
El procedimiento para calcular la fuerza de dirección a aplicar es el siguiente:
se calcula una predicción de la posición futura del vehículo, como la realizada
en el comportamiento obstacle avoidance, y se proyecta sobre el punto más
cercano de la polilínea. Si la distancia de la proyección a la polilínea es menor
que el radio, signi�ca que no te vas a salir del camino y no se necesita co-
rregir la trayectoria. En caso contrario, se debe usar el comportamiento seek
teniendo como objetivo el punto de la polilínea sobre el que se ha proyectado
la posición futura. Ver Figura C.13

Figura C.13: Comportamiento path following

Unaligned collision avoidance (esquiva de obstáculos no alineados) es un
comportamiento que trata de evitar que colisionen vehículos moviéndose en
diferentes direcciones. El funcionamiento consiste en que cada vehículo cal-
cula cual va a ser su mayor aproximación a cada uno de los demás vehículos.
Si la mayor aproximación a un vehículo es en el futuro, y la distancia que

170

tendrán es menor a una establecida (círculos de la Figura C.14) implica que
hay un riesgo de colisión. Si se ha calculado que habrá alguna posible co-
lisión, el vehículo tratará de evitar la más cercana de todas aplicando una
fuerza que le aleje de la colisión.

futuro

futuro

ahora

ahora

Figura C.14: Comportamiento unaligned collision avoidance

Estos comportamientos se pueden combinar para formar comportamientos más
complejos. Esta combinación puede realizarse de múltiples formas, la escogida es la
siguiente: se ordenan los steerings por prioridad, y se analizan en orden de forma
que se aplicará el primero que de como resultado una variación de la trayectoria.
De esta forma si en un comportamiento hemos dado prioridad a no salirse de la
pista (path following) antes que a esquivar los otros vehículos (unaligned collision
avoidance), es posible que nos choquemos contra uno de ellos a costa de asegurar-
nos mantenernos dentro de la calzada.
Otra forma posible sería sumando los resultados obtenidos con los distintos stee-
rings (pudiendo tener unos más peso en la suma que otros).

Todos los comportamientos complejos (explicados en la siguiente sección) tienen
la misma composición de prioridades de steerings, variando únicamente en los

171

vehículos que se contabilizan en la unaligned collision avoidance (Sólo trá�co y
enemigos o también jugadores) y en el comportamiento menos prioritario (arrival,
pursuit, evasion...) y su forma de ejecución (steering, steering suave...). Éste diseño
se puede ver en la Figura C.15.

Las formas de ejecución anteriormente citadas y su funcionamiento son los si-
guientes:

steering : modo normal, maneja los controles del vehículo según el vector
recibido.

steering suave: gira mas o menos suavemente dependiendo del cambio de
ángulo necesario para encararnos al objetivo.

steering always up: sin frenar, siempre al máximo de velocidad.

steering reverse gear : en marcha atrás.

C.5.2. Comportamientos complejos

Todos los actores dotados de inteligencia arti�cial tienen un comportamiento
en común, y es el de pasar de estado normal a marcha atrás y viceversa. Este com-
portamiento se ha realizado dado que la inteligencia arti�cial no es perfecta y hay
ocasiones en las que los vehículos acaban saliéndose de los límites de la carretera,
siendo necesario un procedimiento para que den marcha atrás y se reincorporen
a la circulación. El diagrama de este comportamiento se puede ver en la Figura
C.16. El estado �normal� es diferente para cada tipo de vehículo y se detalla a
continuación diferenciado según el tipo de vehículo.

Enemigos: su comportamiento depende de si el vehículo tiene un rol de perse-
guidor o de perseguido. Si es el perseguidor, sigue el camino dictado por el
path-�nding usando un comportamiento de llegada con los nodos del camino
para que frene al llegar a cada nodo y así tome los cruces entre calles a
una menor velocidad (steering_PF_ARRIVAL, ver Figura C.15). En el mo-
mento en que se encuentra en la misma calle del objetivo, ya no hace falta
usar el camino proporcionado y se aplica un comportamiento de persecución
(steering_PF_PURSUIT) sobre el vehículo objetivo (siempre se eligirá co-
mo objetivo al jugador más cercano). El comportamiento es de persecución
y no de búsqueda para que se anticipe a los movimientos de la presa.
En caso de que se trate del perseguido, el comportamiento es el siguiente:
si el vehículo que le persigue está cerca (a menos de 100 metros), aplica
un comportamiento de huida (steering_PF_FLEE) sobre el perseguidor, de

172

Path following

Obstacle

avoidance

Unaligned

collision

avoidance

*

<> 0

<> 0

<> 0

= 0

= 0

= 0

steering

Path following

steering

Obstacle

avoidance

steering

Unaligned

collision

avoidance

Steering *

*

Steering suave

Arrival

Steering

Arrival

Steering

Pursuit

Steering always

up

Evasion

Steering always

up

Flee

Steering always

up

Seek

ARRIVAL_TC

y

ARRIVAL_parking

ARRIVAL

PURSUIT

EVASION

FLEE

UCA_random

A

Figura C.15: Prioridades en la composición de comportamientos a base de steerings

173

Marcha atrás

Normal

Obje!vo logrado o

!empo expirado

Inmovil más de un

determinado !empo

Figura C.16: Diagrama de estados IA: visión general

forma que tratará de alejarse lo máximo posible de su posición actual. Sin
embargo, si el perseguidor está lejos, se usará un comportamiento de eva-
sión (steering_PF_EVASION,) ya que de usar el anterior comportamiento,
el vehículo siempre huiría hacia el extremo del escenario más alejado del
perseguidor, hasta salirse del mapa y quedándose allí atascado. Ver Figura
C.17.

Ambulancias: su comportamiento es muy simple: elige un nodo al azar y se dirige
a él. Cuando llega hasta él, elige otro y asi sucesivamente. Existe un tiempo
límite para alcanzar el nodo, si tarda más elige un nuevo nodo objetivo.

Trá�co: tiene el comportamiento más complejo de los tres. Como se muestra en
la Figura C.18, dentro de su estado normal tiene cuatro posibles subestados:

Circular : consiste en elegir un nodo objetivo y alcanzarlo. Este estado
se repite hasta que al vehículo le llega una señal que indique que hay
menos coches buscando parking de los establecidos. Ver Figura C.19.

Buscar aparcamiento: es el mismo comportamiento que el anterior pero
ahora está atento a aparcamientos vacíos. De esta forma si visualiza un
aparcamiento libre pasará al siguiente estado (Aparcar), mientras que
si en un tiempo establecido no ha logrado visualizar ninguno vuelve
al estado anterior (Circular). Además, si recibe un evento VESPA de
parking libre se dirige a la posición del evento (aunque por el camino
puede encontrar otro aparcamiento libre más cercano y aparcar en él).

Aparcar : consiste en realizar la maniobra de aparcamiento sobre el apar-
camiento libre objetivo. Se realiza mediante un comportamiento de lle-
gada para que el vehículo frene al aparcar. Si se logra aparcar se avanza

174

¿El obje�vo está

en mi misma

calle?

¿Soy cazador o

presa?

Perseguir

Steering

PF_PURSUIT

Alcanzar

siguiente nodo

Steering

PF_ARRIVAL

¿Cerca del

perseguidor?

Evadirse

Steering

PF_EVASION

Huir

Steering

PF_FLEE

NoSíSí No

Cazador Presa

Figura C.17: Detalle del estado Normal de la inteligencia de los vehículos enemigos

Circular
Buscar

aparcamiento

Aparcar
Esperar

aparcado

Hay menos coches de los establecidos

buscando aparcamiento

Tiempo para encontrar

aparcamiento excedido

Ves un parking

libre
El parking obje!vo estaba

ocupado o se ha excedido

el !empo para aparcar en él

Aparcas en

el parking

Tiempo de espera

excedido

Figura C.18: Detalle del estado Normal de la inteligencia de los vehículos del trá�co

175

¿El nodo

obje�vo está en

mi misma calle?

Alcanzar nodo

Steering

PF_ARRIVAL_TC

¿Tienes

siguiente nodo?

¿Lo has

alcanzado?

Buscas en que nodo estas y

buscas cual es el siguiente

¿El �empo para

alcanzarlo ha

expirado?

Estableces el siguiente nodo

del camino como el próximo

nodo a conseguir

¿Ahora �enes

siguiente nodo?

Alcanzar

siguiente nodo

Steering

PF_ARRIVAL_TC

Alcanzar nodo

obje�vo

Steering

PF_ARRIVAL_TC

Sí

Sí

Sí

No No

No

Sí No

Sí No

Figura C.19: Detalle del estado Circular y Buscar aparcamiento de la inteligencia
de los vehículos del trá�co

176

al siguiente estado (Esperar aparcado) mientras que si no se ha logrado
se retrocede al estado anterior.

Esperar aparcado: consiste en esperar quieto dentro de la plaza de apar-
camiento durante un tiempo determinado. Una vez completado ese tiem-
po se vuelve al estado inicial (Circular).

C.5.3. Soluciones a las carencias de la IA

A pesar de los esfuerzos realizados por conseguir una inteligencia arti�cial sol-
vente, hay ocasiones en el juego en el que es necesario aplicar ciertas �trampas�
para corregir los errores de la inteligencia. Estas situaciones solucionadas son dos
y ambas están relacionadas con los vehículos del trá�co: solucionar que a veces se
quedan atascados al salirse de la carretera y no son capaces de reincorporarse a la
calzada, y evitar un molesto efecto de �nerviosismo� consistente en que giran de
una forma poco gradual y están continuamente corrigiendo su trayectoria.

Desatascador de vehículos

Como norma general, cuando los vehículos controlados por la IA se salen de la
calzada, al cabo de unos segundos dan marcha atrás y se reincorporan satisfactoria-
mente. Sin embargo, hay ocasiones que por la topología del terreno la inteligencia
desarrollada no es capaz de reincorporarse y se queda el vehículo atascado. Para
estas ocasiones se ha realizado un método que determina si en efecto el vehículo
está bloqueado y le aplica una rotación de 90o para ver si así en esa nueva posición
es capaz de reincorporarse.

El funcionamiento detallado es el siguiente:
Para cada vehículo se tiene un registro con sus últimas cinco posiciones (las cuales
se recogen cada dos segundos) y se comprueba si ha existido movimiento signi�-
cativo en total o en alguno de esos cuatro intervalos (para evitar que si te mueves
pero acabas en la posición inicial no cuente como movimiento). Si en esos diez
segundos el vehículo ha recorrido menos de 6,25 metros, se considera atascado, y
en el siguiente ciclo del juego se le realiza una rotación de 90o en el sentido de
las agujas del reloj. De esta forma el vehículo seguirá rotando cada diez segundos
mientras siga atascado, hasta que la IA consiga reincorporarlo a la calzada.

Corrector de trayectoria nerviosa

Los vehículos del trá�co tenían un movimiento espasmódico en lo concerniente
al ángulo, variaban de ángulo en cada ciclo y resultaba un efecto muy feo a la
vista.

177

El motivo de este movimiento espasmódico es que la velocidad de giro de los
vehículos del trá�co es mayor que la de los demás vehículos, en parte por circular
a menor velocidad y también porque se comprobó que aumentando esta velocidad
se obtenían mejores resultados en la esquiva de los obstáculos y en el seguimiento
de la calzada.

Como, por estos motivos, cambiar esta velocidad de giro no era una opción,
se desarrolló la siguiente solución: lograr que la velocidad de giro de los vehículos
fuera variable, rápida en los casos en los que se necesita y lenta en el resto para
evitar estos �temblores� indeseados.
Esto se consiguió calculando la diferencia entre el vector velocidad del vehículo y el
vector que indica la dirección hacia la que se encuentra su objetivo. Si la diferencia
entre estos vectores es mayor de 90o, se considera que se necesita hacer un giro
pronunciado, y se aplica la velocidad de rotación normal, sin embargo si es menor,
se trata de un giro pequeño y se aplica una velocidad de rotación menor para que
el giro resultante sea más reducido.
De esta forma, gracias a esta solución, los vehículos podían realizar giros más
suaves por lo que no tenían que estar constantemente corrigiendo su trayectoria.
Sin embargo, aunque supuso una gran mejora, no se consideró su�ciente, y se
planteó una segunda solución adicional: que aunque estos temblores tengan lugar
realmente, �ocultarlos� al usuario. Esta solución se aplica no solo a los vehículos
del trá�co sino a todos los controlados por la inteligencia arti�cial.

La idea de esta solución es la siguiente: en lugar de pintar el vehículo con su
verdadero ángulo, se guardan los últimos ángulos y se calcula su media, la cuál
será la que se utilice para pintarlo, consiguiendo así una mayor suavidad en los
cambios de ángulo.

Esto se ha implementado de la siguiente forma:
Para cada vehículo se guarda una lista con sus últimos cinco ángulos. Cuando vas
a pintar el vehículo, antes de hacerlo, eliminas el ángulo más antiguo de la lista
y añades el actual. Si la velocidad es negativa se realiza esto ya que siempre es
necesario incorporar los nuevos ángulos a la lista, pero se pinta usando el ángulo
normal, ya que marcha atrás no se producen estos �temblores� en el movimiento.
Sin embargo, si la velocidad es positiva se aplica la fórmula

angulo =
(a0 + i4) + (a0 + i3) + (a0 + i2) + (a0 + i1) + a0

5
(C.1)

siendo a0 el ángulo más antiguo de la lista y in el incremento del ángulo desde
el ángulo a0 hasta an.

178

C.5.4. Path-�nding

Para realizar la búsqueda de caminos (path-�nding) se hace uso del algoritmo
de búsqueda A* 15, el cual necesita conocer la estructura de las interconexiones
entre nodos y sus distancias. Como se hace uso de este algoritmo muy a menudo
(cada vez que tenemos un nuevo objetivo o cuando el objetivo ha cambiado de
calle), esta relación de interconexiones y sus distancias se calcula una única vez
al iniciarse el servidor, antes de que dé comienzo la partida, por lo que después el
acceso a estos datos se realiza con un bajo coste.

El algoritmo del path-�nding no es el único que accede a esta estructura de
nodos, sino qué también se utiliza para calcular la distancia entre dos nodos cua-
lesquiera. Esto es necesario ya que cuando se calcula el camino a seguir se busca
el nodo más cercano a tu posición y se forma el camino a partir de él, existiendo
la posibilidad de que ese primer nodo esté en sentido contrario al objetivo (ver
Figura C.20). Para evitar que esto suceda, se calcula si el primer nodo está más
alejado del objetivo que el vehículo, y en ese caso se coge como primer nodo el
siguiente, que ya estará bien encaminado.
Cómo por este motivo se requiere con mucha frecuencia conocer la distancia entre

Nodo 1

Nodo 2

Nodo 3

Figura C.20: Camino con primer nodo en sentido opuesto

dos nodos, y sólo es conocida la distancia entre nodos que estén interconectados,
es habitual tener que realizar cálculos de la distancia vectorial entre nodos no
interconectados, y muchas veces se repiten los cálculos. Por ello, se decidió que
después de calcular la distancia, almacenarla de forma que la próxima vez que

15obtenido de http://code.google.com/p/jianwikis/wiki/

AStarAlgorithmForPathPlanning

179

http://code.google.com/p/jianwikis/wiki/AStarAlgorithmForPathPlanning
http://code.google.com/p/jianwikis/wiki/AStarAlgorithmForPathPlanning

se requiriera sólo hiciera falta consultarla, y después de realizar varias pruebas se
comprobó que en efecto esto suponía una reducción considerable del número de
cálculos necesarios. Los resultados de estas pruebas se pueden ver en la Tabla C.3.

Nodos interconectados 18k
Nodos no interconectados se repiten 11k

no se repiten 6k

Tabla C.3: Número de usos del cálculo de la distancia entre dos nodos

Otro aspecto importante del path-�nding a tener en cuenta es que cómo los
vehículos del trá�co y los enemigos tienen distintas zonas por las que les es permi-
tido circular, se ha desarrollado el algoritmo A* y la estructura de interconexiones
de nodos de forma duplicada, una para cada tipo de vehículo. Además, en el ca-
so del algoritmo para el trá�co, se tienen en cuenta los sentidos de las calles de
una única dirección, para evitar que tomen caminos que en la vida real no son
correctos.

C.5.5. Normas de circulación

Como se ha mencionado en la sección anterior, el trá�co respeta el sentido de la
circulación en las calles de un solo sentido, de forma que no obtienen caminos que
atraviesen calles en contradirección. Sin embargo, en el resto de calles no respetan
la norma de circulación de circular por el carril derecho de la vía.

Esta característica no se implementó ya que resultó muy complicado idear un
método sencillo para que los coches circulasen únicamente por el lado derecho de los
caminos, y además se encontró el inconveniente de que, como los vehículos pasarían
de ocupar toda la calzada a únicamente los carriles de su sentido, tendrían menos
espacio para maniobrar y por lo tanto empeoraría sustancialmente la efectividad
del manejo de los vehículos por parte de la inteligencia arti�cial.

Por el esfuerzo requerido para lograr esta característica, se consideró que rea-
lizar una simulación detallada de las normas de circulación hasta este nivel de
precisión estaba fuera del alcance del Proyecto Fin de Carrera, y se decidió garan-
tizar únicamente el sentido de circulación de las calles de un único sentido.

C.6. Funcionamiento en red

En esta sección se tratarán aspectos relacionados con el modelo de red utilizado
en Vanet-X, incluyendo desde el funcionamiento básico hasta las técnicas de mejora
y optimizaciones realizadas.

180

C.6.1. Funcionamiento básico

El esquema del funcionamiento es el siguiente:

|Cliente| crea y envía InputSnapshot (contiene los eventos de teclado) al servidor.

|Servidor| elimina los clientes que lleven varios ciclos sin enviar nada.

|S| recibe los Snapshots enviados por los clientes.

|S| para cada InputSnapshot recibido, resetea sus acumuladores si es necesario
(ver sección C.6.5), establece cual es la secuencia del último ack de dicho
cliente y almacena sus datos (eventos de teclado) para que los use poste-
riormente. El actor Player es asíncrono y pedirá usar estos datos de forma
asíncrona, siendo entonces cuando se establezca la secuencia del último es-
tado recibido por dicho cliente.

|S| crea un Snapshot personalizado para cada cliente (con solo lo que está dentro
de una determinada distancia de su jugador) y lo envía.

|C| recibe todas las Snapshots enviadas desde la última recepción y se queda con
la más actual, guardándola en un bu�er y marcando si es buena o no (será
buena si hace ack al último estado). En el caso de que sea buena se almacena
también como último estado recibido (para que el siguiente InputSnapshot
que generemos utilice la secuencia de dicho estado como nueva secuencia de
ack, y así se evite el problema de añadir latencia arti�cialmente a la conexión
al realizar interpolación).

|C| coge el primer Snapshot del bu�er (o no coge nada si aun no hay su�cientes
elementos en dicho bu�er).

|C| si dicho Snapshot es bueno, aplica con el anterior Snapshot procesado la
descompresión delta para con esos datos actualizar el estado de juego del
cliente.

Otros aspectos importantes del funcionamiento de red son los siguientes:

El servidor se crea con direccion de red wildcar para que acepte conexiones
de todas las interfaces, y el cliente se unirá siempre a la dirección IP privada.
De esta forma se evitan problemas con ciertas con�guraciones de red con
router + switch, que hacen que no sea posible conectarse a tu propia IP
pública desde dentro de dicha red.

181

El servidor espera un tiempo establecido a que se conecte el cliente y si pasado
ese tiempo el cliente no se ha unido, el servidor considerará que ha habido
un error en la inicialización del cliente y se concluirá. Este comportamiento
no se da al crear un servidor dedicado (ver sección D.2.1).

Cuando el cliente trate de unirse a una partida, el servidor comprobará la
cantidad de jugadores conectados a la partida, y si está llena mostrará indi-
cándotelo.

Si se pierde la conexión el cliente muestra un error sale al menú principal.
En el caso de que el error haya sido solo por parte del cliente, el servidor
seguirá funcionando si quedan más jugadores y el cliente desconectado no es
el jugador 1.

Uso de Sockets (TCP y UDP combinado)

Una característica de los videojuegos de tiempo real (un juego de coches es
uno de ellos) es que los mensajes tienen que llegar lo más rápido posible, ya que si
llegan más tarde de lo previsto generalmente no sirven de nada ya que el estado del
"mundo de juego"habrá cambiado. Es por esta razón por la que la �abilidad no es
una prestación interesante ya que si se pierde un paquete, conseguirás entregarlo
tarde, por lo que no servirá de nada, y además se habrá sobrecargado la red.
Para disimular este efecto (llamado latencia o lag) que se obtiene al perder pa-
quetes de datos, se introducen técnicas como la predicción, que consiste en que
el cliente también tiene una copia local del �mundo� y de los métodos que va a
ejecutar el servidor, y ejecuta todo igual que el servidor con la esperanza de llegar
a los mismos resultados.
Estos resultados el cliente los da temporalmente por buenos y los utiliza para pin-
tar por pantalla y que así, aunque tarde en responder el servidor, el cliente pueda
jugar �uido y sin parones.
Posteriormente, si cuando al cliente le llega el paquete que ha enviado el servi-
dor con sus resultados (que son los validos) se comprueba que el cliente se había
equivocado en su predicción, se suelen utilizar otras técnicas para corregir el es-
tado local del cliente sin que el jugador lo note. Éstas últimas técnicas no se han
aplicado por considerarse fuera de los objetivos del Proyecto Fin de Carrera.

La razón de utilizar sockets en lugar de RMI o alguna otra tecnología de más
alto nivel es que, como se acaba de explicar, para este modelo de red es esencial
el rendimiento del protocolo, ya que se van a transmitir paquetes de datos un
mínimo de 25 veces por segundo, sin necesidad de �abilidad, y todos los proto-
colos de más alto nivel introducen muchas mejoras pero generalmente a costa del
rendimiento [21].

182

El uso de los siguientes protocolos es el siguiente: se usa TCP para enviar el
estado inicial del servidor antes de que comience el juego y UDP a partir de ese
momento, ya que una vez comenzado el juego no importa que se pierdan mensajes,
pero es necesario que el estado inicial llegue correctamente a todos los jugadores, y
utilizar TCP evita programar dichas características de �abilidad. Como desventaja
de este uso de TCP, esto supone otro puerto extra que necesita abrirse en los NAT
y �rewalls.

Apertura de puertos

Para el correcto funcionamiento de este modelo de red, como ocurre en muchos
juegos, es necesario abrir puertos si estas detrás de un NAT.

