Departamento de
Escuela de
Ingenieria y Arquitectura

. Informatica e Ingenieria
de Sistemas
Universidad Zaragoza

UniversidadZaragoza

1542

Proyecto Fin de Carrera
Ingenieria en Informatica

Videojuego de coches en red para la
evaluaciéon de un sistema P2P de

comparticion de informaciéon

Victor J. Rujula Nasarre de Letosa

Directores:
Sergio Ilarri Artigas
Eduardo Mena Nieto

Area de Lenguajes y Sistemas Informaticos
Departamento de Informética e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura

Universidad de Zaragoza

Agosto 2013

Videojuego de coches en red para la evaluacién de un
sistema P2P de comparticién de informacién

RESUMEN

El objetivo de este proyecto es desarrollar un videojuego cuya utilizacién permita
evaluar estrategias de gestién de informacién en redes vehiculares, una tarea actualmente
realizada mediante simuladores, pero que resulta muy costosa debido a la dificultad de
ajustar correctamente los parametros usados por las diferentes estrategias.

Con este fin, se ha desarrollado un videojuego de coches para multiples jugadores
en red, en el que los jugadores tienen que completar diferentes objetivos en misiones de
cardcter competitivo mientras circulan por escenarios creados con datos reales obtenidos
mediante el sistema de mapas de carretera OpenStreetMap.

Para facilitar la explotacién del juego como método de evaluaciéon, se han anadido
diversos elementos como vehiculos no humanos del trafico, vehiculos de servicios de emer-
gencia y plazas de aparcamiento que son ocupadas dindmicamente por el trafico y los
jugadores.

Ha sido necesario el estudio del sistema de gestion de informacién VESPA para su
posterior implementacién en el juego, as{ como también el estudio y la aplicaciéon de
diferentes arquitecturas y técnicas de optimizacién de red y de técnicas de control de los
vehiculos no humanos.

El juego ha sido implementado siguiendo una arquitectura de red de tipo cliente-
servidor con predicciéon en el cliente, usando técnicas como la interpolacion, la extrapola-
cion y la compresiéon delta, haciendo uso de los protocolos TCP y UDP. También se han
definido los interfaces necesarios para poder integrar en el juego cualquier estrategia de
gestion de informacion, a partir de las cuales se ha desarrollado una implementacion del
sistema VESPA.

Para facilitar la recogida de datos también se ha desarrollado un servidor dedicado,
para tener un lugar centralizado desde el cual recopilar dichos datos, y otro proceso con
la funcién de servidor de recogida de estadisticas, el cual recibe la informacion recopilada
por los diferentes servidores durante las partidas.

Los resultados obtenidos han demostrado que a pesar de que el videojuego puede

suponer una buena herramienta para recopilar mucha informacién para una gran varie-
dad de escenarios, los resultados obtenidos deben ser tomados con precaucién, ya que
la pericia del jugador o los elementos introducidos para aumentar la diversiéon del juego
pueden alterar los resultados obtenidos.
Por este motivo el videojuego no debe verse como un sustitutivo de los métodos tradi-
cionales de evaluacién, como los simuladores, sino como un complemento, ya que puede
ayudar a recopilar con menos esfuerzo los datos que seran utilizados para afinar el pro-
tocolo y también puede servir para obtener conclusiones iniciales previas a la evaluacién
en el simulador.

Agradecimientos

Me gustaria agradecer este Proyecto Fin de Carrera a todas las personas que
lo han hecho posible con su apoyo y dedicacion.

En primer lugar a mis directores de proyecto Sergio Ilarri y Eduardo Mena,
por su paciencia y su inestimable ayuda, sin la cual este proyecto no hubiera sido
posible. A mis companeros y amigos de clase, con los que he compartido estos anos
de carrera, por hacer que esos momentos de estudio y de practicas fuesen agradables
y amenos. A mi familia y amigos mas cercanos, por su paciencia y por motivarme
para seguir adelante en los momentos més complicados. A mis amigos Dani y Jorge
por su inestimable colaboraciéon cuando fue necesario probar el funcionamiento del
juego con varios jugadores. A mi ex-companera de piso Megan, por ayudarme en
todas las dudas que me surgieron al traducir los textos y el manual de uso al inglés,
asf como al resto de companeros de piso, por haber sido como una segunda familia
para mi.

Y por supuesto, a la Universidad de Zaragoza y a todos aquellos profesores de
los que he aprendido tanto a lo largo de estos anos.

También debo agradecer el uso que realizo en este proyecto de las librerias
JLayer, Xerces, Guava y OpenSteer, y los algoritmos obtenidos del libro Developing
Games In Java, asi como también a Josh Woodward y Howarang Van K. por el
uso de su musica.

III

Indice general

1.

3.

Introduccién

1.1. Motivacién del proyecto L.
1.2. Objetivos e
1.3. Trabajo previo y herramientas
1.4. Trabajo relacionado
1.5. Estructura de la memoria

. Videojuego desarrollado

2.1. Resumen del juego Lo
2.2. Arquitectura del sistema
2.3. Mentsdel juego Lo
2.4. Obtencion de mapas
2.5. Elementos del terreno Lo oL
2.6. Fisica e
2.7. Inteligencia artificial 0oL
2.7.1. Comportamiento de los vehiculos
2.7.2. Aplicando Steering behaviors
2.7.3. Busqueda de caminos L.
2.8. Funcionamientoenred L.
2.8.1. Modeloderedo
2.8.2. Prediccion del lado cliente
2.8.3. Interpolacion de entidades
2.9. Sistema VESPA
2.10. Menti de pausao
211.8Sonidoo
2.12. Modos de juego y gestion de rondas y objetivos
2.13. Mensajes durante el juegoo

Explotacién
3.1, Motivaciono Lo
3.2. Aplicacion

10
12
13
14
16
17
18
19
20
21
23
24
25
25
25
26
28

3.3. Limitaciones 34
3.4. Ventajaso 36
3.5. Elementos anadidos al juego oo 36
3.6. Posibles mejoras de VESPA y problemas encontrados 38
3.7. Resultados experimentales 38
3.8. Rendimiento del juego oL 42

4. Conclusiones 43
4.1. Conclusiones L 43
4.2. Linea temporal de la realizacion del proyecto 47
4.3. Trabajo futuro 50
4.4. Valoracion personal o 53
Bibliografia 55
Anexos 59
A. Analisis 61
AL, Requisitos 61
A2 Casosde uso. 64
A.3. Diagrama de navegacion oL 84
A.4. Prototipado de ventanas L. 88
A5, Modos de juego 95

B. Diseno 97
B.1. Arquitectura de la aplicacion 97
B.2. Capas de la arquitectura 99
B.3. Despliegue 100
B.4. Diagramas declaseso 103
B.4.1. Médulodesalida, 103

B.4.2. Moédulodementis 106

B.4.3. Modulo gestor de escenarios 110

B.4.4. Modulo de servidor maestro 112

B.4.5. Modulo de servidor estadistico 115

B.4.6. Modulo de estadisticas oL 115

B.4.7. Modulo loggero 119

B.4.8. Modulo de menti in-game 119

B.4.9. Modulo de terreno 122

B.4.10. M6dulo gestor de conexiones 123

B.4.11. Modulo de fisica L. 127

B.4.12. Médulo de inteligencia artificial 128

VI

B.4.13. Mo6dulo cliente 129

B.4.14. Moédulo servidoro 132

B.5. Game Loop (bucle de juego) L. 132
B.5.1. Servidor 134
B.5.2. Cliente oo 136
B.5.3. Actor. 138

B.6. Hilos de ejecucion 139
. Sobre el videojuego 143
C.1. Ments del juego L 143
C.1.1. Tipografia 143
C.1.2. Directorio del juego 144
C.1.3. Prevencién de errores 146
C.1.4. Pantallasdeerror, 147
C.1.5. Pantallasde mapas 147
C.1.6. Otros aspectos importantes 148

C.2. Obtencion de mapas 149
C.2.1. OpenStreetMap 149
C.2.2. Implementacion 151
C.2.3. Problemas encontrados 153

C.3. Elementos del terreno o 154
C.3.1. Nodos e 155
C.3.2. Caminos 156
C.3.3. Multipoligonos 157

C.A4. Fisicay colisioneso 158
C.4.1. Deteccion de colision con elementos del terreno 158
C.4.2. Detecciéon de colision con otros actores 160
C.4.3. Célculo de la fuerza resultado de una colisién con otros actores162
C.4.4. Aplicacion del resultado de la colision con el terreno 162

C.5. Inteligencia Artificial L. 164
C.5.1. Steering behaviors 164
C.5.2. Comportamientos complejos 172
C.5.3. Soluciones a las carenciasde laTA 177
C.5.4. Path-findingo 179
C.5.5. Normas de circulacion 180

C.6. Funcionamientoenred, 180
C.6.1. Funcionamiento basico 181
C.6.2. Interpolacion-extrapolacion 184
C.6.3. Prediccion 186
C.6.4. Compresiondelta 188
C.6.5. Envio de solo actores cercanos 188

VII

C.6.6. Optimizaciones 190

C.6.7. Union de jugadores a la partida 193

C.7. Modos de juego y gestion de rondas y objetivos 195
C.7.1. Modotareas e 195

C.7.2. Plazas de aparcamiento 197

C.7.3. Capacidad de salir del vehiculo 199

C.7.4. Modo supervivencia 199

D. Sobre VESPA y la explotaciéon 201
D.1. VESPA o 201
D.1.1. Breve introducciéon a VESPA 201

D.1.2. Interfaces desarrolladas 202

D.1.3. Implementacion desarrollada 204

D.1.4. Protocolo de reserva 216

D.1.5. Necesidades de la implementacion 218

D.1.6. Atascos (elaborados para el aprovechamiento de VESPA) . . 219

D.2. Anadidos para la explotaciéon 221
D.2.1. Servidor dedicado L. 221

D.2.2. Servidor de recogida de estadisticas 223

D.2.3. Estadisticas 227

D.3. Rendimiento del juego oL 232

E. Articulo IMMoA’13 235
F. Manual de usuario 245

VIII

Indice de figuras

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.
2.11.
2.12.
2.13.
2.14.

3.1.
3.2.
3.3.
3.4.
3.5.

4.1.
4.2.
4.3.

Al
A2
A3.
AA4.

Juego Rally-X (Namco 1980) en el cual se ha basado este videojuego 8

Funcionamiento del servidor 9
Funcionamiento del cliente 10
Diagrama de navegacion Lo 11
Etapas del calculo del vector fuerza resultante de una colision . . . 16
Detalle del estado Normal de la inteligencia de los vehiculos del trafico 18
Path-finding asincronoo 20
Flujo de mensajes UDP 22
Captura de pantalla en la que se observa la diferencia entre la posi-

cion predicha del vehiculoy lareal 23
Prediccion e interpolacion aplicadas conjuntamente 24
Diagrama navegaciéon mend de pausa 26
Diagrama de las clases de la gestion de rondas y objetivos 27
Diagrama de la gestion de rondas 27
Captura de pantalla en la que se muestra la explicacion de la ronda

y un mensaje GUI 29
Despliegue de los componentes en unared 33
Arquitectura de la la conexiéon entre el juego y el DMS 35
Mejoria en el tiempo para aparcar por un humano 40
Mejoria en tiempo para aparcar por el computador 41
Comparativa mejoria de tiempo entre humanos y no humanos . . . 41
Porcentaje de horas de cada tipo de tarea 48
Porcentaje de tareas de cada iteracion 49
Cronograma del desarrollo de las diferentes iteraciones 49
Casos de uso: navegacion meniis 65
Casos de uso: partida 66
Casos de uso: detalle del modo de juego «capture the flags» 66
Casos de uso: detalle del modo de juego «capture the red carsy . . . 67

IX

A.5. Casos de uso: detalle del modo de juego «solve the task» y «task

endurance survivalyo L oo 67
A.6. Casos de uso: detalle del modo de juego «parking special mode» . . 68
A.7. Diagrama de navegacion (primera iteracion) 86
A.8. Diagrama de navegacion (tltima iteracion) 87
A.9. Prototipo de ventana inicial, 88
A.10.Prototipo de ventana de unién a partida existente 89
A.11.Prototipo de ventana modificacién configuracion de red (en union) . 89
A.12.Prototipo de ventana de error conectando a partida 90
A.13.Prototipo de ventana de sala de espera (en unién) 90
A.14.Prototipo de ventana de crear una nueva partida 91
A.15.Prototipo de ventana modificar configuracion red (en creacion) . . . 91
A.16.Prototipo de ventana de reglas del juego 92
A.17 Prototipo de ventana de gestion de mapas 92
A.18.Prototipo de ventana vista previamapa 93
A.19.Prototipo de ventana sala de espera (en creacion) 93
A.20.Prototipo de ventana confirmaciéon creacion 94
A.21.Prototipo de ventana cargando partida 94
A.22.Prototipo de ventana resumen después de partida 95
A23.Modos de juego 95
A.24. Tipos de tarea de los modos de juego 96
B.1. Diagrama de componentes 98
B.2. Capas de la arquitectura 100
B.3. Pseudo diagrama de despliegue sin servidor dedicado 101
B.4. Pseudo diagrama de despliegue con servidor dedicado 102
B.5. Clases del modulo de salida 104
B.6. Detalle de las clases «SpriteCache» y «ResourceCache» 105
B.7. Detalle de la clase dedicada al sonido MP% 105
B.8. Detalle las clases dedicadas al sonido WAV 106
B.9. Clases del modulo de mentdis 107
B.10.Detalle de la clase «Contenedory 108
B.11.Detalle de la clase «PantallaAnimaday 109
B.12.Clases del médulo de gestor de escenarios 110
B.13.Detalle de la clase «GestionDeMapas» 111
B.14.Detalle de las clases «DATstruct», «Lugary y «ProcesarXMLCon-

sultay . ..o 112
B.15.Detalle de la clase «ProcesarXMLMapa» 113
B.16.Clases del modulo de servidor maestro 114
B.17.Clases del modulo de servidor estadistico 116
B.18.Clases del modulo de estadisticas 117

X

B.19.Detalle de la clase «CurrentConfiglnfo (CCI)» 117
B.20.Detalle de las clase «TADEstadisticasAparcamiento» y «Estadisti-

casAparcamientoy» L. 118
B.21.Clases del modulo de logger oL 119
B.22.Clases del médulo de mend in-game 120
B.23.Detalle de la clase «MenulnGameControles» 120
B.24.Detalle de la clase «MenuEscape» y las relacionadas 121
B.25.Clases del modulo de terreno 122
B.26.Clases del modulo de gestor de conexiones (1 de2) 124
B.27.Clases del modulo de gestor de conexiones (2de 2) 124
B.28.Detalle de las clases «<UDP _cliente» y «Cliente» 125
B.29.Detalle de las clases «GestorSnaps» y «EventoGUI» 126
B.30.Detalle de una clase acumulador 126
B.31.Clases del modulo de fisica 127
B.32.Clases del modulo de inteligencia artificial 128
B.33.Clases del modulo de cliente 130
B.34.Detalle de la clase «kRadarVespay» 131
B.35.Detalle de la clase «MiniMapEvent» 131
B.36.Detalle de la clase «Flecha» 132
B.37.Clases del modulo de servidor 133
B.38.Funcionamiento del servidor 135
B.39.Funcionamiento del cliente 137
B.40.Herencia de las clases de actores 139
B.41.Vista general de los hilos de ejecuciono 0L L 141
B.42.Detalle de los hilos de ejecucion del servidor 142
C.1. Estructura del directorio de juego 144
C.2. Ejemplo de contenido del fichero «ParamConfig.tzt» 145
C.3. Ejemplo de contenido del fichero «OSM _APIs.txty 145
C.4. Imagen que se muestra cuando no se ha podido previsualizar el mapal54
C.5. Deteccién de colisiones con el terreno 159
C.6. Separating Axis theorem 160
C.7. Captura en la que se muestran los obstaculos a evitar por obstacle

AVOTAANCE e e e e e e e e 161
C.8. Calculo del vector fuerza resultante de una colision 163
C.9. Comportamientos seek y flee 166
C.10.Comportamientos pursuit y evaston o 167
C.11.Comportamiento obstacle avoidance 168
C.12.Comportamiento wander 169
C.13.Comportamiento path following 170
C.14.Comportamiento unaligned collision avoidance 171

XI

C.15.Prioridades en la composicion de comportamientos a base de steerings173
C.16.Diagrama de estados TA: visién general 174
C.17.Detalle del estado Normal de la inteligencia de los vehiculos enemigos175
C.18.Detalle del estado Normal de la inteligencia de los vehiculos del traficol75
C.19.Detalle del estado Circular y Buscar aparcamiento de la inteligencia

de los vehiculos del trafico 176
C.20.Camino con primer nodo en sentido opuesto 179
C.21.Interpolacion con buffer de lestado 185
C.22.Diferencia entre el tltimo estado recibido y el estado que se pinta

en pantalla, debido al buffer de interpolaciéon 185
C.23.Efecto de la latenciadered 187
C.24.Agrupaciéon de booleanos de la clase Opciones 192
C.25.Agrupacion de booleanos de la clase Tarea 192
C.26.Agrupaciéon de booleanos de la clase WaitingRoom 192
C.27.Agrupacion de booleanos de la clase GameQuver 193
C.28.Agrupacion de booleanos de la clase DanyoVelocidadY Calle 193
C.29.Secuencia temporal de la unién de jugadores a la partida 194

C.30.Captura mostrando los puntos de parking y los puntos intermedios . 198

D.1. Médulos del sistema VESPA 202
D.2. Arquitectura de la la conexion entre el juego y el DMS 205
D.3. Estructura de la arquitectura VESPA implementada 206
D.4. Comunicacion entre los diferentes modulos implementados 207
D.5. Hilo de ejecucion de la deteccion de un evento 208
D.6. Hilo de ejecuciéon de la recepcion de un evento 209
D.7. Hilo de ejecucion del gestor de almacenamiento 210
D.8. Hilo de ejecuciéon del procesador de consultas continuas 210
D.9. Atascos representados enelradar 220

D.10.Esquema conexion con servidor dedicado (hay una partida en curso) 225
D.11.Esquema conexion con servidor dedicado (no hay ninguna partida

EILCUTSO) o v v v v e e e e e e e 225
D.12.Esquema conexioén sin servidor dedicado 226
D.13.Estructura del directorio de estadisticas 227
D.14.Ejemplo de contenido del fichero «CurrentConfiginfo.txty 228
D.15.Ejemplo de contenido del fichero «gameStats.tecty 228
D.16.Ejemplo de contenido del fichero «Player parking.tzt» 229
D.17.Ejemplo de contenido del fichero « Traffic parking.tzt» 230
D.18.Ejemplo de contenido del fichero « ALL vehicles.txty 231
D.19.Rendimiento con servidor dedicado para la configuracion: 2 jugado-

res, 25 trafico, 4 enemigos, mapa «Trementinesy 233

XII

D.20.Rendimiento con servidor no dedicado para la configuracion: 1 ju-
gador, 50 trafico, 8 enemigos, mapa «Trementinesy

XIII

X1V

Indice de tablas

3.1.
3.2.
3.3.

4.1.
4.2.

C.1.
C.2.
C.3.
CA4.
C.5.
C.6.
C.7.

D.1.
D.2.

Configuracion de VESPA oo 39
Porcentaje de mejora del tiempo de aparcamiento 40
Rendimiento obtenido con varias configuraciones 42
Separacion de horas por tipo de trabajo. 47
Separacion de horas por iteracion L. 48
Estructura de archivo de mapas .dat 153
Posibles valores del terreno L. 164
Nimero de usos del célculo de la distancia entre dos nodos 180
Problema de no enviar actores lejanos 189
Solucion al envio de actores no lejanos 189
Traza de funcionamiento del acumulador 191
Eleccion de «tipo de llegada» en una tarea 196
Estructura de evento VESPA implementada 211
Tamafio minimo y méaximo de envio en red (servidor — cliente)

segiin tipo de elemento oL 233

XV

XVI

Indice de algoritmos

B.1.
B.2.
B.3.
D.1.
D.2.
D.3.
D.4.
D.5.
D.6.
D.7.
D.8.
D.9.