Fueron estudiadas diferentes posibilidades de evitar esto. Una era utilizar el
protocolo UPnP, como algunos clientes de P2P, pero esta solución estaba muy
desaconsejada en varios foros dedicados al tema de desarrollo de videojuegos ya
que existen grandes problemas de seguridad en el protocolo.
Otra posibilidad estudiada es el NAT Punch-through. Este método se basa en que
exista un servidor que no esté detrás de un NAT y a través de él se pongan en
contacto los clientes y se averigüe el puerto que usa cada uno. Una implementación
de este método es Raknet16.
El problema de este método radica en la necesidad de tener siempre un servidor
maestro en funcionamiento.

Finalmente, como los jugadores habituales están acostumbrados a este requeri-
miento de abrir puertos, y dado que aplicar estas soluciones está fuera del alcance
del Proyecto Fin de Carrera, se decidió seguir con el requerimiento de abrir los
puertos necesarios para jugar.

Control del �ujo de mensajes

El manejo de las comunicaciones UDP no se realiza en un hilo separado sino
en el hilo principal de ejecución.
Esto es porque la principal ventaja de tener las comunicaciones en un hilo sepa-
rado es poder recibir los paquetes en cuanto estén, sin tener que esperar a que el
hilo principal termine de hacer los cálculos de movimiento, colisiones y pintar la
pantalla.
Sin embargo, aunque tuviésemos el paquete en el mismo instante en que se recibe,
no vamos a usarlo hasta que el hilo principal no llame a la función de actualizar
los datos, con lo que lo único que estaríamos haciendo es meter el paquete en un
bu�er y esperar a que el hilo principal lo consuma, que es lo mismo que se consigue

16http://www.jenkinssoftware.com/raknet/manual/natpunchthrough.html

183

http://www.jenkinssoftware.com/raknet/manual/natpunchthrough.html

con el comportamiento normal de los sockets (conforme van llegando los paquetes
se almacenan en un bu�er hasta que tú los pides) [13].

C.6.2. Interpolación-extrapolación

La interpolación y la extrapolación son métodos aplicados en el cliente para
conseguir una representación �uida del resto de actores cuando la conexión con el
servidor no es lo su�cientemente buena.

El problema de un modelo de red básico, sin la aplicación de estos métodos, es
el siguiente. En cada ciclo, el servidor envía al cliente un estado (Snapshot) con
la actualización del mundo de juego. Para enviar el mínimo de datos necesarios,
dicho estado se realiza calculando la diferencia delta respecto al anterior estado
que se sabe que ha procesado el cliente.
Este dato es conocido en el servidor ya que el cliente, en cada InputSnapshot que
envía al servidor, le informa de cuál es el último estado procesado.
El problema radica en que, debido a la latencia de la conexión, la información de
que el cliente ha procesado un nuevo estado tarda en llegar al servidor, por lo que
éste le puede seguir enviando nuevos estados creados respecto al que se cree que es
el estado del cliente pero que en realidad ya no lo es. Cuando estos estados lleguen
al cliente, no podrán ser descomprimidos ya que se han creado en base a un estado
anterior al actual. Son lo que vamos a llamar un Snapshot no bueno. Y si en un
ciclo no se recibe un estado bueno (se recibe uno no bueno o no se recibe ninguno),
no se puede actualizar el estado del mundo de juego, permaneciendo sin cambios.
Y no que no se reciban estados buenos de forma constante implica que los actores
avancen �a trompicones� por el escenario.

Para evitar este efecto visual indeseado, se aplica la siguiente idea: tener un
bu�er de estados recibidos más nuevos que el que se va a procesar, de forma que
si uno no es bueno, se pueda interpolar la posición del actor con los datos de uno
de los estados almacenados �futuros� (Ver Figura C.21).
Esto tiene el inconveniente de añadir más latencia arti�cialmente, ya que la única
forma de tener ese bu�er de estados futuros es procesar los estados no al recibirlos
sino con un cierto retraso establecido (Ver Figura C.22).

Cuando los estados malos recibidos de forma consecutiva superan la capacidad
del bu�er de interpolación (dicha capacidad es modi�cable desde el �chero de texto
ParamCon�g.txt), se procede a aplicar otro método diferente: la extrapolación.

Ésta simplemente consiste en tomar como base los últimos datos válidos reci-
bidos de cada actor y extrapolarlos al estado que se requiere representar.

184

Secuencia Snapshot recibido: 1 2 3 4 5 6 7 8 9 10 11 12

Calidad Snapshot recibido: B B M B B M B B M M B B

Secuencia Snapshot procesado: x 1 2 4 5 7 8 x 11

Interpolación (bu"er = 1)

t

Figura C.21: Interpolación con bu�er de 1 estado. La calidad de un Snapshot
recibido puede ser buena (B) o mala (M). Una X en la secuencia del Snapshot
procesado indica que no se ha procesado ninguno, ya que no había ocupación
su�ciente del bu�er, mientras que una �echa indica que se realiza interpolación.

Snapshots: 12 13 14 15 16

t

Snapshot que
procesamos

Último Snapshot
recibido

Tiempo de interpolación
(bu#er = 2)

Figura C.22: Diferencia entre el último estado recibido y el estado que se pinta en
pantalla, debido al bu�er de interpolación

185

Un ejemplo simpli�cado es el siguiente: el coche A tiene posición (13,45) y una
velocidad por ciclo de (2,1), por lo tanto se puede aventurar que hay muchas
probabilidades de que en el siguiente estado su posición sea (15,46).

El problema de la extrapolación es que la precisión de los resultados decrece
rápidamente conforme más estados se deban extrapolar. Es decir, estando en el
estado X es fácil acertar la posición que tendrá en el estado X+1, pero si quieres
calcular la posición X+10 es probable que el margen de error sea demasiado grande.
Esto es así ya que en la posición de un vehículo intervienen más elementos, como
por ejemplo colisiones contra otros vehículos o contra elementos del terreno. Por
tanto, se ha optado por realizar la extrapolación solo hasta una cantidad de�nida
en el �chero de texto ParamCon�g.txt, no actuando más allá de ese valor por
considerarse que el error puede ser demasiado grande.

Hay que anotar que, aunque en el motor Source [22] se realiza una extrapolación
al uso, en Vanet-X se ha considerado conveniente intentar mejorar el margen de
error usando una simpli�cación de la predicción (que se explicará a continuación),
es decir, en lugar de simplemente actualizar la posición teniendo en cuenta el vector
velocidad, se aplica también las mismas reglas que en el servidor si se salen de la
calzada o están sobre un terreno que disminuya la velocidad. De esta forma, con
muy poco procesamiento adicional, se garantiza una mayor precisión del resultado
que obtengamos.

C.6.3. Predicción

Otro de los problemas causados por la latencia de la conexión es que, al igual
que el resto de actores, el vehículo del jugador no tiene un movimiento �uido y
además, debido a que los eventos de teclado deben enviarse al servidor y éste
devolver un estado actualizado, las teclas pulsadas se ven re�ejadas con retraso,
siendo muy incómodo para el jugador.
Este problema de que las acciones del jugador se vean representadas con retraso
viene dado por el esquema cliente-servidor tradicional, con servidor autoritativo, en
el que se debe esperar a la respuesta del servidor a tus acciones antes de pintarlas.
Ver Figura C.23.

La predicción consiste en lo siguiente: el cliente trata de predecir con el menor
error posible el resultado que devolverá el servidor, y lo aplica de forma que en el
cliente se ven re�ejados los cambios del jugador instantáneamente. Posteriormente,
cuando recibimos el resultado del servidor, se aplica, y sobre esta nueva posición se
vuelven a realizar las predicciones restantes (para lograr el movimiento instantáneo
del jugador se realiza la predicción de cada uno de los estados enviados al servidor

186

Figura C.23: Efecto de la latencia de red

pero aún no contestados). De esta forma se corrigen los posibles errores cometidos
en la predicción, aunque de forma algo brusca.

Para evitar esta brusquedad en la corrección se podría aplicar un suavizado para
que esa corrección se realice a lo largo de varios ciclos en lugar de instantáneamente
(como se realiza en el motor Source [22]), pero se ha considerado que no era un
aspecto imprescindible para los objetivos de este Proyecto Fin de Carrera y por lo
tanto se ha dejado para mejoras futuras.

Para realizar la predicción se siguen los siguientes pasos: se crea un bu�er que
contiene los eventos de teclado de cada estado. Cuando se envía un InputSnapshot
al servidor se almacenan junto con su número de secuencia, y al recibir un Snapshot
del servidor se eliminan los eventos de teclado cuyo estado ya haya sido superado.

Posteriormente, tanto si se procesa un Snapshot bueno como si no, se aplica la
predicción sobre el vehículo del jugador de la siguiente forma: para cada estado que
se lleve de retraso (la diferencia entre el último que se haya recibido del servidor y
el actual del cliente) se cogen los eventos de teclado del primer estado almacenado
en el bu�er y se simulan los cálculos que se realizan en el servidor y se calculan
las colisiones (desactivables en ParamCon�g.txt). Es importante tener en cuenta
que los cálculos de colisiones son una mera aproximación ya que se comprueba la
colisión del vehículo del jugador en el estado que se está prediciendo con el resto
de actores en el último estado recibido del servidor.
Este proceso se repite para cada estado retrasado partiendo como base del resultado
de la predicción del estado anterior.

187

C.6.4. Compresión delta

Para reducir la cantidad de datos enviados, se aplica el método conocido como
compresión delta17, que consiste en no enviar toda la información sino solo la
diferencia respecto al último envío.

Esto puede realizarse de dos maneras. La primera es diferencia a nivel byte, que
consistiría en que si en el estado anterior se ha enviado posición=(12,15) y ahora se
quiere enviar posición=(14,14), se envíe posición=(+2,-1), de forma que en valores
muy grandes se pueda reducir el tamaño requerido para enviarlos (ejemplo: en lugar
de enviar un valor de tipo Long, enviar un Short con la diferencia).
La otra manera de aplicarlo, es la diferencia a nivel de aplicación, que consistiría
en enviar únicamente los elementos de la estructura que hayan tenido cambios.
Por ejemplo si de un vehículo se mantiene la velocidad constante y solo cambia la
posición, enviar únicamente esta última, ahorrando así enviar la velocidad.
También existe la posibilidad de combinar ambas formas, aplicando la diferencia
respecto a la estructura, y en los elementos que quedan para enviar, aplicar la
diferencia respecto a byte, pero ha sido el segundo método (diferencia a nivel de
aplicación) la forma elegida en este Proyecto Fin de Carrera.

Para poder realizar la compresión delta, es necesario que el servidor almacene
cual es la secuencia del último estado aplicado por cada cliente, dado que no todos
los clientes tendrán el mismo estado, y también almacene todos los datos de los
últimos estados, desde el más antiguo de los aplicados en los clientes hasta el
último.
Con estos datos, el servidor le envía a cada cliente los datos resultantes de realizar
la compresión delta entre el estado actual del servidor y el estado actual (conocido)
del cliente.
Al realizar la compresión delta se coge el Snapshot que se toma como base para
la compresión delta y para cada actor se comprueba si cada valor de la estructura
(posición, velocidad, etc.) ha sido modi�cado y se anota, para que solo se envíen
los elementos modi�cados.

En el lado del cliente únicamente se necesita tener almacenado el último estado
procesado, para descomprimir el Snapshot que se reciba.

C.6.5. Envío de solo actores cercanos

Inicialmente se enviaban los datos de todos los actores (aparte de la compresión
delta) sin importar si estaban cerca del jugador y por lo tanto eran de interés o
estaban lejanos y daban igual sus datos (ya que para el cliente no es necesario

17https://en.wikipedia.org/wiki/Delta_encoding

188

https://en.wikipedia.org/wiki/Delta_encoding

saber el ángulo o la velocidad de un coche que está en la otra punta del mapa).
Para reducir el tamaño de los paquetes de red que se han de enviar, se ha optado
por enviar todos los actores, pero si están lejanos solo enviar su identi�cador -
necesario siempre- y un booleano que indique lejanía.

Esto introduce un problema, y es que para la compresión delta ya no hay que
comprobar si una variable de un actor ha tenido modi�caciones respecto al estado
anterior sino respecto al último estado que se sabe que ha recibido el cliente en el
que los datos del actor hayan sido enviados (porque el actor estaba cercano).

Un ejemplo de este problema se muestra en la Tabla C.4.

Estado enviado 10 11 12 13 14
Lejano NO SÍ SÍ NO NO

Valor enviado 25 45 45 45 45
Ha cambiado (en servidor) ? SÍ NO NO NO

Valor recibido 25 - - 45 45
Aplicar cambios (en cliente) ? - - NO NO

Tabla C.4: Problema de no enviar actores lejanos

Para solucionar este problema, se introduce un �acumulador� donde se acu-
mulen los cambios realizados a cada variable de un actor entre diferentes estados
(Ver Tabla C.5).

Estado enviado 10 11 12 13 14
Lejano NO SÍ SÍ NO NO

Valor enviado 25 45 45 45 45
Ha cambiado (en servidor) ? SÍ NO NO NO

Valor recibido 25 - - 45 45
Acumulador ? SÍ SÍ SÍ NO

Aplicar cambios (en cliente) ? - - SÍ NO

Tabla C.5: Se crean los acumuladores como solución para poder enviar solo actores
cercanos

El funcionamiento de los acumuladores es el siguiente. Cuando el servidor calcula
para cada cliente que valores han cambiado (y por lo tanto deben enviarse), si el
cliente está lejano, se almacena en su acumulador el resultado de realizar un OR
entre el valor booleano que se acaba de calcular (que indica si ha habido cambio
respecto del último estado), y el valor almacenado previamente.

189

Si el cliente vuelve a estar cercano, para determinar si debe aplicarse el cambio, se
realiza un OR entre el valor booleano del acumulador y el que se calcula respecto
del último estado, restableciendo posteriormente los valores del acumulador.

Hay que anotar que este restablecimiento de los valores del acumulador no se
realiza instantáneamente sino cuando se recibe la con�rmación (ack) de que el
cliente ha recibido el Snapshot en el que se le enviaban los cambios.

También hay que tener en cuenta que no se puede acumular todo en el mismo
actor ya que lo que se acumula esta personalizado para cada cliente. Es decir, es
necesario un acumulador por cada pareja actor-cliente.

Para el funcionamiento de las �echas que indican la dirección en la que se en-
cuentran las banderas y los enemigos, es necesario conocer siempre la posición de
estos tipos de actores, aunque estén lejos. Por esa razón se hace uso de una estruc-
tura de tipo lista que contiene las posiciones de los actores de este tipo que se han
enviado como lejanos.

Una solución análoga a la explicada para el envío de únicamente actores cercanos
hay que aplicarla a cualquier variable que indique cambio de un valor que sea
establecida a cierta o falso manualmente.
Esto se aplica al envío de los eventos del radar asociado a cada jugador y a los
objetivos de la ronda.

En la Tabla C.6 se observa una traza en la que se aprecia el funcionamiento de
este método para el envío de los objetivos de la ronda.

C.6.6. Optimizaciones

Además de las técnicas arriba nombradas, se han realizado otras optimizaciones
que se describen a continuación.

Uso de Externalizable en lugar de Serializable

El envío de los datos se realiza mediante el uso de Externalization en lugar de
Serialization debido a que ofrece un mayor control y de esta forma se logra un
menor tamaño de los paquetes enviados.18

Aún así, el uso de ObjectOutputStream introduce cabeceras nada despreciables
(de 40 bytes o más), ya que se incluyen los descriptores de clase.
Para lograr reducir estas cabeceras, se hace uso de obj.writeExternal(stream) en

18http://thejavacodemonkey.blogspot.com.es/2010/08/java-serialization-using-

serializable.html

190

http://thejavacodemonkey.blogspot.com.es/2010/08/java-serialization-using-serializable.html
http://thejavacodemonkey.blogspot.com.es/2010/08/java-serialization-using-serializable.html

PRUEBA CON LAG DE 1 ESTADO Y BUFFER PARA INTERPOLACIÓN DE 2

. . .

nueva.changed_lugaresObjetivos false acumulador.changed_lugaresObjetivos false
acumulador.changed_lugaresObjetivos <<- false
game:ronda.changed_objetivos //<-- aqui se cambian los objetivos en el servidor

nueva.changed_lugaresObjetivos true acumulador.changed_lugaresObjetivos false
acumulador.changed_lugaresObjetivos <<- true

resetearas en 74 //<-- se marca que se resetee cuando llegue el ack del estado 74

nueva.changed_lugaresObjetivos false acumulador.changed_lugaresObjetivos true
acumulador.changed_lugaresObjetivos <<- true

nueva.changed_lugaresObjetivos false acumulador.changed_lugaresObjetivos true
acumulador.changed_lugaresObjetivos <<- true

nueva.changed_lugaresObjetivos false acumulador.changed_lugaresObjetivos true
acumulador.changed_lugaresObjetivos <<- true

nueva.changed_lugaresObjetivos false acumulador.changed_lugaresObjetivos true
acumulador.changed_lugaresObjetivos <<- true

cl_processSnapshot:changed_lugaresObjetivos //<-- se procesa en el cliente

//<-- llega el ack del estado 74, por lo que se resetea el acumulador a falso

nueva.changed_lugaresObjetivos false acumulador.changed_lugaresObjetivos false
acumulador.changed_lugaresObjetivos <<- false
. . .

Tabla C.6: Traza de funcionamiento del acumulador

191

lugar de stream.writeObject(obj)19, aunque no siempre, ya que es necesario que el
paquete comience con los descriptores de clase de la estructura que contiene a las
demás (es decir, el Snapshot).

Es importante tener en cuenta que si no se envía la información del descriptor
de clase, en ocasiones es necesario enviar un byte extra para saber qué tipo de
clase es y así poder hacer la creación del tipo oportuno.

Compactación de booleanos

Debido a que un valor del tipo booleano se puede representar con un único bit
pero sin embargo se serializa ocupando un byte, se ha realizado una �compacta-
ción� de los diversos valores booleanos presentes en las estructuras, agrupándolos
en valores de tipo Byte.

En las �guras C.24, C.25, C.26, C.27 y C.28 se muestran varios ejemplos de
cómo se han realizado estas agrupaciones.

Byte: 0x _ _ (hex)

Combustible Salud

0 - Nulo

1 - Bajo

2 - Medio

3 - Alto

(ordinal del Enum)

Figura C.24: Agrupación de booleanos de la clase Opciones

Byte: 0x _ _ (hex)

TipoLugar TipoLLegada

y se coge el ordinal del Enum

Figura C.25: Agrupación de booleanos de la clase Tarea

Byte: 0x _ _ (hex)

Damage Petrol

y se coge el ordinal del Enum

Figura C.26: Agrupación de booleanos de la clase WaitingRoom

19http://docs.oracle.com/cd/E14571_01/web.1111/e13727/design_best_practices.

htm

192

http://docs.oracle.com/cd/E14571_01/web.1111/e13727/design_best_practices.htm
http://docs.oracle.com/cd/E14571_01/web.1111/e13727/design_best_practices.htm

Byte: _ _ _ _ _ _ _ _

PetrolDamage

Manual

shutdown

Ø

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

0 - false

1 - true

Figura C.27: Agrupación de booleanos de la clase GameOver

Byte: _ _ _ _ _ _ _ _

Velocidad
Muro

Obras
Daño

Ø

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-

-
-

-
-

-
-

-
-

-
-

y se coge el ordinal del Enum

Figura C.28: Agrupación de booleanos de la clase DanyoVelocidadYCalle

C.6.7. Unión de jugadores a la partida

A pesar de que inicialmente se había planteado que la conexión de los jugadores
a la partida se realizará de forma simultánea al comienzo de la misma, como suele
suceder en la gran mayoría de los juegos de coches, más tarde se vio la necesidad
de cambiar el modo de conexión ya que, al no tratarse de un juego de coches al
uso, en el que tiene lugar una carrera y no tiene sentido unirte una vez empezada,
en Vanet-X la mecánica de juego es muy diferente y tenía sentido dotar al juego
de este tipo de conexión, que es la habitual en los juegos de acción.

Con este nuevo tipo de conexión que se decidió, la partida comienza cuando se
ha conectado el primer jugador, y cualquier otro usuario que lo desee puede unirse
sobre la marcha.

En la Figura C.29 se puede ver la secuencia temporal del proceso de conexión del
primer jugador a la partida. Para los siguientes jugadores el proceso es el mismo,
con la única diferencia de que la partida ya habrá comenzado anteriormente.

El proceso es el siguiente:
El servidor, después de crear todos los datos necesarios para comenzar la partida
(terreno, elementos, etc.) crea una instancia de su gestor de conexiones, el cual
es el encargado de todas las peticiones de los clientes que se realicen de forma
asíncrona.

Las peticiones asíncronas son las siguientes: unión a la partida, información
de la partida (para la sala de espera) y puntuaciones al acabar la partida. Todas
ellas se realizan por TCP. El resto de transmisiones de red se realizan de forma
síncrona: el envío del estado del mundo inicial al unirse el jugador a la partida

193

Servidor

Gestor Conexiones

Cliente i

Gestor TCP cliente i

Esperar cliente listo

conectarse al socket

Comando "ATCP"

Iden!ficador cliente

crear Gestor Conexiones
crear Gestor TCP cliente

conectarse al socket

Comando "Join"

Plazas libres

id cliente, apodo, otros datos

apodo modificado

Datos necesarios

Cliente listo

Comenzar par!da

Figura C.29: Secuencia temporal de la unión de jugadores a la partida

194

(por TCP) y los envíos a los clientes del estado del mundo en cada ciclo del juego.
El cliente, al iniciarse, también crea su propio gestor de conexiones (llama-

do gestor TCP del cliente), ya que también existen transmisiones asíncronas del
servidor al cliente.

La primera conexión es una petición del gestor del cliente al del servidor para
obtener su identi�cador de cliente único, y también se realiza para almacenar dicha
conexión para las futuras comunicaciones asíncronas con el cliente como destino.
Acto seguido, es el cliente el que se conecta con el gestor del servidor, con el
objetivo de primero comprobar si quedan plazas libres en la partida (en caso con-
trario el cliente acaba y se vuelve al menú principal), y después el cliente envía
su identi�cador (el cual había sido previamente recibido del servidor, y el objetivo
de reenviarlo es asociar las conexiones síncrona y asíncrona), su apodo deseado y
otros datos.
El servidor, al recibir el apodo, comprueba que no haya existido desde que se ini-
ció la partida otro jugador con el mismo apodo, y en caso contrario lo modi�ca
(añadiéndole un número incremental entre paréntesis), reenviándoselo acto segui-
do al jugador. Finalmente, también envía el estado inicial del mundo y el estado
correspondiente al ciclo actual, junto con la estructura que contiene la explicación
de la ronda que se muestra al jugador y las puntuaciones actuales.
Tras esto, el cliente envía una señal al servidor indicando que está listo, para que
éste le añada al juego y lo comience en caso de ser el primer jugador en unirse.

C.7. Modos de juego y gestión de rondas y objeti-

vos

En esta sección se explicaran detalles de la implementación del modo �tareas�
(que también está presente en los modos �supervivencia� y �aparcar� ya que
parten de la misma base) y de los elementos introducidos por resultar necesarios
para dichos modos (plazas de aparcamiento y capacidad de salir del coche).

C.7.1. Modo tareas

Los modos diferentes a �capturar las banderas� y �capturar los vehículos
enemigos� (modos llamados �rally� por su semejanza al clásico videojuego Rally-X
original), necesitan de la creación de nuevas estructuras que soporten los cambios
de la mecánica de juego que suponen.

En este apartado se profundizará en los elementos para el modo de juego �ta-
reas� ya que tanto �supervivencia� como �aparcar� tienen las mismas estructuras

195

con ligeras variaciones, y dado esta similitud no se ha considerado necesario expli-
carlas de nuevo por separado.

En este modo de juego, los objetivos ya no son actores (banderas o vehículos)
sino elementos del terreno, que pueden ser lugares de interés (nodos que se han
considerado relevantes por representar tiendas, hospitales, etc.) o direcciones. Y
para estos objetivos ya no sólo existe la opción de lograrlos en coche sino que
también se incluye la posibilidad de que se requiera lograrlo aparcando en una
plaza de aparcamiento considerada cercana o lograrlo saliendo del coche (después
de haberlo aparcado) y llegando a pie hasta el objetivo.

Por esta razón se ha creado una nueva estructura llamada �Tarea�, que incluye
todos los datos requeridos de un objetivo: tipo de lugar, tipo de llegada y distancia
al primer y tercer aparcamiento más cercano. Los datos referidos a las distancias
a aparcamientos son necesarios ya que cuando el tipo de llegada requerido es
aparcando, la puntuación obtenida por el jugador no se calcula de la misma forma
que habitualmente (más puntos contra menos tiempo se tarde en lograr el objetivo)
sino que viene dada por una función (C.2) que boni�ca la cercanía al objetivo.
Además, solo cuentan como aparcamientos cercanos, y por lo tanto válidos, los tres
más cercanos (salvo en el modo de juego �aparcar� ideado para la explotación, ver
capítulo 3.5).

puntos =
100 ∗ distancia del objetivo al párking

distancia del objetivo al jugador
(C.2)

El tipo de llegada de la tarea viene dado por una función de probabilidad (ver
Tabla C.7). En una misma ronda pueden existir hasta tres objetivos simultáneos,
en cuyo caso ambos serán del mismo tipo (dirección o lugar de interés) y contarán
con el mismo tipo de llegada.

Probabilidad tipo

60% en coche
30% aparcar cerca
10% a pie

Tabla C.7: Elección de �tipo de llegada� en una tarea

Es importante anotar que cuando el objetivo generado es de tipo dirección, el
objetivo en realidad representa solo un punto de la calle, y en los modos de llegada
�en coche� y �a pie� se da por completado al acercarte a menos de 200 pixeles
(25 metros) de distancia. El punto elegido siempre es el punto medio del primer
segmento del camino.
Los objetivos de tipo dirección por defecto sólo se generan en calles con nombre, ya

196

que así si conoces la zona, sabes hacia donde encaminarte ya durante el tiempo de
intermisión, sin tener que esperar a que comience la ronda y aparezca el objetivo en
el mini-mapa. Sin embargo, si en el área descargada como escenario no existen calles
con nombres, y tampoco existen lugares de interés, entonces sí que se generarán
objetivos en calles sin nombres, para así poder jugar en el escenario.
Salvo que suceda este caso extraordinario en el que no existen calles con nombre,
el algoritmo de decisión de nuevos objetivos tiene una probabilidad de 50% de
generar un objetivo de tipo dirección y el otro 50% de que sea de tipo lugar de
interés.

C.7.2. Plazas de aparcamiento

El primero de los elementos introducidos para soportar la mecánica del juego
deseada en los modos �tareas� y �supervivencia� son las plazas de aparcamiento.

Las plazas de aparcamiento se deben pintar en los laterales de la calzada y
alineadas a ella. Para conseguirlo, se introdujo el concepto de los �puntos de par-
king� de las calles: se calcula cual es el punto intermedio de cada segmento que
forma la calle, y se proyecta en los ejes laterales del camino, creando dos �puntos
de parking� uno a cada lado de la calzada. Estos puntos sólo se crearan si están a
más de 30 pixeles (el valor del radio de una plaza de aparcamiento) de otras calles,
para asegurar que los aparcamientos no sobresaldrían por la otra calle. Estos pun-
tos calculados son los posibles puntos de aparición de las plazas de aparcamiento.
En la Figura C.30 se puede observar los puntos intermedios de cada segmento (cir-
cunferencia verde) y sus correspondientes puntos de parking (circunferencia azul,
remarcada por una exterior de color rojo para aumentar su visibilidad). Como se
puede observar, en este caso no todos los puntos intermedios han generado pun-
tos de parking, ya que en el caso de dos de ellos no se han generado por resultar
demasiado cercanos a un cruce de caminos.

Cómo las plazas de aparcamiento sobresalen ligeramente en el interior de la
calzada, se debe adaptar la inteligencia que controla los vehículos para que las
esquive. Esto se ha logrado creando un obstáculo esférico en su posición e intro-
duciéndolo en la lista de obstáculos que tiene en cuenta el steering behavior de
obstacle avoidance. Evidentemente cuando un vehículo de trá�co se encuentra en
estado �aparcar�, se desactivará de su steering behavior el obstáculo esférico del
parking objetivo para permitir atravesarlo y así estacionar en él.

Hubo un problema al realizar esta implementación y es que se descubrió que
había ocasiones en las que los vehículos no esquivaban correctamente las plazas
de aparcamiento. El motivo era que los obstáculos esféricos tenían su centro en el
borde del camino, y si el vehículo se acercaba pegado al borde de la calzada, su
steering behavior le indicaba que para esquivarlo podía torcer en las dos direcciones
en lugar de sólo hacia el centro del camino. Este problema radica en el hecho de

197

Figura C.30: Captura mostrando los puntos de parking (azul rodeado de una cir-
cunferencia roja) ylos puntos intermedios (verde)

198

haber implementado la unión de steering behaviors con un sistema de prioridades
en lugar de uno aditivo (ver capítulo C.5.1).
Para solucionarlo, en lugar de optar por cambiar la implementación de la unión de
steering behaviors, se tuvo la idea de incrementar el radio del obstáculo y colocar
su centro más alejado del borde del camino, de forma que así el comportamiento
de esquiva de obstáculos sólo devolviese la opción de girar hacia el interior de la
calzada.
La contrapartida de éste método es que si este obstáculo esférico sobresale por otra
calle debido a que se encuentra muy cercana, la inteligencia evitará esa zona que
sobresale a pesar de que realmente no exista ninguna posible colisión.
En la Figura C.7 (pág. 161) se observa el obstáculo esférico de las plazas de apar-
camiento (circunferencia azul).

Cuando el tipo de llegada es �aparcar�, para que el jugador sepa cuáles son los
aparcamientos válidos para lograr el objetivo, se pintan unas líneas desde dichos
aparcamientos hasta el objetivo, indicando sobre ellas la puntuación que otorga
cada aparcamiento.
Estas líneas no aparecen constantemente, ya que entonces encontrar una plaza de
aparcamiento sería tan sencillo como acercarte al objetivo y luego seguir una de
las líneas hasta el aparcamiento, sino que solo aparecen cuando estás a menos de
una determinada distancia del aparcamiento.

C.7.3. Capacidad de salir del vehículo

El otro elemento introducido se trata de la capacidad del jugador para aban-
donar el vehículo y llegar a los objetivos caminando.

Para realizarlo, se ha decidido que el actor �Player� siempre sea el elemento
bajo control del jugador, tanto cuando vaya en coche como a pie, y que en el caso
de ir a pie se cambien sus constantes de velocidad y la imagen que se mostrará.
Como además de estos parámetros hay otros muchos que también varían, se ha
creado una estructura dentro de la clase �Player� en la que se guardan esos valores
mientras el jugador va a pie y se recuperan cuando vuelve a montarse en el vehículo.

También se ha creado una nueva clase actor: �DummyPlayer�, que tiene la
apariencia de nuestro vehículo y colisiona con los mismos actores que cualquier
otro vehículo, excepto con los jugadores, a los que permite que le atraviesen para
que así el jugador pueda volver a montar en el vehículo.

C.7.4. Modo supervivencia

El modo supervivencia tiene una mecánica diferente al modo �tareas� pero se
basa en los mismos elementos, únicamente modi�cando ciertos aspectos y funcio-

199

nes.

Las únicas diferencias destacables de la implementación son la modi�cación del
algoritmo que decide qué objetivos crear y la modi�cación del �nalizador de la
partida, que ahora ya no es no completar los objetivos sino empezar la ronda con
una cantidad negativa de puntos.

La decisión de qué objetivos crear en la ronda se ve complicada por la aparición
de las rondas especiales. Éstas son rondas que aparecen cada mucho tiempo y que
suponen que los jugadores deban completar el objetivo generado si no quieren
perder una cantidad considerable de puntos.
Estos objetivos son lugares de interés donde se puede comer (restaurante, cafetería,
etc.) o, en el caso de no existir lugares de interés de ese tipo, se crean dos �puestos
de comida�, que se crean con las mismas reglas que las plazas de aparcamiento y
sirven para permitir que aparezcan estas rondas especiales en cualquier escenario
independientemente de los tipos de lugares que incluya.

La decisión del tipo de objetivo sigue el siguiente esquema (inspirado en las
rondas especiales del modo zombi del Call of Duty: World at War):

No puede tocar realizar una ronda especial antes de la ronda tercera.

A partir de esa ronda, la probabilidad aumenta un 10% en cada ronda.

Cuando se realiza una ronda especial, la probabilidad par la próxima ronda
se establece en cero y no volverá a incrementarse hasta dos rondas más tarde.

Si la ronda especial no tiene lugar, el objetivo tendrá una probabilidad del
50% de ser de tipo dirección y otra tanta de ser de tipo lugar de interés, al
igual que ocurría en el modo �tareas�.

De esta forma garantizamos que este tipo de rondas no tengan lugar demasiado
a menudo para que al jugador le dé tiempo a reunir los puntos su�cientes para
sobrevivir en caso de no lograr el objetivo de dicha ronda.

200

Anexo D

Sobre VESPA y la explotación

En este anexo se tratarán en detalle todos aquellos aspectos sobre VESPA y la
explotación del juego como método de evaluación que no han podido ser tratados
en el capítulo 3 o han sido tratados de forma resumida.

D.1. Vespa

En esta sección se realizará una breve introducción al sistema VESPA, se expli-
carán las interfaces desarrolladas así como la implementación desarrollada, también
se explicará la implementación realizada para simular en el juego la existencia de
atascos y por último se verán diversos problemas y posibles mejoras encontradas
durante la implementación de VESPA.

D.1.1. Breve introducción a VESPA

VESPA (Vehicular Event Sharing with a mobile P2P Architecture) es un sis-
tema diseñado para vehículos para compartir información en redes ad-hoc entre
vehículos. La originalidad de VESPA es que soporta cualquier tipo de evento en la
red (p.ej. plazas de aparcamiento libres, accidentes, frenados de emergencia, obs-
táculos en la calzada, información del trá�co en tiempo real, información relativa
a la coordinación de vehículos en situaciones de emergencia, etc.).
VESPA se basa en el cálculo de una probabilidad de encuentro (EP) para deter-
minar si un vehículo se encontrará con un determinado evento, en cuyo caso el
sistema decidirá avisar al conductor. La probabilidad de encuentro también se usa
para realizar de forma e�ciente la diseminación de información entre vehículos.

En la Figura D.1 se muestra una visión general de los módulos de los que
se compone el sistema VESPA (existe un módulo adicional llamado agregador
de datos pero no se muestra en la �gura ya que no ha sido implementado en la

201

implementación de VESPA elaborada para el juego).

Gestor de diseminación
de datos

Oyente de datos remotos

Gestor de comunicaciones

Evaluador de
relevancia

Gestor de almacenamiento

Gestor de datos

Asignador de
recursos escasos

Procesador de
consultas continuas

Cache local
de datos

Dato relevante

Dato relevante

Dato

Dato remoto

Dato

Dato

Datos

Sensores del
vehículo

Conductor

Conductor

Información
para el

conductor

Evento local

Datos
diseminados

Datos
recibidos

Evento local

Figura D.1: Módulos del sistema VESPA

D.1.2. Interfaces desarrolladas

La implementación del sistema VESPA se ha realizado de forma que se permita
una fácil sustitución por una implementación diferente de VESPA o incluso por
otro DMS (Data Management Strategy). Para ello se han de�nido las interfaces y
clases abstractas básicas que se necesitan para poder interaccionar desde el juego
con VESPA. Posteriormente se ha realizado una implementación �recortada� del
sistema VESPA como instanciación de dichos interfaces.

Se han desarrollado dos tipos de interfaces diferentes:

Una interfaz IDataManagementStrategy, que declara los métodos que deben
ser implementados por una DMS para permitir su integración con el video-
juego. En esta interfaz se han de�nido métodos para de�nir los tipos de
eventos interesantes para el conductor, un método para generar un evento,
etc.

Otras cuatro interfaces que permiten la interacción del DMS con las entida-
des que implementan dichas interfaces (p.ej. obtener una referencia al gestor
de datos del vehículo, obtener información sobre el historial de posiciones
registradas en el dispositivo GPS, etc.). Estas cuatro interfaces son las si-
guientes: IVisible, que debe ser implementada por todas aquellas entidades
que puedan ser �observadas� por el DMS, IVehicle, que debe ser implemen-
tada por todos los vehículos que equipen un sistema DMS, para permitir que

202

al DMS interactuar directamente con él, e IPlayerVehicle e ITra�cVehicle,
que han de ser implementados por todos los vehículos equipados con sistema
DMS de jugadores y del trá�co respectivamente.

Además de estas interfaces principales, también se han desarrollado las siguien-
tes:

Una interfaz IEvent, que representa a la estructura de un evento del siste-
ma DMS. Esta interfaz no contiene ningún método ya que es una estructura
que no se utiliza dentro del juego, únicamente de forma interna a la imple-
mentación del DMS y por ello se deja total libertad al desarrollador que
implemente un nuevo DMS.

Además, también se ha creado una clase GenericEvent, que implementa a
IEvent y que ha sido dotada de la estructura y métodos que se han conside-
rado básicos para cualquier DMS, de forma que pueda extenderse o utilizarse
�tal cual� por un desarrollador externo encargado de implementar un DMS
diferente.

Otra interfaz IDmsOptions, que debe ser implementado de forma que con-
tenga las opciones/parámetros necesarios para la inicialización del DMS.

Por último una clase FactoryDMS que es una factoría para crear instancias
de diferentes DMS. Esta clase contiene un único método createDMS(...), que
debe ser extendido para reconocer un valor especí�co de la propiedad Java
dataStrategy (o un valor en un �chero de texto de con�guración) que identi-
�que la nueva DMS y cree la instancia de dicha DMS cuando se requiera.

Además también hay otras clases, ya implementadas, que deben ser tenidas en
cuenta ya que se utilizan en los métodos de las interfaces arriba mencionadas:

ContextOfEvent : Representa el contexto del evento (posición, tiempo, etc.).

GpsHistory : Tiene el registro histórico de posiciones del vehículo y los mé-
todos necesarios para calcular los vectores de dirección y movilidad.

Position2D : Representa un vector bidimensional y tiene los métodos nece-
sarios para su manipulación. Es el tipo de vector de posición usado en el
juego.

Position4D : Representa una posición espacio-temporal. Es el vector usado
en GenericEvent y en la implementación de VESPA desarrollada.

203

RadarRepresentationOfEvent : Representa un evento con el mínimo de infor-
mación necesaria para ser representado en el radar.

WrapperParkingEvents : Contiene una lista con los identi�cadores de las pla-
zas de aparcamiento mostradas actualmente en el radar, junto con un objeto
que sirve para realizar la sincronización de dicha lista.

WrapperRadarPoints : Contiene una lista con la información mínima de cada
evento de radar que debe ser representado, junto con un objeto que sirve
para realizar la sincronización de dicha lista.

En la Figura D.2 se puede apreciar la arquitectura de la conexión entre el juego
y el DMS.

D.1.3. Implementación desarrollada

A partir de las interfaces previamente creadas, se ha desarrollado una imple-
mentación del sistema VESPA que cumpla las características básicas del sistema.
Únicamente no se han implementado las características del cálculo de la probabi-
lidad de encuentro (EP) con mapas de carreteras digitales (en su lugar se realiza
usando vectores geográ�cos) y la agregación de datos.

Para el desarrollo de esta implementación se ha tratado de dividir el trabajo en
los módulos básicos que componen el sistema VESPA (ver Figura D.1), de forma
que se pueda sustituir dicha implementación de VESPA por otra no solo de forma
completa sino también solo los módulos precisos.
Para realizar esta implementación modular se ha hecho uso del patrón de diseño
Factory method para cada uno de los módulos necesarios.

En la Figura D.3 se observa la estructura de la arquitectura VESPA imple-
mentada y en la Figura D.4 se muestra como se comunican los diferentes módulos
entre sí junto con las principales funciones de los interfaces que los representan.

A continuación se detallan las ideas generales de la implementación de VESPA
desarrollada, así como los algoritmos principales.

Existen cuatro hilos de ejecución: el del módulo sensor, encargado de supervisar
el entorno y crear los eventos locales, el del módulo gestor de almacenamiento,
encargado de comprobar periódicamente los eventos almacenados y eliminar los
que correspondan, el del módulo procesador de consultas continuas, encargado de
revisar los eventos almacenados y mostrar al conductor los que correspondan, y el
del módulo de entrada de radio, encargado de la escucha de los eventos remotos
enviados a través de mensajes de radio.

En las �guras D.5, D.6, D.7 y D.8 se muestran las tareas realizadas en cada
hilo de ejecución.

204

Car Interface
IVehicle

Interface
IDataManagementStrategy

TrafficCar

VESPA

IEvent

FactoryDMS

VespaEvent

Interface
IVisible

Interface
IPlayerVehicle

Interface
ITrafficVehicle

Actor

Player

Parking

MiCanvasServidor

SERVER-SIDE

implementa es subclase de se comunica con usa

Figura D.2: Arquitectura de la la conexión entre el juego y el DMS

205

implementa usa

Vespa

Interface
IVespa

Interface
ISensor

FactorySensor

Sensor

Interface
IRadioIn

FactoryRadioIn

RadioIn

Interface
IRadioOut

FactoryRadioOut

RadioOut

Interface
IDataDisseminationManager

FactoryDataDisseminationManager

DataDisseminationManager

Interface
IStorageManager

FactoryStorageManager

StorageManager

Interface
IRelevanceEvaluator

FactoryRelevanceEvaluator

RelevanceEvaluator

Interface
IContinuousQeryProcessor

FactoryContinuousQueryProcessor

ContinuousQueryProcessor

Interface
IAllocatorScarceResources

FactoryIAllocatorScarceResources

AllocatorScarceResources

Figura D.3: Estructura de la arquitectura VESPA implementada

La estructura de un evento VESPA es la mostrada en la Tabla D.1.

206

Vespa

Sensor

RadioIn

RadioOut

DataDisseminationManager
StorageManager

RelevanceEvaluatorContinuousQeryProcessor

AllocatorScarceResources

setTimeStartedSearching()
enviarCoordinar(...)
getSearchMode()

disseminate(...)
notDisseminate(...)

generateEvent(...)
eventReception(...)

isInterestedInParkings()
createParkingEvent(...)
evaluateParkingEP(...)

...

addRelevantType(...)
clearRelevantType(...)

relevanceCheck(...)
setDeprecatedParking(...)

unsetDeprecatedParking(...)

eventReception(...)

diffusion(...)

evaluateEP(...)
relevanceCheck(...)

importanceCheck(...)
storageCheck(...)
diffusionCheck(...)

getCache()
store(...)

se comunica con

Figura D.4: Comunicación entre los diferentes módulos implementados

207

Figura D.5: Hilo de ejecución de la detección de un evento (el módulo sombreado
es del vehículo receptor)

208

Figura D.6: Hilo de ejecución de la recepción de un evento (el módulo sombreado
es del vehículo emisor)

209

Figura D.7: Hilo de ejecución del gestor de almacenamiento

Figura D.8: Hilo de ejecución del procesador de consultas continuas

210

String ukey clave única, generada concatenando el identi-
�cador único del vehículo con el identi�cador
localmente único del evento.

int version para distinguir entre diferentes actualizaciones
del mismo evento.

�oat importance ayuda a determinar cuándo se debe informar
de la información al conductor. Contiene un
valor entre 0 y 1.

Position4D currentPosition tiempo y posición correspondiente a la genera-
ción del evento.

Position4D directionRefPosition tiempo y posición de una referencia anterior
para permitir a cada vehículo evaluar la direc-
ción del evento, lo cual es necesario para es-
timar su relevancia. Contiene el valor NULO
si se trata de un evento no dependiente de la
dirección.

Position4D mobilityRefPosition tiempo y posición de una referencia anterior
para permitir a cada vehículo evaluar la mo-
vilidad del evento, lo cual es necesario para
estimar su relevancia. Contiene el mismo valor
que currentPosition en el caso de que sea un
evento estacionario.

Position4D lastDi�userPosition posición del último vehículo que retransmitió
el mensaje. Es usado por el protocolo de dise-
minación.

int hopNumber indica el número de redifusiones del mensaje.
String description describe de forma precisa el evento representa-

do.
String type añadido de mi implementación para agilizar

ciertos cálculos. Puede tener los siguientes
valores: {DirectedMobile, DirectedNotMobile,
NotDirectedMobile, NotDirectedNotMobile}.

int actorId añadido de mi implementación, necesario para
saber a qué plaza de aparcamiento hace refe-
rencia un evento de aparcamiento libre, ya que
si la veo ocupado tengo que hacer caso omi-
so de dicha plaza hasta que me llegue en otro
evento.

Tabla D.1: Estructura de evento VESPA implementada

211

A continuación se detallan los algoritmos más importantes de la implementa-
ción.