Game loop 134
Bucle del actor 138
Método actualizar del actor o000 138
Detecciéon deun eventoo 212
Recepcion deunevento L. 214
Hilo de ejecucion del gestor de almacenamiento 215
Hilo de ejecucién del procesador de consultas continuas 215
Métodos del protocolo de reserva 217
Obtencion del vector direcciono 219
Estructura del servidor dedicado 224
Estructura del servidor de recogida de estadisticas 226
Estructura del hilo que maneja la conexion (Statistics server) 226

XVII

XVIII

Capitulo 1

Introduccion

En este capitulo se mostrard la motivacion existente para la realizacion de este
Proyecto Fin de Carrera, los objetivos que han sido marcados para el proyecto,
las librerias y herramientas utilizadas para su elaboracién y también se analiza-
r4 el trabajo relacionado. Finalmente se mostrara la estructura seguida en este
documento.

1.1. Motivacién del proyecto

Han sido varias las razones que me llevaron a elegir desarrollar este Proyecto
Fin de Carrera. La primera y principal ha sido el interés personal en el ambito del
desarrollo de videojuegos, que siempre me ha apasionado. Por otro lado, realizar
un proyecto complejo como es un videojuego, partiendo desde cero y sin tener
ningtn conocimiento particular de este Ambito, suponia un gran reto que desea-
ba afrontar porque me permitiria ampliar mis conocimientos en campos diversos
como inteligencia artificial, arquitecturas y optimizaciones de red, etc., de las que
poseia unos conocimientos limitados. Ademas, consideré que la experiencia que me
podia aportar este proyecto aumentaria mis posibilidades de desarrollar mi carrera
profesional en este Ambito.

1.2. Objetivos

El Proyecto Fin de Carrera que se describe en este documento tiene los siguien-
tes objetivos:

= Desarrollar un videojuego de coches, que cuente con coches controlados por
el ordenador y otros controlados por jugadores humanos conectados a través
de la red.

= Desarrollar lo necesario para que se compita en escenarios creados a partir de
datos reales obtenidos de algiin sistema que proporcione mapas de carreteras.

= Desarrollar una funcionalidad de descarga de mapas, de forma que introdu-
ciendo la localizacion en la que deseas jugar se descargue una porcion de
mapa alrededor del punto elegido.

= Integracion de los mecanismos de funcionamiento basicos de VESPA, de for-
ma que el videojuego desarrollado permita la evaluacion de las ventajas de
contar con este sistema frente a un competidor que no lo tenga. La integra-
cion se realizara de forma que resulte sencillo modificar el funcionamiento de
VESPA para evaluar el impacto de los cambios.

Ademés de estos objetivos marcados por la propuesta del Proyecto Fin de Ca-
rrera, también se ha tenido como objetivo lograr que el resultado sea un juego
divertido, con un nivel de dificultad moderado, de forma que no suponga un pro-
blema para los jugadores méas inexpertos pero que a la vez pueda llegar a suponer
un reto para los jugadores experimentados, v que pueda lograr despertar el interés
por seguir jugando de los usuarios que lo prueben.

1.3. Trabajo previo y herramientas

En esta seccion se listan las librerfas externas y herramientas utilizadas para
el desarrollo del proyecto, acompanadas de una breve descripcion del porqué de su
uso.

Cédigo externo

Para la implementacion de la inteligencia artificial del manejo de vehiculos
se han adaptado varios algoritmos contenidos en la libreria OpenSteer (Steering
Behaviors for Autonomous Characters)!, en la cual se hayan implementaciones de
varios de los métodos sugeridos en [17].

Concretamente los métodos de esta libreria adaptados son los siguientes: Obstacle
avoidance, Path following, Unaligned collision avoidance y Wander.

Librerias usadas

Para el desarrollo del proyecto se ha hecho uso de diversas librerias externas
que han permitido la implementaciéon en un tiempo razonable de ciertas funciones
necesarias que no formaban parte de los objetivos del proyecto:

'http://opensteer.sourceforge.net/

http://opensteer.sourceforge.net/

» Apache Xerces2 java?, para el analisis y extraccién de datos de los docu-
mentos XML obtenidos del servicio OpenStreetMap.

» JLayer?, para poder decodificar y reproducir sonido en MP3. Necesario para
que la musica de fondo pueda tener un tamano reducido.

» Guava-12.0%, conjunto de librerfas de Google de la que hago uso de su clase
ImmutableMap.

Herramientas de desarrollo

Durante el desarrollo de este Proyecto Fin de Carrera se han utilizado las
siguientes herramientas:

= NetBeans IDE 6.8, como editor de c6digo y ha sido especialmente benefi-
ciosa la ayuda que proporciona para elaborar interfaces graficas.

= Subversion, como herramienta de control de versiones.
= ClockingIT, como herramienta de gestion de tareas del proyecto.

s GIMP 2, editor grafico usado para la elaboracion de elementos gréaficos de
los ments y para la creacion y/o edicion de los sprites de los elementos del
juego.

= Audacity, editor de audio usado para la edicion de los efectos de sonido del
juego.

= Oracle VM VirtualBox, herramienta de virtualizaciéon usada para virtua-
lizar el sistema operativo Mac OS X y poder realizar pruebas para asegurar
la compatibilidad del juego.

= CamStudio 2.7 y Adobe Premiere Pro CS4, herramientas de captura y
edicion de video usadas para la creacion del video de la pagina web realizada
para el proyecto.

» Java VisualVM, herramienta en la que se muestra informacion detallada
de las aplicaciones java en funcionamiento, usada para analizar las mejoras
de rendimiento que se introducian y analizar cuales eran las partes del codigo
que mas afectaban al rendimiento.

’http://xerces.apache.org/#xerces2- j
3http://www.javazoom.net/javalayer/javalayer.html
‘https://code.google.com/p/guava-libraries/

http://xerces.apache.org/#xerces2-j
http://www.javazoom.net/javalayer/javalayer.html
https://code.google.com/p/guava-libraries/

= Netem, herramienta que proporciona funcionalidades de emulacion de redes
para probar protocolos y emular las propiedades de WANs®. Usada para
simular un entorno de internet o WAN para realizar pruebas mientras se
implementaban las técnicas de optimizaciéon de red.

Herramientas de documentacién

Ademaés de las anteriormente citadas, también se han usado las siguientes he-
rramientas para la elaboracion de la documentacion del proyecto:

» BTEX, lenguaje usado para la elaboracion de este documento.

= Visual Paradigm for UML 6.4, Microsoft Visio 2010 y Dia, editores
de diagramas.

1.4. Trabajo relacionado

La idea de beneficiarse de acciones humanas para mejorar o evaluar sistemas
se ha aplicado previamente en otros videojuegos, como por ejemplo:

= ESP game 23], en el cual los jugadores ayudan implicitamente a etiquetar
imagenes mientras juegan.

» CodeSpells [8], un videojuego de fantasia en el que los jugadores deben es-
cribir hechizos sirviéndose del lenguaje Java

= Planet PIj |14], un juego multijugador online que pretende servir para probar
arquitecturas P2P para juegos.

Sin embargo aparentemente este es el primer juego que serd disenado para
ayudar a evaluar estrategias de gestion de informacién para redes vehiculares.

Un juego similar en concepcion en cuanto que también permite circular por es-

cenarios reales es Mini Maps®, pero en dicho juego se pinta la vista de satélite de
google maps y se superpone el vehiculo, en lugar de crear un escenario a partir de
la informacion del mapa.
Otro juego, Push-Cars 2: On Europe Streets” también usa escenarios reales, pero
la diferencia es que no se puede jugar en cualquier localizacion deseada ya que los
escenarios estan prefijados ya que, aunque a partir de datos reales, estdn predise-
nados de antemano.

Shttp://www.linuxfoundation.org/collaborate/workgroups/networking/netem
Shttps://apps.facebook.com/minimaps/
"http://wuw.push-cars.com

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://apps.facebook.com/minimaps/
http://www.push-cars.com

1.5. Estructura de la memoria
El contenido de la memoria esta distribuido de la siguiente forma:

= En el capitulo 2 se expone el trabajo desarrollado para la elaboracién del
juego, excluyendo lo realizado para el sitio web o la explotacion.

= En el capitulo 3 se analiza la posible explotacion del juego como método para
probar diferentes técnicas de data sharing y se expone el trabajo realizado
para permitirlo. También se muestra el rendimiento obtenido del videojuego.

= En el capitulo 4 se muestran las conclusiones del proyecto, el posible trabajo
futuro de cara a mejorar el juego o la explotacion y una breve valoracion
personal.

Respecto al contenido de los anexos:

= FEn el anexo A se muestra todo lo referente al analisis realizado.
s Fn el anexo B se muestra todo lo relacionado con la fase de disenio.

= El anexo C contiene aspectos sobre el desarrollo del videojuego que no han
podido ser tratados en el capitulo 2 o han sido tratados de forma resumida.

= En el anexo D se detalla el funcionamiento y la implementacion del sistema
VESPA y todos los aspectos desarrollados para el uso del videojuego como
método de evaluacion. También se amplia la informacién sobre el rendimiento
del juego.

= El anexo E contiene el articulo presentado para el workshop IMMoA’13,
realizado conjuntamente con Sergio Ilarri y Eduardo Mena (en inglés).

= En el anexo F se proporciona el manual de usuario.

Capitulo 2

Videojuego desarrollado

En este capitulo se explican las funcionalidades basicas del sistema desarrolla-
do. Debido a la limitada extensién de la memoria, este capitulo estari centrado
unicamente en los aspectos mas importantes. Para profundizar méas sobre estos
aspectos acudir a los anexos.

2.1. Resumen del juego

Vanet-X es un juego de coches que puede ser jugado por hasta 8 personas
a través de Internet y que permite seleccionar escenarios de localizaciones reales
obtenidos a través del servicio de mapas OpenStreetMap.

El juego esta basado en el clasico videojuego Rally-X (Namco 1980) (ver figura
2.1), en el que el vehiculo del jugador debia recoger banderas en un tiempo limitado
mientras huia de los vehiculos enemigos que le perseguian insaciablemente, contra
los cuales podia usar nubes de humo de motor con el objetivo de desorientarlos.

Vanet-X cuenta con cuatro modos de juego diferenciados pero que comparten
ciertas caracteristicas en comun.

En todos se sigue un sistema de rondas continuo, inspirado en el existente en
los modos de juego zombis y supervivencia de los ultimos videojuegos de la saga
Call of Duty.

Este sistema consiste en que cuando se completa satisfactoriamente una ronda u
oleada, se avanza a la siguiente sin salir del mundo de juego ni con la aparicién
de ments intermedios, simplemente informando al jugador que la ronda ha sido
completada y que tiene unos segundos de descanso antes de que de comienzo la
siguiente, pero durante este intervalo de tiempo se puede seguir moviendo libre-
mente por el mundo de juego. De esta forma, se consigue una mayor inmersion
evitando pausas innecesarias.

Figura 2.1: Juego Rally-X (Namco 1980) en el cual se ha basado este videojuego

Modos de juego

2.2.

Capturar la bandera: el mas similar al clasico Rally-X. Debes capturar
las banderas en un tiempo limitado mientras coches enemigos te persiguen.

Capturar los coches enemigos: como el anterior no hay banderas y en
lugar de huir de los enemigos debes capturarlos.

Tareas: mientras los coches enemigos te persiguen, y en un tiempo limitado,
debes lograr completar una o varias tareas, que consisten en llegar a pie, en
coche o lograr un aparcamiento cercano a un punto de interés (por ejemplo
una tienda o un museo) o una direccion.

Supervivencia: como el anterior pero al completar los objetivos en lugar de
puntos logras dinero, que gastaras en repostar combustible o en reparaciones
del vehiculo. A diferencia de los anteriores modos, al completar la ronda
los enemigos no desaparecen, y ademés tienden a ser mas numerosos contra
méas rondas se avance, y también a diferencia del resto de modos de juego,
no completar satisfactoriamente una ronda no supone perder la partida sino
que unicamente se deja de ganar el dinero que el objetivo proporcionaba.

Arquitectura del sistema

La aplicacion Vanet-X integra de forma transparente para el usuario un modulo
cliente y un modulo servidor. Los motivos de la eleccién de una arquitectura cliente-
servidor se explican en el capitulo 2.8.

El diseno que se ha realizado no se ha basado en ningin modelo especifico exis-
tente, sino que se ha realizado un diseno especifico para el videojuego desarrollado
(ver figuras 2.2 y 2.3). Para mas detalles consultar anexo B.5.

L]
1]
1]
' . '
') Crear Gestor de Conexiones
1| Crearescenario |—p i . .
' (interactua con los clientes) '
L]
' :
' []

{ Gameloop | 7 'i """"""""" :

Recibir y procesar entradas de los jugadores

L]

1

L]

L}

L}

1

L} . . .
' / T no(juego_finalizado)
L}

' Comprobar

L}

L}

1

L]

L}

L]

1

L]

L}

objetivos de

i ; Enviar estado del "mundo”
la ronda y los objetivos actualizados

a los clientes
Lecccceann g T T T T T,
juego_finalizado

.. '

1 Finalizacion '
1]

L] . . .z Ty

' Enviar informacién sobre el Guardar estadisticas H

L] . ™

' Enviar sefial de juego (puntuaciones, tiempos, > y enviarlas al Servidor ,

' " . H " . P . .

' juego_finalizado' etc.) a los clientes de estadisticas (si existe) H

L]

' :

L]

Figura 2.2: Funcionamiento del servidor

Haciéndose una aproximacion muy simplificada se podria considerar que el

cliente es el encargado de recoger los eventos de teclado del jugador, enviarselos al
servidor para que los procese y, con los resultados que le devuelve, pintar la vista
del cliente del mundo de juego.
Como se explica en el capitulo 2.8.2, esto no es del todo cierto, ya que al introducir
la técnica de la prediccion, el cliente también incluye parte de la légica del juego,
aunque los resultados de la logica del servidor siguen teniendo prioridad sobre la
del cliente.

Para la implementacion del servidor se ha seguido un esquema multihilo (ver
anexo B.6), en el que existe un hilo principal con gran parte de la logica del juego,
pero ademés cada actor! tiene su propio hilo de ejecucion donde ejecuta su logica
asociada.

Ademas, también existe un hilo donde se ejecuta el gestor de mensajes TCP (ver
capitulo 2.8), y la implementacion de VESPA también crea sus propios hilos (cuatro
en la implementacion desarrollada).

Por su parte el cliente también es multihilo, a pesar de que en este caso los
actores no tienen sus propios hilos ya que su logica se ejecuta en el servidor (en

Lun actor es una entidad con un comportamiento auténomo

'
' '
' . . '
' Crear Gestor de Enviar y recibir '
' - . c . los d . Procesar el estado '

L]
: Iniciar musica | onexiones (parg > os gtos necesano§ > actual del juego !
' conectar con el servidor) para unirse a una partida '

'
' :

L]

Game loop

Recibir y procesar la informacién
sobre el estado actual del juego
del servidor

L]

H H
H H
' '
: :
' '
H H
' H
' ' { R no(juego_finalizado) '
: :
' '
' '
' H
' '
' '
: :
' '

Recoger entrada del jugador
‘ y enviarla al servidor

Realizar compensacion
de latencia de red \)

Actualizar elementos Actualizar la pantalla

locales al cliente con el estado actual

(efectos visuales y _) del mundo (eventos,
sonoro, etc.) vehiculos, etc.)

! Finalizacion ¢ """"""""""""""""""""""""""""""""""""" '
H Recibir informacion del H
: Detener musica Animar la pantalla juego para la pantalla final Volver almend |+
1| v efectos de sonido > de "game over" K (puntuaciones de cada > principal .
' equipo y jugador, tiempos) '
: :
L

Figura 2.3: Funcionamiento del cliente

el cliente se ejecuta su prediccion, pero ésta debe estar sincronizada y por ello se
ejecuta en el hilo principal). El gestor de sonido tiene sus propios hilos (uno por
cada sonido simultaneo permitido) y al igual que en el servidor, también existe un
gestor de mensajes TCP en un hilo propio.

2.3. Meniis del juego

Como en la practica totalidad de los juegos, Vanet-X cuenta con un sistema de
ments que permiten configurar multiples aspectos del juego y la partida antes de
comenzarla.

A diferencia de otros tipos de aplicaciones, en un videojuego es muy impor-
tante que los menis sean visualmente agradables e intuitivos, de forma que para
configurar los aspectos bésicos del juego no sea imprescindible leer el manual de
instrucciones. Por ello en Vanet-X se han seguido las siguientes directrices a la
hora de elaborar el men:

» Usar diversas pantallas con botones en lugar de barras de ments

= Dotar de dinamismo al ment. Esto se ha conseguido mediante un fondo en
movimiento en lugar de estatico.

10

= Mantener similitudes en la estructura de las diferentes pantallas. En este
caso en la mayoria de las pantallas existen los botones «Guardar cambios
y volvery», «Deshacer cambios y volvery» y «Establecer valores por defecto»
situadas en la misma posicién, asi como también los botones para avanzar o
retroceder de pantalla en las que no tienen parametros configurables.

El esquema de las pantallas se puede observar en la figura 2.4

Configuracién Configuracién
Configuracion avanzada de Configuracién | |y Avanzada
reglas del red (creacion) VESPA VESPA
juego
E] 7
» s - .
s ;. ‘__—' Gestion Visualizar
] e | demapas [7 >» mapa
Iniciar partida [~ pant. compl.
Carga | Canvas Resumen
Inicial ST N Juego N final
> Unirse a partida | 3| Informacion
.-)
Lt partida M
Tt T
Tt A
Tt
H A J % Runtime error
N H Configuracién L
Pt Error unién
vt avanzada de
Ve red (unién)
Tt
Tt
Tt
Tt
Tt
Tt
v+~ Opciones -3l Controles
H
"
"
" .
H v--)| Créditos
H
'
'
'---Y»| Desarrollo
—_—> —> - >
Flujo creacién/union Flujo error Flujo opcional Flujo no reversible
(reversible) (no reversible) (reversible)

Figura 2.4: Diagrama de navegacion

Existen tres «caminosy» bésicos en el menu:

1. Crear una partida nueva, donde se puede seleccionar modo de juego, esce-
nario y otros parametros y cuenta con cuatro subpantallas donde se puede
configurar los puertos de la comunicacion de red, los parametros de VESPA,
las reglas de la partida y gestionar los mapas de juego.

Unirse a una partida ya existente, donde debes introducir la direccion IP del
anfitrion y te muestra datos sobre la partida en curso como por ejemplo qué
jugadores estan conectados.

11

3. Las opciones globales, donde se controla el volumen, se pueden modificar los
controles y cambiar la carpeta en la que se guardan los archivos de configu-
racion del juego.

También se han creado dos tipos de pantallas de error, que aparecen antes de
la pantalla con el resumen de la partida. La primera se usa en errores durante
la partida, y en ella se imprimen las diferentes trazas de error diferenciadas por
pestanas segun el elemento que las haya causado. La otra pantalla de error esta
dedicada para errores al intentar conectar a una partida, y su texto se modifica
dindmicamente dependiendo del tipo de problema.

Las modificaciones de los pardmetros realizadas en los ments y los nuevos esce-
narios descargados perduran entre diferentes ejecuciones de la aplicacion gracias a
que se almacenan en un directorio elegido previamente por el usuario y se cargan
al inicio de la aplicacion.

La pantalla de gestion de mapas permite previsualizar cualquier area, descargada
0 no, tarea que se realiza obteniendo de una API la imagen en la que se representa
el 4rea seleccionada. Para no tener que pedir una nueva imagen cada vez que
se varfe el tamano seleccionado, se descarga con el tamano maximo permitido
en el juego y, mediante una funcién de recorte, se muestra tnicamente el area
proporcional al tamano elegido.

Para mas detalles sobre estos aspectos consultar el anexo C.1.

2.4. Obtencion de mapas

Uno de los objetivos principales del proyecto consiste en la posibilidad de
competir en escenarios reales. Esto se ha conseguido mediante el uso de los ma-
pas proporcionados por el servicio OpenStreetMap? y del servicio de bisqueda
OpenStreetMap Nominatim Tool®, que permite buscar coordenadas a partir de
nombres o direcciones.

La obtencion y gestion de estos mapas se realiza desde el ment de la aplicacién,
obteniendo los datos mediante una de las APIs de OpenStreetMap.

Para garantizar la obtencion de los datos, en lugar de hacer uso de una tinica API,
se define una lista de APIs, modificable por el usuario, que seran usadas en orden
secuencial hasta que una de ellas esté operativa.

2http://www.openstreetmap.org
*http://nominatim.openstreetmap.org

12

http://www.openstreetmap.org
http://nominatim.openstreetmap.org

El proceso de la obtencion de un mapa se ha implementado de la siguiente forma:

1. Se hace una peticién al servicio OpenStrectMap Nominatim Tool con las
palabras clave de la direccion deseada, y éste devuelve un listado de los
lugares coincidentes. Cada lugar incluye, entre otros datos, el nombre y las
coordenadas.