Algoritmo D.1: Detección de un evento

Hilo de ejecución del módulo Sensor

void Sensor.run()
{
while (continueRunning)
Sensor.checkForEvents();
sleep

}

void Sensor.checkForEvents()
{
for all �ags
if (distance(�ag,yo)<= SIGHT_RANGE)
vespa.generateEvent("Flag",�ag.id);

}

void Vespa.generateEvent(String description, int id)
{
currentPosition = obtener ultimo registro del gps

if (evento es dirigido)
directionReferencePosition = obtener vector direccion del gps

else
directionReferencePosition = null;

if (evento es movil)
mobilityReferencePosition = obtener vector movilidad del gps

else
mobilityReferencePosition = currentPosition;

if (listOfEventsById.containsKey(id)) //será una actualización
oldEventData = listOfEventsById.get(id);
event = crear nuevo evento VESPA con version = oldEventData.version + 1;

else //será un nuevo evento
event = crear nuevo evento VESPA

put event on listOfEventsById list //para diferenciar nuevos eventos de actualizaciones
put event on listOfEventsByKey list //para no procesar retransmisiones de tus eventos
Vespa.DMProcess(event);

212

}

void Vespa.DMProcess(VespaEvent event)
{
EP = calculo de la EP
if (EP >= umbral de difusion)
DataDisseminationManager.disseminate(event);

if (EP >= umbral de almacenamiento)
StorageManager.store(event);

}

void DataDisseminationManager.disseminate(VespaEvent event)
{
distance = distancia entre event.lastDi�userPosition y mi posicion
waitingTime = D∗(1−(distance/RADIO_RANGE))∗1000; //cálculo de T en segundos
if (waitingTime<0)
waitingTime = 0;

añadir evento a la lista listOfEventsPendigToBeSent
programar un temporizador en waitingTime segundos para ejecutar ←↩
DataDisseminationManager.MyTimerTask.run(event);

}

void DataDisseminationManager.MyTimerTask.run()
{
if (listOfEventsPendigToBeSent contiene este evento+version)
DataDisseminationManager.disseminateNow(event);

}

void DataDisseminationManager.disseminateNow(VespaEvent event)
{
event.hopNumber++
event.lastDi�userPosition = mi posicion
RadioOut.di�usion(event);

/∗ Si en D' segundos no hemos recibido el mismo evento, debemos reenviarlo ya que
signi�cará que nadie lo ha recibido. Así que ponemos de nuevo el evento en la
lista de eventos pendientes de enviar y programamos un envío. Cuando recibamos
el evento, eliminaremos el evento de la lista de forma que cuando el temporizador
�nalice ya no estará en la lista de pendientes y no se enviará.∗/

añadir evento a la lista listOfEventsPendigToBeSent
programar un temporizador en D' segundos para ejecutar ←↩

213

DataDisseminationManager.MyTimerTask.run(event);
}

void RadioOut.di�usion(VespaEvent event)
{
for all {players, redCars, tra�cCars, ambulances} diferentes de mi
if (distancia entre el otro actor y yo es menos que RADIO_RANGE y el otro ←↩
actor tiene VESPA habilitado)
elOtroActor.RadioIn.eventReception(event);

}

∗∗∗ En el sistema VESPA del otro vehículo ∗∗∗

void RadioIn.eventReception(VespaEvent event)
{
listaDeEventos.addDato(event);

}

Algoritmo D.2: Recepción de un evento

Hilo de ejecución del módulo Radio In

void RadioIn.run()
{
while (continueRunning)
{
event = listaDeEventos.getDato();
Vespa.eventReception(event);

}
}

void Vespa.eventReception(VespaEvent event)
{
esNuevo = true;
if (listOfEventsByKey contiene el evento)
oldEventData = listOfEventsByKey.get(event.ukey);
if (event.version <= oldEventData.version)
esNuevo = false;

if (esNuevo)
se añade el evento a la lista listOfEventsByKey
DMProcess(event);

else
DataDisseminationManager.notDisseminate(event);

214

}

void DataDisseminationManager.notDisseminate(VespaEvent event)
{
if (listOfEventsPendigToBeSent contiene el evento con la misma version y el ←↩
hopNumber del recibido es mayor que el almacenado)
eliminamos el evento de la lista listOfEventsPendigToBeSent

}

Algoritmo D.3: Hilo de ejecución del gestor de almacenamiento

Hilo de ejecución del módulo Storage Manager

void StorageManager.run()
{
while (continueRunning)
StorageManager.DBMaintenance();
sleep

}

void StorageManager.DBMaintenance()
{
for all eventos almacenados en cache
EP = calculo de la EP
if (EP < umbral de almacenamiento)
se elimina el evento de la cache

}

Algoritmo D.4: Hilo de ejecución del procesador de consultas continuas

Hilo de ejecución del módulo Continuous Query Processor

void ContinuousQueryProcessor.run()
{
while (continueRunning)
ContinuousQueryProcessor.query(game current sequence);
sleep

}

void ContinuousQueryProcessor.query(int currentSequence)
{
se vacia la lista listOfRadarPoints del vehiculo
for all eventos de la cache
EP = calculo de la EP

215

if ((EP >= umbral de relevancia) && (event.importance >= umbral de importancia
|| listOfRelevantTypes contiene event.description)
añadimos la representacion del evento a la lista listOfRadarPoints del vehiculo

}

El cálculo de la probabilidad de encuentro (EP) ha sido desarrollado adaptando
(y arreglando, ya que la versión usada no era la �nal y contenía errores) el algoritmo
del simulador, que aplica la siguiente fórmula [6]:

EP =
100

α×∆d+ β ×∆t+ γ ×∆g + ζ × c+ 1
(D.1)

siendo ∆d la mínima distancia al evento a lo largo del tiempo, ∆t el tiempo hasta
lograr el mayor acercamiento al evento, ∆g la diferencia entre el tiempo en que
se ha generado el evento y el momento en que el vehículo estará más cercano
al evento, c el ángulo entre el vehículo y el evento y α, β, γ y ζ coe�cientes de
penalización.

D.1.4. Protocolo de reserva

El funcionamiento teórico del protocolo de reserva es el siguiente [5]: El vehícu-
lo que abandona la plaza de aparcamiento se convierte en el coordinador de la
misma. Éste envía un mensaje para informar a todos los vehículos a su alcance
que dicha plaza está disponible y permanece un tiempo T a la escucha de posibles
respuestas.
Cada vehículo que esté interesado le responderá al coordinador aportando su iden-
ti�cador y la información necesaria para que el coordinador pueda elegir a qué
vehículo asignar la plaza.
Cuando el coordinador elija a un vehículo, le enviará un mensaje noti�cándoselo,
debiendo éste responder al coordinador con�rmando la recepción del mensaje y
que tomará la plaza de aparcamiento.
Si el coordinador no ha sido capaz de encontrar un vehículo interesado, se cam-
bia de coordinador. Este proceso lo inicia el actual coordinador, que enviará un
mensaje a los vehículos cercanos. Los vehículos que reciban el mensaje (y no sean
ya coordinadores de otra plaza) responderán indicando su estimación de cuántos
vehículos cercanos buscan aparcamiento. El coordinador ordenará las respuestas
según las estimaciones y contactará con los vehículos de la lista en orden hasta
que uno con�rme la recepción y pase a ser el nuevo coordinador. En el caso de no
poder realizar este cambio de coordinador, el actual coordinador mantendrá este
rol y después de un periodo de tiempo difundirá de nuevo el mensaje sobre la plaza
disponible.

216

En la implementación que desarrollada se ha simpli�cado un poco este proce-
dimiento, pero manteniendo las ideas fundamentales para que el resultado sea, si
bien no idéntico sí muy similar.
Las diferencias radican en que, como gracias a las estructuras del mundo de juego,
el vehículo coordinador puede conocer qué vehículos a su alcance están interesados
sin necesidad del intercambio de mensajes, éste proceso se realiza de esta forma
�simulada�, enviándose únicamente el mensaje �nal, que en este caso contiene la
situación de la plaza de aparcamiento libre.
El cambio de coordinador también se realiza sin envío de mensajes y además se
ha modi�cado el parámetro de ordenación, que ya no es el número de vehículos
cercanos buscando aparcamiento sino que ahora se realiza una ordenación según
la lejanía al coordinador actual.

Algoritmo D.5: Métodos del protocolo de reserva

enviarCoordinar(datos parking)
{
enviarEvento(datos parking)
si devuelve falso:
cambiarCoordinador(datos parking)
si devuelve falso:
stablecer un temporizador y cuando �nalice se ejecutará esta misma función.

}

booleano enviarEvento(datos parking)
{
Cuenta VESPAs (en alcance & buscando parking) (*)
Si 0:
devuelve falso

si 1:
Le envía evento Parking (por VESPA)
devuelve cierto

si 2+:
Busca al que lleve más tiempo buscando/más cercano/mayor EP (*)
Le envía evento Parking (por VESPA)
devuelve cierto

}

booleano cambiarCoordinador(datos parking)
{
Busca el VESPA (en alcance) más lejano (*)
si existe:
establecer un temporizador en ese coche y cuando �nalice se ejecutará ←↩

217

enviarCoordinar(datos parking) (*)
devuelve cierto

sino:
devuelve falso

}

Nota importante: cuando pone (*) signi�ca que es una función �trucada� que ←↩
se hace con datos que no conoce VESPA sino que se obtienen directamente del juego.

Para determinar a qué vehículo asignar la plaza disponible de entre todos los
candidatos, se han elaborado tres estrategias diferentes: aquél que lleva más tiempo
buscando una plaza, aquél más cercano o aquel con una mayor EP.
Ésta elección de estrategia viene determinada por una variable del �chero de texto
de con�guración (ParamCon�g.txt) y se aplica a todos los vehículos con VESPA.

D.1.5. Necesidades de la implementación

En el desarrollo de la implementación de VESPA para Vanet-X han aparecido
diversos problemas debido a la necesidad de poder generar eventos �por observa-
ción� (el conductor será el que los cree al ver un cierto elemento) en lugar de por
generación propia que sería lo habitual (p.ej. eventos de servicios de emergencia,
accidentes, obstáculos, etc.).
Esta necesidad de generar eventos en base a observaciones viene dada por los even-
tos que informan de la presencia de una bandera objetivo y por los que avisan de
un vehículo enemigo.
Respecto a los eventos de vehículos enemigos otra opción sería asumir que el vehícu-
lo enemigo es robado y tiene el sistema VESPA instalado y activo debido al sistema
antirrobo. En la implementación realizada se han tenido en cuenta las dos posibi-
lidades y la elección del método a utilizar es una variable con�gurable en el menú
de opciones de VESPA.

Para permitir la generación de eventos mediante observación se ha incorporado
un método de calcular los vectores de movilidad y dirección de forma externa y
también un método para diferenciar si el evento que se ha de crear es un evento
inédito o es una actualización de otro previamente creado (por el mismo sistema).

El método para distinguir entre nuevos eventos y actualizaciones consiste en
que cada vez que se genere un nuevo evento hay que almacenar sus datos en una
estructura indexada por el identi�cador del objeto al que representa (una bandera,
otro vehículo o a sí mismo). De esta forma, si se trata de un evento �de posición�
(�jugador�, �servicio de emergencia� o �enemigo�, ya que son los únicos que
pueden actualizar su posición), antes de la generación del evento se ha de revisar
esta estructura para comprobar si ya existe una entrada para el objeto en cuestión,

218

en cuyo caso deberemos crear una actualización.
El método para calcular el vector de dirección (mostrado en el Algoritmo D.6)

consiste en acceder a los datos guardados de la última actualización del evento
(almacenado en la estructura indexada creada como solución del problema ante-
rior) y usar estos datos para calcular el valor de directionReferencePosition. Esto
se realiza calculando la distancia entre el valor almacenado de dicha variable y
la posición actual, de forma que si es menor que una distancia determinada se
devuelve dicho valor antiguo pero si es mayor se devuelve la posición actual.
De esta forma se consigue que se vaya actualizando el vector cada cierta distancia.
El método para el cálculo del vector de movilidad es análogo a éste.

Algoritmo D.6: Obtención del vector dirección

Position Vespa.getMyDirectionVector(Position currentPosition,
Position directionReferencePosition)

{
if (directionReferencePosition == null ||
distancia(currentPosition,directionReferencePosition)
>= TRAVELHISTORYDIRECTIONMINDIST)
return currentPosition;

else
return directionReferencePosition; //el valor antiguo

}

D.1.6. Atascos (elaborados para el aprovechamiento de VES-
PA)

Se ha incluido este apartado dentro de la sección dedicada al sistema VESPA
ya que la inclusión de los atascos en el mundo de juego está completamente ligada
a este sistema.

Se ha realizado una implementación realista desde el punto de vista del jugador
pero que no lo es tanto desde el punto de vista de los vehículos del trá�co contro-
lados por el computador, ya que tienen acceso a una lista común de segmentos de
calle en situación de atasco en lugar de tener listas separadas conforme reciben los
eventos.

A continuación se explican las ideas generales seguidas en la implementación
realizada.
La noti�cación de un atasco se produce cuando un vehículo del trá�co lleva más de
10 segundos sin moverse (sin estar aparcado), por lo que se presupone que puede
formar un embotellamiento y se avisa de ello.

219

Dicho aviso se realiza mediante la creación y emisión de un evento VESPA, de tipo
�accidente�, que se mostrará en el radar de los vehículos de los jugadores.
Los vehículos del trá�co evitan los atascos al calcular su ruta mediante el algoritmo
de path-�nding. Para realizar esto los datos del evento VESPA no son su�cientes
sino que se necesita el segmento exacto donde tiene lugar el atasco. Por este motivo
se utiliza una lista global donde se almacenan los atascos que existen actualmente,
de donde los vehículos del trá�co pueden obtener los datos necesarios para evitar
dicho atasco correctamente. A pesar de que en ese aspecto no dependen de los
eventos recibidos por VESPA, en realidad sí que los dependen ya que es solo
cuando reciben un nuevo evento de atasco cuando recalculan la ruta actual.

Con esta implementación relativamente sencilla y parcialmente realista se logra
incluir los atascos en el mundo de juego de forma que pueden ser utilizados para
mostrar las ventajas que supone contar con un sistema como VESPA.

En la Figura D.9 se observa la ejecución de una versión de desarrollo de Vanet-X
en la que en el radar se muestran en rojo los segmentos de calles noti�cadas como
atasco.

Figura D.9: Atascos representados en el radar (en negro)

220

D.2. Añadidos para la explotación

En esta sección se explicará en detalle diferentes aspectos relacionados con
la explotación del juego como método de evaluación de estrategias de gestión de
información. Estos aspectos son: el servidor dedicado, el servidor de recogida de
estadísticas y el sistema de generación de estadísticas.

D.2.1. Servidor dedicado

Como en la mayoría de los juegos en línea, en Vanet-X se ha implementado la
idea de contar con un servidor dedicado que pueda dejarse en permanente funcio-
namiento en un computador (generalmente con mejor potencia y ancho de banda
de lo habitual en un ordenador doméstico), de forma que los jugadores puedan
unirse a dicho servidor.

El funcionamiento es el siguiente: existe un proceso (Master server) que está
siempre en funcionamiento y que acepta las peticiones de conexión de los clientes.
Con cada petición, este proceso comprueba si ya esta creada una instancia del lado
servidor de Vanet-X, creándola si no existía. Posteriormente devuelve al cliente el
puerto a través del cual se podrá unir a la partida.

Dicha instancia del servidor �nalizará cuando se acabe la partida (por lograr
o fallar los objetivos) o se hayan desconectado todos los jugadores. De esta forma
no hace falta tener permanentemente una partida en marcha con el consumo de
CPU que conlleva sino que se iniciará y �nalizará cuando sea necesaria.

Además, el proceso Master server está diseñado a prueba de fallos1 de for-
ma que aunque tenga lugar un error crítico en el servidor, el proceso se reinicie
automáticamente y vuelva a estar a la espera de nuevas peticiones.

Al ejecutar el servidor dedicado, se requerirá que el usuario seleccione la carpeta
de juego, donde se almacenarán las estadísticas y de donde se obtendrán los escena-
rios disponibles y la con�guración y parámetros que se usarán al crear el servidor.
Posteriormente, también se requererirá que se seleccione cual será el escenario que
se usará para la partida.

Salvo la situación del directorio de juego, que es �ja para toda la ejecución
del servidor dedicado, los demás parámetros pueden ser modi�cados mediante dos
métodos:

1. El primer método para cambiar esta con�guración y parámetros es obtener
acceso al computador en el que funciona el servidor dedicado y sustituir los

1Salvo fallos de la Máquina Virtual Java

221

archivos correspondientes del directorio de juego.
El �chero paramCon�g.txt puede ser editado con un editor de texto, pero
para realizar cambios en la con�guración (�chero con�g) el método consiste
en iniciar un servidor normal (como si fueras a jugar), en los menús realizar
los cambios deseados, dándole siempre a guardar cambios, y -muy importante
si se cambia el modo de juego- iniciar la partida. Una vez iniciada se puede
cerrar la aplicación cuando se desee, pero este paso es básico ya que los
cambios realizados en el modo de juego solo se guardan al darle al botón de
iniciar la partida.

2. Para las situaciones en las que no se puede tener acceso directo al direc-
torio de juego del servidor dedicado, se ha creado un terminal que se usa
para comunicarse mediante comandos con el servidor dedicado mediante el
protocolo TCP/IP y que tiene las siguientes opciones:

cambiar el escenario que se usará al crear el servidor (no se cambia el
escenario de la partida en curso): el terminal recibe el listado de los
escenarios disponibles y envía tu elección al servidor dedicado.

modi�car la con�guración del juego (�chero con�g): se pide al usua-
rio que introduzca uno a uno los nuevos valores deseados, mostrándole
previamente los valores actuales.

modi�car la con�guración de VESPA (�chero con�g):: de igual forma
que el anterior.

modi�car los parámetros (�chero paramCon�g.txt):: de igual forma que
el anterior.

recuperar los �cheros de estadísticas generados, decidiendo el usuario si
desea conservar los �cheros en el servidor o eliminarlos.

Para poder realizar estas acciones es necesario que el usuario del terminal
introduzca una contraseña establecida al crear el servidor dedicado.

El servidor dedicado está implementado de forma conjunta con el resto del
juego, siendo necesario ejecutar el juego con los parámetros -dedicated puerto_-

maestro puerto_partida contraseña, donde el primer argumento indica en que
puerto estará a la escucha de nuevas conexiones de los clientes (este es el puerto
que deben conocer los clientes), el segundo indica el puerto en el que se creará la
partida y el tercero la contraseña que se pedirá cuando se intente acceder desde el
terminal.

Asimismo, el terminal, que también esta implementado de forma conjunta,
puede ser accedido ejecutando el juego con los parámetros -terminal IP puerto,
debiendo coincidir los dos argumentos con la dirección y puerto en los que funciona
el proceso servidor dedicado. La contraseña de acceso es requerida posteriormente.

222

A continuación se muestran la estructura del código usado para el servidor dedi-
cado (Algoritmo D.7) y las interacciones esquematizadas entre el cliente, el servidor
y el servidor dedicado (�guras D.10, D.11 y D.12).

D.2.2. Servidor de recogida de estadísticas

Uno de los objetivos de este Proyecto Fin de Carrera es recoger estadísticas
acerca del uso y funcionamiento del sistema VESPA. Por ello, hay que desarrollar
un método por el cual se puedan obtener dichas estadísticas aún cuando la par-
tida no se desarrolle en los servidores dedicados sino en partidas creadas por los
usuarios.

La forma de realizar esto es que el servidor, al �nalizar la partida, después de
generar los �cheros de estadísticas los envíe a un servidor externo que se encargará
de recogerlos y almacenarlos. A dicho servidor externo se le llamará Statistics
server

La estructura del código del servidor de recogida de estadísticas se muestra en
Algoritmo D.8 y Algoritmo D.9.

Cada servidor tiene de�nido un puerto y una dirección DNS dinámica, modi�ca-
ble en ParamCon�g.txt, al que se conectará para enviar los �cheros de estadísticas
después de crearlos.
El Statistics server, cada vez que se inicie, actualizará la dirección IP a la que
apunta dicha dirección DNS dinámica, haciendo uso de de la API asociada al
servicio.

El almacenamiento de los �cheros en cada servidor local se realiza almacenando
todos los �cheros creados durante la partida en un directorio cuyo nombre es la
fecha y la hora de inicio de dicha partida en formato �aaaa_mm_dd hh_mm_ss�
(ver sección D.2.3 para más detalles). Sin embargo, esta solución no es válida para
el Statistics server ya que puede recibir los datos de varias partidas con fecha y
hora coincidentes.
Por esta razón se ha decidido que cada cliente envíe al Statistics server un identi-
�cador único (haciendo uso de la clase java.util.UUID) que se tome como nombre
del directorio. Este identi�cador cambia cada vez que se inicia una nueva partida
y no coincidirá con los de otros clientes por lo que es una elección óptima para ase-
gurar que cada directorio contenga únicamente los �cheros enviados por el cliente
que le corresponde.

Al igual que el servidor dedicado, el servidor de recogida de estadísticas está
implementado de forma conjunta con el resto del juego, siendo necesario para su
uso ejecutar el juego con el parámetro -statserver.

223

Algoritmo D.7: Estructura del servidor dedicado

inicializar directorio base
elegir escenario
cargar parámetros y con�guración
while (continuar)
{
inicializar servidor TCP
while (continuar)
{
aceptar cliente
if (peticion terminal)
{
Ejecución paralela (en nuevo hilo):
{
recibir contraseña
if (contraseña correcta)
{
recibir tipo de petición
procesar petición

}
}

}
else
{
if (no hay partida creada)
{
crear una partida nueva

}
enviar puerto del juego a cliente

}
}
cerrar servidor TCP

}

224

Figura D.10: Esquema conexión con servidor dedicado (hay una partida en curso)

Figura D.11: Esquema conexión con servidor dedicado (no hay ninguna partida en
curso)

225

Figura D.12: Esquema conexión sin servidor dedicado

Algoritmo D.8: Estructura del servidor de recogida de estadísticas

Crear carpeta destino
while (continuar)
{
inicializar servidor TCP
while (continuar)
{
aceptar conexion
crear hilo para el manejo de esa conexion

}
cerrar servidor TCP

}

Algoritmo D.9: Estructura del hilo que maneja la conexión (Statistics server)

recibe el identi�cador del cliente
recibe el tipo de estadistica que se enviará
recibe la estadistica del tipo especi�cado
escribe la estadistica en �chero
cierra conexión

226

D.2.3. Estadísticas

Uno de los objetivos de este Proyecto Fin de Carrera es poder recoger estadís-
ticas de VESPA y otros aspectos para poder analizarlos posteriormente. Para ello,
se obtienen diferentes tipos de estadísticas: del juego, de VESPA y de las tareas de
aparcamiento. Todas estas estadísticas se generan en diversos �cheros de texto, al-
macenados en una misma carpeta con un nombre único e identi�cativo, junto a los
cuales también se genera un �chero de texto adicional que incluye los parámetros
de con�guración actuales, para así poder replicar la prueba en un futuro.