2. Una vez seleccionado el lugar deseado, se hace una peticion al APT de OpenS-
treetMap, pidiendo el area creada mediante las coordenadas devueltas el
listado y el valor del radio deseado. El API devolvera un documento con
formato OSM XML* que contendra los datos requeridos, y que serd el que
se almacene en el directorio habilitado a tal efecto.

Los mapas descargados se muestran en una tabla en la que ademas del alias
asignado se incluye la direccion en torno a la cual esta creado, el niimero de no-
dos® que incluye y el tamafio del area en km?.

Estos mapas y sus previsualizaciones son almacenados para que no sea necesario
volverlos a descargar cada vez que se inicie el programa. De esta forma, es posible
jugar a Vanet-X aun sin tener conexion a internet, solo siendo necesario tener los
mapas descargados en la carpeta correspondiente.

Las previsualizaciones de los mapas que se han buscado pero no descargado tam-
bién son almacenados pero éstos solo durante la ejecuciéon del programa.

Para més detalles sobre estos aspectos consultar el anexo C.2.

2.5. Elementos del terreno

Como se ha explicado anteriormente (Capitulo 2.4), los datos necesarios para
crear los escenarios son obtenidos del servicio de mapas OpenStreetMap.

Existen tres tipos de elementos: nodos, caminos y multipoligonos. Los caminos
estan formado por nodos y los multipoligonos estdn formados por caminos.
De estos elementos, los nodos son los tinicos que no tienen representaciéon visual,
usandose solo para formar el resto de elementos. Los caminos y multipoligonos
se organizan en diferentes capas de profundidad de pintado segiin su etiqueta (es
decir, segtin sean calles peatonales, zonas residenciales, carriles bici, etc.).

Un lugar de interés es un nodo que tiene dos datos adicionales: una lista con los
tres aparcamientos més cercanos y el valor de la distancia existente desde el nodo

“http://wiki.openstreetmap.org/wiki/0SM_XML
5un nodo es el menor de los datos primitivos que conforman un mapa de OpenStreetMap

13

http://wiki.openstreetmap.org/wiki/OSM_XML

hasta

el camino mas cercano transitable por los jugadores. Es un concepto intro-

ducido para permitir los objetivos de tipo tarea en los modos de juego «resolver
tareas» y «supervivenciay.

Todos los elementos constan de un identificador y las etiquetas obtenidas de

OSM,

y a excepcion de los nodos, también la capa en la que se pintaran. Ademas,

cada tipo de elemento esta formado por méas campos:

En el

2.6.

Nodo: tiene una posicién expresada en pixeles que es el resultado de la
conversion de las coordenadas WGS8/ a UTM y éstas a su vez a las del
sistema del juego. También posee dos listados con los nodos con los que esta
directamente conectado, uno con los nodos que son accesibles con las reglas
de transito de los vehiculos enemigos y otro con las de los vehiculos del trafico,
y un tercer listado que contiene la distancia a otros nodos no directamente
conectados, que se va rellenando dindmicamente durante la ejecucion y sirve
para evitar la repeticion de ciertos calculos (ver Anexo G.4 y Figura G.1).
Estos célculos de nodos interconectados se pueden realizar gracias a que
también contiene un listado con los identificadores de los caminos en los que
estd incluido este nodo.

Camino: cuenta con un listado de los nodos que componen el camino y una
lista con los segmentos rectos entre los nodos. Estos segmentos se utilizan no
solo para el pintado sino también para detectar si los vehiculos estan sobre
el camino. También se incluyen diversos pardmetros con propiedades para la
circulacion y el pintado.

Al igual que los lugares de interés, también incluye una lista con los tres
aparcamientos mas cercanos.

Multipoligono: dependiendo de la implementacion usada (ver Anexo C.3.3)
contiene una estructura que permite que cada camino formante del multipo-
ligono tenga un rol definido (anillo interior o exterior del area) o un poligono
representando el area. Ademas, en ambas implementaciones también existen
diversos parametros con las propiedades del terreno.

anexo C.3 se explican con mayor detalle todos estos aspectos.

Fisica

Debido a la simpleza de las fisicas necesarias para un juego de este tipo, que
no requiere un gran realismo, no se considerd necesario utilizar un motor de fisica

14

existente sino que se tomo la decision de implementar personalmente las funciones
que se consideraron necesarias.

El sistema de fisicas implementado puede dividirse en cuatro algoritmos: la
deteccion de colisiones y la aplicacion de fuerzas resultantes de la colision, ambos
de forma diferenciada para colisiones con el terreno y con los actores.

La deteccion de colisiones con el terreno consiste en recorrer todos los elementos

que conforman el terreno® y para cada uno de los elementos se realiza el siguiente
proceso:
Se comprueba si la menor circunferencia capaz de contener al vehiculo colisiona con
el menor rectangulo capaz de contener al elemento. Si esta comprobacion devuelve
como resultado que no hay colision, se puede asegurar con total fiabilidad y el
coste de procesamiento que ha supuesto es muy bajo. Sin embargo, si devuelve lo
contrario, significaria que es posible que exista colisiéon y para averiguarlo se debe
realizar una segunda comprobacién, més costosa, que comprueba si alguno de los
cuatro vértices del vehiculo esta en el interior del elemento del terreno.

La aplicacion de dicha colisién consiste en reconocer las propiedades del terreno
sobre el cual se circula y aplicar las restricciones correspondientes al vehiculo:
inmovilizarlo, ralentizarlo, danarlo, etc. En los anexos C.4.1 y C.4.4 se encuentra
una explicacion mas detallada al respecto.

La deteccion de colisiones con los demés actores del juego se realiza de una for-
ma similar:
Se obtiene el menor rectangulo rotado capaz de contener al vehiculo, y se comprue-
ba si colisiona con el de algtn otro actor. Si se produce esa colision, significa que
es posible que realmente colisionen, y se realiza una segunda comprobaciéon méas
detallada aplicando el Separating Awzis theorem”. En el anexo C.4.2 se encuentra
una explicacion mas detallada al respecto.

Para calcular el resultado de una colisiéon entre actores primero se debe calcular
la fuerza resultante de suma de las fuerzas de los dos vehiculos implicados. Esto
se calcula con el siguiente algoritmo:

1. Se obtienen los vectores velocidad de los dos implicados. Ver Figura 2.5(a)

2. Se realiza una rotacion de forma que la linea imaginaria entre los dos impli-
cados quede en el eje Y. Ver Figura 2.5(b)

6como se explica en el apartado 4.3, una mejora importante seria dividir el terreno en una
cuadricula y solo comprobar los elementos de su zona

"http://en.wikipedia.org/wiki/Hyperplane_separation_theorem#Use_in_collision_
detection

15

http://en.wikipedia.org/wiki/Hyperplane_separation_theorem#Use_in_collision_detection
http://en.wikipedia.org/wiki/Hyperplane_separation_theorem#Use_in_collision_detection

y1
2 resultado

/4 y2 v

(@) (b) (© (d)

Figura 2.5: Etapas del calculo del vector fuerza resultante de una colision

3. El vector resultado (provisional) es la componente Y del vector velocidad del
propio vehiculo, salvo que se trate de un choque «por alcance» en cuyo caso
se le debe restar la componente Y del vector del otro vehiculo. Ver Figura
2.5(c)

4. Para asegurar que no se genere una fuerza de atraccion cuando el vector
esta en sentido opuesto al otro implicado (sentido negativo de la V'), se debe
asegurar que el valor resultado nunca sera mayor a -1 (se ha elegido este valor
en lugar de 0 para asegurar que siempre exista fuerza de repulsion entre los
coches).

5. Se vuelve a rotar el vector resultado invirtiendo la rotacién realizada en el
paso 2. Ver Figura 2.5(d)

Esta fuerza resultante es sumada a la del otro vehiculo, salvo que aquel se
encontrase en estado «inmovily, en cuyo caso en su lugar esa fuerza seria restada a
la del vehiculo propio. Posteriormente se establece la velocidad del propio vehiculo
a cero.

2.7. Inteligencia artificial

En Vanet-X, como cualquier otro juego en el que intervengan actores no contro-
lados por jugadores, se necesita una inteligencia artificial que sea capaz de controlar
estos actores. En el caso de este juego, los actores que requieren de una inteligencia
artificial son los coches enemigos, las ambulancias y los coches neutrales que con-
forman el tréafico del escenario. Como todos estos actores son vehiculos, todos ellos
comparten gran parte de las funciones desarrolladas para la inteligencia, siendo
sus diferencias solo pequenas variaciones en los comportamientos.

La inteligencia desarrollada consta de tres partes:

16

= Unos patrones de comportamiento de alto nivel, en forma de maquina de es-
tados, que indiquen las acciones a realizar en cada momento. (Por ejemplo:
buscar aparcamiento, huir del jugador, alcanzar un punto determinado...).

= Unos patrones de manejo de la direccion del vehiculo, de forma que indicando
un objetivo y un modo de conduccion (huir, perseguir, alcanzar...) el vehiculo
sea capaz de lograrlo sin salirse de las zonas permitidas para circular y sin
colisionar contra otros vehiculos o elementos fijos del terreno.

» Un algoritmo de busqueda A* capaz de determinar el camino a tomar para
llegar de un punto a otro, teniendo en cuenta las diferentes restricciones de
paso que tienen los diferentes vehiculos.

Cada una de las partes hace uso de la siguiente, es decir, los patrones de
comportamiento de alto nivel usan patrones de manejo de la direccion, y éstos a
su vez usan el algoritmo A* del path-finding.

Para profundizar en més detalle en cada uno de las tres partes anteriormente
mencionadas, dirigirse al anexo C.5.

2.7.1. Comportamiento de los vehiculos

Cada vehiculo dotado de inteligencia propia posee unos patrones de comporta-
miento que indican que tipo de acciones realizaran. Estos patrones difieren segiin
el tipo de vehiculo y se componen de combinaciones de steering behaviors, com-
portamientos de bajo nivel explicados en la siguiente subseccion.

En esta subsecciéon se analizard tinicamente el comportamiento de los vehiculos
del trafico y un movimiento comin a todos los vehiculos: «desatascarse», debién-
dose consultar el anexo C.5.2 para el resto de tipos de vehiculos.

Desatascarse se trata de salir marcha atras de una posicién en la que se encuen-
tra inmovilizado.
Este comportamiento es necesario ya que a pesar de los esfuerzos por me-
jorar la inteligencia de los vehiculos, es comtn que por diversos motivos un
vehiculo pueda acabar estrellado contra los margenes de la carretera, en cuyo
caso no podré seguir avanzando ya que no estd permitido salirse de las vias
habilitadas.
Este comportamiento establece como objetivo un punto situado a una dis-
tancia determinada justo detras del vehiculo y hace que avance hacia él en
marcha atras. Una vez se ha conseguido llegar al objetivo (y por lo tanto se
ha desinmovilizado), el comportamiento pasa a estado normal.

17

Hay menos coches de los establecidos
buscando aparcamiento

Buscar

Circular -
aparcamiento

Tiempo para encontrar

aparcamiento excedido El parking objetivo estaba

. Ves un parking
. ocupado o se ha excedido .
excedido)] libre
el tiempo para aparcar en él

Esperar Aparcas en
) Aparcar .
aparcado el parking

Figura 2.6: Detalle del estado Normal de la inteligencia de los vehiculos del trafico

Tiempo de espera

Trafico: Como se muestra en la Figura 2.6, tiene cuatro posibles subestados:

» Circular: consiste en elegir un nodo objetivo y alcanzarlo. Este estado
se repite hasta que al vehiculo le llegue una senal que indique que hay
menos coches buscando parking de los establecidos. Ver Figura C.19 en
el anexo C.5.2.

= Buscar aparcamiento: es el mismo comportamiento que el anterior pero
ahora buscando aparcamientos vacios. De esta forma si se visualiza un
aparcamiento libre pasara al siguiente estado (Aparcar), mientras que
si en un tiempo establecido no se ha logrado visualizar ninguno vuelve
al estado anterior (Circular). Ademas, si se recibe un evento VESPA de
parking libre se dirige a la posicion del evento (aunque por el camino
puede encontrar otro aparcamiento libre més cercano y aparcar en él).

s Aparcar: consiste en realizar la maniobra de aparcamiento sobre el apar-
camiento libre objetivo. Se realiza mediante un comportamiento de lle-
gada para que el vehiculo frene al aparcar. Si se logra aparcar se avanza
al siguiente estado (Esperar aparcado) mientras que si no se ha logrado
se retrocede al estado anterior.

= Fsperar aparcado: consiste en esperar quieto dentro de la plaza de apar-
camiento durante un tiempo determinado. Una vez completado ese tiem-
po se vuelve al estado inicial (Circular).

2.7.2. Aplicando Steering behaviors

El manejo de la direcciéon del vehiculo ha sido realizado mediante el uso de
los steering behaviors: «comportamientos que permiten a los agentes auténomos
navegar por su entorno de una manera improvisada a la vez que realistay [17].

18

Para este proyecto se han implementado los siguientes comportamientos suge-
ridos en [17]: seek, flee, pursuit, evasion, arrival, obstacle avoidance, wander, path
following y unaligned collision avoidance. Estos comportamientos son explicados
en detalle en el Anexo C.5.1.

Estos comportamientos se pueden combinar entre si para crear comportamien-

tos mas complejos. Esta combinacion de comportamientos se ha realizado segun el
siguiente método:
Se le asigna una prioridad a cada comportamiento y se evaltian uno a uno en orden
de prioridad. Si un comportamiento concluye que debe realizarse una correccién de
la direccion, se aplica esa correccion y se acaba el comportamiento. En caso de que
no sea necesario un ajuste de la direccién, se evalta el siguiente comportamiento,
y asi sucesivamente hasta encontrar un comportamiento que requiera un cambio
de direccion o hasta haber evaluado todos.

Un ejemplo de esta combinaciéon es el comportamiento que se le aplica a las
ambulancias:
Primero, trata de no salirse de la carretera (path following). Si este comportamiento
evaliia que no son necesarios cambios, trata de no colisionar contra obstéaculos fijos
(obstacle avoidance) primero, ni moviles (unaligned collision avoidance) después.
Finalmente, si ninguna correccion ha sido necesaria, trata de avanzar hacia el
objetivo (seek).

2.7.3. Busqueda de caminos

La ultima de las tres partes en las que se divide la implementacién realizada
de la inteligencia artificial es el path-finding (busqueda de caminos), que es el
encargado de, a partir de un grafo de nodos que contiene la estructura de las
calles, un nodo inicial y un nodo objetivo, devolver una lista ordenada de nodos
que permitan alcanzar el nodo objetivo.

Como la obtencion del resultado usualmente tarda méas que el tiempo de ciclo
del juego, la implementaciéon se ha realizado de forma asincrona, con un hilo de
ejecucion dedicado en exclusiva a recibir peticiones, ejecutar el algoritmo y devolver
su resultado cuando esté listo (ver Figura 2.7).

De esta forma, los actores que hayan pedido un camino, en lugar de realizar la
peticion y esperar bloqueados a la respuesta, comprueban en cada ciclo si ya esta
lista, y en caso contrario, en lugar de no hacer nada, lo cual quedaria muy extrano,
siguen avanzando hacia el objetivo mediante el steering behavior de llegada, de
forma que para cuando obtengan la respuesta del path-finding, generalmente se
habran aproximado mas al objetivo.

19

Hilo actor)) Hilo path-finding

Pedir camlno—¢

Esperar a los datos -
*v—]
— . g —
9 Légica del - Esperar una peticion >
£ oag::ctzr € Buffer - Calcular camino =
- Almacenarlo en buffer o
; =
(5]

Responder

I

Figura 2.7: Path-finding asincrono

2.8. Funcionamiento en red

Como se ha explicado anteriormente, la arquitectura de red de este proyecto
esta basada en el modelo de red del Quake3 [13], que fue un gran éxito debido a
su simplicidad y a la facilidad de entenderlo. Los modelos de red de muchos juegos
posteriores son muy similares o estan basados en este, como por ejemplo juegos
superventas como Half-life (mas conocido por su modificacion CounterStrike), y
su secuela, que usa el modelo de red del Source Engine [22], el cual también ha
sido tomado como referencia para crear la arquitectura de red de este proyecto.

Las ideas obtenidas del estudio de estos dos modelos son las siguientes:

» seguir una estructura cliente-servidor con prediccion en el lado del cliente |2,
12, 10, 18]

= usar compresion delta sobre el tltimo estado conocido, para reducir el tamano
de los paquetes enviados [13]

= interpolacion/extrapolacion de las entidades, de forma que se prevengan los
«saltos» cuando no se reciban paquetes de red [22]:

Una vez que estas ideas estaban claras, el siguiente paso fue elegir el protocolo de
red que usaria la aplicacion.

En un juego que necesita actualizaciones de estado en tiempo real es importan-
te que los datos lleguen lo mas réapido posible, y no necesitamos que se reenvien
los paquetes perdidos ya que al reenviarlos ya llegarian obsoletos y tendriamos
que desecharlos. Es por este motivo que los modelos citados anteriormente usan
el protocolo UDP, el cual tiene un mejor rendimiento a costa de no implementar
caracteristicas que si poseen TCP y RMI [21, 12].

En este proyecto, se ha considerado que ademés de usar UDP para las actualiza-
ciones de estado, se podria combinar con el uso de TCP para ciertas tareas que no
requieren velocidad de transmision y si confiabilidad. Por lo tanto, se han usado
conjuntamente los protocolos UDP y TCP de la siguiente manera:

20

= UDP se ha usado para las actualizaciones de los «estados» que se envian en
cada ciclo.

= TCP se ha usado para el envio del estado inicial al cliente, también para
comunicaciones con clientes que todavia no se han unido al juego (cuando se
quieren unir a la partida, reunir informacion o recibir las estadisticas finales)
y para ciertos eventos poco comunes que se envian al cliente (como por
ejemplo actualizaciones de la puntuacion o mensajes que informan de logros
nuestros o de otros jugadores®).

Para mejorar la experiencia de juego, se han implementado varias técnicas que
aumentan la fluidez con las que el usuario percibe que funciona el juego. Se trata
de la prediccion en el lado cliente y de la interpolacion de las entidades.

2.8.1. Modelo de red

Al igual que en los modelos estudiados, se ha seguido un esquema cliente-

servidor, ya que en un juego en tiempo real donde deben enviarse multiples men-
sajes de estado por segundo, un esquema alternativo Peer-to-peer, donde cada
cliente envia informacioén a todos los demas, es inviable salvo en conexiones extre-
madamente rapidas como redes locales [10].
Concretamente el modelo elegido es cliente-servidor con servidor autoritativo, lo
que significa que el servidor es el tinico capaz de tomar decisiones que afecten al
estado del juego, dejando al cliente basicamente como un «terminal tonto» cuyas
tnicas funciones son recoger los comandos del jugador, transmitirlos al servidor,
y con los datos de su respuesta pintar el mundo de juego (aunque con la técnica
de la interpolacion gana mas funciones). La razon de esto es que si fuera el cliente
el encargado de realizar las simulaciones y enviarle al servidor su estado, como
por ejemplo su posicion actual, seria demasiado facil que alguien hiciera trampas
logrando que el cliente envie al servidor datos falsos. [10]

La logica bésica del cliente y el servidor es la siguiente:

Al inicio de cada ciclo los clientes envian al servidor los comandos realizados por el
jugador, el servidor procesa estos comandos, genera el estado del mundo de juego
de esta secuencia o ciclo y lo reenvia al cliente, que con estos datos pinta su vista
del mundo de juego.

Concretamente el intercambio de mensajes entre cliente y servidor es el siguiente
(Ver Figura 2.8):

= El cliente envia InputSnapshots que contienen los eventos de teclado, el iden-
tificador de jugador al que corresponden, y los siguientes datos de control:

8Vease lo referido a Mensajes GUI en el Capitulo 2.13

21

el namero de secuencia del cliente en el que estamos (seq), y el namero de
secuencia del servidor del ultimo estado aplicado (ack).

= El servidor envia Snapshots que contienen los datos de los actores del juego y
los siguientes datos de control: el ntimero de secuencia del servidor en el que
estamos (seq), el namero de secuencia del servidor del estado sobre el cual
se ha hecho la compresion delta (ack), y el nimero de secuencia del cliente
al que corresponden los tltimos eventos de teclado recibidos (last).

Servidor S->C: | seq, ack, last | Cliente
Secuencia Secuencia
del servidor 1l l1’0’0' e del cliente

—{ 2

) S e g

—""F TTT==———__ 3

13| t 34,2 ____----- 1"

4 k------——"""7" —p| 14|

________________ o 15

C->S: | seq, ack |

Figura 2.8: Flujo de mensajes UDP

Como este envio por parte del servidor del estado del mundo de juego se realiza
25 veces por segundo, y este estado contiene mucha informacién, realizar esta ta-
rea supondria un ancho de banda inasumible para conexiones a través de internet.
Por ello, como en los modelos anteriormente citados, se aplica la delta-compression
(compresion delta). Esta consiste en no enviar en cada secuencia el estado al com-
pleto, sino solamente los cambios respecto al iltimo estado del que se ha recibido
un ack por parte del cliente, lo cual supone que el servidor debe guardar cual es el
ultimo ack recibido de cada cliente y también todos los estados enviados a dicho
cliente con una secuencia superior a la de dicho ack. Para més detalles consultar
el anexo C.6.4.

Ademaés de esta técnica, para reducir més el tamano de los paquetes con el
estado del servidor se ha decidido que solo se envie al cliente datos sobre los acto-
res que se encuentran a menos de una determinada distancia de é1°. Esto supuso
numerosos problemas durante su implementacion ya que no se habia planifica-
do correctamente y se hubo de rehacer miltiples funciones de la interpolaciéon y
prediccién para soportarlo, como se explica en el Anexo C.6.5.

“modificable mediante fichero de configuracion

22

En los anexos C.6.6 y C.6.7 se explican otras optimizaciones menores realiza-
das y el proceso de unién de un jugador a la partida, con los mensajes de red
intercambiados por cada entidad que interviene.

2.8.2. Prediccion del lado cliente

La prediccion del lado del cliente es una técnica introducida por primera vez
por John Carmack en el modelo QuakeWorld'® v que tiene como objetivo reducir
la latencia de los movimientos del jugador.

Sin el uso de esta técnica, cuando un jugador realiza un movimiento, al tratarse
de un modelo cliente-servidor con el servidor autoritativo, debe esperar a que el
comando enviado llegue al servidor, y éste le devuelva su nueva posicion. Esto
causa que el jugador note un retardo entre sus ordenes y el momento en que se
ven cumplidas (ver figura 2.9).

Esta técnica consiste en lo siguiente: el cliente cuando reciba un comando del

jugador, ademas de enviarlo al servidor, debe predecir lo mas fielmente posible el
resultado que le va a ser devuelto, y debe aplicarlo en la vista del cliente. De esta
forma, cuando llegue el resultado del servidor, si la prediccién ha sido correcta,
el nuevo estado del jugador coincidird con el recibido y por lo tanto se habra
disimulado la latencia entre cliente y servidor.
Esta técnica no significa que el servidor deje de ser autoritativo, ya que siempre
se aplicara el resultado del servidor cuando llegue, de forma que, si la prediccion
habia sido incorrecta, ésta se vera corregida. Existen diversos métodos para que
corregir esta desviacion no suponga cambios demasiado bruscos en el cliente, pero
se ha considerado que estaban fuera del alcance de este proyecto y que el tiempo
de implementarlos seria mas ttil en otros aspectos del juego.

En el anexo C.6.3 se explica este método en mas profundidad.

T

[\

Figura 2.9: Captura de pantalla en la que se observa la diferencia entre la posicion
predicha y la recibida (rectangulo rojo)

Onttp://es.wikipedia.org/wiki/QuakeWorld

23

http://es.wikipedia.org/wiki/QuakeWorld

2.8.3. Interpolaciéon de entidades

La interpolacion de entidades es una técnica que se aplica en el cliente. Con-
siste en no procesar en cada ciclo el estado que recibes sino mantener un buffer de
estados recibidos pendientes de ser procesados, de forma que, si el estado corres-
pondiente a un ciclo se pierde, se pueda conseguir una aproximacion interpolando
entre los valores del ultimo estado procesado y del siguiente estado de los recibidos.
Con este método se consigue evitar los «saltos» que se producen en las posiciones
de los actores cuando falla la recepcion de varios estados consecutivos. Como con-
trapartida, esta técnica anade una latencia ya que no procesas directamente los
estados. Por lo tanto teniendo un buffer de tres estados, y recibiendo un estado
cada 40 ms, se crea artificialmente una latencia de 120 ms.

La interpolacion se puede realizar siempre que se tengan estados pendientes de
procesar en el buffer, pero cuando estos se acaban, todavia se puede aplicar otra
técnica complementaria: la extrapolacion. Asi se hace en el caso del modelo de red
del Source Engine [22].

En Vanet-X se ha tomado una solucién diferente: en lugar de extrapolar los datos,
se predice el comportamiento de los actores, con lo cual se obtienen unos resultados
mas precisos.

Atln asi, contra mas paquetes se pierdan mas grandes seran los errores de la pre-
diccion. Por ello, se ha tomado la decision de so6lo calcular las cinco primeras
predicciones ya que después no solo el error serd muy grande sino que también se
estard cargando de demasiado trabajo a la CPU.

Los valores a partir de los cuales la interpolacion y extrapolacion dejan de apli-
carse son ajustables mediante el fichero ParamConfig.txt situado en el directorio
base del juego.

En la Figura 2.10 se puede observar el comportamiento de la interpolaciéon
aplicada junto a la prediccion. Para mas detalles consultar el anexo C.6.2.

—~»
Secuencia Snapshot recibido: 1 2 3 4 5 6 7 8 9 10
Calidad Snapshot recibido: B M M B M M B M M B
Secuencia Snapshot procesado: X X 1 7~/ 77 4 7~ M7 M 7 7
Snapshots que se deben predecir:| 0.1 0.2 1.3 1.4 1.5 46 4.7 48 7.9 7.10

Figura 2.10: Prediccion e interpolacion (buffer de 2 estados) aplicadas conjunta-
mente. Leyenda: B: buena, M: mala, X: sin procesar, flecha: interpolacién

24

2.9. Sistema VESPA

Esta es una de las partes mas importantes del juego por ser uno de los objetivos
del proyecto y también ser, junto al uso de escenarios reales, uno de los elementos
diferenciadores del juego.

VESPAY es una VANET (Vehicular Ad Hoc Network), un sistema disefiado
para que los vehiculos puedan compartir entre si informacion sobre eventos rele-
vantes, como por ejemplo accidentes, plazas de aparcamiento libres, etc.

Este sistema proporciona gran parte de la informacion que se muestra en el
radar, como la posiciéon de otros jugadores, de coches enemigos, de vehiculos en
servicio de emergencias, de obstaculos en la calzada...

La implementacion de VESPA ha sido realizada de forma modular para que
con poco esfuerzo puedan ser modificadas partes del sistema o incluso sustituir la
implementacion entera por otro sistema de intercambio de informacion. Ademés,
la implementacion estd realizada de forma que desde el ment de configuracion
se pueda cambiar todos los pardmetros que intervienen en el funcionamiento de
VESPA.

En el Capitulo 3 se profundiza sobre las caracteristicas desarrolladas para la
evaluacion de las técnicas de gestion de datos propuestas en VESPA y en el anexo
D.1 se muestran méas detalles sobre el propio sistema y como se ha incorporado al
juego.

2.10. Menu de pausa

Se ha desarrollado un tipico «ment de pausay (con la salvedad de que no se
pausa el juego) que puede ser desplegado en cualquier momento de la partida.
Este menti se maneja mediante eventos de ratéon, y es pintado sobre una capa
semitransparente que cubre la pantalla de juego. Todo el ment es también semi-
transparente y se integra visualmente con el resto de los elementos del juego (ver
figura 2.11).

Desde él se puede modificar (por separado) el volumen de la musica y de los
efectos de sonido, mostrar la configuracion actual de los controles de juego y tam-
bién desde él se puede abandonar la partida para volver al ment principal.

2.11. Sonido

Para el sonido se han implementado dos gestores diferenciados: uno para los
efectos, que trabaja con archivos wav, y otro para la musica, capaz de usar archivos

Uhttp://www.univ-valenciennes.fr/R0OI/SID/tdelot/vespa/index.html

25

http://www.univ-valenciennes.fr/ROI/SID/tdelot/vespa/index.html

ppal.

Hecho J Ok /ESC Ven
’ /ESC Opciones

A

Menu
Inicial ld

\ si Juego
Volver a T Abandonar partida

la partida 'I No / ESC T

/ ESC
Figura 2.11: Diagrama navegaciéon ment de pausa

Mostrar controles |-

mp3.

El uso de este segundo gestor de sonido vino motivado por la necesidad de usar
archivos mp3 para la misica, por necesidad de espacio, mientras que seguia siendo
interesante también contar con el primer gestor ya que los efectos de sonido en
formato wav tienen una mayor calidad y al ser sonidos tan breves no suponen un
problema de espacio.

El gestor de efectos estd basado en el codigo fuente adjunto de [4]'?, modificado
para anadirle un control de volumen. Otras caracteristicas de este gestor son que
también se ha implementado un filtro 3D (para que el volumen de los sonidos
se vea afectado por la distancia del emisor al oyente) y que tiene tantos hilos de
ejecucion como canales de audio son admitidos (por defecto, usa 32).

Por otro lado, el gestor de mitsica se trata de la librerfa JLayer'® modificada
para admitir el control del volumen y para lograr una reproducciéon en bucle de la
lista de canciones a reproducir.

2.12. Modos de juego y gestion de rondas y obje-
tivos

Vanet-X tiene varios modos de juego, que si bien tienen ciertos aspectos en
comun (sistema basado en rondas, obtener puntos al lograr los objetivos...) tienen
mecanicas diferentes. Para dar soporte a estas diferencias a la vez que se mantiene
la independencia del resto de la implementaciéon sobre el modo de juego en uso, se
ha realizado la siguiente implementacion: (Ver Figura 2.12)

Una clase «Ronda» que es el tinico punto de conexion con el resto del jue-
go, v que utiliza las funciones de la interfaz «IObjetivos» para implementar las
funcionalidades bésicas necesarias (decidir si una ronda ha sido superada, estable-
cer cuando comenzara la siguiente ronda, crear los objetivos...). El control de las
rondas se realiza de la forma expresada en la Figura 2.13.

12http://www.brackeen.com/javagamebook/#download
Bnttp://www.javazoom.net/javalayer/javalayer.html

26

http://www.brackeen.com/javagamebook/#download
http://www.javazoom.net/javalayer/javalayer.html

ObjetivosRally

‘% <<Interface>> q ObjetivosSupervivencia

I0bjetivos
{> Jl

| v — &

ObjetivosAparcar Tarea ObjetivosTareas

Figura 2.12: Diagrama de las clases de la gestion de rondas y objetivos

Comprobar estado
de laronda

¢éLimite de rondas
superado?

éEstado
objetivos?

Conseguidos o
Fallidos por tiempo

Eliminar
objetivos

Fallidos

Esperar a que
comience la
ronda

Game Over

tiempo actual>=
tiempo comienzo ronda

Conseguidos

Crear objetivos

decididos

Pasar de nivel Fallidos por tiempo

Revivir/reparar
jugadoresy
reponer humos

Preparar siguiente ronda:
1) marcar que empiece en tiempo X
2) decidir los objetivos a crear

Figura 2.13: Diagrama de la gestion de rondas

27

Existen cuatro clases que implementan la interfaz «IObjetivos», una por cada
modo de juego, adaptando las funciones definidas para crear la mecanica de juego
deseada en cada modo.

Para los modos de juegos que no consisten en capturar banderas o vehiculos
sino en completar objetivos, se ha creado una nueva estructura llamada «Tarea»
(ver anexo C.7.1), que incluye todos los datos requeridos de un objetivo: tipo de
lugar, tipo de llegada y distancia al primer y tercer aparcamiento mas cercano.
También debido a las necesidades de estos modos se han incluido las plazas de
aparcamiento (ver anexo C.7.2) y la posibilidad de abandonar el vehiculo (ver
anexo C.7.3).

Por dltimo existe una clase destinada a contener todas las caracteristicas de
los modos de juego, como por ejemplo: el tipo de objetivo de una ronda (banderas,
enemigos, tareas), el comportamiento de la inteligencia de los enemigos (perseguir,
huir), si los jugadores sufren daros, etc.

2.13. Mensajes durante el juego

Durante la partida, existen varios medios con los que el jugador recibe infor-
macion. Estos son los mensajes GUI y la explicacion de la ronda.

Los mensajes GUI son un sistema mediante el cual se le suministra al jugador

informacion sobre ciertos eventos relevantes como por ejemplo: la unién de un nue-
vo jugador a la partida, los puntos obtenidos por lograr un objetivo, el dinero que
ha costado la reparacion del vehiculo, un logro de otro jugador, y muchas otras
mas.
Estos mensajes estan visualmente muy integrados de forma que no molestan en la
conduccion pero a la vez son faciles de percibir. Ademas, con el sistema desarro-
llado, cada evento puede definir su duracion en pantalla y esta asegurado que en
caso de acumularse varios mensajes no se superpondran sino que mantendran su
orden y se irdn mostrando uno a uno dejando un breve lapso de tiempo entre cada
uno para que el cambio de mensaje sea perceptible.

La explicacion de la ronda es un sistema que muestra informacion sobre la
ronda actual. Esto es totalmente necesario ya que, como se ha mencionado ante-
riormente, el sistema de juego funciona mediante un sistema de rondas continuas
sin abandonar la partida para volver a los ments. Por lo tanto resulta necesario
un sistema que muestre durante la partida la informacion que necesita conocer el
jugador. Esta informacion depende del modo de juego elegido pero tiene varios ele-
mentos comunes: el niimero de ronda en la que nos encontramos y el niimero total
de rondas en caso de que exista un limite, el nimero de perseguidores enemigos,
el tiempo disponible para completar la ronda, los objetivos de la ronda.

28

Esta explicacion se muestra durante el llamado tiempo entre rondas'* inclu-
yendo una cuenta atras del tiempo restante antes de comenzar la siguiente ronda.
También se muestra parecida informacion (mas resumida) pulsando en cualquier
momento de la partida la tecla Mostrar informacion (por defecto tecla «Q»).
Todo esto se muestra en una zona rectangular semitransparente ubicada en la zona
central superior de la zona de juego. Esta zona adapta dindmicamente su tamano
segun los datos que deba mostrar.

En la figura 2.14 se muestra una captura del juego en la que se aprecia la
explicacion de la ronda (zona superior, en texto amarillo) y un mensaje GUI (en
texto blanco en la zona inferior).

Score: 0(1st)

Round #1 of 12 Health:
Smoke:

Quai Ceineray

Time limit:

Get ready to Start in 1

Han joined the game

with the white team

Figura 2.14: Captura de pantalla en la que se muestra la explicacion de la ronda
y un mensaje GUI

4 configurable desde la pantalla, Configuracion de las reglas de juego

29

30

Capitulo 3

Explotacion

En esta seccion se analiza la explotacion del juego como método para probar
diferentes técnicas de data sharing y se expone el trabajo realizado para permitirlo,
asi como las ventajas y limitaciones existentes.

3.1. Motivacion

Los analisis de diferentes técnicas de data sharing suelen realizarse mediante
el uso de simuladores (p.ej. TraNS [16], SUMO [1], Veins [20], GrooveNet [15], o
VanetMobiSim [11]) ya que realizar pruebas en un escenario real con un niamero
significativo de vehiculos serfa un método caro y poco préactico. Atn con el uso
de simuladores, el andlisis de estas técnicas puede seguir siendo una tarea ardua
que lleve mucho tiempo, ya que los resultados de muchas técnicas de data sharing
dependen de la eleccion de ciertos pardmetros, y puede no ser facil determinar cual
seria una buena eleccién de estos parametros.
Por este motivo se ha considerado que, de forma complementaria al uso de simu-
ladores, se podria aplicar una estrategia de crowdsourcing mediante el uso de este
juego de forma que se extraigan ciertas estadisticas de las partidas y los jugadores,
mientras se divierten con un juego de coches, estén en realidad ayudando a calibrar
estrategias de data sharing.

La idea de beneficiarse de acciones humanas para mejorar o evaluar sistemas no
es nueva, ya que se lleva tiempo usando para tareas demasiado costosas usando los
métodos tradicionales. Ejemplos de esto serian mCrowd [25], que usa los sensores
de los smartphones para participar en tareas colaborativas como la monitorizaciéon
del trafico de carreteras, o reCAPTCHA |[24], que se utiliza para evitar el uso
de ciertos servicios por usuarios no humanos a la vez que sirve para mejorar la
digitalizacion de textos.

31

3.2. Aplicacién

Para llevar a cabo la recoleccion de estadisticas durante la partida se han
habilitado varias opciones (en el fichero de texto de configuracion ParamConfig.tat)
que habilitan y deshabilitan de forma individual la recolecciéon de distintos tipos
de datos.

Estos tipos de datos que se recopilan son los siguientes (ver Anexo D.2.3 para los
detalles las estadisticas recogidas):

= [stadisticas del juego: son las estadisticas que se muestran a los jugadores
al finalizar la partida y comprende la puntuacién de cada jugador, equipo
al que pertenece y estado (habilitado o deshabilitado) de su protocolo DMS
(Data Management Strategy).

» Estadisticas de los aparcamientos: se muestra cada aparcamiento realizado,
tanto por jugadores como por vehiculos del trafico, incluyendo el tiempo
requerido, el identificador del vehiculo que lo realiza, si dicho vehiculo tenia
el protocolo DMS activado, con que tipo de protocolo contaba y si dicho
aparcamiento fue facilitado por el uso del DMS.

» Estadisticas del protocolo VESPA: muestra de forma individualizada por
vehiculo, y también de manera conjunta, diversas estadisticas relacionadas
con el funcionamiento y la eficiencia del protocolo (p.ej. nimero de eventos
creados, porcentaje de eventos considerados relevantes, etc.).

Cuando la partida finaliza, estos datos recogidos se almacenan en ficheros en
el computador donde reside el servidor junto con un fichero que contiene la infor-
macion sobre todos los aspectos de la configuracion de la partida, de forma que a
partir del contenido de este fichero sea posible configurar una nueva partida con
las mismas condiciones. Este almacenamiento se realiza tinicamente en la maquina
servidor y no en los clientes ya que los jugadores no tienen porqué tener interés en
estos datos.

Al realizarse esta recopilacion de datos tnicamente en el servidor, en el caso
de crearse multiples partidas en diferentes computadores seria necesario recopilar
de forma manual las estadisticas producidas. Para evitar esto, se han ideado dos
sistemas que permiten un mayor control sobre las estadisticas: la creacién de un
servidor de recogida de estadisticas y la creacion de un servidor dedicado.

El servidor de recogida de estadisticas es un proceso que estid en permanente
ejecucion en un computador externo, y al que los servidores se conectaran al finali-
zar las partidas con la finalidad de transmitirle las estadisticas recopiladas durante
la partida. (Ver Anexo D.2.2)

32

El otro sistema ideado consiste en el uso del servidor dedicado (ver Anexo
D.2.1), que consiste en un proceso en permanente ejecucion en un computador y
que acepta las peticiones de conexion de los clientes (realizadas de la misma forma
que para unirse a una partida normal) y, en el caso de que no haya una instancia
del servidor en funcionamiento, la crea y les redirige para que se unan a dicha
partida. De esta forma, un desarrollador/probador de un protocolo DMS puede
habilitar un lugar en el que los jugadores se puedan unir a una partida de forma
que no necesiten crear partidas propias y centralizando asi las estadisticas en dicho
lugar.

Estos dos sistemas son complementarios, de forma que el servidor dedicado al
finalizar la partida tratara de conectarse con el servidor de recogida de estadisticas,
si es que estd activo, para comunicarle las estadisticas obtenidas.

En la Figura 3.1 se muestra la forma en que los diferentes componentes del
juego estan distribuidos en la red.

/—Comput:.

Estadisticas

Guardar estadisticas del juego

Servidor Maestro

| —Crear

Servidor
(Juego)

—

Cambiar pardmetros
Y

Conseguir estadisticas Pedir servidor

alqueunirte pegir servidor
alqueunirte

A

Conectarse Enviar estadisticas
al servidor

alservidor

Conectarse,” ComPputer \ N

Servidor Estadistico

Cliente
(Juego)

Cliente
(Juego)

Terminal

Guardar estadisticas del juego

Estadisticas

Interesado en Jugador 1 Jugador n
estadisticas

Figura 3.1: Despliegue de los componentes en una red

33

Ademaés de estas caracteristicas previamente mencionadas, se ha realizado la
implementacion de VESPA de forma que sea sencillo adaptar el juego para diversos
protocolos o estrategias de gestion de datos. Esto se ha realizado definiendo las
interfaces y clases abstractas basicas que se necesitan para poder interaccionar
desde el juego con la DMS. Posteriormente se ha realizado una implementacion del
sistema VESPA como instanciacion de dichos interfaces, haciendo uso del patrén
de diseno Factory method (ver Anexo D.1 para méas detalles).