La estructura de almacenamiento de dichos �cheros se puede observar en la
Figura D.13.

Stats

gameStats.txt

CurrentConfigInfo.txt

VESPA

Traffic parking.txt

Player parking.txt

vehicle (player) id.txt

ALL vehicles.txt

vehicle (traffic car) id.txt

Figura D.13: Estructura del directorio de estadísticas

A continuación se detalla el contenido de cada tipo de �chero de estadísticas
creado:

�CurrentCon�gInfo.txt�: contiene todos los valores de los parámetros (�chero
�ParamCon�g.txt�) y de la con�guración (�chero �con�g�) usados, así como
también el tiempo de ejecución de la partida. Ver Figura D.14.

�gameStats.txt�: contiene las estadísticas propias del juego, indicando para ca-
da jugador: puntuación, equipo al que pertenece, uso del sistema de compar-
tición de datos (VESPA) y nivel de habilidad del jugador. Ver Figura D.15.

�Player parking.txt�: precedido por una leyenda, contiene las estadísticas de
los aparcamientos logrados por los vehículos controlados por los jugadores,
a razón de un aparcamiento por línea e incluyendo para cada aparcamiento:
identi�cador del vehículo, tiempo que ha costado aparcar según el reloj del
sistema (valor únicamente orientativo, ya que no es �able en ordenadores
poco potentes en los que el juego funcione con cambios bruscos de fotogramas

227

Figura D.14: Ejemplo de contenido del �chero �CurrentCon�gInfo.txt�

Figura D.15: Ejemplo de contenido del �chero �gameStats.txt�

228

por segundo), ciclos de juego que ha costado aparcar, indicador de uso del
sistema de compartición de datos (VESPA), indicador de si el aparcamiento
se ha realizado en una plaza indicada por el protocolo de aparcamiento de
VESPA y, por último, protocolo de aparcamiento usado (Ninguno, según
Encounter Probability (EP), según tiempo de búsqueda o según distancia).
Ver Figura D.16.

Figura D.16: Ejemplo de contenido del �chero �Player parking.txt�

�Tra�c parking.txt�: idéntico al anterior pero conteniendo los aparcamientos
logrados por los vehículos controlados por el computador. Ver Figura D.17.

Estadísticas VESPA: respecto a las estadísticas relacionadas con VESPA, se
genera un �chero por cada vehículo dotado de dicho sistema y un �chero
adicional que recoge la suma de todos los datos de todos los anteriores �che-
ros.
Los �cheros tienen la siguiente estructura (ver Figura D.18):

Número de eventos detectados por el vehículo.

Número de eventos creados que sean nuevos respecto del total.

Número de eventos creados que sean actualización de eventos pasados
respecto del total.

Total de eventos procesados.

Del total de eventos procesados, cantidad y porcentaje de eventos en-
viados al módulo de diseminación.

229

Figura D.17: Ejemplo de contenido del �chero �Tra�c parking.txt�

Del total de eventos procesados, cantidad y porcentaje de eventos que
se han almacenado.

Número de eventos recibidos que sean nuevos respecto del total.

Número de eventos recibidos que ya se hubieran recibido con antelación
respecto del total.

Tiempo medio de espera antes de la redifusión de un evento.

Número de redifusiones.

Número de cancelaciones de redifusión (por haber recibido el mismo
evento de vuelta)

Número de eventos eliminados de la caché de almacenamiento.

Número de eventos eliminados de la caché en cada operación de man-
tenimiento.

Número de operaciones de mantenimiento de la caché efectuadas.

Número de eventos mostrados al conductor.

Número de eventos mostrados al conductor en cada operación query.

Número de operaciones query efectuadas.

Número máximo de eventos almacenados en la caché.

230

Figura D.18: Ejemplo de contenido del �chero �ALL vehicles.txt�

231

Número de peticiones del protocolo de aparcamiento preguntando por
vehículos interesados en aparcar.

Número de respuestas del protocolo de aparcamiento indicando el inte-
rés del vehículo en aparcar.

Número de cambios de coordinador del protocolo de aparcamiento.

Número de peticiones y respuestas del protocolo de aparcamiento en la
búsqueda de nuevo coordinador.

Total de eventos del protocolo de aparcamiento exceptuando los eventos
Parking.

Número total de eventos incluyendo también los del protocolo de apar-
camiento.

Número de eventos considerados relevantes para el conductor respecto
a los procesados.

Número de eventos de aparcamiento mostrados respecto del total de
eventos creados.

Número de plazas de aparcamiento indicadas por VESPA logradas.

Número de plazas de aparcamiento indicadas por VESPA no logradas.

D.3. Rendimiento del juego

El rendimiento del juego depende de los siguientes aspectos: número de jugado-
res, número de vehículos del trá�co y vehículos enemigos, modo de juego, número
de nodos del escenario escogido y uso del sistema VESPA. Todos estos aspectos
se pueden modi�car en la con�guración de la partida, de forma que los usuarios
con ordenadores menos potentes pueden variar la con�guración para conseguir un
buen rendimiento. Además, en el �chero de con�guración ParamCon�g.txt se han
habilitado dos parámetros para desactivar el fondo dinámico de los menús y para
deshabilitar el uso de transparencias en el juego: �Low CPU usage menu� y �Di-
sable in-game transparencies�, lo cual incrementa notablemente el rendimiento en
ordenadores poco potentes.

En las �guras D.19 y D.20 se puede observar el uso de CPU y de memoria
utilizado para algunas de las con�guraciones mencionadas en el capítulo 3.8.

Al tratarse de un juego en red es importante conseguir un tamaño reducido de
los paquetes de red enviados. En la tabla D.2 se observa las cantidades mínima
y máxima de datos requeridos por cada tipo de elemento enviado en red. Estos
datos se re�eren a los paquetes enviados por el servidor a cada cliente. El tamaño

232

Figura D.19: Rendimiento con servidor dedicado para la con�guración: 2 jugadores,
25 trá�co, 4 enemigos, mapa �Trementines�. Arriba: uso CPU (naranja), abajo:
uso de memoria (azul).

de los paquetes enviados por los clientes al servidor es �jo y es de 58 B/ciclo (1,45
KB/s).

Mínimo Máximo
B/ciclo KB/s B/ciclo KB/s

Jugador 17 0.42 39 0.97
Trá�co 13 0.32 35 0.87
Enemigo 13 0.32 35 0.87
Ambulancia 12 0.3 34 0.85
Parking 9 0.22 23 0.57
Bandera 8 0.2 22 0.55

Tabla D.2: Tamaño mínimo y máximo de envío en red (servidor → cliente) según
tipo de elemento

233

Figura D.20: Rendimiento con servidor no dedicado para la con�guración: 1 ju-
gador, 50 trá�co, 8 enemigos, mapa �Trementines�. Arriba: uso CPU (naranja),
abajo: uso de memoria (azul).

234

Anexo E

Artículo IMMoA'13

En este anexo se adjunta una copia del artículo presentado para el workshop
IMMoA'13 (International Workshop on Information Management for Mobile Ap-
plications), realizado conjuntamente con Sergio Ilarri y Eduardo Mena.

235

236

Vanet-X: A Videogame to Evaluate Information
Management in Vehicular Networks

Sergio Ilarri
IIS Department

University of Zaragoza
Zaragoza, Spain

silarri@unizar.es

Eduardo Mena
IIS Department

University of Zaragoza
Zaragoza, Spain

emena@unizar.es

Vı́ctor Rújula
IIS Department

University of Zaragoza
Zaragoza, Spain

han.vikktor@gmail.com

ABSTRACT
Vehicular Ad Hoc Networks (VANETs) are attracting con-
siderable research attention, as they are expected to play
a major role for Intelligent Transportation Systems (ITS).
Thus, according to a recent survey by ABI Research1, about
62% of new vehicles will be equipped with vehicle-to-vehicle
(V2V) communications by 2027. Vehicular networks offer
new opportunities for the development of interesting mobile
applications for drivers, but at the same time they also bring
challenges from the data management point of view. Thus,
for example, techniques should be developed to estimate the
relevance of the information exchanged among the vehicles
and to propagate the relevant data in the network efficiently
and effectively. As testing the proposals in a real large-scale
scenario is impractical, simulators are often used.

In this paper we present Vanet-X, an online multiplayer
driving videogame that we have developed to help in the
difficult evaluation task of data management strategies for
VANETs. The idea behind the proposal is to exploit the
potential of players around the world driving vehicles in the
videogame to effortlessly collect data that can be used to
extract some conclusions and fine-tune the proposed data
management strategies. So, for example, the videogame
allows to evaluate if a certain data management strategy
is able to provide useful information to the driver/player
(i.e., if the presented information represents an advantage
for him/her). We argue that this videogame can be a good
complement for existing simulators. As a proof of concept,
we have performed some preliminary tests that show the
potential interest of the proposal.

1. INTRODUCTION
The widespread availability of mobile devices and the de-

velopment of wireless communication technologies (such as
Wi-Fi, WAVE, etc.) have encouraged the development of

1http://www.abiresearch.com/press/
v2v-penetration-in-new-vehicles-to-reach-62-by-202.

services for drivers within the context of Intelligent Trans-
portation Systems (ITS). In particular, Vehicular Ad Hoc
Networks (VANETs) have become an attractive research
area [1, 14, 15, 20, 24, 26, 30]. In these vehicular net-
works, the vehicles can exchange information directly by us-
ing short-range wireless communication technologies. This
decentralized architecture provides some advantages over
other solutions such as the use of 3G communications: e.g.,
no need of an infrastructure, quicker transmission of safety-
related data in the vicinity, localized communications with-
out the need of a centralized server, and free of charges
(which also encourages the participation of peers in the net-
work). Numerous types of events can be relevant for drivers
(e.g., accidents, traffic congestions, an ambulance asking the
right of way, available parking spaces, etc.). These events
can be exchanged in the vehicular network and stored lo-
cally by the vehicles. Then, a query processor can periodi-
cally evaluate the interest of those events and decide if they
should be shown to the driver; there may be implicit queries
(e.g., information about an accident in the direction of travel
will be relevant for any driver) and explicit queries (e.g., a
driver may indicate his/her interest in finding an available
parking space or in receiving information about other spe-
cific types of events).

However, although VANETs offer interesting opportuni-
ties for the development of data services for drivers, they
also bring new challenges. Thus, several difficulties arise
from the point of view of data management [5]. As an ex-
ample, estimating the relevance of events in order to dis-
seminate them effectively and efficiently in the network is
a challenge [2]. Similarly, disseminating information about
a scarce resource (e.g., an available parking space) to many
vehicles can lead to competition situations among them to
try to reach the resource [7]. As a final example, the rele-
vance of events must also be considered in order to decide
if a specific event received by a vehicle should be shown to
the driver or not [3].

A big challenge is how to evaluate the data management
techniques proposed. Evaluating them in a real scenario
with a significant number of vehicles is simply impractical
and expensive. Therefore, simulations are frequently used
in this field. However, even with simulations the evalua-
tion task can be very time-consuming. For example, many
proposals depend on a number of parameters that can be
fine-tuned for a given scenario (e.g., see [2, 31]), and de-
termining a good choice of parameters for general evalua-
tion is quite challenging. On the other hand, crowdsourcing
strategies where users play the role of drivers could help to

1

introduce human behavior and facilitate new tests initiated
by the users themselves.

So, in this paper we propose a complementary approach
that can be used in conjunction with the use of simulators.
In particular, we argue that we can benefit from players hav-
ing fun with a driving game to easily collect interesting data
that can be used to extract some conclusions and fine-tune
the proposed data management strategies. The videogame
is inspired by the classic videogame Rally-X (http://www.
klov.net/game_detail.php?game_id=9259, videogame re-
leased in 1980) but it is a new development, with different
goals, game modes, and spirit. So, the basic idea is that
the vehicles can receive information through the vehicular
network and different data management techniques can be
plugged in the videogame (e.g., different data dissemination
strategies). Data received from other vehicles, if evaluated
as interesting by the local query processor in the car, are
shown on a radar and can provide a competitive advantage
to the player. During the game, a variety of data are col-
lected (e.g., number of messages received by the vehicles,
network overhead, time required by the vehicles to complete
their goals in the game, etc.), that can be analyzed later. So,
while playing, players contribute to collect data for a variety
of scenarios, and these data can be exploited to evaluate the
effects of particular data management strategies.

The structure of the rest of this paper is as follows. In
Section 2 we describe the high-level architecture of the video-
game and its features. In Section 3 we summarize the main
behaviors implemented for the computer-managed vehicles.
In Section 4 we present some basic aspects about the way the
data are collected for later analysis. In Section 5 we present
the results of the first experiments that we have developed
as a proof of concept. In Section 6 we present some related
work. Finally, in Section 7 we present our conclusions and
some lines of future work.

2. ARCHITECTURE AND FEATURES
Vanet-X is a car videogame that can be played by multiple

players connected to the Internet (see Figure 1 for a snapshot
showing parking spaces).

2.1 Main Features
We summarize some features of the game as follows:

Figure 1: Cars and parking spaces in Vanet-X

• It is implemented in Java as a Java applet, so only a
Java Virtual Machine and a browser is needed to play.
A desktop application version is also available.

• Both real (human) and computer-controlled players
can participate in the game. Human players can join
a game through the Internet.

• The game can be configured to execute on a server and
create new games when necessary. Alternatively, the
computer of any user can play the role of a server and
start a new game that other users can join.

• Any real map can be used in the game, by selecting
and downloading the data of the desired area from
OpenStreetMap (http://www.openstreetmap.org/).

• To increase the playability, real maps are combined
with some extra elements, such as enemy cars, smoke
emission devices to disturb enemies (see Figure 2), evo-
lution of events in game time rather than in real-world
time, higher maximum speeds for cars controlled by
humans, when the driver has a task to go to a certain
building he/she has to park nearby and then go by foot
to the destination (he/she will be a vulnerable target
for enemy cars, that will try to hit him/her, as shown
in Figure 3), the car can get damaged and be repaired
by paying a certain price (points accumulated during
the game), there is infinite or limited fuel depending on
the game mode (requiring refueling in a petrol station
when running out of fuel in the second case), etc.

Figure 2: Trying to escape from an enemy vehicle

Figure 3: Driver going by foot

• A wide range of game modes is available (see Table 1).
Thus, for example, we offer games where the goal is
to collect some items along the roads, and task-based

2

games where the players have to complete a series of
goals in sequence (with tasks such as parking the ve-
hicle, going to a certain building/business or address,
etc.) as soon as possible to win the game. As shown
in the table, some game modes can be cooperative,
competitive, or both. For the tasks implying going
to a certain location, the task may require reaching
that location with the car, park and then get there by
foot, or just park as near as possible (in this last case,
the score for completing the task will be inversely pro-
portional to the distance between the parking location
and the final destination). Competitive games involves
from 1 to 4 teams in the game, being the winner the
team that obtains more points during the game.

Game mode
Multiplayer
mode

Inmortal
Possibility to
get out of the
car and walk

Infinite
fuel

Capture the flag
(capture 5 flags)

cooperative
no no configurable

competitive

Capture the
enemy cars (1 or
more)

cooperative
yes no no

competitive

Solve tasks (1-3
tasks)

cooperative
no yes configurable

competitive

Survival (1 or 2
tasks)

cooperative
no yes configurable

competitive

Park (find one
available parking
spot)

competitive yes yes no

Table 1: Summary of game modes

• Some default data management strategies, inspired by
the work performed in the VESPA project [2, 3, 4, 6,
7], have been implemented. Different tuning parame-
ters can be modified through the graphical user inter-
face of the videogame (see Figures 4 and 5). Moreover,
the design of the videogame allows an easy integration
of other data management alternatives.

Figure 4: Data management: basic options

• There is a “radar” (e.g., on the right part of Figure 2
we show a basic radar, and on the right part of Fig-
ure 1 a radar in debug mode that shows some extra
elements about the scenario) that can provide some
information to the players. For example, a player can
see the following on the radar: his/her location, the
petrol stations, and the destination location (if any).
Besides, if the option to use a data sharing strategy for
that vehicle has been enabled, it will also show data
about interesting events received from other vehicles,
such as free parking spaces, enemy vehicles, items to

Figure 5: Data management: advanced options

pick up (e.g., flags in Figure 6), priority vehicles like
ambulances, etc.

Figure 6: Picking up flags during the game

From a more technical point of view, we have used the
Java programming language to develop the video game. Be-
sides, some auxiliary libraries have been useful. For exam-
ple, we use Apache Xerces2 Java (http://xerces.apache.
org/#xerces2-j) to extract data from the XML files ob-
tained from OpenStreetMap, JLayer (http://www.javazoom.
net/javalayer/javalayer.html) to decode and reproduce
MP3 files for the game music, Guava-12.0 (https://code.
google.com/p/guava-libraries/), etc.

2.2 Basic Architecture
The basic architecture of the videogame is presented in

Figure 7 (the part concerning the collection of statistics
about the game is not shown here, as it will be described in
Section 4). At a high-level, we can briefly describe the main
components as follows:

• A client application receives commands from the player,
sends them to the server, and receives from the server
information about the objects that should be rendered
on the screen (see Figure 8).

• The server receives the input from the clients, up-
dates the current status of the game (e.g., by consider-
ing the movements performed by the vehicles and the
tasks that they complete), and generates new goals and
events as needed (see Figure 9). The server is multi-
threaded, with a thread per vehicle that performs a

3

Figure 7: Basic architecture of Vanet-X

Figure 8: Basic functioning of a client

basic cycle of “while a vehicle is alive, perform actions
and check for potential collisions”.

Figure 9: Basic functioning of the server

• An interface IDataManagementStrategy declares the

methods that should be implemented by a data man-
agement strategy to allow its integration with the vi-
deogame (e.g., a method to define the types of events
that are interesting for the driver, a method to gener-
ate an event, etc.).

• Another interface IVehicle is implemented by the ve-
hicles to allow interacting with them (e.g., to obtain
a reference to the data manager in the vehicle or to
obtain information about the GPS location).

Any data management strategy can potentially be inte-
grated in this framework, as long as it implements the in-
terface IDataManagementStrategy and calls the appropriate
methods to inform the vehicles (interface IVehicle). So, we
can easily plug in different alternative data management
techniques for testing.

3. BEHAVIORS OF THE VEHICLES
We have implemented several behaviors for the vehicles

controlled by the computer, which adapt the steering behav-
iors proposed in [23]. In particular, we consider the following
basic behaviors:

• Seek implies directing the vehicle towards a certain
static target, by adjusting its direction and speed.

• Flee is the opposite behavior to Seek, as it implies get-
ting as much further as possible from the target.

• Pursuit is similar to Seek, but in this case the target
is a moving object. So, the expected movement of the
target is estimated, to try to catch it.

• Evasion is the opposite behavior to Pursuit (i.e., based
on Flee instead of Seek).

• Arrival implies the progressive reduction of speed as
the vehicle approaches the target.

• Obstacle avoidance provides vehicles with the ability
to dodge vehicles and other obstacles.

• Wander generates a random trajectory, to represent a
vehicle traveling around with no clear objective. This
is useful, for example, to represent a vehicle that is
searching for an available parking space in the vicinity.

• Path following allows a vehicle to circulate within the
boundaries of a certain path.

• Unaligned collision avoidance is a behavior that tries
to avoid the collision of vehicles moving in different
directions. Thanks to this behavior, vehicles can es-
timate a potential collision risk with other vehicles in
the near future, to try to avoid it.

Of course, all the vehicles exhibit the whole set of behav-
iors at the same time, applying a priority ordering in case
several behaviors could be applied at the same time and are
in conflict to each other. Based on the previous basic be-
haviors, we have defined the schema of a normal behavior
for different types of vehicles: enemy cars (that try to catch
the players or flee from the players, depending on the game
mode), ambulances (as representatives of emergency vehi-
cles which may ask the right of way), and traffic cars (that
represent neutral cars in the game). As an example, the
basic behavior of traffic cars is shown in Figure 10.

4

Figure 10: Basic behavior of a traffic car

4. DATA COLLECTION AND EXPLOITA-
TION

In this section, we summarize the strategy applied for data
collection during the game and the corresponding exploita-
tion of results. If a certain configuration option that acti-
vates the collection of statistics during the game is enabled,
several data are collected: data about the scores obtained by
the players, the time needed by vehicles (the ones controlled
by humans as well as those managed by the computer) to
perform certain tasks (such as parking), and other measures
about the performance of the data management strategy
applied (e.g., events created, events that are considered rel-
evant by each vehicle, etc.). When the game ends, all these
data are stored in several files on the game server, along with
a file that contains information about all the configuration
parameters used in that game (e.g., game mode, configura-
tion parameters used for the data management strategy con-
sidered, the wireless communication range simulated, etc.).

To centralize the data collected, it is possible to set up a
Statistics Server, which is a process executing continuously
on a certain computer. In this way, the clients playing the
game automatically connect to the Statistics Server when a
game ends, in order to communicate the statistics collected
during the game. Besides, it is possible to connect to the
Master Server by using a terminal client (called Statistics
Client) that allows seeing and modifying the configuration
parameters as well as retrieving the statistics files generated.
Another option is to avoid the use of a Statistics Server and
collect the statistics in the computer that plays the role of
a server for a game. If we consider configuration settings
where there is a predefined game server and all the clients
connect to it to start a new game or join an existing game,
this option also keeps the statistics in a single location. How-
ever, if there are several game servers then the statistics
would have to be centralized manually.

Figure 11 provides an overview of the way the differ-
ent components of the game, and particularly the Statis-
tics Server, are distributed in a network. Notice that we
actually distinguish between a Master Server and a Game
Server. The Master Server is executing on the server ma-
chine and a client first connects to it (so, it is the entry point
for clients); then the Master Server checks if a Game Server
is available and if not it creates one; finally, it returns the
port number of its Game Server to the client, as the client
will interact with the Game Server during the game.

It should be noted that, as we collect information about
the performance of human players, the skills of those players

Figure 11: Deployment of components in a network

with the game will have an impact on the results and this has
to be taken into account when exploiting the results. Indeed,
directly comparing the achievements of several human play-
ers without considering their game skills could lead to wrong
conclusions. For example, player1 without a data sharing
system could perform better than player2 with a data shar-
ing system, but we should not necessarily conclude that the
use of such a data sharing system is harmful. In other words,
we should always compare players with the same skills. For
this reason, each human player is assigned a certain skill
level (which may change along time, as the player improves
his/her performance) and the statistics about players are
tagged with the skill level corresponding to that player. Be-
sides, players that have a skill level below a certain threshold
are (by default) not allow to participate in games with collec-
tion of statistics enabled, as performance data about them
are assumed to be unreliable and besides their clumsiness
could interfere with the normal development of the game.
The skill level of a player is computed based on his/her abil-
ity to complete missions in the game (tasks per time unit).