Las méas importantes de las interfaces definidas son las siguientes:

= IDataManagementStrategy: declara los métodos que deben ser imple-
mentados por una DMS para permitir su integracién con el videojuego.

s IVisible: debe ser implementada por todas aquellas entidades que puedan
ser «observadas» por el DMS.

s IVehicle: debe ser implementada por todos los vehiculos observables por el
DMS.

s IPlayerVehicle: debe ser implementada por todos los vehiculos humanos
observables por el DMS.

s ITraffic Vehicle: debe ser implementada por todos los vehiculos del tréfico
observables por el DMS.

Como se puede observar la primera interfaz es usada para que el juego se
comunique con el DMS mientras que las cuatro restantes se usan para que el DMS
pueda acceder a los datos de las entidades del juego. La figura 3.2 proporciona
una vision de conjunto sobre la conexion entre el juego, las interfaces definidas y
la implementaciéon desarrollada.

3.3. Limitaciones

El uso de un juego como método de andlisis tiene diversas limitaciones, por lo
que no se plantea su uso como reemplazo del simulador sino como complemento.

Una es la dificultad de conseguir una simulacién precisa y al mismo tiempo un
juego divertido y jugable, ya que la inclusion de regulacion semaférica, normas de
circulacién o trafico més realista supondria una mayor fidelidad en la obtencién
de resultados pero sin embargo podria alterar la dindmica del juego disminuyendo
su capacidad de atraer jugadores y por lo tanto disminuyendo la cantidad de
estadisticas que se podrian obtener.
Asi mismo tratar de aumentar la precision de la simulacion, ejecutar protocolos de
gestion de datos complejos o tratar de simular una cantidad de trafico elevada esté

34

SERVER-SIDE

Player

TrafficCar

Interface
ITrafficVehicle

Interface
IPlayerVehicle

Interface
D IVehicle
Interface
D Visible

MiCanvasServidor

|DataManagementStrategy

'
'
'
'
'
' Car
'
'
'
'
'
'
'
'
\ 4
Parking _D Actor
|Event (I Interface
1
VespaEvent

FactoryDMS

VESPA

Figura 3.2: Arquitectura de la la conexion entre el juego y el DMS

35

enfrentado con la obtencion de un rendimiento aceptable en el juego (en ntiimero
de fotogramas por segundo).

Ademés otra dificultad radica en que los resultados obtenidos pueden depender
de la pericia de los jugadores, por lo que comparar resultados sin tener este fac-
tor en cuenta puede conducir a conclusiones erréneas. Por este motivo es preciso
comparar siempre resultados obtenidos con jugadores de similar pericia.

Para solventar esta dificultad, se ha implementado un sistema de célculo de ha-
bilidad, que otorga a cada jugador un determinado nivel de pericia basado en su
rapidez completando misiones durante las partidas y se mide en tareas comple-
tadas por unidad de tiempo. Este nivel de pericia se va modificando mediante la
participacion en nuevas partidas y queda reflejado en las estadisticas obtenidas, de
forma que puede optarse por comparar solo resultados provenientes de jugadores
de similar nivel de pericia.

Adicionalmente, existe una opcion (configurable en ParamConfig.tzt) para no per-
mitir unirse a tu partida a jugadores con menos de un determinado nivel de habi-
lidad.

3.4. Ventajas

Las ventajas que aporta este método de andlisis son la introduccion del com-
ponente humano, que es algo que no estd presente en un simulador, y el hecho
de que la utilizacion masiva del juego podria ayudar a identificar pardmetros o
alternativas de gestiéon de datos prometedoras que luego podrian verificarse por
simulacion.

Ademés, en vista de los resultados obtenidos, a pesar de que los valores absolu-
tos difieren de los obtenidos mediante el simulador, los valores relativos observados
si que son coherentes.

3.5. Elementos anadidos al juego

Diversos elementos han sido anadidos al juego con el objetivo de facilitar la
explotacion del mismo como método de anélisis de técnicas de data sharing: las
plazas de aparcamiento, el modo de juego consistente en pruebas de aparcamiento
y el cambio automaético de estrategia de gestion de informacion.

= Se anadieron las plazas de aparcamiento, con el fin de contar con un elemento
més en el que medir la eficiencia de las técnicas de data sharing usadas.
Por motivos de rendimiento se crearon dos tipos de plazas de aparcamiento:
las «reales» y las «falsas». Las reales son plazas inicialmente vacias que los
vehiculos pueden ocupar y desocupar segin sus necesidades, mientras que

36

las falsas son plazas que siempre estan ocupadas y su inclusiéon viene de-
terminada para aparentar visualmente la existencia de un gran niimero de
aparcamientos, reduciendo la monotonia del escenario, sin necesitar aumen-
tar el nimero de vehiculos del tréafico para que las ocupen y desocupen, con
el coste computacional que ello supondria.

Para evitar que el jugador sea capaz de distinguir entre los tipos de plazas,
y por lo tanto sepa que plazas ocupadas se terminaran por desocupar y
cuales no, se han utilizado diversas técnicas. Como los vehiculos del trafico
no realizan aparcamientos perfectos, se tomo una doble estrategia: por un
lado se evitd que las plazas falsas tuvieran una apariencia de aparcamiento
perfecto, modificando el sprite que la representa de forma que el vehiculo
que se muestra aparcado esté ligeramente rotado y trasladado respecto a
su posicion ideal, y por otro lado, en lo referente a las plazas reales, se
cre6 un método mediante el cual los vehiculos mal aparcados en ellas son
colocados de la forma correcta cuando no exista ningtin jugador a menos de
una determinada distancia que pueda observar la traslaciéon cometida.

Para poder obtener resultados comparables a los resultados del simulador de
VESPA, se establecio un ratio fijo entre el niimero de vehiculos que buscan
aparcamiento y el niimero de plazas existentes. Para conseguirlo, se programéo
la inteligencia de los vehiculos del trafico de forma que haya siempre un
numero permanente de vehiculos buscando aparcamiento y cuando uno de
ellos logre aparcar, otro vehiculo que estuviera simplemente circulando se
ponga a buscar aparcamiento inmediatamente.

El tiempo que un vehiculo permanece aparcado no es constante y varia entre
20 y 40 segundos, los cuales son valores poco realistas pero que suponen un
tiempo suficiente como para que el jugador no se quede a la espera de que
se libere una plaza ocupada y a su vez no son lo suficientemente grandes
como para que en una partida corta apenas se produzcan liberaciones de
aparcamientos.

Se anadi6 un nuevo modo de juego ideado expresamente para conseguir medir
los tiempos de aparcamiento, de forma que mediante objetivos se facilitase
la toma de datos. Este modo de juego consiste en un sistema de objetivos
en el que cada ronda tiene un doble objetivo que se debe cumplir de forma
secuencial: primero ir a un punto establecido (dado mediante una direccion
o mediante un sitio de interés) y una vez logrado este objetivo, encontrar
aparcamiento cercano (a menos de una distancia establecida por defecto en
500m pero modificable en ParamConfig.tat). Cuando se logra el objetivo de
aparcar, se avanza de ronda y se repite este esquema hasta lograr el nimero
de rondas seleccionadas en la configuracion de la partida.

37

Este modo de juego se realiza con vida infinita y sin vehiculos enemigos, y
puede ser jugado tinicamente en modo competitivo.

= Se desarrolld una opcién que permite el cambio automatico del protocolo
cada cierto nimero de rondas en una misma partida, ya que se deseaba
poder realizar pruebas con VESPA y el protocolo de reserva activados, con
VESPA vy sin protocolo de reserva y, por altimo, sin VESPA, lo cual suponia
tener que iniciar una nueva partida con cada cambio de protocolo. De esta
forma se permite recolectar datos de diversas configuraciones en exactamente
el mismo escenario (ya que las situaciones de los aparcamientos son aleatorias
y cambian entre partidas).

3.6. Posibles mejoras de VESPA y problemas en-
contrados

Durante la implementacion del sistema VESPA en el juego se han encontrado
los siguientes problemas y posibles mejoras:

= Los eventos moviles observados desde un agente externo, como se explica
en el Anexo D.1.5, hacen necesario un método para calcular los vectores de
movilidad y direccion.

» Cuando se envia un mensaje y no se obtiene respuesta (bien sea porque no
hay ningin vehiculo cercano o no lo consideran relevante) hay que reenviarlo
periodicamente hasta que se obtenga respuesta. Este reenvio puede prolon-
garse durante grandes periodos de tiempo (p.ej. si el vehiculo circula por un
camino con una densidad de vehiculos muy baja), por lo que podria ser de
utilidad calcular de nuevo la EP! antes de cada envio ya que puede llegar
un punto en el que ya no sea necesario seguir intentando difundir el evento
porque haya quedado ya obsoleto.

3.7. Resultados experimentales

Con el proposito de evaluar el interés de Vanet-X como método de evaluacion de
estrategias de gestion de datos, se han desarrollado varios experimentos. En estos
experimentos se ha evaluado el tiempo que le cuesta a un vehiculo encontrar un
aparcamiento libre, ya que los aparcamientos representan un tipo recurso escaso,
perfecto para probar las bondades de las estrategias de gestion de informacion.

Iprobabilidad de encuentro, ver Anexo D.1.3

38

La configuracion de los diversos parametros de VESPA utilizada para la reali-
zacion de los experimentos se muestra en la figura 3.1.

Rango de comunicacion 200m.
Vehiculos equipados con VESPA 50 %

« (coef. penalizacién sobre la distancia) | 1/1500 (Ad < 500m.)
3 (coef. penalizacion sobre el tiempo hasta 1/180 (At < 60s.)
la posicién més cercana)

7 (coef. penalizacion sobre la edad del | 1/360 (Ag < 120s.)

evento)

C (coef. penalizacién sobre el dngulo) 1/270 (¢ < 90°)
Umbral de relevancia 75 %
Umbral de difusion 75 %
Umbral de almacenamiento 60 %
Refresco del Query processor cada 2s.

D (tiempo maximo de espera antes de la 1s.

redifusion de un mensaje entrante)

D’ (tiempo maximo de espera antes de la 2s.
redifusion de un mensaje saliente)

Tabla 3.1: Configuracion de VESPA

Se han considerado tres estrategias diferentes de comparticiéon de informacion:

= VESPA sin protocolo de reserva (VESPA-P): se ha adaptado la propuesta
de [5], desarrollada en el contexto del sistema VESPA [6].

= VESPA con protocolo de reserva (VESPA+P): 1os recursos escasos, como son
los aparcamientos, pueden causar problemas de competiciéon por un tdnico
recurso. Por ello se ha adaptado el trabajo presentado en |7, que anade un
protocolo que coordina el procedimiento de la reserva del recurso, de forma
que la informacién sobre dicho aparcamiento sea transmitida a un tdnico
interesado.

= Sin comparticion de informacion: los vehiculos no reciben ninguna informa-
cion. Solo conocen los aparcamientos que estan en su rango de vision.

El escenario utilizado para la realizacion de los experimentos es un area de 1km?
en torno a la calle «Sophie Oury» en la ciudad de Valenciennes (Francia). En este
escenario se han simulado un ndmero variable de vehiculos circulando, y se ha
medido el tiempo que necesitan para encontrar un aparcamiento libre cercano a

39

sus destinos programados. Se ha recogido informacion durante aproximadamente
14 horas de juego, que han correspondido a 400 aparcamientos realizados por el
jugador.

Los resultados experimentales muestran los beneficios de contar con el sistema
VESPA, especialmente usando un protocolo de reserva (ver figura 3.3). También se
puede observar (figura 3.5) que los vehiculos controlados por humanos obtienen un
mayor beneficio que los que son controlados por el computador. Esto puede deberse
a la implementacion de la inteligencia artificial realizada, concretamente en lo que
respecta al algoritmo de bisqueda de recursos, que propone destinos aleatorios
dentro de un rango fijo, en lugar de ir incrementando este rango progresivamente.

Vehiculos buscando 10 \ 15 \ 20 \ 25
Aparcamientos 10

Ratio vehiculos buscando / | 1 1.5 2 2.5
aparcamientos libres
No humano con VESPA+P | 20% | 9% | 10% | 11%
No humano con VESPA-P | 23% [19% | 14% | 18 %
Humano con VESPA-+P 26% | 28% | 32% | 28 %
Humano con VESPA-P 13% | 22% | 19% | 26 %

Tabla 3.2: Porcentaje de mejora del tiempo de aparcamiento

3555 [oo
30% f[-mmmmmmmmmm oo oo
25% [
20% -

i |- VESPA+P

BVESPA-P

10% -7

5% -

% de mejora detiempo vs. no usar ninguna
estrategia de comparticion deinformadén

0%

ratio vehiculos buscando / aparcamientos disponibles

Figura 3.3: Mejoria en el tiempo para aparcar por un humano
A pesar de que se considera necesaria la realizacion de més test para considerar

los resultados como validos, los resultados obtenidos son consistentes con otros
resultados experimentales obtenidos previamente mediante el uso del simulador.

40

25%

ra

=1

HS
|

u
S
|

15%

10%

WVESPA+P

HVESPA-P

estrategia de comparticion de informadén
(=]
*
Il

% de mejora detiempo vs. no usar ninguna

Figura 3.4

35%

30%

estrategia de comparticion de informadoén

0%

% de mejora de tiempo vs. no usar ninguna

Figura 3.5: Comparativa mejoria de tiempo entre humanos y no humanos

25%

20%

15% ¢

10% |

5% r

5 ! 15 2 25

ratio vehiculos buscando / aparcamientos disponibles

: Mejoria en tiempo para aparcar por el computador

mvehiculo humano

W Vehiculo no humano

1 15 2 25

ratio vehiculos buscando / aparcamientos disponibles

41

3.8. Rendimiento del juego

El juego ha sido diseniado para funcionar con un framerate constante de 25 FPS
(fotogramas por segundo), que coincide con la tasa de ciclos de juego por segundo.
Se ha comprobado que usando la configuracion de la partida mas exigente de todas
las posibles, este framerate se cumple en el ordenador utilizado para la realizaciéon
de las pruebas.

Al tratarse de un juego en red es importante conseguir un tamano reducido
de los paquetes de red enviados. En la tabla 3.3 se observa el rendimiento medido
para diferentes configuraciones probadas. Los datos enviados de red se refieren a
los enviados por el servidor a cada cliente. Los enviados por los clientes al servidor
tienen una tasa fija (si se cumple el framerate establecido) de 1,45 KB/s.

Niam. | Veh. Veh. | Media Maximo Maximo | Media | Media
juga- | trafico | enemi-| datos memoria | memoria | uso uso
dores gos enviados | usada usada CPU CPU
(servidor) | (cliente) | (servi- | (cliente)
dor)
1 10 4 20 KB/s | 22 MB 37 MB 3% 10%
1 25 4 35 KB/s | 33 MB 15 MB 4% 11%
2 25 4 57 KB/s | 20 MB 35 MB 4% 14 %
4 25 4 36 KB/s | 25 MB 38 MB 5% 16 %
1 50 8 57 KB/s | 22 MB 35 MB 3% 17%

Tabla 3.3: Rendimiento obtenido con varias configuraciones

En el anexo D.3 se muestran diversas graficas recogidas y se detallan aspectos
como la cantidad de datos enviados por la red por cada tipo de entidad del juego.

42

Capitulo 4

Conclusiones

En este capitulo se recapitulan las conclusiones que se han obtenido de la
realizacion de este Proyecto Fin de Carrera, repasando las diferentes iteraciones
de su realizacion y analizando si se han cumplido los objetivos del mismo. También
se presentan diversas lineas de trabajo futuro y una valoraciéon personal del trabajo
realizado.

4.1. Conclusiones

A lo largo de este proyecto se ha desarrollado un videojuego de coches, que
puede ser jugado de forma cooperativa o competitiva por varias personas a través
de la red, con escenarios basados en datos reales obtenidos a través del sistema
OpenStreetMap, vy que tiene como objetivo final permitir integrar un sistema de
gestion de informacion en redes vehiculares, siendo elegido el sistema VESPA para
su implementacion.

El proyecto ha sido desarrollado siguiendo una metodologia de desarrollo basada
en diferentes iteraciones, de forma que se comenzase desarrollando un juego basico
y en cada nueva iteracion se le fuesen anadiendo funcionalidades.

Como base para el videojuego, se eligio adaptar el juego Rally-X, un arcade
clasico de la compania Namco del ano 1980 en el que el jugador controla un vehiculo
a través de un laberinto de calles y debe tratar de conseguir las banderas repartidas
por el escenario mientras huye de los vehiculos enemigos que le persiguen, haciendo
uso del lanzador de humo que permite despistarlos por unos instantes.

Este juego tenia muchas similitudes con el juego Pac-Man (compartian la misma
placa) por lo que en realidad se puede considerar un arcade de laberintos, ya que
el control del coche se limitaba a movimientos en giros de 90°.

43

Se pensd que seria una buena idea adaptar este juego ya que las banderas
podrian representar eventos fijos del sistema VESPA y los vehiculos enemigos
representarian eventos moviles. Sin embargo, se decidi6 modificar otros aspectos
para adecuarlo al tiempo actual.

De esta manera se cambi6 el control del vehiculo de forma que ahora podria realizar
giros de cualquier angulo, pudiendo tomar una trayectoria més cerrada cuanto
menos fuera la velocidad a la que circulase.

Otra modificacion fue sustituir el laberinto sobre el que se circulaba por escenarios
reales obtenidos a través del sistema de mapas OpenStreetMap.

Estos fueron los objetivos de la primera iteracion del juego.

A continuacién se muestra el trabajo realizado en las diferentes iteraciones:

= 12 iteracién: se tomo como base un tutorial de realizacion del clasico Space
Invaders en Java' y la lectura del libro Developing Games in Java [4], lo cual
aporto6 los conocimientos bésicos sobre la estructura de un juego, el pintado
o la inclusion de sonidos. La inteligencia artificial usada para los vehiculos
enemigos era muy bésica ya que se cometi6 el error de tratar de realizarla
partiendo desde cero.

= 22 jteracién: consistié en anadir la capacidad de que participen varios ju-
gadores a través de la red. Para ello se buscé informacion sobre las arquitec-
turas de red usadas habitualmente en videojuegos y se llegd a la conclusion
de que una arquitectura del tipo cliente-servidor con predicciéon en cliente
era la idonea, contando con la suerte de que este tipo de arquitectura era
la més habitualmente utilizada y se disponia de suficiente documentacion al
respecto proveniente de los juegos Quake3 vy Half-Life, los cuales fueron los
pioneros en usarla.
Esta iteracion fue una de las més costosas ya que a pesar de los articulos
publicados al respecto, habia aspectos insuficientemente documentados.

= 32 iteracion: el objetivo fue convertir el juego, realizado hasta ahora con un
tnico hilo de ejecucion (exceptuando el sonido), en multi-hilo, de forma que
cada actor tuviera su propio hilo de ejecucion. Esto aparentemente entraba
en conflicto con la técnica de prediccion usada en la arquitectura de red,
pero sin embargo no fue asi, ya que esa técnica se desarrollaba en el cliente,
y en éste no tenia sentido una implementaciéon multi-hilo de los actores ya
que éstos no realizaban tarea alguna maés alla del pintado. De esta forma se
realiz6 una implementacion multi-hilo en el servidor y de un tnico hilo (més

'http://balusoft.wordpress.com/2010/09/26/creando-un-space-invaders-con-
java/

44

http://balusoft.wordpress.com/2010/09/26/creando-un-space-invaders-con-java/
http://balusoft.wordpress.com/2010/09/26/creando-un-space-invaders-con-java/

los del sonido) en el cliente, ya que este ultimo no dejaba de ser un mero
terminal de E/S con algunas capacidades extra.

También se mejord la representacion visual, anadiendo nuevos tipos de te-
rreno como diferentes tipos de caminos (utilizando los diferentes tipos exis-
tentes en OpenStreetMap) o los edificios, y se modifico el sistema de deteccion
de colisiones con el terreno.

4? iteracién: como se ha mencionado anteriormente, la inteligencia desa-
rrollada para el manejo de los vehiculos no humanos era muy bésica y nada
extensible, por lo que el objetivo de esta iteracién consistié en rehacer di-
cha inteligencia. Vistos los resultados del intento de realizar la inteligencia
desde cero, se decidio usar los diferentes comportamientos desarrollados en
el articulo Steering Behaviors For Autonomous Characters |17|, que permi-
tian construir comportamientos complejos a partir de ellos y consistian en
una aproximacion basada en la diferencia entre el vector de trayectoria del
vehiculo y el vector hasta el punto objetivo deseado.

Fue en este momento cuando se vio la necesidad de anadir méas vehiculos
controlados por el ordenador: los vehiculos del trafico, que servirian para re-
transmitir los eventos VESPA ademés de para aportar mas «vida» al escena-
rio, y las ambulancias, como generador de eventos VESPA del tipo «servicio
de emergenciay.

52 iteracién: hasta este momento el juego no contaba con un sistema de
mentis y al ejecutarlo ya comenzaba la partida en un mapa prefijado que se
habia obtenido manualmente desde el sitio web de OpenStreetMap. Por ese
motivo esta iteracion consistié en dotar al juego de un sistema de pantallas
de meni que permitiese configurar diversos aspectos de la partida y permitir
un método de anadir nuevos escenarios desde dentro del propio juego. Para
esto dltimo, se desarroll6 la estructura necesaria para el almacenamiento de
los escenarios descargados, ya que se consider6 que los escenarios descargados
debian permanecer disponibles para futuras ejecuciones de la aplicacion.

6® iteracion: consistié en implementar diferentes modos de juego que se
acababan de definir en la reunion, para dotar mayor variedad al juego y lograr
modos de juego con mayor diversion. Fue entonces cuando se implementaron
los «lugares de interés», direcciones y negocios reales que serian utilizados
como objetivo a alcanzar en la partida, en lugar de las banderas, y también
se implemento la funcionalidad de poder salir del vehiculo y avanzar a pie.

7% iteracidn: consistié en la implementacion de una version simplificada del
sistema VESPA | anadiendo ademés todo lo necesario al juego para permitir
su uso, como el radar en el que se mostrarian los eventos. Al final de esta

45

iteracion se mostroé el trabajo realizado hasta el momento al profesor Thierry
Delot (del proyecto VESPA), realizando una presentaciéon en inglés en la
que se anotaron diversas posibles mejoras, que serian implementadas en la
siguiente iteracion.

= 82 iteracién: se inici6 tras una reunién en la que se habia realizado una
prueba con los tutores del juego y se definieron multitud de ajustes y cam-
bios de mayor calado que debian realizarse, ademas de nuevas caracteristicas
consideradas de interés. Se dedico toda la iteracion a realizar estos cambios.
Fue aqui cuando se afiadieron caracteristicas como la camara de muerte (per-
mite a los jugadores muertos ver la vision del resto de jugadores para que la
espera no sea aburrida) o el ment de pausa.

= 92 iteracion: se desarrollo la implementacion completa del sistema VESPA,
sustituyendo a la version simplificada que se habia estado usando previamen-
te. Esta iteracion fue muy costosa, ya que fue necesaria la lectura de diversos
articulos de VESPA para la comprension del sistema, y en la implementacion
se contaba con el cddigo fuente de una versioén no final del simulador desarro-
llado para VESPA, el cuél contaba con varios errores por lo que fue necesario
revisar detalladamente todo el codigo antes de poder usar las funciones que
contenia.

= 10?2 iteracién: En este momento, con el sistema VESPA ya implementado,
se decidi6 avanzar en la explotacion del juego como método de evaluacion de
dicho sistema, comenzando la realizacion del articulo finalmente presentado
en IMMoA’132. Para ello, se vio necesaria una tltima iteraciéon en la que
se incluyera un nuevo modo de juego consistente en realizar aparcamientos,
para facilitar la toma de muestras de tiempos de aparcamiento, analisis en el
cudl se iba a centrar dicho articulo. También fue en este momento cuando se
implemento el sistema de atascos, aunque no se llegd a usar para el articulo.

Como se puede comprobar a continuacién, se han cumplido todos los objetivos
marcados inicialmente en la propuesta del Proyecto Fin de Carrera.

= Se ha desarrollado un videojuego de coches, que cuenta con vehiculos con-
trolados por el ordenador mediante la inteligencia artificial elaborada, y con
otros vehiculos controlados por jugadores humanos, los cuales se unen a la
partida a través de la red.

= Los escenarios utilizados para las partidas estan creados con datos reales
obtenidos del sistema cartografico OpenStreetMap.

2http://www.dbis.rwth-aachen.de/IMMoA2013/

46

http://www.dbis.rwth-aachen.de/IMMoA2013/

= Estos escenarios pueden ser anadidos al juego de forma sencilla desde el
sistema de menis, indicando una localizacién a través de unas palabras clave
(la direccion) y seleccionando el tamano del area a descargar.

= Se ha definido una interfaz que permite utilizar en el juego sistemas de gestion
de informacion, siendo implementado el sistema VESPA.

Ademas, conjuntamente a lo realizado en este proyecto, se ha presentado un
articulo (ver anexo E) al workshop IMMoA’13, el cual ha sido realizado en con-
juncion con los directores del proyecto Sergio Ilarri y Eduardo Mena.

4.2. Linea temporal de la realizacién del proyecto

Como ya se ha comentado anteriormente, el desarrollo del proyecto se ha reali-
zado siguiendo una metodologia de desarrollo basado en iteraciones. En esta seccion
se analizara el tiempo dedicado a cada iteracion (tabla 4.2 y figura 4.2) asi como
la vision global dividiendo el tiempo en reuniones, investigacion /analisis/diseno,
implementacion /pruebas y memoria (tabla 4.1 y figura 4.1).

Hay que tener en cuenta que cada iteracion consiste no solo de implementacion
sino también de la investigacion, el anéalisis, el diseno y las pruebas realizadas.
Por ese motivo la duracién mostrada en la tabla 4.2 se incluye en los apartados
«investigacion /andlisis /diseno» e «implementacion/pruebasy de la tabla 4.1.

También se muestra en la figura 4.3 el cronograma del desarrollo de las dife-
rentes iteraciones. Como se puede observar, la extension temporal de las diferentes
iteraciones difieren con el valor mostrado en la columna «Duracién». Esto es asi
debido a la superposicion de la realizacién del proyecto con diversas activida-

des laborales y también con la realizacion del articulo presentado en el workshop
IMMoA’13.

‘ Tarea ‘ Horas ‘
Reuniones 27
Investigacion/Analisis/Disenio 136
Implementacion /Pruebas 497
Medidas de tiempos (Explotacion) 51
Memoria 172

| Total | 883 |

Tabla 4.1: Separacion de horas por tipo de trabajo

47

| Iteraciéon | Descripcién | Horas |
1 Rally-X, OSM, inteligencia basica 59
2 Red 105
3 Multi-hilo, terrenos, mejora visual 72
4 Inteligencia avanzada 73
5) Ments, gestion escenarios 24
6 Modos de juego 73
7 VESPA simple 21
8 Mentu de pausa, cAmara de muerte y 79
multiples correcciones
9 VESPA completo 51
10 Mejoras para explotacion 76
| Total | 633 |

"
N,

Tabla 4.2: Separacion de horas por iteracion

B Reuniones

W Investigacion/Analizis/Dizefia
Himplementacion/Pruebas

B Medidas de tiempos

EMemoria

Figura 4.1: Porcentaje de horas de cada tipo de tarea

48

W 1: Rally-X, OSM, inteligencia basica

N 2:Red

B 3: Multi-hilo, terrenos, mejora
visual

m 4: Inteligencia avanzada

M 5: Menus, gestidn escenarios

¥ 6: Modos de juego

B 7: VESPA simple

W B: Menuin-game, camara de

muerte y multiples correcciones
9: VESPA completo

¥ 10: Mejoras para explotacion

Figura 4.2: Porcentaje de tareas de cada iteracion

2041 2mar iz
Merecidn | omienzo | Fingl |Dorocidn
oo m.:,|c.a|,,.w dic | aow | gt | o m|m|,-m ja .@|w|m m|.ﬁ-: R m|m m,|m,|

B

Ak

2| | -

R o

s | || m

o | s || - -

7| e || Tk

| m | s ™ I -

o | e | md| o E m

w | G || E—

Figura 4.3: Cronograma del desarrollo de las diferentes iteraciones. Se han marcado
en naranja los periodos de nula dedicacion.

49

4.3. Trabajo futuro

A continuacién se proponen algunas posibles mejoras futuras, que se pueden
dividir en varias temaéticas: red, rendimiento, VESPA, IA y otros.

Sobre aspectos de red

= Usar la Codificacion Huffman como método de comprimir los paquetes de
red, al igual que se hace en el juego Quake3 y el motor Source [13].

= Cambiar el uso del TCP «asincrono» usado para el envio de datos fuera de
orden por el protocolo UDP con caracteristicas de reliability implementadas.
Este cambio es muy deseable ya que durante la redacciéon de esta memoria,
revisando articulos de las fuentes, se descubrié un problema de usar los pro-
tocolos TCP y UDP simultaneamente que habia pasado desapercibido.
Todos los articulos relacionados con los aspectos de la comunicacién en red
recomendaban encarecidamente usar el protocolo UDP (por los motivos co-
mentados en el Capitulo 2.8.1) y ademés mencionaban que mezclar el uso de
TCP y UDP podia causar problemas de sincronizacion [9].
Después de haber leido esos articulos se desarrollo el envio de paquetes de
red durante el game loop mediante el protocolo UDP y en la inicializacion
y finalizacion (ver Anexo B.5), en las que era la fiabilidad y no la veloci-
dad lo primordial, mediante el protocolo TCP. Tiempo después, durante la
optimizaciéon del codigo de red para reducir la cantidad de datos a enviar,
sin recordar las advertencias de los articulos acerca de mezclar ambos proto-
colos, se ide6 que ciertos datos que se enviaban solo cada mucho tiempo se
enviasen por TCP para lograr asi una ligera mejora en el tamano de los pa-
quetes enviados en cada ciclo. Los elementos que se decidié enviar por TCP
son: las puntuaciones, la explicaciéon de la ronda y los mensajes durante la
partida (a veces referidos en este documento como mensajes GUI). Durante
la revision de los articulos de la bibliografia realizada durante la preparacion
de este documento se record6 la advertencia del peligro del uso de ambos
protocolos simultdneamente, e investigando maéas sobre el asunto se descu-
bri6 un articulo [19] en el que se explicaba que al estar ambos protocolos
implementados sobre la capa IP, el uso de TCP tiende a inducir pérdida de
paquetes en UDP.
Es por esta razén que se debe cambiar de nuevo el envio de esos tres ele-
mentos que actualmente se realiza mediante TCP para volverlo a realizar en
los paquetes «Snapshot» UDP o seguir con el diseno actual pero cambian-
do el uso de TCP por UDP e incorporar funcionalidades que garanticen la
fiabilidad de los envios.

50

Sobre aspectos del rendimiento

= Implementar un método que posibilite calcular el rendimiento del ordenador,
para por ejemplo decidir de forma auténoma los parametros mas apropiados
para la partida o el uso o no de las pantallas estaticas mencionadas en el
punto anterior. Una forma de realizar esta funcionalidad podria ser ejecutar
un proceso pesado y medir el tiempo utilizado.

= Disponer de diferentes resoluciones graficas, predefinidas de antemano y se-
leccionables por el usuario.

Sobre VESPA

» Realizar el calculo de la Encounter Probability (EP) mediante el uso de mapas
digitales en lugar de mapas geograficos.

= Usar la implementacion real de VESPA como implementacion de los interfa-
ces, en lugar de hacer uso de la interfaz desarrollada para el juego.

= Hacer una vista general del juego donde se vea todo el area de juego en mi-
niatura de forma que se pueda observar el comportamiento de VESPA (co6mo
se envian los eventos, quien los reenvia, etc.). Esta vista general se visualiza-
ria desde un cliente especial que se conectase al servidor. Una funcionalidad
adicional podria ser que se pudiera grabar la secuencia para posteriormente
poder revisionarlo como si de un video se tratara.

» Realizar una metodologia para automatizar la recogida y procesado a gran
escala de los ficheros de estadisticas de explotacién, asi como realizar una
evaluacion en otros escenarios (con otros tipos de eventos, etc.). Esta exten-
sion podria ser objeto de un Proyecto Fin de Carrera que continuara con el
trabajo en este sentido.

Sobre la TA

= Dividir el escenario en regiones para mejorar el rendimiento del algoritmo de
deteccion de colisiones (para que compruebe las posibles colisiones solo con
los elementos del terreno de tu region) y del algoritmo que averigua cul es
tu nodo mas cercano (usado por la [A).

= Hacer que los vehiculos del trafico respeten los sentidos de circulacién en los
caminos de doble sentido. Para lograr este objetivo, el algoritmo de path-
finding debe poder diferenciar los sentidos de las calles (ya esta asi hecho)
y se debe idear algiin método para que el vehiculo circule siempre préximo

ol

al borde derecho del camino. Un problema que se encontraria seria que al
reducirse a la mitad el espacio por el que circulan, podrian surgir problemas
de maniobrabilidad de la inteligencia de los vehiculos.

Otra posibilidad seria utilizar un comportamiento similar al Flow field follo-
wing descrito en [17], para asegurar que en cada mitad del camino la «fuerzay
que guiard a los vehiculos sea en distinto sentido.

Otros aspectos

Actualmente cada tipo de terreno tiene asociadas unas propiedades (infran-
queable, ralentizar, causar dano, etc.). Seria deseable poder controlar las
propiedades que tendra cada terreno segiin un fichero de texto de configura-
cion.

Mostrar textos con colores y formato, en lugar de texto plano, en los textos
durante el juego. Por ejemplo para mostrar el color de un equipo en los
mensajes GUI o en la explicacion de la ronda. Para lograr esta funciéon se
podria usar la clase Attributed Text.

Actualmente, las unidades de medida espacio-tiempo en torno a las cuales
esta disenado el juego son los pixeles, los ciclos de juego y en menor medida
los segundos. Se han utilizado éstas por motivos de sencillez pero seria con-
veniente cambiarlo de modo que se usen tinicamente las respectivas unidades
del S.I (metros y segundos). De esta forma garantizarfamos que la velocidad
de los vehiculos sea la misma aunque la velocidad del juego (FPS) disminuya.

Usar SandMark® para ofuscar el codigo fuente del juego y asi dificultar que
se puedan hacer trampas en el juego.

Hacer que la misica de la partida cambie dinAmicamente segtn la situacion
actual. Por ejemplo una misica con un ritmo mas rapido en situaciones de
peligro. En [4] se muestra un método de crear musica adaptativa mediante
el uso de musicas MIDI.

Seria recomendable que existiese una interfaz web con un diseno similar a los
mentus del juego desde la que se pudiesen modificar remotamente los ficheros
«config» y «paramConfig.txt» del servidor dedicado.

3http://sandmark.cs.arizona.edu/

52

http://sandmark.cs.arizona.edu/

4.4. Valoracién personal

El trabajo realizado ha sido muy satisfactorio, ya que me ha permitido cumplir
el deseo de elaborar enteramente un videojuego, y ademas me ha aportado muchos
conocimientos intimamente ligados a dicho dmbito, asi como muchos otros que
seguro me son de gran utilidad en el ejercicio de mi carrera profesional.

Durante la elaboracion de este Proyecto Fin de Carrera me encontré con di-
versas dificultades que me supusieron un empleo de tiempo mayor de lo esperado.
Las mas importantes fueron:

(1) la comprobacion de que la implementacion de VESPA desarrollada fun-
cionaba de forma correcta,

(2) la adaptacion del calculo de la Encounter Probability (EP) de VESPA
a partir del simulador, poco documentado, enteramente en francés, y con
varios fallos (que costd encontrar) ya que no se trataba de la version final, y
la mas importante,

(3) el empleo de mucho tiempo de analisis, diseno e implementacion de aspec-
tos y caracteristicas que en siguientes iteraciones se terminaron descartando,
como por ejemplo buscar la forma de que el sonido del motor del coche fuera
dindmico (con cambios de las marchas) o tratar el problema de los edificios
que invadian la calzada y que dificultaban los algoritmos de la IA).

A estas dificultades habria que anadir la excesiva dilatacion en el tiempo de la
realizacion del proyecto, y su amplitud, que en ocasiones hacia dificil mantener la
vision del conjunto, a pesar de la documentacion desarrollada.

Debido a estas dificultades y a la cantidad de errores iniciales a causa de la
poca documentacion existente acerca de algunos temas, en los que fui aprendiendo
a base de errores, el proyecto se dilato excesivamente en el tiempo y hubo algunos
momentos en los que me planteé si la eleccion del proyecto habia sido acertada,
pero la motivacion que me suponia realizar un videojuego y el apoyo de mis tutores
me permitio sobrellevar esos momentos de desanimo.

A pesar de esto, considero muy util toda mi experiencia en la realizacién del
proyecto, tanto por lo aprendido como por lo trabajado, y me ha supuesto una
gran satisfaccion personal ver la evolucion del desarrollo del videojuego hasta lo
que es ahora.

53

54

Bibliografia

[1]

2|

3]

4]

[5]

(6]

7]

8]

J. E. Michael Behrisch, Laura Bieker, and D. Krajzewicz. SUMO — Simulation
of Urban MObility: An overview. In The Third International Conference on
Advances in System Simulation (SIMUL’11), pages 63-68. TARIA, 2011.

Yahn W. Bernier. Latency Compensating Methods in Client/Server In-
game Protocol Design and Optimization. In Game Developers Conferen-
ce, 2001. Available at http://web.cs.wpi.edu/"claypool/courses/4513-
B03/papers/games/bernier.pdf.

Benedikt Bitterli. A Verlet based approach for 2D game phy-
sics. http://www.gamedev.net/page/resources/_/technical/math-and-
physics/a-verlet-based-approach-for-2d-game-physics-r2714. Last
accessed August 23, 2013.

David Brackeen, Bret Barker, and Lawrence Vanhelsuwe. Developing Games
in Java. New Riders Publishing, 2003.

N. Cenerario, T. Delot, and S. Ilarri. A Content-Based Dissemination Protocol
for VANETs: Exploiting the Encounter Probability. IFEE Transactions on
Intelligent Transportation Systems, 12(3):771-782, 2011.

T. Delot and S. Ilarri. Data gathering in vehicular networks: The VESPA
experience (invited paper). In Fifth IEEE Workshop On User MObility and
VEhicular Networks (LCN ON-MOVE 2011), pages 801-808. IEEE Computer
Society, 2011.

T. Delot, S. Ilarri, S. Lecomte, and N. Cenerario. Sharing with caution:

Managing parking spaces in vehicular networks. Mobile Information Systems,
9(1):69-98, 2013.

S. Esper, S. R. Foster, and W. G. Griswold. On the nature of fires and how
to spark them when you’re not there. In J4th ACM Technical Symposium on
Computer Science Education (SIGCSE’13), pages 305-310. ACM, 2013.

%)

http://web.cs.wpi.edu/~claypool/courses/4513-B03/papers/games/bernier.pdf
http://web.cs.wpi.edu/~claypool/courses/4513-B03/papers/games/bernier.pdf
http://www.gamedev.net/page/resources/_/technical/math-and-physics/a-verlet-based-approach-for-2d-game-physics-r2714
http://www.gamedev.net/page/resources/_/technical/math-and-physics/a-verlet-based-approach-for-2d-game-physics-r2714

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Glenn Fiedler. UDP vs. TCP. http://gafferongames.com/networking-
for-game-programmers/udp-vs-tcp/. Last accessed August 23, 2013.

Glenn Fiedler. What every programmer needs to know about game networ-
king. http://gafferongames.com/networking-for-game-programmers/
what-every-programmer-needs-to-know-about-game-networking/. Last
accessed August 23, 2013.

J. Harri, F. Filali, C. Bonnet, and M. Fiore. VanetMobiSim: Generating
realistic mobility patterns for VANETs. In Third International Workshop on
Vehicular Ad Hoc Networks (VANET’06), pages 96-97. ADM, 2006.

Brian Hook. Introduction to Multiplayer ~Game Program-
ming. http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/
IntroductionToMultiplayerGameProgramming. Last accessed August 23,
2013.

Brian Hook. The Quake3 networking model. http://trac.bookofhook.com/
bookofhook/trac.cgi/wiki/Quake3Networking. Last accessed August 23,
2013.

M. Lehn, C. Leng, R. Rehner, T. Triebel, and A. Buchmann. An online
gaming testbed for peer-to-peer architectures. ACM SIGCOMM Computer
Communication Review, 41(4):474-475, 2011.