5. EXPERIMENTAL EVALUATION
We have performed a few preliminary experiments to eval-

uate the interest of our proposal. As a use case for testing,
we focused on the case of available parking spaces, as these
are events that represent scarce resources, which implies ad-
ditional challenges for data management (i.e., the competi-
tion among vehicles should be minimized).

5.1 Data Management Strategies
As a data sharing strategy for the vehicles, we considered

the following options.

5.1.1 VESPA-P: VESPA With No Reservation
First, we adapted the proposal in [2], developed in the

context of the system VESPA (Vehicular Event Sharing with
a mobile P2P Architecture) [4, 6], which is based on the
computation of an Encounter Probability (EP).

The EP between a vehicle and an event estimates the
likelihood that the vehicle will meet the event, based on
geographic computations that estimate the spatio-temporal
relevance of the event. For example, the relevance decreases

5

with the distance between the event and the vehicle, with the
time since the event was generated (e.g., consider the case
of information about an available parking space, which can
be unoccupied only for a limited amount of time), and the
direction of the vehicle (e.g., if it is approaching the event or
not). In particular, the directions of both the vehicle and the
event are estimated and several penalty coefficients (α, β, γ,
and ζ) are used to weigh the importance of four estimated
parameters: the minimum distance to the event over time
(∆d), the time until the closest position to the event (∆t),
the age of the event at the closest position (∆g), and the
angle between the vehicle and the event (c).

So, when a vehicle receives an event it computes its EP
and disseminates the event again if the computed EP ex-
ceeds a certain dissemination threshold (DT). The intuition
is that vehicles should disseminate data that are relevant
for them (as those data are also probably relevant for the
neighboring vehicles). Two other thresholds are managed:
the storage threshold (ST) and the relevance threshold (RT).
The ST determines the minimum value of the EP for an
event to be stored locally in the vehicle, and the RT the
minimum value needed to show the event to the driver.

Besides, the proposal in [2] proposes a contention-based
approach for data dissemination in order to limit the net-
work overhead in the dissemination of messages (basically,
when there are several candidate vehicles to re-disseminate
an event, the message will be disseminated only by the vehi-
cle located further away from the vehicle that disseminated
the message previously). Several parameters are used in the
protocol, such as D (the maximum time to wait before redif-
fusing) and D′ (time to wait for an acknowledgement that a
message sent previously was received by some other vehicle).

5.1.2 VESPA+P: VESPA With Reservation Protocol
Communicating the availability of a single parking space

to many vehicles could lead to an unfruitful competition
among the vehicles to try to reach the same parking space,
leading to dissatisfaction of the drivers and parking times
that could even exceed those that would be obtained if no
data sharing system were used. For this reason, the work
presented in [7] proposed an enhancement to the previous
approach VESPA-P for the case of scarce resources such
as parking spaces. It provides an allocation protocol that
coordinates a procedure that ensures that the information
about an available parking space is communicated to a single
interested vehicle.

5.1.3 Blind: No Data Sharing
Finally, we also considered an approach where no data

sharing strategy is used. In this case, the vehicles receive no
information and the only data available for the drivers are
what they see with their own eyes. For vehicles trying to
find available parking spaces, this will lead to a blind search.

5.2 Experimental Settings
The basic configuration of the videogame for the experi-

mental evaluation is as follows. The communication range
considered for the vehicles is 200 meters and a maximum of
50% of the vehicles are assumed to be equipped with a data
sharing application. The penalty coefficients used to com-
pute the EP for VESPA are: α=1/1500 (∆d ≤ 500 meters),
β=1/180 (∆t ≤ 60 seconds), γ=1/360 (∆g ≤ 120 seconds),
and ζ=1/270 (c ≤ 90◦); these are parameters that can be

considered for a “medium” (not small, not large) dissemi-
nation area, according to [2]. The RT and the DT are both
set to 75%, and the ST is 60%. The query processor on each
vehicle re-evaluates the relevance of the events received with
a refreshment period of 2 seconds, showing on the radar the
events that are considered relevant. For the dissemination
protocol, D is set to 1 second and D′ to 2 seconds.

5.3 Experimental Results
We have simulated a varying number of vehicles moving

in an area of 1 squared kilometer around the street “Sophie
Oury” in the city of Valenciennes (France). In this scenario,
we measured the time needed by the vehicles to find free
parking spaces near certain destinations. In Figure 12 we
show the reduction on the average time needed by a human
player to find an available parking space near the target.
The experimental results show the interest of sharing data
among the vehicles (with both VESPA-P and VESPA+P),
as these data can later be shown on the radar to provide
interesting information to the drivers. Besides, according
to these results, using a reservation protocol to avoid the
competition problem (VESPA+P) is particularly beneficial.

Figure 12: Time to park by a human

In Figure 13 we compare the performance of human play-
ers (vehicles controlled by humans) and computer players
(vehicles controlled by the computer), by showing the reduc-
tion on the average time needed to find an available park-
ing space near the target when using VESPA+P. According
to these experimental results, we can see that the human
players get more benefit from the use of the data sharing
strategy. The difference may be due to the way the artificial
intelligent behavior of the computer vehicles is implemented.

Figure 13: Time to park: human vs. computer

The experimental results obtained correspond to data col-
lected during a total of 14 hours playing the videogame
(about 400 parking actions by the human player during this

6

game time). The results are consistent with our intuition
and with other experimental results obtained previously by
using a simulator. Nevertheless, more tests are needed to
validate the results and evaluate other scenarios. For exam-
ple, we started to obtain some first preliminary results with
games played by more than one human player. It is also in-
teresting to perform experiments with other types of events
(e.g., accidents, obstacles on the roads, etc.); with informa-
tion about them, drivers could try to avoid those hazards
and so decrease the total travel time.

6. RELATED WORK
As far as we know, this is the first attempt to develop a

videogame whose hidden purpose is to help with the eval-
uation of information management strategies for vehicular
networks.

Nevertheless, the idea of trying to benefit from human ac-
tions to improve or evaluate a system is not new. Exploit-
ing the power of people to perform large-scale tasks that are
costly, time-expensive, or hard, is called crowdsourcing [33].
For example, mCrowd [32] benefits from sensors available on
iPhone devices to perform collaborative tasks such as image
tagging or road traffic monitoring. As another example, re-
CAPTCHA [29] exploits CAPTCHAs [22] (Completely Au-
tomated Public Turing test to tell Computers and Humans
Apart), as a security measure to avoid web access to pro-
grams, in order to recognize words from scanned books that
are challenging for OCR (Optical Character Recognition)
systems. According to [10], “The practice of crowdsourcing
is transforming the Web and giving rise to a new field”.

Particularly relevant for our work with Vanet-X are those
proposals that achieve the crowdsourcing results through the
use of a videogame. A notable example is the ESP game [27],
where players implicitly help to label images while playing
the game. The use of videogames as learning tools is a clear
example of the benefits of using educative videogames; as
an example, CodeSpells [11] is a fantasy videogame where
players have to write spells in Java. Other games with a
hidden purpose exist, as commented in [28]. The multiplayer
online game Planet PI4 [16] intends to serve as a testbed
environment for Peer-to-Peer (P2P) game architectures. It
is also interesting to mention that the term gamification has
appeared to denote a variety of software that is inspired
somehow by videogames [8, 9].

There exist some driving videogames that, as Vanet-X, are
based on the use of real road maps or city layouts, such as
Mini Maps (https://apps.facebook.com/minimaps/) and
Push-Cars 2: On Europe Streets (http://www.push-cars.
com). However, unlike in Vanet-X, in these games the play-
ers do not contribute to any crowdsourcing task or data
management strategy evaluation.

Finally, a good number of simulators of vehicular net-
works and mobility generators have been developed, such as
TraNS [21], SUMO [19], Veins (Vehicles in Network Simu-
lation) [25], GrooveNet [17], or VanetMobiSim [13]. Some
interesting surveys can be found in [12, 18]. As commented
along the paper, we argue that the videogame-based ap-
proach can be an interesting complement (but not a replace-
ment) to the use of existing simulators to evaluate informa-
tion management strategies for vehicular networks. Besides,
mobility generators and vehicle simulators could potentially
be used to generate neutral traffic for Vanet-X.

7. CONCLUSIONS AND FUTURE WORK
We have developed a videogame that can be used to eval-

uate data management strategies for vehicular networks, as
a complement to existing simulators. Whereas the oppor-
tunity of crowdsourcing through a videogame is attractive,
several challenges arise. Thus, the goal of developing a fun
videogame required the introduction of several elements that
would not appear in a real scenario (like enemy cars), which
could have an impact on the results, but on the other hand
this will attract people to play. Moreover, the results ob-
tained can depend not only on the benefits offered by the
data management strategy but also on the ability of the
specific player. So, whereas the videogame can provide an
ideal tool to collect many data for a variety of scenarios, the
experimental results obtained have to be judged with cau-
tion (e.g., we label the collected data with the skill level of
the player). Even with these limitations, we argue that the
videogame helps to collect with less effort data that can be
used to fine-tune a protocol and/or obtain some initial con-
clusions, prior to the evaluation in more realistic scenarios.

Additional information regarding the videogame is avail-
able at http://sid.cps.unizar.es/Vanet-X/, including a
playable version of the videogame, some videos, and screen-
shots. This is a first step that shows the potential interest of
exploiting videogames to evaluate data management strate-
gies for vehicular networks. As future work, we would like
to optimize and improve the videogame, as well as to de-
velop a complete methodology and architecture to collect
the data, evaluating the interest of the results obtained in
other scenarios and in a larger scale.

8. ACKNOWLEDGMENTS
This research work is currently supported by the CICYT

project TIN2010-21387-C02-02 and DGA-FSE. The data ma-
nagement strategy adapted and used as an example in the
videogame has been proposed in the context of the VESPA
project, and we would like to warmly acknowledge the col-
laboration with Dr. Thierry Delot in that project.

9. REFERENCES
[1] J. J. Blum, A. Eskandarian, and L. J. Hoffman.

Challenges of intervehicle ad hoc networks. IEEE
Transactions on Intelligent Transportation Systems,
5(4):347–351, 2004.

[2] N. Cenerario, T. Delot, and S. Ilarri. A content-based
dissemination protocol for VANETs: Exploiting the
encounter probability. IEEE Transactions on
Intelligent Transportation Systems, 12(3):771–782,
2011.

[3] T. Delot, N. Cenerario, and S. Ilarri. Vehicular event
sharing with a mobile peer-to-peer architecture.
Transportation Research Part C: Emerging
Technologies, 18(4):584–598, 2010.

[4] T. Delot and S. Ilarri. Data gathering in vehicular
networks: The VESPA experience (invited paper). In
Fifth IEEE Workshop On User MObility and
VEhicular Networks (LCN ON-MOVE 2011), pages
801–808. IEEE Computer Society, 2011.

[5] T. Delot and S. Ilarri. Introduction to the Special
Issue on Data Management in Vehicular Networks.
Transportation Research Part C: Emerging
Technologies, 23:1–2, 2012.

7

[6] T. Delot and S. Ilarri. The VESPA Project: Driving
advances in data management for vehicular networks.
ERCIM News, (94):17–18, July 2013. Special Theme
on “Intelligent Vehicles as an Integral Part of
Intelligent Transport Systems”.

[7] T. Delot, S. Ilarri, S. Lecomte, and N. Cenerario.
Sharing with caution: Managing parking spaces in
vehicular networks. Mobile Information Systems,
9(1):69–98, 2013.

[8] S. Deterding, D. Dixon, R. Khaled, and L. Nacke.
From game design elements to gamefulness: Defining
“gamification”. In 15th International Academic
MindTrek Conference: Envisioning Future Media
Environments (MindTrek’11), pages 9–15. ACM, 2011.

[9] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and
D. Dixon. Gamification: Using game-design elements
in non-gaming contexts. In 2011 Annual Conference
on Human factors in Computing Systems (CHI’11) –
Extended Abstracts, pages 2425–2428. ACM, 2011.

[10] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the World-Wide Web.
Communications of the ACM, 54(4):86–96, 2011.

[11] S. Esper, S. R. Foster, and W. G. Griswold. On the
nature of fires and how to spark them when you’re not
there. In 44th ACM Technical Symposium on
Computer Science Education (SIGCSE’13), pages
305–310. ACM, 2013.

[12] J. Harri, F. Filali, and C. Bonnet. Mobility models for
vehicular ad hoc networks: A survey and taxonomy.
IEEE Communications Surveys & Tutorials,
11(4):19–41, 2009.

[13] J. Härri, F. Filali, C. Bonnet, and M. Fiore.
VanetMobiSim: Generating realistic mobility patterns
for VANETs. In Third International Workshop on
Vehicular Ad Hoc Networks (VANET’06), pages
96–97. ACM, 2006.

[14] H. Hartenstein and K. P. Laberteaux. A tutorial
survey on vehicular ad hoc networks. IEEE
Communications Magazine, 46(6):164–171, 2008.

[15] G. Karagiannis, O. Altintas, E. Ekici, G. J. Heijenk,
B. Jarupan, K. Lin, and T. Weil. Vehicular
networking: A survey and tutorial on requirements,
architectures, challenges, standards and solutions.
IEEE Communications Surveys & Tutorials,
13(4):584–616, 2011.

[16] M. Lehn, C. Leng, R. Rehner, T. Triebel, and
A. Buchmann. An online gaming testbed for
peer-to-peer architectures. ACM SIGCOMM
Computer Communication Review, 41(4):474–475,
2011.

[17] R. Mangharam, D. S. Weller, and R. Rajkumar.
GrooveNet: A hybrid simulator for vehicle-to-vehicle
networks. In Second International Workshop
Vehicle-to-VehicleCommunications (V2VCOM’06),
pages 1–8, 2006.

[18] F. J. Martinez, C. K. Toh, J.-C. Cano, C. T. Calafate,
and P. Manzoni. A survey and comparative study of
simulators for vehicular ad hoc networks (VANETs).
Wireless Communications & Mobile Computing,
11(7):813–828, 2011.

[19] J. E. Michael Behrisch, Laura Bieker and
D. Krajzewicz. SUMO – Simulation of Urban

MObility: An overview. In The Third International
Conference on Advances in System Simulation
(SIMUL’11), pages 63–68. IARIA, 2011.

[20] S. Olariu and M. C. Weigle, editors. Vehicular
Networks: From Theory to Practice. Chapman &
Hall/CRC, 2009.

[21] M. Piorkowski, M. Raya, A. L. Lugo,
P. Papadimitratos, M. Grossglauser, and J.-P.
Hubaux. TraNS: Realistic joint traffic and network
simulator for VANETs. SIGMOBILE Mobile
Computing and Communications Review, 12(1):31–33,
2008.

[22] C. Pope and K. Kaur. Is it human or computer?
Defending e-commerce with Captchas. IT
Professional, 7(2):43–49, 2005.

[23] C. W. Reynolds. Steering behaviors for autonomous
characters. In Game Developers Conference, pages
763–782. Miller Freeman Game Group, 1999.

[24] M. L. Sichitiu and M. Kihl. Inter-vehicle
communication systems: A survey. IEEE
Communications Surveys & Tutorials, 10(1–4):88–105,
2008.

[25] C. Sommer, R. German, and F. Dressler.
Bidirectionally coupled network and road traffic
simulation for improved IVC analysis. IEEE
Transactions on Mobile Computing, 10(1):3–15, 2011.

[26] Y. Toor, P. Mühlethaler, A. Laouiti, and
A. de La Fortelle. Vehicle ad hoc networks:
Applications and related technical issues. IEEE
Communications Surveys & Tutorials, 10(1–4):74–88,
2008.

[27] L. von Ahn and L. Dabbish. Labeling images with a
computer game. In SIGCHI Conference on Human
Factors in Computing Systems (CHI’04), pages
319–326. ACM, 2004.

[28] L. von Ahn and L. Dabbish. Designing games with a
purpose. Communications of the ACM, 51(8):58–67,
2008.

[29] L. von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. reCAPTCHA: Human-based character
recognition via web security measures. Science,
321(5895):1465–1468, 2008.

[30] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk. A
survey of inter-vehicle communication protocols and
their applications. IEEE Communications Surveys &
Tutorials, 11(2):3–20, 2009.

[31] B. Xu, A. M. Ouksel, and O. Wolfson. Opportunistic
resource exchange in inter-vehicle ad-hoc networks. In
Fifth IEEE International Conference on Mobile Data
Management (MDM’04), pages 4–12. IEEE Computer
Society, 2004.

[32] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and
M. Corner. mCrowd: A platform for mobile
crowdsourcing. In Seventh ACM Conference on
Embedded Networked Sensor Systems (SenSys’09),
pages 347–348. ACM, 2009.

[33] M.-C. Yuen, I. King, and K.-S. Leung. A survey of
crowdsourcing systems. In Third International
Conference on Privacy, Security, Risk and Trust
(PASSAT 2011) and Third International Conference
on Social Computing (SocialCom 2011), pages
766–773. IEEE, 2011.

8

Anexo F

Manual de usuario

245

246

Guía de usuario

Vanet-X

Autor:

Víctor Rújula (victor.rujula@gmail.com)

21 de agosto de 2013

Índice

1. Instalación 1
1.1. Requerimientos del sistema . 1
1.2. Compilación . 1

1.2.1. Linux / Mac OS X . 2
1.2.2. Windows . 2

1.3. Ejecución . 2
1.3.1. Linux / Mac OS X . 3
1.3.2. Windows . 3

1.4. Finalización de la aplicación . 3

2. Menús del juego 3
2.1. Menú principal . 4
2.2. Crear una nueva partida . 5
2.3. Con�guración de las reglas del juego 6
2.4. Con�guración del sistema VESPA 7
2.5. Con�guración avanzada de red . 9
2.6. Con�guración avanzada de mapas 10
2.7. Unirte a una partida existente (en red) 12
2.8. Con�guración avanzada de red (en unión) 13
2.9. Opciones . 14
2.10. Ajustes de los controles . 15
2.11. Resumen de la partida . 15
2.12. Pantallas de error . 16

3. El juego 18
3.1. Modos de juego . 18

3.1.1. Capture the �ag . 18
3.1.2. Capture the red cars . 19
3.1.3. Solve the tasks . 19
3.1.4. Task endurance survival . 19
3.1.5. Parking special mode . 20

3.2. Controles . 20
3.3. Elementos . 21

3.3.1. Vehículos . 21
3.3.2. Terrenos . 22
3.3.3. Objetos y lugares de interés 23

3.3.4. Otros . 25
3.4. Interfaz grá�ca de usuario . 26
3.5. Menú in-game . 28
3.6. Pericia del jugador . 31

4. Características de ayuda a la explotación 32
4.1. Creación del servidor dedicado . 32
4.2. Acceso remoto al servidor dedicado mediante el terminal 33
4.3. Creación del servidor de recogida de estadísticas 35

5. Con�guración técnica avanzada 36
5.1. Modi�cación de los APIs usados para la obtención de los mapas . . 36
5.2. Modi�cación del �chero de con�guración ParamCon�g.txt 37

6. Resolución de problemas 40
6.1. Bajo rendimiento (framerate bajo) 40
6.2. Error de conexión en los primeros segundos de la partida 41
6.3. Corrupción u obsolescencia de los datos 41

7. Licencias 41

iii

Nota del autor

Vanet-X esta localizado en inglés ya que, por la imposibilidad de localizarlo
en diferentes idiomas, se decidió usar el idioma con un mayor público objetivo. Por
ese motivo cuando se haga referencia en este documento a los diferentes títulos de
los menús o a las opciones que aparecen en dichos menús, se nombrarán con la
designación original, en inglés, indicándose junto a ellos la traducción correspon-
diente.

1. Instalación

Este juego no requiere de instalación, únicamente debe ejecutarse el archivo
JAR que puede obtenerse mediante descarga del sitio web o�cial o mediante la
compilación del código fuente proporcionado.

1.1. Requerimientos del sistema

Se ha comprobado que esta aplicación funciona correctamente con la siguiente
con�guración:

Windows XP SP 3 / Ubuntu 11.10 / Mac OS X 10.6.1

2.81 GHz AMD Phenom(tm) II X3 720 processor

3.25 GB RAM

NVIDIA GeForce GTX 260 @ 1920 x 1080 px.

Java VM 1.7.0_09

Los requisitos imprescindibles para la ejecución de Vanet-X son los siguientes:

Teclado y ratón.

Resolución de video igual o superior a 1024 x 768 px.

Java VM 1.6 o superior.

1.2. Compilación

El proceso requerido para la compilación di�ere dependiendo del sistema ope-
rativo usado.

1

1.2.1. Linux / Mac OS X

Usando el script shell Se debe extraer el �chero comprimido y ejecutar el
script shell compilar.sh desde el interior de la carpeta extraída.

\$> sh compilar.sh

Nota: se crea un certi�cado para �rmar el �chero JAR (si no se había creado
previamente), para lo cual es necesario seguir las instrucciones en pantalla. Pa-
ra ello se crea un �chero de almacenamiento de claves �keystore�, situado en la
carpeta desde la que se ejecuta el comando.

Usando Ant Se debe extraer el �chero comprimido y ejecutar Ant desde el
interior de la carpeta extraída.

\$> ant

Nota: se crea de forma transparente al usuario un certi�cado para �rmar el
�chero JAR.

1.2.2. Windows

Usando Ant Se debe extraer el �chero comprimido y ejecutar Ant desde el
interior de la carpeta extraída.

\$> ant

Nota: se crea de forma transparente al usuario un certi�cado para �rmar el
�chero JAR.

Nota: Para instalar ant, se debe descargarlo (por ejemplo de http://ant.

apache.org/bindownload.cgi), extraer el �chero zip en algún lugar y añadir
a la variable del sistema PATH el directorio bin obtenido de la extracción. De esta
forma se habilita el uso del comando ant para usarlo desde la línea de comandos.

1.3. Ejecución

El proceso requerido para la ejecución di�ere dependiendo del sistema operativo
usado.

2

1.3.1. Linux / Mac OS X

Una vez se haya completado la compilación, se debe ejecutar el script shell
ejecutar_jar.sh para ejecutar el juego como una aplicación de escritorio Java

\$> sh ejecutar_jar.sh

o ejecutar el script shell ejecutar_applet.sh para ejecutarlo como un applet
usando la aplicación appletviewer.

\$> sh ejecutar_applet.sh

1.3.2. Windows

Una vez se haya completado la compilación, se debe ejecutar el �chero llamado
RallyX3.jar, creado en el directorio �dist�

\$> dist\RallyX3.jar

1.4. Finalización de la aplicación

Para �nalizar la aplicación, únicamente se necesita pulsar sobre el botón �X�
(Cerrar) de la ventana de la aplicación.