R. Mangharam, D. S. Weller, and R. Rajkumar. GrooveNet: A hybrid si-
mulator for vehicle-to-vehicle networks. In Second International Workshop
Vehicle-to-VehicleCommunications (V2VCOM’06), pages 1-8, 2006.

M. Piorkowski, M. Raya, A. L. Lugo, P. Papadimitratos, M. Grossglauser,
and J.-P. Hubaux. TraNS: Realistic joint traffic and network simulator for
VANETs. SIGMOBILE Mobile Computing and Communications Review,
12(1):31-33, 2008.

Craig Reynolds. Steering behaviors for autonomous characters. In Game
Developers Conference, pages 763—782, 1999.

Fabien Sanglard. Quake Engine code review. http://fabiensanglard.net/
quakeSource/quakeSourcePrediction.php. Last accessed August 23, 2013.

Hidenari Sawashima. Characteristics of UDP Packet Loss: Effect of TCP Traf-
fic. http://www.isoc.org/INET97/proceedings/F3/F3_1.HTM. Last acces-
sed August 23, 2013.

56

http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/IntroductionToMultiplayerGameProgramming
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/Quake3Networking
http://fabiensanglard.net/quakeSource/quakeSourcePrediction.php
http://fabiensanglard.net/quakeSource/quakeSourcePrediction.php
http://www.isoc.org/INET97/proceedings/F3/F3_1.HTM

[20]

[21]

[22]

23]

[24]

[25]

C. Sommer, R. German, and F. Dressler. Bidirectionally coupled network
and road traffic simulation for improved IVC analysis. IEEE Transactions on
Mobile Computing, 10(1):3-15, 2011.

Nguonly Taing. TCP UDP and RMI Performance Evaluation. http://lycog.
com/performance-evaluation/tcp-udp-rmi-performance-evaluation/.
Last accessed August 23, 2013.

VALVE. Source Multiplayer Networking. https://developer.
valvesoftware.com/wiki/Source_Multiplayer_Networking. Last acces-
sed August 23, 2013.

L. von Ahn and L. Dabbish. Labeling images with a computer game. In SIG-
CHI Conference on Human Factors in Computing Systems (CHI’04), pages
319-326. ACM, 2004.

L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. reCAPT-
CHA: Human-based character recognition via web security measures. Science,
321(5895):1465-1468, 2008.

T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and M. Corner. mCrowd: A
platform for mobile crowdsourcing. In Seventh ACM Conference on Embedded
Networked Sensor Systems (SenSys’09), pages 347-348. ACM, 20009.

57

http://lycog.com/performance-evaluation/tcp-udp-rmi-performance-evaluation/
http://lycog.com/performance-evaluation/tcp-udp-rmi-performance-evaluation/
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

58

Anexos

99

Anexo A
Analisis

Para la elaboracion de este Proyecto Fin de Carrera se ha seguido una metodo-
logia de desarrollo basada en diferentes iteraciones del producto, de forma que en
cada reunién se establecian los objetivos del siguiente prototipo. Debido a que se
realizaron muchas iteraciones con relativamente pocos cambios entre ellas, en este
anexo se muestran tinicamente los diferentes aspectos del analisis correspondiente
a la ultima iteracion (salvo que se indique lo contrario).

A.1. Requisitos

A continuacién se muestran los requisitos de la altima iteracion del juego.

1. Generales

R1.1. La aplicacion se tratara de un juego de coches
R1.2. Podran jugar varios usuarios en una misma partida a través de la red

R1.3. Se elaboraran diversos modos de juego (pruebas de caracter competi-
tivo)

R1.4. Se elaborara una IA para el control de los vehiculos no humanos

2. Jugabilidad

R2.1. Se tomara como base para el juego el clasico videojuego Rally-X (Nam-
co 1980)*

R2.1.1. Existiran vehiculos enemigos que nos persigan

'http://en.wikipedia.org/wiki/Rally-X

61

http://en.wikipedia.org/wiki/Rally-X

R2.1.2. Existiran banderas que haya que recolectar

R2.1.3. Los jugadores podran hacer uso de «bombas de humo» que
despistaran a los enemigos

R2.1.4. Los jugadores tendrdn una cantidad de combustible limitada
que se recargara conforme se avance de nivel

R2.1.5. Los jugadores tendran una cantidad de salud limitada que se
recargara, conforme se avance de nivel

R2.1.6. El juego dispondra de diversos niveles en los que se ird avan-
zando hasta ser eliminado

R2.2. Se anadiran elementos para demostrar las ventajas del uso de VANET's

R2.2.1. Existiran otros vehiculos no humanos cumpliendo la funcién de
trafico

R2.2.2. Existiran plazas de aparcamiento en las cuales podréan aparcar
tanto los vehiculos del trafico como los jugadores

R2.2.3. Existiran vehiculos de servicios de emergencia
R2.3. El jugador podra abandonar el vehiculo y avanzar andando

R2.4. El jugador, mientras esté muerto, podra mover la caAmara libremente
por el escenario o ver lo que hacen los otros jugadores, con el objetivo de
amenizar la espera hasta que sea revivido

3. Escenarios

R3.1. Se podra jugar en diferentes escenarios reales

R3.2. Los escenarios se obtendran mediante un servicio de mapas online
R3.2.1. Los escenarios se obtendran a través del servicio OpenStreetMap

R3.3. Se podran previsualizar los escenarios descargados

R3.4. Se almacenaran y consultaran localmente los mapas y las imagenes de
previsualizacion de los mismos

62

4. Interfaz

R4.1. Todos los textos del juego se elaborarédn en inglés

R4.1. La navegacion por los menis de la aplicacion se realizard mediante una
interfaz grafica

R4.2. El usuario podra crear una partida nueva
R4.3. El usuario podra unirse a una partida en red

R4.4. El usuario podra gestionar los mapas almacenados: anadir, previsuali-
zar y eliminar

R4.5. El juego dispondra de misica tanto durante la navegacion por los
ments como durante la partida

R4.6. El usuario podré subir y bajar el volumen de musica, asi como también
desconectarla

R4.7. Se creard una pantalla en la que se indiquen datos sobre el autor,
los directores del proyecto y se agradezcan los usos de librerias y melodias
utilizadas.

R4.8. Existiran varias configuraciones de dificultad cerradas: alta, media y
baja

R4.9. Se notificara a los demas jugadores cuando un jugador se haya desco-
nectado

R4.10. Se mostrara una barra de progreso durante el proceso de carga de la
partida

5. VANETs

R5.1. Se permitira la integracién en el juego de un sistema de gestién de
datos (VANET)

R5.2. En concreto, se integrara el sistema VESPA

R5.3. Se permitiran simular situaciones reales en las que se puedan evaluar
el efecto que podria tener la utilizacion de un sistema de gestion de datos

R5.4. Se definirén los «interfaces» Java basicos (o clases abstractas) necesa-
rias para desde el videojuego poder interaccionar con VESPA

63

R5.5. Se implementard una instanciaciéon de dichos interfaces para poder
probar VESPA en el juego
6. Entorno

R6.1. La aplicacion se realizara sobre Java

R6.2. La aplicacion podra ejecutarse como aplicacion de escritorio y también
como Applet

R6.3. La aplicacion debe funcionar en Windows XP, Linux y Mac OS X

7. Técnicas

R7.1. Se usara el protocolo UDP para la comunicacién habitual entre el
cliente y el servidor

R7.2. El cliente y el servidor estaran acoplados en una sola entidad, de forma
que el jugador solo tenga que abrir una instancia para poder jugar

R7.3. La aplicacion serd multi-hilo

8. Otros

R8.1. El comportamiento de los vehiculos no humanos, la TA del juego, de-
bera estar completamente aislado de todo lo demas, de forma que se pueda
cambiar el comportamiento incluso sin reprogramar nada o muy poco (de-
pende del cambio)

R&8.2. El usuario se podrd unir a la partida sobre la marcha, durante el
trascurso de una partida

A.2. Casos de uso

En esta seccion se mostraran los diagramas de casos de usos analizados.

El anélisis se ha dividido entre, por un lado, la navegacion por los ments hasta
iniciar la partida (figura A.1) y por otro lado la partida en si.
Ademas, el analisis de la partida se ha separado en diferentes diagramas: uno
general (figura A.2), en el que se han simplificado todas las acciones del jugador y
otros en los que se detallan dichas acciones segiin el modo de juego escogido.

64

—

Usuario

Navegacion menus

odificar
configuracion
avanzada

Modificar
configuracion de
red (creacion)

Modificar
configuracion Kz ----
VESPA <<Extend>

,
,. <<Extend>>

Visualizar mapa

<<Extend>>

AY
<<Extend>> *

Configurar
creacion
partida

Crear una
partida nueva

<<Include>>

<<Extend>>

Gestionar
mapas

~
~

Modificar <<Extend>>
reglas Eliminar mapa

<<Include>>

Unirse a una <<Extend>>
partida }----_>> Configurar unién

existente a partida

Modificar
configuracion
de red (union

Modificar
directorio de
juego

<<Extend>>
Modificar \zZ--------

opciones

= Modificar
<<Extend>>
1 N volumen
<<Extend>>| . musica
1 <<Extend>>".
N

Modificar Modificar

controles

Ver créditos

volumen
efectos

Figura A.1: Casos de uso: navegacién menis

65

Y

Usuario anfitrion

R

1
1
1
Usuario ajeno X
1
1
1
1

Iniciar partida

Modificar volumen

Juego (simplificado)

ronda
\
\

\
\
\

', <<Extend>>
\

\
\

<<Extend>>

\
\
Ertondos 4 Finalizar partida
_________ Abandonar

~
~

N
~~ <<Extend>>
<
S ~

Ver controles

<<Extend>>

Usuario

N

Figura A.2: Casos de uso: partida

Realizar accion

<<Extend>
(;::;L;r;r ——————— Lograr objetivo

| <<Extend>>

Reincorporarse

Cuando se
supera el
tiempo limite
por ronda se
finaliza la
partida

Reloj

Figura A.3: Casos de uso: detalle del modo de juego «capture the flags»

66

Realizar accion

_______ Lograr objetivo
. <<Extend>>
l : i <Extend>>

\
\ Aparcar
Usuario

Figura A.4: Casos de uso: detalle del modo de juego «capture the red cars»

Realizar accién

m ~ . <<Extend>>

~

~
~

Lograr objetivo
Salir del
vehiculo
. Entrar al

Reincorporarse ------ ,
vehiculo
<<Include>>

/|

Usuario

Figura A.5: Casos de uso: detalle del modo de juego «solve the task» y «task
endurance survival»

67

Realizar acciéon

@ Lograr objetivo
<<Extend>> -
Salir del
vehiculo
. Entrar al
Reincorporarse K------ .
vehiculo
<<Include>>

I\

Usuario

Figura A.6: Casos de uso: detalle del modo de juego «parking special mode»

68

Menrts

Nombre: Ver créditos

Descripcion: El usuario visualiza la pantalla que contiene informacion
sobre el juego, el autor y sobre VESPA

Precondiciones: | El usuario se encuentra en la pantalla «inicial» del ment

Postcondiciones: | El usuario se encuentra en la pantalla «inicial» del ment

Flujo normal:

1. El usuario demanda la carga de la pantalla «créditos»
2. El sistema muestra la pantalla «créditos» al usuario
3. El usuario demanda volver a la pantalla anterior

Nombre: Modificar opciones

Descripcion: El usuario visualiza la pantalla que permite cambiar la con-
figuracion del volumen, controles y directorio de juego.

Precondiciones: El usuario se encuentra en la pantalla «inicial» del menu

Postcondiciones: | El usuario se encuentra en la pantalla «inicial» del ment

Flujo normal:

1. El usuario demanda la carga de la pantalla «créditos»
2. El sistema muestra la pantalla «opciones» al usuario

3. El usuario realiza las modificaciones deseadas a la confi-
guracion

4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

3a. El usuario desea modificar el volumen de la misica
1. Caso de uso «Modificar volumen muasica»

3b. El usuario desea modificar el volumen de los efectos
1. Caso de uso «Modificar volumen efectos»

3c. El usuario desea modificar el directorio de juego
1. Caso de uso «Modificar volumen efectos»

3d. El usuario desea modificar los controles
1. Caso de uso «Modificar controles»

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior

desechando los cambios realizados

Nombre: Modificar controles

Descripcion: El usuario visualiza la pantalla que permite visualizar y
modificar los controles del juego.

Precondiciones: El usuario se encuentra en la pantalla «opciones» del mentu

—continia en la siguiente pdgina—

69

—continua de la pdgina anterior—

Postcondiciones:

El usuario se encuentra en la pantalla «opciones» del menu

Flujo normal:

1. El usuario demanda la carga de la pantalla «controles»
2. El sistema muestra la pantalla «controles» al usuario

3. El usuario realiza las modificaciones deseadas a la confi-
guracion

4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior
desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto
1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modificar volumen mfsica

Descripcion: El usuario modifica el volumen de la miisica del juego.
Precondiciones: | El usuario se encuentra en la pantalla «opciones» del ment
Postcondiciones: | El usuario se encuentra en la pantalla «opciones» del ment

Flujo normal:

1. El usuario realiza las modificaciones deseadas a la confi-
guracion

Nombre: Modificar volumen efectos

Descripcion: El usuario modifica el volumen de los efectos del juego.
Precondiciones: | El usuario se encuentra en la pantalla «opciones» del ment
Postcondiciones: | El usuario se encuentra en la pantalla «opciones» del menu

Flujo normal:

1. El usuario realiza las modificaciones deseadas a la confi-
guracion

Nombre: Modificar directorio de juego

Descripcion: El usuario elige en qué carpeta se guardaran los datos del
juego.

Precondiciones: El usuario se encuentra en la pantalla «opciones» del ment

Postcondiciones: | El usuario se encuentra en la pantalla «opciones» del ment

Flujo normal:

1. El usuario demanda la carga de la ventana emergente de
seleccion de archivos

2. El sistema muestra la pantalla emergente de seleccion de
archivos al usuario

—continia en la siguiente pdgina—

70

—continia de la pdgina anterior—

3. El usuario elige la carpeta deseada

4. El usuario demanda volver a la pantalla anterior acep-
tando los cambios

Flujo alternativo:

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior
cancelando los cambios realizados

Nombre: Unirse a una partida existente
Descripcion: El usuario se une a una partida en red en curso
Precondiciones: El usuario se encuentra en la pantalla «inicial» del ment

Flujo normal:

1. El usuario demanda la carga de la pantalla «unirse»

2. El sistema muestra la pantalla «unirse» al usuario

3. Caso de uso «Configurar unién a partiday

4. El usuario demanda unirse a la partida seleccionada

5. El sistema muestra al usuario la pantalla en la que apa-
rece informacion de la partida en curso y sus jugadores.

6. El usuario selecciona a qué equipo unirse.

7. El usuario demanda incorporarse a la partida.

8. El sistema cierra el sistema de ments e incorpora al
jugador a la partida en curso.

Flujo alternativo:

3a, 4a, 6a, 7a. El usuario desea volver a la pantalla anterior
1. El usuario demanda volver a la pantalla anterior
cancelando los cambios realizados
ba, 8a. La partida no existe o estd completa o no se tiene
suficiente pericia para unirte
1. El sistema muestra al usuario una pantalla de error
indicandole los motivos del mismo
2. El usuario vuelve a la pantalla «inicial» del ment

Nombre: Configurar unién a partida

Descripcion: El usuario configura los parametros basicos de union a la
partida: IP, apodo, activacion del DMS

Precondiciones: El usuario se encuentra en la pantalla «unirse» del ment

Postcondiciones: | El usuario se encuentra en la pantalla «unirse» del ment

Flujo normal:

1. El usuario modifica los parametros deseados

Flujo alternativo:

la. El usuario desea volver a la pantalla anterior
1. El usuario demanda volver a la pantalla anterior
—continda en la siguiente pdgina—

71

—continua de la pdgina anterior—
cancelando los cambios realizados
1b. El usuario desea modificar los paradmetros avanzados:
configuracion de red
1. Caso de uso «Modificar configuracion de red (union)»

Nombre: Modificar configuracién de red (union)

Descripcion: El usuario configura los parametros avanzados de unién a
la partida: puerto del anfitrion y puerto local.

Precondiciones: El usuario se encuentra en la pantalla «unirse» del menu

Postcondiciones: | El usuario se encuentra en la pantalla «unirse» del ment

Flujo normal:

1. El usuario demanda la carga de la pantalla de configu-
racion avanzada de red (en union)

2. El sistema muestra dicha pantalla al usuario.

3. El usuario modifica los pardmetros deseados

4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior
desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto
1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Crear una partida nueva
Descripcion: El usuario se inicia una nueva partida
Precondiciones: El usuario se encuentra en la pantalla «inicial» del menu

Flujo normal:

1. El usuario demanda la carga de la pantalla «iniciar»

2. El sistema muestra la pantalla «iniciar» al usuario

3. Caso de uso «Configurar creacion partiday

4. El usuario demanda comenzar la partida

5. El sistema cierra el sistema de mentds e incorpora al
jugador a la partida que se crea.

Flujo alternativo:

3a, 4a. El usuario desea volver a la pantalla anterior
1. El usuario demanda volver a la pantalla anterior
cancelando los cambios realizados
—continida en la siguiente pdgina—

72

—continia de la pdgina anterior—
5a. La configuracion seleccionada no es compatible o el apo-
do no es valido o no se ha seleccionado ningin mapa o el
usuario no tiene pericia suficiente para crear este tipo de
partida

1. El sistema muestra al usuario una ventana emergente

de error indicdndole los motivos del mismo
2. Se continda en el paso 3 del flujo normal.

Nombre: Configurar creacién partida

Descripcion: El usuario configura los parametros basicos de creaciéon de
la partida: apodo, activacion del DMS, mapa y modo de
juego.

Precondiciones: El usuario se encuentra en la pantalla «iniciar» del ment

Postcondiciones: | El usuario se encuentra en la pantalla «iniciar» del ment

Flujo normal:

1. El usuario modifica los parametros deseados

Flujo alternativo:

la. El usuario desea volver a la pantalla anterior

1. El usuario demanda volver a la pantalla anterior

cancelando los cambios realizados

1b. El usuario desea modificar la configuraciéon de red

1. Caso de uso «Modificar configuracion de red (crea-
cion)»
lc. El usuario desea modificar la configuracion del sistema
VESPA

1. Caso de uso «Modificar configuracion VESPA»
1d. El usuario desea modificar la configuracion de las reglas
del juego

1. Caso de uso «Modificar reglas»
le. El usuario desea gestionar los mapas

1. Caso de uso «Gestionar mapasy

Nombre: Modificar configuracién de red (creacion)

Descripcion: El usuario configura los pardmetros de red de creacion de
la partida: puerto del anfitrion, puerto local y adaptador
de red deseado.

Precondiciones: El usuario se encuentra en la pantalla «iniciary del ment

Postcondiciones: | El usuario se encuentra en la pantalla «iniciar» del ment

—continda en la siguiente pdgina—

73

—continua de la pdgina anterior—

Flujo normal:

1. El usuario demanda la carga de la pantalla de configu-
racion avanzada de red (en creacion)

2. El sistema muestra dicha pantalla al usuario

3. El usuario modifica los pardmetros deseados

4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior
desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto
1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modificar configuracion VESPA

Descripcion: El usuario configura los parametros del sistema VESPA.
Precondiciones: El usuario se encuentra en la pantalla «iniciary del menu
Postcondiciones: | El usuario se encuentra en la pantalla «iniciar» del ment

Flujo normal:

1. El usuario demanda la carga de la pantalla de configu-
racion de VESPA

2. El sistema muestra dicha pantalla al usuario

3. El usuario modifica los pardmetros deseados

4. Caso de uso «Modificar configuracion avanzada VESPA»
5. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

ba. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior
desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto
1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modificar configuracién avanzada VESPA

Descripcion: El usuario configura los parametros avanzados del sistema
VESPA.

Precondiciones: El usuario se encuentra en la pantalla de configuracion de

VESPA

—continida en la siguiente pdgina—

74

—continia de la pdgina anterior—

Postcondiciones:

El usuario se encuentra en la pantalla de configuracion de
VESPA

Flujo normal:

1. El usuario demanda la carga de la pantalla de configu-
racion avanzada de VESPA

2. El sistema muestra dicha pantalla al usuario

3. El usuario modifica los pardmetros deseados

4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior
desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto
1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre: Modificar reglas

Descripcion: El usuario configura los parametros de dificultad, ntimero
de vehiculos, rondas y equipos, y también los tiempos de
espera y de limite de duracion de la ronda.