2. Menús del juego

En esta sección se explicarán las funciones realizadas por las diferentes pantallas
del menú. En la �gura 1 se puede observar cómo están distribuidas estas pantallas.

Menú principal

Crear una nueva partida

Unirte a una partida existente (en red)

Con�guración de las reglas del juego

Con�guración del sistema VESPA

Con�guración avanzada de red

Con�guración avanzada de mapas

Con�guración avanzada de red (en unión)

Opciones

Ajustes de los controles

Figura 1: Diagrama de navegación menús

3

2.1. Menú principal

En el menú principal, se puede escoger entre �Start a new game� (crear una
nueva partida), lo cual nos dirige a con�gurar y posteriormente comenzar una
nueva partida, bien sea de un solo jugador o multijugador en red, o �Join an
existing game� (unirse a una partida existente), lo cual nos permite unirnos a una
partida en red en curso.
También se puede modi�car diversas opciones (como el volumen, los controles o el
directorio de juego) pulsando sobre �Options� (opciones).
Pulsando en el botón �Credits� (créditos) se accede a una pantalla en la que
se muestra información sobre el autor, una breve introducción a VESPA y los
agradecimientos.

4

2.2. Crear una nueva partida

En la sección �Start new game� (crear una nueva partida), se debe seleccionar
el apodo que se mostrará a los demás jugadores, el mapa en el que se desea jugar
y el modo de juego deseado.
Además, también se puede ver la dirección IP del computador (tanto la IP pública
como la privada) en el campo de texto junto al botón �view IP� (ver IP). Pulsando
sobre este botón se alterna entre mostrar un tipo u otro de dirección IP.
El resto de jugadores que deseen unirse a la partida necesitarán conocer la dirección
IP pública, por lo que es importante anotarla o recordarla.

En esta pantalla de menú existen cuatro botones de con�guración.
El primero, �VESPA con�guration� (con�guración de VESPA), permite cambiar
constantes, valores y modos relacionados con VESPA, así como también establecer
el porcentaje de vehículos del trá�co equipados con el sistema VESPA.

El segundo, �Advanced network con�guration� (con�guración avanzada de
red), permite cambiar el puerto en el cual el servidor escuchará a la espera de
peticiones de conexión de nuevos jugadores, así como también el puerto que usará
nuestro cliente para conectarse.
Es importante asegurarse de abrir en el NAT/�rewall los puertos seleccionados
tanto en TCP como UDP.
En esta pantalla también aparece un desplegable en el cual se debe seleccionar la
dirección IP correspondiente al adaptador de red que deseamos usar para crear la
partida.

5

El tercero, �Advanced map con�guration� (con�guración avanzada de mapas),
nos dirige a una nueva pantalla en la cual se podrá añadir, eliminar y previsualizar
los mapas.

El último, �Game rules con�guration� (con�guración de las reglas del juego),
permite cambiar algunas opciones como la di�cultad, el número de equipos y el
número de vehículos neutrales (del trá�co).

Cuando se hayan establecido todas las opciones como se desea, se debe pulsar en
el botón �Start� (comenzar) para comenzar la partida. Si por el contrario deseamos
volver a la pantalla anterior, se debe pulsar en el botón �Go back� (volver).

2.3. Con�guración de las reglas del juego

En este menú, en la mitad izquierda, se puede personalizar la di�cultad cam-
biando los factores separadamente.
Se debe tener en cuenta que cuando el jugador asume el rol de perseguidor (modo
de juego �capture the red cars�) el valor del daño se revierte.
Ejemplo: Un valor bajo de daño del vehículo, en un modo de juego en el que el
jugador huya de los vehículos controlados por el computador signi�ca que el juga-
dor tiene una resistencia mayor de la normal, mientras que en un modo de juego
en el que el jugador sea el que persigue a los vehículos del computador signi�ca
que dichos vehículos tienen menos resistencia y por lo tanto es más fácil para el
jugador cazarlos.

En la mitad derecha de la pantalla, se puede cambiar el número del máximo
de equipos, el número de vehículos neutrales (del trá�co), el número de vehículos

6

enemigos y el número de rondas establecido como límite en los modos de juego
competitivos.
Debajo, se puede con�gurar el tiempo límite de los diferentes modos de juego así
como también el tiempo de espera entre rondas.

2.4. Con�guración del sistema VESPA

En este menú es posible con�gurar una gran variedad de parámetros relacio-
nados con el funcionamiento del protocolo VESPA.
En la pantalla inicial se encuentra una muy breve descripción del sistema VESPA
y sus ventajas (accesible manteniendo el puntero encima del símbolo de informa-
ción), también un selector del porcentaje de vehículos del trá�co que se desea que
estén equipados con el protocolo VESPA y una casilla de veri�cación que en el caso
de estar activada indica que la generación de eventos avisando de enemigos y otros
jugadores se realizará mediante observación en lugar de autogeneración desde los
propios vehículos.
Por último existe otra casilla de veri�cación �Expert con�guration� (con�guración
experta) que de activarse despliega más aspectos con�gurables del protocolo.

7

Las opciones que se pueden con�gurar son las siguientes:

Alcance de la radio (�Radio range�) y alcance de visión (�Sight range�),
que indican la distancia a la que se pueden transmitir y observar los eventos
respectivamente.

Intervalo de actualización (�Update interval�) del sensor (�Sensor�), del ges-
tor de almacenamiento (�Storage Manager�) y del procesador de consultas
continuo (�Continuous Query Processor�), que indica cada cuántos segundos
entrarán en funcionamiento dichos módulos.

Importancias de los distintos tipos de eventos (�Event type importance�),
que indica la importancia que se dará a un evento de dicho tipo, de forma que
cuanto mayor sea mayor será la posibilidad de que se muestre al conductor.

Además, pulsando sobre la �echa amarilla �Mega-expert con�g� se accede a
una segunda página con más elementos para con�gurar.

8

En esta segunda página de con�guración se permite modi�car más parámetros
de VESPA. Dichos parámetros solo deberían ser modi�cados por una persona con
unos mínimos conocimientos del protocolo ya que mediante su modi�cación se
puede alterar gravemente el comportamiento del sistema.

2.5. Con�guración avanzada de red

En esta pantalla de menú existen dos campos de texto y un desplegable.
En el campo de texto superior, se puede modi�car el puerto que se usará para

9

conectar con el servidor que se cree (esto es necesario ya que la aplicación está
internamente separada en un servidor y un cliente, incluso para el caso de jugar
un único jugador).
En el segundo campo de texto, se puede modi�car el puerto en el que la aplicación
escuchará las peticiones de unión de los jugadores que deseen unirse a la partida.
En el desplegable aparecen las direcciones IP asociadas con cada adaptador de
red habilitado, debiéndose elegir la que corresponde al adaptador que nos permite
comunicarnos con la red en la que se hayan el resto de jugadores.

Nota: es importante comprobar que los puertos seleccionados están abiertos en
el NAT/�rewall en los modos TCP y UDP.

2.6. Con�guración avanzada de mapas

En esta pantalla de menú, en la que se pueden descargar nuevos mapas que
se quedarán almacenados en el directorio de juego para futuras partidas, existen
dos secciones diferenciadas. La mitad derecha, en la cual se puede buscar una
dirección, previsualizar el área resultante y �nalmente añadirla como nuevo mapa,
y la mitad izquierda, donde hay una tabla que contiene los mapas agregados y en
la cual podemos previsualizar o eliminar dichos mapas.

10

Añadir un nuevo mapa al juego es un proceso muy sencillo.
Todo lo que se necesita es escribir la dirección deseada en el campo de texto �Ad-
dress keywords� (palabras clave de la dirección) y pulsar en el botón �Search�
(buscar). Esto realiza una búsqueda a través del servicio Nominatim de OpenS-
treetMap. Si hay resultados, éstos aparecerán en el desplegable �Search results�
(resultados de la búsqueda).
Posteriormente, se debe seleccionar el tamaño deseado del mapa (usando el control
deslizante �Map size� (tamaño del mapa).
En el campo de texto �Alias� se debe escribir un alias representativo para poder
reconocer el mapa desde el desplegable de selección de mapa del menú de creación
de la partida. Si se desea, es posible previsualizar el área entorno a la dirección
seleccionada pulsando el botón �View map� (ver mapa).
Finalmente, se debe pulsar el botón �Add map� (añadir mapa) con el �n de añadir
dicho mapa al juego.

Consejo: los resultados devueltos por la búsqueda de una dirección están limi-
tados en número. Por este motivo, si se desea buscar una dirección con muchos
posibles resultados, y no se obtienen los resultados deseados, debe procurar sumi-
nistrarse una descripción más precisa de la dirección.

Consejo: cuanto más pequeño sea el tamaño del mapa mejor rendimiento del
juego se obtendrá. Además, los mapas con muchos detalles pueden no ser capaces
de ejecutarse en tamaños grandes o incluso medianos.

11

Nota: los mapas añadidos se guardan en la carpeta �Maps� del directorio de jue-
go. Por cada mapa añadido se crea un �chero XML con el contenido descargado de
OpenStreetMap, un �chero JPG con la imagen que se usará para la previsualiza-
ción (también descargada de OpenStreetMap) y un �chero de texto que contiene
datos necesarios para el uso de dicho mapa en el juego.

Nota: al previsualizar un mapa todavía no descargado se creará un �chero tem-
poral con la imagen a mostrar. Dicho �chero se localizará en el directorio �temp�
del directorio de juego, y será automáticamente eliminado al terminar la ejecución
del juego.

2.7. Unirte a una partida existente (en red)

En esta pantalla se con�guran los parámetros necesarios para la unión a una
partida en red actualmente en juego.
Con este �n, se debe rellenar la dirección IP pública del servidor en el campo
�server IP� (IP del servidor) , introducir un apodo para que el resto de jugadores
nos reconozcan y pulsar en el botón �Join� (unirse).

Adicionalmente, en esta pantalla del menú, se pueden modi�car los puertos
que la aplicación usará para la conexión pulsando en el botón �Advanced network
con�guration� (con�guración avanzada de red).

12

2.8. Con�guración avanzada de red (en unión)

En esta pantalla del menú existen dos campos de texto.
En el primero se puede modi�car el puerto que la aplicación usará para comunicarse
con el servidor de la partida.
En el segundo, se debe introducir el puerto en el que el servidor de la partida está
a la escucha de nuevas peticiones de unión a la partida.

Nota: es importante veri�car que el puerto seleccionado en el primer campo de
texto esté abierto en el NAT/�rewall en los modos TCP y UDP.

13

2.9. Opciones

En esta pantalla del menú se puede con�gurar el volumen de la música (con-
trol deslizante superior) y el volumen de los efectos de sonido (control deslizante
inferior).
También desde aquí se puede ver y modi�car los controles del juego (botón �Chan-
ge controls�) y seleccionar el directorio de juego donde serán almacenados los
�cheros de con�guración y los mapas descargados.

14

2.10. Ajustes de los controles

Desde esta pantalla se pueden modi�car los controles del juego. Para ello no
hay más que seleccionar el campo de texto correspondiente a la acción que se desea
cambiar y pulsar la tecla que se desee usar.

2.11. Resumen de la partida

15

Esta pantalla aparece cuando se ha �nalizado un partida, bien sea porque el
an�trión decide acabarla o porque se hayan completado o fallado los objetivos, y
también cuando el jugador decide abandonar la partida en curso.
En ella se muestran detalles como el escenario y las reglas usadas, la duración de
la partida y la puntuación de los jugadores desglosada por equipos en el caso de
una partida competitiva.

2.12. Pantallas de error

En ciertas ocasiones puede aparecer una pantalla de error. En ella se mostrará al
usuario la información referente al error ocurrido y le devolverá al menú principal.

Hay dos pantallas de error diferentes: error durante la conexión a la partida y
error durante la ejecución de la partida.

Error al conectar a la partida

Esta pantalla de error aparece cuando no ha sido posible unirse a una partida.
Esto puede estar causado porque los datos (dirección IP y puerto) sean erróneos
o porque la partida ya haya �nalizado.

16

Error durante la ejecución

Esta pantalla aparece cuando ha ocurrido un error en tiempo de ejecución que
ha causado que la partida �nalizase.

Contiene dos botones, uno para volver al menú principal y otro para habilitar
la vista detallada del error, en la que se mostrará la traza del error ocurrido. En el
caso de que haya ocurrido más de un error, aparecerán distribuidos en diferentes
pestañas según cada hilo de ejecución.

17

3. El juego

En esta sección se mostrarán todos aquellos aspectos necesarios de conocer para
poder participar en las partidas, como son los diferentes modos de juego, elementos
de la partida (tipos de vehículos, tipos de terreno, etc.), controles del jugador y
funcionalidades del menú de in-game.

3.1. Modos de juego

Se han desarrollado cinco modos de juego diferentes: Capture the �ag, Capture
the red cars, Solve the tasks, Task endurance survival y Special parking mode.
Excepto el último, que solo está disponible en modo competitivo, los demás pueden
ser jugados tanto en modo cooperativo como competitivo.

A excepción del cuarto modo, los demás funcionan mediante un sistema de ron-
das. Cuando comienza una ronda, se tiene unos pocos segundos para conducir
libremente antes de que aparezcan los objetivos y los perseguidores. Pero aún sin
enemigos hay que tener cuidado, ½las colisiones con otros vehículos también produ-
cen daños!. Después de este tiempo de preparación, la ronda empieza y se muestra
una cuenta atrás con el tiempo disponible para completar los objetivos. Cuando
éstos hayan sido completados, los vehículos enemigos (si los había) desaparecerán,
se rellenará la salud del jugador y la ronda �nalizará.

Jugando en modo cooperativo las rondas son in�nitas, se juega hasta que todos
los jugadores mueran, pero en el modo cooperativo las rondas están limitadas por
un valor que se puede modi�car en el menú �Game rules con�guration� (con�gu-
ración de las reglas del juego).

Nota: para repostar en una gasolinera es preciso que el vehículo esté completa-
mente detenido.

3.1.1. Capture the �ag

En este modo de juego se deben capturar todas las banderas (normalmente
cinco) mientras se huye de los vehículos enemigos que intentan destruirnos.

Hay que tener cuidado ya que se recibe un poco de daño en las colisiones contra
los vehículos del trá�co, y mucho daño colisionando con los enemigos, los cuales
tienen vida in�nita.

18

3.1.2. Capture the red cars

En este modo de juego se deben capturar todos los vehículos enemigos, los
cuales tratan de escapar del jugador.

El jugador únicamente recibe daño colisionando con vehículos del trá�co, mien-
tras que los vehículos enemigos solo reciben daño con las colisiones con el jugador
(no reciben daño colisionando contra otros vehículos).

3.1.3. Solve the tasks

En este modo de juego se deben completar diversas tareas antes de que el
tiempo se agote o los vehículos enemigos destruyan al jugador.

Existen diferentes tipos de tareas:

Conducir hasta una dirección o sitio de interés

Aparcar en una plaza cercana a una dirección o sitio de interés (por cercana
se entiende que sea una de las tres más próximas al objetivo).

Llegar a pie a una dirección o sitio de interés, para lo cual previamente se
ha tenido que aparcar el vehículo y así poder salir de él.

Nota: en las tareas que requieran llegar al objetivo a pie, es recomendable aparcar
lo más cerca posible ya que el jugador es más lento y vulnerable mientras va a pie
por lo que es una presa fácil para los vehículos enemigos.

3.1.4. Task endurance survival

Este modo de juego tiene una mecánica totalmente diferente del resto de modos
de juego.
Los otros modos usan un sistema estricto de rondas -en los cuales si una ronda
es completada satisfactoriamente los enemigos desaparecen y el jugador avanza a
la siguiente ronda, y en caso contrario se pierde la partida-, sin embargo, es este
modo de juego, los enemigos no desaparecen entre rondas ni tampoco se pierde la
partida si no completas los objetivos de la ronda, sino que simplemente se pierde
la oportunidad de ganar la recompensa de dicha ronda.

La partida se acaba cuando todos los equipos tienen una cantidad negativa de
dinero (que sustituye a los puntos en este modo de juego), hasta ese momento
todos los jugadores que sigan vivos podrán seguir jugando.

19

Si una ronda es completada satisfactoriamente, todos los jugadores todavía vivos
recuperan un 50% de vida y los muertos recuperan el 100%. En ambos casos
dichos jugadores perderán dinero, pero recuperar vida es más caro si el jugador
está muerto que si solamente dañado.

En cada ronda, el jugador debe completar una tarea, que puede ser lograda
conduciendo, andando o aparcando en uno de los tres aparcamientos más cercanos
(según se indique en la tarea), y la cual puede consistir en acudir a una dirección
o a un sitio de interés de un determinado tipo (p.ej. ir a una farmacia).

3.1.5. Parking special mode

Este modo de juego, creado expresamente para facilitar la toma de estadísticas
de aparcamiento, consiste en completar una serie de tareas de aparcamiento me-
diante un sistema de rondas, de forma muy similar al modo �Solve the task�.
Las diferencias con ese modo radican en que en cada ronda hay un doble objetivo,
que se debe cumplir de forma secuencial, en el que primero se requiere acudir a un
determinado punto dado por una dirección o sitio de interés, y a continuación se
requiere encontrar un aparcamiento situado a menos de 500m.

3.2. Controles

Los controles del juego son muy sencillos, ya que únicamente es preciso usar
las �echas de dirección, la barra espaciadora y la tecla control.

Las �echas de dirección se usan para controlar el movimiento del vehículo:
La �echa superior (↑) acelera.
La �echa inferior (↓) frena y da marcha atrás.
La �echa izquierda (←) gira a la izquierda (rota el coche en sentido contrario a
las agujas del reloj).
La �echa derecha (→) gira a la derecha (rota el coche en el sentido de las agujas
del reloj).

20

La barra espaciadora se usa para crear una nube de humo.

La tecla Control es usada para aparcar y salir o entrar del vehículo.

La tecla Escape permite desplegar el menú in-game en el cual se pueden visua-
lizar los controles, modi�car el volumen y abandonar la partida.

3.3. Elementos

Durante las partidas el jugador encontrará diferentes tipos de vehículos, terre-
nos y objetivos. A continuación se explicarán los más relevantes de estos elementos
del juego.

3.3.1. Vehículos

Hay varios tipos diferentes de vehículos:

Jugadores: reconocibles por ser azules (con una banda central de color
en el caso de necesitar diferenciar los diferentes equipos). Son los vehículos
controlados por los jugadores.

Vehículos enemigos: reconocibles por ser rojos. Son los coches controlados
por el computador que, dependiendo del modo de juego, tratan de cazar al
jugador o huir de él.
También es posible reconocerlos por el sonido del motor que se puede escu-
char cuando se acercan.

21

Ambulancias: reconocibles por su forma y por su luz estroboscópica roja y
azul. Además es posible escuchar su sirena cuando se acerca. Controladas por
el computador. Aparece de forma aleatoria y desaparece cuando ha transcu-
rrido un tiempo mínimo y no está a la vista de ningún jugador. Puede haber
una única ambulancia sobre el escenario, siendo avisados los jugadores de su
aparición y desaparición.

Vehículos del trá�co: el resto de vehículos que no coinciden con las des-
cripciones anteriores. Controlados por el computador.

3.3.2. Terrenos

Existen diferentes tipos de terrenos, algunos de los cuales son infranqueables
para los vehículos:

Calzada pavimentada: de color gris oscuro, es el terreno por el que circulan
los vehículos del trá�co.

Calle peatonal: de color blanco, solo los vehículos de los jugadores y los
enemigos pueden circular en ella, sufriendo además una ralentización a la
marcha.

Agua: de color azul, es infranqueable.

Carril bici: de color verde con línea de separación discontinua, únicamente
los vehículos de los jugadores pueden circular por él, sufriendo una ralenti-
zación a la marcha.

Obras: de color marrón, únicamente los vehículos de lo jugadores y los
vehículos enemigos pueden atravesarlas, viéndose ralentizados.

Playa y césped: de color marrón claro y verde respectivamente, solamen-
te los vehículos de los jugadores y los enemigos pueden circular por ellos,
sufriendo además una ralentización a la marcha.

Zonas urbanizadas y edi�cios: son áreas de color gris claro y marrón
bordeado en negro respectivamente, que son infranqueables para cualquier
tipo de vehículo.

22

Nota: cuando el jugador circula a pie se le aplican las mismas reglas que si lo
hiciera a bordo del vehículo.

3.3.3. Objetos y lugares de interés

Hay algunos objetos y lugares importantes que deben ser reconocidos ya que
pueden ser utilizados como objetivo de la ronda según el modo de juego elegido.

Banderas: Una bandera que debe ser tomada para lograr puntos y rellenar
las nubes de humo.

Gasolineras: Un lugar donde se puede repostar combustible.

Sitios de interés: lugares como:

• cafés

• restaurantes de comida rápida

• bancos

• farmacias

• escuelas

• tiendas

23

• hostales

• moteles

• hoteles

• museos

Son reconocibles por estar marcados con un círculo verde con el nombre
pintado en letras rojas.

Plazas de aparcamiento: son los lugares en los cuales, según el modo de
juego, el jugador puede abandonar el vehículo para continuar a pie. También
son los objetivos de diversos modos de juego.
Para realizar un aparcamiento, el jugador debe aproximarse a una plaza vacía
y una vez en su interior (cuando las líneas discontinuas cambien a color rojo)
pulsar la tecla Control. Para abandonar el aparcamiento el procedimiento es
el mismo.

24

Nota: es importante tener en cuenta que el tiempo que una plaza perma-
nece ocupada por un vehículo del trá�co varía (por defecto es entre 20 y 40
segundos), pero algunas plazas nunca se llegarán a desocupar.

3.3.4. Otros

Nube de humo: se trata de un elemento temporal creado por los jugadores
que, cuando es colisionada por un vehículo, le causa una reducción temporal
de la velocidad así como una pérdida del control de la dirección del vehículo.
Permanece únicamente durante diez segundos desde que es creada.

25

3.4. Interfaz grá�ca de usuario

La interfaz grá�ca de usuario muestra información útil durante la partida.

La información que contiene es la siguiente:

1) Puntuación: muestra la cantidad de puntos logrados hasta el momento.

2) Indicador de salud: muestra la cantidad de daño recibido por el vehículo.
Su color varía de forma gradual desde el verde hasta el rojo según se reciban
más daños.

3) Nubes de humo disponibles: muestra cuantas nubes de humo quedan
disponibles. La cantidad máxima es cinco.

4) Cuenta atrás: muestra cuanto tiempo queda para lograr los objetivos de la
ronda.

5) Localización actual: muestra el nombre de la calle en la que se encuentra
el jugador. En el caso de estar situado sobre una intersección, se muestra el
nombre de todas las calles de dicha intersección.

6) Indicador de gasolina: muestra de forma grá�ca la cantidad de combusti-
ble restante.

26

7) Radar: muestra un mini-mapa en el que se representan los eventos VESPA
y los lugares de interés.

8) Indicador de FPS: muestra el rendimiento actual de la aplicación medido
en fotogramas por segundo.

9) Flechas: son �echas de colores que muestran en qué dirección respecto del
jugador se encuentran los objetivos y los perseguidores (si los hay). Las �e-
chas rojas indican la presencia de un perseguidor, mientras que las verdes
indican los objetivos.

El radar muestra de forma grá�ca los eventos considerados relevantes en el sis-
tema VESPA, junto con otros lugares considerados de interés para la consecución
de los objetivos de la ronda.

Cada icono representa un evento (salvo los que representan un icono siempre
visible). Se pueden mostrar diferentes iconos re�riéndose al mismo incidente, ya
que varios vehículos han podido detectarlo. Por lo tanto, no se recibirá un único
icono en el punto donde el incidente ha tenido lugar, sino varios iconos en torno a
dicho lugar.

Estos son los iconos siempre visibles:

: nuestro jugador.

: gasolinera.

27

: objetivo (lugar de interés o dirección).

Estos son los iconos de eventos VESPA:

: bandera.

: accidente u obstáculo en la calzada.

: servicio de emergencia.

: otro jugador.

: vehículo enemigo.

: plaza de aparcamiento libre.

Al comienzo de cada ronda se muestra un recuadro de información que contiene
el tipo de modo de juego, el número de ronda actual y el límite si lo hay, los
objetivos, los perseguidores y el tiempo límite para completar la ronda.

3.5. Menú in-game

Durante el juego se puede acceder a un menú interno que permite realizar diver-
sas acciones. La navegación por este menú únicamente puede realizarse mediante
el uso del ratón.

28

Estas acciones se categorizan en los siguientes apartados:

Opciones (contiene el cambio de volumen de la música y los efectos)

Mostrar controles

Abandonar la partida

Volver a la partida

A continuación se vera cada una de las diferentes opciones.

29

�Options� (Opciones)

Se muestra una nueva pantalla en la que se puede modi�car individualmente
el volumen de los efectos de sonido y el volumen de la música.

�Show Controls� (Mostrar controles)

Se muestra una nueva pantalla en la que aparecen las diferentes acciones rea-
lizables por el jugador y las teclas actualmente asignadas a dichas acciones.

30

�End Game� (Abandonar la partida)

Aparece una pregunta de con�rmación y en caso a�rmativo se abandona la
partida (y en el caso de ser el an�trión se �naliza la partida de forma que el resto
de jugadores también la abandonan).

�Return to game� (Volver a la partida)

En caso de seleccionar esta opción, el menú desaparece y se vuelve a tener
control sobre el movimiento del jugador.

3.6. Pericia del jugador

La �pericia� del jugador es un valor que se almacena en la con�guración del
juego y que determina el nivel de habilidad del jugador.
Este valor se actualiza con cada nueva partida y es usado para impedir que juga-
dores noveles accedan a partidas en las que se recogen estadísticas y distorsionen
los resultados.
Se mide en tiempo por tarea y se calcula dividiendo el tiempo de la partida por el
número de rondas completadas.

nivel de habilidad =
tiempo total de la partida

número de rondas completadas

31

Nota: hay que tener en cuenta que este cálculo únicamente puede realizarse de
forma conjunta para todo el equipo, por lo que todos ganarán el mismo nivel de
habilidad independientemente de su nivel real en la partida.

4. Características de ayuda a la explotación

En Vanet-X se han desarrollado varias características con la función de faci-
litar la recopilación de los datos obtenidos referentes a las estrategias de gestión
de información utilizadas.

Una es el servidor dedicado, que permite tener un servidor en permanente fun-
cionamiento en un computador de forma que los jugadores puedan unirse a dicho
servidor.
Éste servidor dedicado tiene un mayor rendimiento que el servidor normal a costa
de no incorporar el cliente necesario para que pueda jugarse desde la misma ins-
tancia del juego. Consiste en un proceso ligero a la escucha de nuevas peticiones
de conexión de clientes, y sólo cuando éstas se produzcan se creará una instancia
del servidor y se creará una nueva partida (suponiendo que no existiera ninguna).

Otro es el servidor de recogida de estadísticas, un proceso ligero, capaz de estar
en permanente funcionamiento, que recopila los �cheros estadísticos enviados por
los servidores y servidores dedicados al �nalizar las partidas.

4.1. Creación del servidor dedicado

Para la creación de una instancia del servidor dedicado debe ejecutarse el jue-
go con el siguiente comando: java -jar RallyX3.jar -dedicated masterPort

serverPort pass, siendo masterPort el puerto en el que se escucharán las peti-
ciones de conexión, serverPort el puerto en el que funcionará el juego y pass la
contraseña que se requerirá a los terminales que traten de conectarse remotamente
para gestionar el servidor (p.ej. java -jar RallyX3.jar -dedicated 5550 5559

batmobile).

Al iniciarse el servidor se requerirá introducir el directorio de juego deseado
(o dejarlo en blanco para seleccionar el directorio por defecto) y también el mapa
elegido para la partida.

32

A continuación el servidor se inicializará y quedará a la escucha de nuevos
clientes.

El servidor está preparado para reiniciarse de forma automática en caso de
algún fallo.

4.2. Acceso remoto al servidor dedicado mediante el termi-
nal

Para la creación de una instancia del terminal debe ejecutarse el juego con el si-
guiente comando: java -jar RallyX3.jar -terminal ip port, teniendo como

33

argumentos la dirección IP y el puerto en el que se ubica el servidor dedicado con
el que se desea conectar (p.ej. java -jar RallyX3.jar -terminal 192.168.1.

161 5550).
Si existe un servidor dedicado en funcionamiento en dicha ubicación se requerirá
introducir la contraseña establecida para dicho servidor.

Si no existe el servidor o la contraseña es incorrecta, el proceso �nalizará.

Si la contraseña es correcta, aparecerá el menú con las siguientes opciones:

modi�car con�guración del juego: modi�ca todas las opciones del juego que
se con�guran desde las pantallas de los menús, excepto las relativas a VESPA.

modi�car ParamCon�g.txt : modi�ca los valores de dicho �chero.

modi�car con�guración de VESPA: modi�ca la con�guración del sistema
VESPA.

modi�car mapa: se solicita la elección de un nuevo mapa para la partida.

recuperar los �cheros estadísticos creados: crea en el directorio que se desee
una copia de todos los �cheros de estadísticas existentes en el directorio
de juego del servidor dedicado, dando la opción de borrar los originales al
�nalizar.

34

salir: �naliza el proceso.

4.3. Creación del servidor de recogida de estadísticas

Para la creación de una instancia del servidor de recogida de estadísti-
cas debe ejecutarse el juego con el siguiente comando: java -jar RallyX3.jar

-statserver.

35

Nada más iniciarse, el proceso actualiza la dirección IP a la que apunta la DDNS
(DNS dinámica) nrxss.twilightparadox.com, que es con la que conectan los
servidores. Acto seguido, se requiere seleccionar el directorio donde se escribirán
las estadísticas que se reciban, después de lo cual el proceso permanecerá a la
espera de conexiones de los servidores.

5. Con�guración técnica avanzada

Existen diversos parámetros del juego que pueden ser modi�cados de forma
externa a los menús de la aplicación. Estos parámetros modi�can aspectos clave
en el funcionamiento del juego por lo que debe tomarse especial precaución en su
modi�cación.

5.1. Modi�cación de los APIs usados para la obtención de
los mapas

En el directorio de juego, en el interior de la carpeta �Maps�, se encuentra un
�chero �OSM_APIs.txt� que contiene un listado de URLs apuntando a diferentes
APIs de OpenStreetMap que pueden ser usadas.
El juego, cuando trate de añadir un nuevo mapa, probará primero con la primera
API de la lista y si ésta devuelve un mensaje de error se probará con la siguiente,
y así sucesivamente. Si se llega al �nal de la lista sin lograr descargar el mapa, se
hará uso de la API o�cial, cuya URL se contiene dentro del código del juego.

36

5.2. Modi�cación del �chero de con�guración ParamCon-

�g.txt

En el directorio de juego se encuentra el �chero de texto �ParamCon�g.txt�,
que contiene diversos parámetros del juego que pueden ser modi�cados por el
usuario.

El �chero está estructurado de forma que por cada parámetro existe una pri-
mera línea con el nombre (que comienza por el carácter #) seguida de otra línea
con el valor que toma.

La lista de los parámetros incluidos y sus descripciones es la siguiente:

Nombre Valor por defecto Descripción

radioMaxMapa 0.0050 Radio máximo del selector de ta-
maño al añadir un nuevo mapa.
En unidades UTM.

radioPeqMapa 0.0030 Radio mínimo del selector de ta-
maño al añadir un nuevo mapa.
En unidades UTM.

MaxBytesUDP 6000 Tamaño máximo de los mensa-
jes de red (en bytes)

MaxExtrapolation 5 Número máximo de ciclos sobre
los que se podrá aplicar la técni-
ca de extrapolación cuando sea
necesaria.

MaxInterpolation 2 Número de ciclos sobre los que
se aplicará la técnica de interpo-
lación. Aumentar este valor re-
ducirá los �saltos de posición�
del resto de vehículos a costa de
aumentar la latencia del juga-
dor.

NUM_PARKINGS_FIJOS 30 Número de plazas de aparca-
miento �falsas� (están perma-
nentemente ocupadas).

NUM_PARKINGS 10 Número de plazas de aparca-
miento útiles (se ocupan y de-
socupan a lo largo de la parti-
da).

NUM_FX 20 Número máximo de efectos vi-
suales simultáneos (humos, ma-
reos, etc.).

37

timeoutWaitingPlayers 60 Tiempo que puede estar el servi-
dor esperando a que se conecte
el primer jugador antes de abor-
tar la creación de la partida.

timeoutWaitingPlayersDedicated 180 Tiempo que puede estar el ser-
vidor dedicado esperando a que
se conecte el primer jugador an-
tes de abortar la creación de la
partida.

framesPropagacionExplosion 5 Número de ciclos en los que se
envía el aviso de que ha habi-
do una explosión al cliente. Este
valor debe aumentarse en caso
de altas latencias, ya que de lo
contrario no se visualizarán las
explosiones.

maxTC 50 Valor máximo para el campo
�Number of neutral cars� de la
pantalla �Game rules con�gura-
tion�.

maxRC 8 Valor máximo para el campo
�Maximum number of enemy
cars� de la pantalla �Game rules
con�guration�.

maxNodos 10000 Número máximo de nodos de un
mapa. No se permitirá descargar
mapas con un número de nodos
mayor a este valor.

WOLFSON (ON=1) 0 Aplicación del método WOLF-
SON en la implementación de
VESPA.

maxPlayers 8 Número máximo de jugadores
que se puedan unir a una par-
tida.

cochesBuscandoParking 10 Vehículos del trá�co que están
buscando aparcamiento (núme-
ro constante en el tiempo).

TIEMPO_CAMBIO 20000 Tiempo mínimo que permanece-
rá un vehículo del trá�co apar-
cado. En milisegundos.

MARGEN_TIEMPO_CAM-
BIO

20000 Tiempo máximo (adicional so-
bre el mínimo) que permanecerá
un vehículo del trá�co aparcado.
En milisegundos.

38

RADIO_PARKING_VALIDO 500 Distancia máxima a la que se
considera que un aparcamiento
está cercano a un objetivo. En
metros.

PARKING_PRO-
TOCOL (0=Ti-
me,1=Distance,2=EP,3=None)

2 Tipo de protocolo de reserva (de
aparcamiento) usado en la im-
plementación de VESPA.

DISTANCIA_CERCA 700 Distancia máxima respecto del
jugador a la que se recibirán da-
tos del resto de elementos. Se
debe aumentar si se quiere te-
ner conocimiento de la posición
del resto de vehículos en el ra-
dar cuando la opción �#debu-
gRadar (ON=1)� está activada.

debugRadar (ON=1) 0 Muestra en el radar el resto de
vehículos y las plazas de aparca-
miento y su ocupación.

VESPA_StatisticsOn (ON=1) 1 Activa la recogida de datos esta-
dísticos de VESPA.

Parking_Player_StatisticsOn
(ON=1)

1 Activa la recogida de datos esta-
dísticos de aparcamientos de ju-
gadores.

Parking_Tra�c_StatisticsOn
(ON=1)

1 Activa la recogida de datos es-
tadísticos de aparcamientos de
vehículos del trá�co.

Game_StatisticsOn (ON=1) 1 Activa la recogida de datos esta-
dísticos del resumen de la parti-
da.

Stat server IP nrxss.twilightparadox.com URL o dirección IP de la ubi-
cación del servidor estadístico al
que se desea enviar las estadísti-
cas recogidas.

Stat server port 5558 Puerto en el que escucha el ser-
vidor estadístico al que se desea
enviar las estadísticas recogidas.

Cambio VESPA y protoco-
lo aparcamiento automatico
(0=desactivado)

0 Cambio automático entre di-
ferentes implementaciones de
VESPA (VESPA+P, VESPA-P
y sin VESPA). Se debe indi-
car cada cuantas rondas se desea
que se realice el cambio.

Allow untrained players ignoring
statistics (ON=1)

0 Permite que jugadores sin habi-
lidad su�ciente se unan a parti-
das del modo de juego �Parking
special mode�.

39

Minimum skill level to qualify a
player as trained

0.0083 Habilidad mínima exigida pa-
ra que un jugador pueda unir-
se a partidas del modo de juego
�Parking special mode�.

Disable in-game transparencies
(disable=1)

0 Deshabilita las transparencias
prescindibles en los grá�cos del
juego.

Disable prediction of collisions
(disable=1)

0 Deshabilita la predicción de las
colisiones en el cliente (aumenta
el rendimiento a costa de mayo-
res errores de predicción)

Data management strategy selec-
ted

vespa Implementación de Data Mana-
gement Strategy deseada.

Nota: la modi�cación de los valores por defecto puede hacer el juego injugable
o perjudicar su rendimiento.

Nota: Para volver a usar los valores por defecto se debe eliminar este archivo.
Al volver a iniciar el juego el archivo se creará de nuevo con los valores iniciales.

6. Resolución de problemas

A continuación se describen los problemas más comunes y sus posibles solucio-
nes.

6.1. Bajo rendimiento (framerate bajo)

Posibles causas:

elección de un mapa demasiado extenso o detallado: debe prestarse atención
al número de nodos que posee el mapa y descargar el mismo mapa con un
menor tamaño.

demasiados vehículos: debe probarse a reducir el número de vehículos del
trá�co y de vehículos enemigos.

problema con el pintado de transparencias: se puede comprobar pulsando
la tecla Q durante el juego para desplegar la información de ronda, que es
transparente, y observar si en ese momento el framerate disminuye drástica-
mente. En caso a�rmativo debe deshabilitarse el pintado de transparencias
mediante el parámetro #Disable in-game transparencies (disable=1)

del �chero �ParamCon�g.txt� (ver apartado 5.2).

40

6.2. Error de conexión en los primeros segundos de la par-
tida

Debe asegurarse que los valores de los parámetros #DISTANCIA_CERCA y #debug
Radar (ON=1) del �chero �ParamCon�g.txt� coincida en todos los clientes y el
servidor.

6.3. Corrupción u obsolescencia de los datos

El formato de los �cheros �ParamCon�g.txt�, �con�g� y �data� puede variar
en diferentes versiones del juego. Cuando se actualice a una nueva versión, si no
se proporciona ninguna herramienta para realizar la conversión, deben eliminarse
dichos �cheros para que el juego cree las versiones por defecto al iniciarse.

7. Licencias

Developing Games In Java
Algunos de los algoritmos descritos en el libro han sido usados en esta apli-
cación.

Copyright (c) 2003, David Brackeen
All rights reserved.

Redistribution and use in source and binary forms, with or without modi�-
cation, are permitted provided that the following conditions are met: Redis-
tributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright noti-
ce, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
Neither the name of David Brackeen nor the names of its contributors may
be used to endorse or promote products derived from this software without
speci�c prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIEDWA-
RRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WA-
RRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

41

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OT-
HERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JLayer
Available at http://www.javazoom.net/javalayer/javalayer.html.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Library General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your option)
any later version. This program is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Library General Public License for more details. You should
have received a copy of the GNU Library General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

OpenSteer
Algunos de los algoritmos y estructuras de datos de esta librería han sido
adaptados para el uso en esta aplicación.

Available at http://opensteer.sourceforge.net/.
OpenSteer is distributed as open source software in accordance with the MIT
License. For more information see http://opensource.org/licenses/mit-
license.php

Xerces
Available at http://xerces.apache.org/#xerces2-j.
This component is licensed under Apache License Version 2.0. For more
information see http://www.apache.org/licenses/LICENSE-2.0.

Guava (Google Core Libraries for Java)
Available at https://code.google.com/p/guava-libraries/.
This component is licensed under Apache License Version 2.0. For more
information see http://www.apache.org/licenses/LICENSE-2.0.

Música:

- Methylchloroisothiazolinone (Instrumental Version) album Dirty Wings
(Instrumental Version) by Josh Woodward (Instrumental Versions).
Available under a Creative Commons Attribution 3.0 Unported licence.

42

For more information see http://creativecommons.org/licenses/

by/3.0/. Available at http://www.jamendo.com/es/track/760400/

methylchloroisothiazolinone-instrumental-version

- Video game album Metamorphosis by Howarang Van K. Available un-
der a Creative Commons Attribution-ShareAlike 3.0 Unported licence.
For more information see http://creativecommons.org/licenses/

by-sa/3.0/. Available at http://www.jamendo.com/es/track/923426/
video-game

43

	1 Introducción
	1.1 Motivación del proyecto
	1.2 Objetivos
	1.3 Trabajo previo y herramientas
	1.4 Trabajo relacionado
	1.5 Estructura de la memoria

	2 Videojuego desarrollado
	2.1 Resumen del juego
	2.2 Arquitectura del sistema
	2.3 Menús del juego
	2.4 Obtención de mapas
	2.5 Elementos del terreno
	2.6 Física
	2.7 Inteligencia artificial
	2.7.1 Comportamiento de los vehículos
	2.7.2 Aplicando Steering behaviors
	2.7.3 Búsqueda de caminos

	2.8 Funcionamiento en red
	2.8.1 Modelo de red
	2.8.2 Predicción del lado cliente
	2.8.3 Interpolación de entidades

	2.9 Sistema VESPA
	2.10 Menú de pausa
	2.11 Sonido
	2.12 Modos de juego y gestión de rondas y objetivos
	2.13 Mensajes durante el juego

	3 Explotación
	3.1 Motivación
	3.2 Aplicación
	3.3 Limitaciones
	3.4 Ventajas
	3.5 Elementos añadidos al juego
	3.6 Posibles mejoras de VESPA y problemas encontrados
	3.7 Resultados experimentales
	3.8 Rendimiento del juego

	4 Conclusiones
	4.1 Conclusiones
	4.2 Línea temporal de la realización del proyecto
	4.3 Trabajo futuro
	4.4 Valoración personal

	Bibliografía
	Anexos
	A Análisis
	A.1 Requisitos
	A.2 Casos de uso
	A.3 Diagrama de navegación
	A.4 Prototipado de ventanas
	A.5 Modos de juego

	B Diseño
	B.1 Arquitectura de la aplicación
	B.2 Capas de la arquitectura
	B.3 Despliegue
	B.4 Diagramas de clases
	B.4.1 Módulo de salida
	B.4.2 Módulo de menús
	B.4.3 Módulo gestor de escenarios
	B.4.4 Módulo de servidor maestro
	B.4.5 Módulo de servidor estadístico
	B.4.6 Módulo de estadísticas
	B.4.7 Módulo logger
	B.4.8 Módulo de menú in-game
	B.4.9 Módulo de terreno
	B.4.10 Módulo gestor de conexiones
	B.4.11 Módulo de física
	B.4.12 Módulo de inteligencia artificial
	B.4.13 Módulo cliente
	B.4.14 Módulo servidor

	B.5 Game Loop (bucle de juego)
	B.5.1 Servidor
	B.5.2 Cliente
	B.5.3 Actor

	B.6 Hilos de ejecución

	C Sobre el videojuego
	C.1 Menús del juego
	C.1.1 Tipografía
	C.1.2 Directorio del juego
	C.1.3 Prevención de errores
	C.1.4 Pantallas de error
	C.1.5 Pantallas de mapas
	C.1.6 Otros aspectos importantes

	C.2 Obtención de mapas
	C.2.1 OpenStreetMap
	C.2.2 Implementación
	C.2.3 Problemas encontrados

	C.3 Elementos del terreno
	C.3.1 Nodos
	C.3.2 Caminos
	C.3.3 Multipolígonos

	C.4 Física y colisiones
	C.4.1 Detección de colisión con elementos del terreno
	C.4.2 Detección de colisión con otros actores
	C.4.3 Cálculo de la fuerza resultado de una colisión con otros actores
	C.4.4 Aplicación del resultado de la colisión con el terreno

	C.5 Inteligencia Artificial
	C.5.1 Steering behaviors
	C.5.2 Comportamientos complejos
	C.5.3 Soluciones a las carencias de la IA
	C.5.4 Path-finding
	C.5.5 Normas de circulación

	C.6 Funcionamiento en red
	C.6.1 Funcionamiento básico
	C.6.2 Interpolación-extrapolación
	C.6.3 Predicción
	C.6.4 Compresión delta
	C.6.5 Envío de solo actores cercanos
	C.6.6 Optimizaciones
	C.6.7 Unión de jugadores a la partida

	C.7 Modos de juego y gestión de rondas y objetivos
	C.7.1 Modo tareas
	C.7.2 Plazas de aparcamiento
	C.7.3 Capacidad de salir del vehículo
	C.7.4 Modo supervivencia

	D Sobre VESPA y la explotación
	D.1 Vespa
	D.1.1 Breve introducción a VESPA
	D.1.2 Interfaces desarrolladas
	D.1.3 Implementación desarrollada
	D.1.4 Protocolo de reserva
	D.1.5 Necesidades de la implementación
	D.1.6 Atascos (elaborados para el aprovechamiento de VESPA)

	D.2 Añadidos para la explotación
	D.2.1 Servidor dedicado
	D.2.2 Servidor de recogida de estadísticas
	D.2.3 Estadísticas

	D.3 Rendimiento del juego

	E Artículo IMMoA'13
	F Manual de usuario