Precondiciones: El usuario se encuentra en la pantalla «iniciar» del menu

Postcondiciones: | El usuario se encuentra en la pantalla «iniciary del menu

Flujo normal:

1. El usuario demanda la carga de la pantalla de configu-
racion de las reglas del juego

2. El sistema muestra dicha pantalla al usuario

3. El usuario modifica los parametros deseados

4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

4a. El usuario no desea guardar los cambios realizados
1. El usuario demanda volver a la pantalla anterior
desechando los cambios realizados
*a. El usuario desea restaurar los valores por defecto
1. Todos los campos de la pantalla se restablecen a sus
valores por defecto.

Nombre:

Gestionar mapas

Descripcion:

El usuario gestiona los mapas disponibles para la creacion
de la partida.

—continia en la siguiente pdgina—

75

—continua de la pdgina anterior—

Precondiciones:

El usuario se encuentra en la pantalla «iniciar» del menu

Postcondiciones:

El usuario se encuentra en la pantalla «iniciary del menu

Flujo normal:

1. El usuario demanda la carga de la pantalla de gestion de
mapas

2. El sistema muestra dicha pantalla al usuario

3. El usuario modifica los parametros deseados

4. El usuario demanda volver a la pantalla anterior guar-
dando los cambios realizados

Flujo alternativo:

3a. El usuario desea descargar un nuevo mapa
1. Caso de uso «Anadir mapa»

3b. El usuario desea visualizar un mapa descargado
1. Caso de uso «Visualizar mapa»

3c. El usuario desea eliminar un mapa descargado
1. Caso de uso «Eliminar mapa»

Nombre: Anadir mapa

Descripcion: El usuario anade un nuevo mapa al juego.

Precondiciones: El usuario se encuentra en la pantalla de gestiéon de mapas
Postcondiciones: | El usuario se encuentra en la pantalla de gestion de mapas

Flujo normal:

1. El usuario introduce las palabras clave de la direccion
que desea buscar, un alias y el tamano deseado y demanda
al sistema la realizacion de la bisqueda

2. El sistema muestra al usuario una lista con todas las
coincidencias de la bisqueda

3. El usuario elige el mapa deseado de dicha lista.

4. El usuario visualiza y/o descarga el mapa

Flujo alternativo:

2a. No existe ninguna coincidencia
1. Se le informa al usuario de ello.
4a. Se desea visualizar el mapa
1. El usuario demanda visualizar el mapa a descargar
2. El sistema muestra una vista previa de dicho mapa al
usuario
4b. Se desea descargar el mapa
1. El usuario demanda la adicion del mapa al juego
2a. Fl sistema descarga dicho mapa y lo anade a la lista
de mapas disponibles.
2b. El alias ya existe
1. Se informa al jugador resaltando el campo
—continida en la siguiente pdgina—

76

—continia de la pdgina anterior—
2c. La direccion elegida ya existe con ese mismo tamano
1. Se le informa al usuario mediante una ventana
emergente de error
la, 3a, 4c. El usuario no desea realizar cambios
1. El usuario demanda volver a la pantalla anterior

Nombre: Visualizar mapa

Descripcion: El usuario visualiza un mapa ya descargado
Precondiciones: | El usuario se encuentra en la pantalla de gestion de mapas
Postcondiciones: | El usuario se encuentra en la pantalla de gestion de mapas

Flujo normal:

1. El usuario selecciona de la lista el mapa que desea vi-
sualizar
2. El sistema muestra una vista previa de dicho mapa al
usuario

Nombre: Eliminar mapa

Descripcion: El usuario elimina un mapa ya descargado
Precondiciones: El usuario se encuentra en la pantalla de gestion de mapas
Postcondiciones: | El usuario se encuentra en la pantalla de gestion de mapas

Flujo normal:

1. El usuario selecciona de la lista el mapa que desea eli-
minar

2. El sistema muestra una ventana emergente pidiendo la
confirmaciéon del usuario

3. El usuario aprueba la eliminacion

4. El sistema elimina dicho mapa de los ficheros de datos
del juego y de la tabla.

Flujo alternativo:

3a. El usuario cancela la eliminacion
1. El usuario demanda la cancelaciéon de la operaciéon

Partida (simplificado)

Nombre: Iniciar partida
Descripcion: Se inicia una nueva partida y el jugador comienza a jugar
Actores: Usuario anfitrion
Precondiciones: | Mend en pantalla «iniciar» con todos los parametros ya

configurados de forma correcta

—continda en la siguiente pdgina—

7

—continua de la pdgina anterior—

Postcondiciones:

El sistema cierra el sistema de ments e incorpora al jugador
a la partida que se crea.

Flujo normal:

1. Caso de uso «Crear una partida nueva»
2. Caso de uso «Siguiente ronday

Nombre: Unirse a partida

Descripcion: El jugador se une a una partida en red ya existente

Actores: Usuario ajeno

Precondiciones: | Menii en pantalla «unirse» con todos los parametros ya
configurados de forma correcta

Postcondiciones: | El sistema cierra el sistema de meniis e incorpora al jugador

a la partida deseada.

Flujo normal:

1. Caso de uso «Unirse a una partida existente»

Nombre: Sacar ment

Descripcion: Muestra en pantalla el menta de pausa
Actores: Usuario anfitrion, usuario ajeno
Precondiciones: El usuario esta jugando una partida

Flujo normal:

1. El usuario presiona la tecla encargada de hacer aparecer
el ment

2. El sistema muestra dicho ment.

3. El usuario realiza las operaciones deseadas

4. El usuario vuelve a la partida pulsando de nuevo la tecla
establecida o mediante la pulsacion de la opcion del menti.

Flujo alternativo:

3a. La operacion deseada es modificar el volumen
1. Caso de uso «Modificar volumeny

3b. La operacion deseada es ver los controles
1. Caso de uso «Ver controles»

3c. La operacion deseada es abandonar la partida
1. Caso de uso «Abandonar»

Nombre: Modificar volumen

Descripcion: Modifica el volumen de los efectos y/o de la misica
Actores: Usuario anfitrion, usuario ajeno

Precondiciones: | El usuario esta con el ment de pausa desplegado
Postcondiciones: | El usuario esta con el ment de pausa desplegado

—continia en la siguiente pdgina—

78

—continia de la pdgina anterior—

Flujo normal:

1. El usuario elige la opcion «optionsy» del ment

2. El sistema le muestra la pantalla de dicha opcién

3. El usuario sube o baja los niveles del volumen de los
efectos y de la misica mediante los botones habilitados

4. El usuario acepta los cambios

5. El sistema muestra la pantalla inicial del ment

Nombre: Ver controles

Descripcion: Muestra al usuario las teclas asociadas con los diferentes
controles

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: | El usuario esta con el ment de pausa desplegado

Postcondiciones: | El usuario esta con el ment de pausa desplegado

Flujo normal:

1. El usuario elige la opcién «show controlsy» del ment
2. El sistema le muestra la pantalla de dicha opcién

4. El usuario acepta volver a la pantalla anterior

5. El sistema muestra la pantalla inicial del ment

Nombre: Abandonar

Descripcion: El usuario abandona la partida actual

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: El usuario esta con el ment de pausa desplegado
Postcondiciones: | El usuario esta con el menu de pausa desplegado

Flujo normal:

1. El usuario elige la opcion «end game» del ment

2. El sistema le muestra un mensaje de confirmaciéon

3. El usuario acepta abandonar la partida

4. Bl sistema abandona la partida y se carga de nuevo el
sistema de ments mostrandose la pantalla de resumen de
la partida

Flujo alternativo:

3a. El usuario no abandona la partida

1. El usuario elige la opcion de continuar jugando
5a. El usuario es el anfitrion de la partida

1. Caso de uso «Finalizar partida»

Nombre:

Finalizar partida

Descripcion:

El usuario finaliza la partida actual

—continia en la siguiente pdgina—

79

—continua de la pdgina anterior—

Actores: Usuario anfitrion, reloj
Precondiciones: | El usuario anfitriéon acaba de abandonar la partida
Postcondiciones: | El usuario finaliza la partida para todos los jugadores

Flujo normal:

1. El sistema cierra el servidor de la partida, de forma que
todos los jugadores presentes vuelven a cargar el sistema
de mentis y se les muestra la pantalla de resumen de la
partida

Nombre: Siguiente ronda

Descripcion: Se avanza a la siguiente ronda de la partida
Actores: Usuario anfitrion, usuario ajeno
Precondiciones: Existe una partida en curso
Postcondiciones: | Se aumenta el nivel de ronda de la partida

Flujo normal:

1. El sistema comprueba cuantas rondas se han superado

Flujo alternativo:

2a. nimero rondas superadas > ntmero limite
1. Caso de uso «Finalizar partida»

Nombre: Lograr objetivo

Descripcion: Un usuario ha logrado un objetivo del modo de juego
Actores: Usuario anfitrion, usuario ajeno

Precondiciones: Existe una partida en curso

Postcondiciones: | Se elimina un objetivo de la lista de objetivos

Flujo normal:

1. Se elimina el objetivo de la lista de objetivos
2. El sistema comprueba cuantos objetivos quedan

Flujo alternativo:

2a. No quedan objetivos
1. Caso de uso «Siguiente ronda»

Nombre: Realizar accién

Descripcion: El usuario, mediante un evento de teclado, modifica el es-
tado del actor que le representa en el mundo de juego

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: Existe una partida en curso

Postcondiciones: | La accion seleccionada se ve reflejada en el mundo de juego

(salvo pérdida de paquetes de red)

Flujo normal:

1. El usuario pulsa la tecla asignada a la acciéon que desea
realizar
—continida en la siguiente pdgina—

80

—continia de la pdgina anterior—
2. El sistema refleja dicha accion en el mundo de juego.

Flujo alternativo:

3a. Mediante dicha accion se ha logrado completar un ob-
jetivo
1. Caso de uso «Lograr objetivos

Partida (detalle de «Realizar acciony)

Nombre: Echar humo

Descripcion: El usuario, mediante un evento de teclado, crea una nube
de humo situada tras el vehiculo que le representa.

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: | Existe una partida en curso. Cantidad de nubes de humo
restantes mayor que cero.

Postcondiciones: | El vehiculo que representa al jugador crea una nube de

humo tras él.

Flujo normal:

1. El usuario pulsa la tecla asignada a la accion de echar
humo.
2. El sistema refleja dicha accién en el mundo de juego.

Nombre: Aparcar

Descripcion: El vehiculo representado por el usuario estaciona en una
plaza de aparcamiento.

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: Existe una partida en curso. Actor del usuario situado sobre
una plaza de aparcamiento libre.

Postcondiciones: | El usuario estaciona en la plaza de aparcamiento. La plaza

de aparcamiento cambia a estado «ocupaday.

Flujo normal:

1. El usuario pulsa la tecla asignada a la accién de aparcar
2. El vehiculo del jugador se queda inmévil
3. La plaza de aparcamiento pasa a estar «ocupada»

Flujo alternativo:

4a. Dicha plaza es uno de los objetivos de la ronda

1. Caso de uso «Lograr objetivo»
5a. Modo de juego «solve the task», «task endurance sur-
vival» o «parking special mode»

1. Caso de uso «Salir del vehiculo»

’ Nombre:

Reincorporarse

—continia en la siguiente pdgina—

81

—continua de la pdgina anterior—

Descripcion: El vehiculo representado por el usuario abandona la plaza
de aparcamiento en la que se encuentra, reincorpordndose
a la circulaciéon

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: | Existe una partida en curso. Actor del usuario estacionado
en una plaza de aparcamiento.

Postcondiciones: | El usuario abandona la plaza de aparcamiento en la que

se encontraba. La plaza de aparcamiento cambia a estado
«librey.

Flujo normal:

1. El usuario pulsa la tecla asignada a la accién de aparcar
2. El vehiculo del jugador recupera la movilidad

3. La plaza de aparcamiento en la que el jugador estaba
aparcado pasa a estar «libre»

Nombre: Salir del vehiculo

Descripcion: El actor que representa al usuario abandona el vehiculo y
prosigue a pie.

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: | Existe una partida en curso. Actor del usuario estacionado
en una plaza de aparcamiento. Modo de juego «solve the
tasky», «task endurance survivaly» o «parking special mo-
de».

Postcondiciones: | —~El vehiculo del usuario continiia en la misma posicioén es-

tacionado sobre la plaza de aparcamiento. El jugador pasa
a controlar un hombre a pie, con distintas caracteristicas
de velocidad, giro, salud, etc.

Flujo normal:

1. El usuario pulsa la tecla asignada a la acciéon de aparcar
2. El usuario pasa a controlar al conductor del vehiculo,
que se mueve a pie.

Nombre: Entrar al vehiculo

Descripcion: El actor que representa al usuario entra al vehiculo
Actores: Usuario anfitrion, usuario ajeno

Precondiciones: | Existe una partida en curso. Actor del usuario proximo a

su vehiculo estacionado. Modo de juego «solve the tasky,
«task endurance survival» o «parking special mode».

—continia en la siguiente pdgina—

82

—continia de la pdgina anterior—

Postcondiciones:

El vehiculo del usuario contintia en la misma posicién es-
tacionado sobre la plaza de aparcamiento. El jugador pasa
a controlar un hombre a pie, con distintas caracteristicas
de velocidad, giro, salud, etc.

Flujo normal:

1. El usuario pulsa la tecla asignada a la accién de aparcar
2. El usuario pasa a controlar al vehiculo
3. Caso de uso «Reincorporarse»

Nombre: Mover

Descripcion: El usuario realiza un desplazamiento por el mundo de jue-
go, dado por su actual velocidad y dngulo

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: Existe una partida en curso. El usuario no esta estacionado
en una plaza de aparcamiento.

Postcondiciones: | El actor que representa al usuario se habréa desplazado (sal-

vo que haya colisionado con los limites de la calzada)

Flujo normal:

1. El usuario pulsa una de las teclas asignadas al control
del vehiculo
2. El actor que representa al usuario se desplaza en el mun-
do de juego

Flujo alternativo:

2a. El resultado del desplazamiento situia al actor fuera de
los limites de la calzada transitable

1. El actor se desplaza tinicamente la cantidad suficiente

para no salirse de los limites

3a. El resultado del desplazamiento es una colisiéon contra
otro vehiculo al que persigue

1. Caso de uso «Dafar»
3b. El resultado del desplazamiento es una colisién contra
otro vehiculo al que no persigue y la vida del usuario no es
infinita

1. El actor sufre una cantidad establecida de danos.
3c. El resultado del desplazamiento es una colision con una
bandera

1. Caso de uso «Capturar bandera»
3d. El resultado del desplazamiento es coincide con el radio
de un lugar objetivo

1. Caso de uso «Lograr objetivos

83

Nombre:

Capturar bandera

Descripcion: El usuario captura una bandera en el mundo de juego des-
plazandose sobre ella.

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: | Existe una partida en curso

Postcondiciones: | La bandera desaparece y se suma al usuario la puntuacion

correspondiente

Flujo normal:

1. El actor que representa al usuario colisiona con la ban-
dera

2. El sistema elimina dicha bandera del mundo de juego
3. El sistema incrementa la puntuacion del usuario en la
cantidad establecida.

Nombre: Danar

Descripcion: El usuario causa dano a otro vehiculo colisionando con él

Actores: Usuario anfitrion, usuario ajeno

Precondiciones: Existe una partida en curso. Modo de juego «capture the
red cars»

Postcondiciones: | El vehiculo contra el que colisiona el usuario recibe una

cantidad de dartio establecida.

Flujo normal:

1. El actor que representa al usuario colisiona contra otro
vehiculo

2. El sistema disminuye la cantidad de vida de dicho vehicu-
lo

Flujo alternativo:

2a. La vida del otro vehiculo es menor que la cantidad a
sustraer
1. El sistema elimina al otro vehiculo del mundo de juego
2. El sistema incrementa la puntuacion del usuario
3a. El otro vehiculo es un objetivo de la ronda
1. Caso de uso «Lograr objetivo»

A.3.

Diagrama de navegacién

En esta seccién se muestran el diagrama de pantallas elaborado durante la
primera iteracion del juego (Figura A.7) y el elaborado durante la tltima iteracion

(Figura A.8).

Como se puede apreciar en dichas figuras, se realizaron diversos cambios ya que
cada nueva iteracion desarrollada a veces requeria de nuevas funcionalidades del

84

ment. Los principales cambios desde la version inicial a la final fueron:

= Eliminacion de las salas de espera, ya que al principio el juego se ide6 e
implement6 de forma que los jugadores solo se podian unir al comienzo de la
partida, y éstas salas eran necesarias para que el jugador anfitrién controlase
la cantidad de jugadores esperando y el resto de jugadores tuviesen una
pantalla en la que esperar al comienzo del juego. En el momento en que se
vio que esta forma de union, basada en los juegos méas clésicos (como las
sagas Age of Empires o Empire Farth) no era la éptima para un juego de
estas caracteristicas, se cambi6é por el método de uniéon sobre la marcha,
utilizado en la gran mayoria de juegos actuales.

= Se incremento el nimero de pantallas desde las cuales se podia derivar a una
pantalla de error si fuera necesario.

» Se anadieron nuevas pantallas para los créditos y las opciones globales, cuyo
contenido estaba incluido inicialmente en otras pantallas menos accesibles,
y también una pantalla secreta, a la que solo se puede acceder con el cono-
cimiento de una combinacién de teclas especifica, para cambiar durante la
implementacion y las pruebas diversos valores que hasta el momento reque-
rian de una recompilaciéon de todo el cédigo lo cual era muy farragoso.

85

Configuracion Configuracion
avanzada de VESPA
red (creacion)

Configuracion Gesti6 Visualizar
reglas del eston 1y mapa
juego de mapas pant. compl.

\ Confirmacién
creacion

Sala de espera

Iniciar partida _) >
Inicial —> (creacion)

/

b Resumen
Y N\ . Canvas | o
Carga juego > final
. . Sala de espera

Unirse a partida |—p»| (union) V

unién,

Configuracion Error unién

avanzada de
red (unién) X

e P> (1): no todos los jugadores estan listos

Flujo reversible Flujo no reversible (2): partida no disponible

Figura A.7: Diagrama de navegacion (primera iteracion)

86

Configuracién

Configuracién

Configuracion avanzada de Configuracién > Avanzada
reglas del red (creacion) VESPA VESPA
juego
> e 4
k l' " . .
* S L. c Gestion Visualizar
] - —we===Y| demapas == mapa
Iniciar partida - pant. compl.
Carga 5| Canvas Resumen
Inicial > . 7] juego final
Unirse a partida > Informacion
ANA partida M ¥
1
pa A
[
:: ; V % Runtime error
- ' Configuracion B
HELE Error union
! avanzada de
]
L red (union)
[A
[
!
[
1!
[
! '~y Opciones |-P| Controles
'
LI }
1
1 1
1 1.3l Créditos
'
1
'
'---Y| Desarrollo
— —> - >

Figura A.8: Diagrama de navegacion (tltima iteracion)

Flujo creacién/union

(reversible)

Flujo error
(no reversible)

Flujo opcional
(reversible)

Flujo no reversible

87

A.4. Prototipado de ventanas

En las siguientes figuras se muestran los prototipos de las ventanas de meniis
realizados durante la primera iteracion del juego en la que se considerd el uso
de un sistema ments. Para disenar dichos mentus se realizé un anélisis de otros
videojuegos para reconocer cuales son las caracteristicas fundamentales de sus
ments, obteniéndose dos fundamentales que no suelen estar presentes en otro tipo
de aplicaciones: sonido cuando el raton se sitia encima de un botén y fondo del
mentd dinadmico.

Notese que durante el desarrollo se usaron RALLY-X y NetRALLY-X como
titulos provisionales del juego.

RAWY-X

Iniciar partida nueva .~

Unirte a partida existente -

Figura A.9: Prototipo de ventana inicial

88

Unirte a una partida en red

Introduzea IP dels enddor: | 000.000.000.000 |
Apodo: | Jugador |

ConfEuraddn avamzada de Red

| Wohter |[Unirte |

Figura A.10: Prototipo de ventana de uni6n a partida existente

Configuracion avanzada dered

Cambiar puerto @mn el que te conect &:]
[Deberas abrido en tu routery firewall)

Cambiar puerto al que te conects en el

. EEEN
seridor:

Guardar mnfiEuradon v
woluer

Restaurar walores Deshacer cambims
por defecto wohter

Figura A.11: Prototipo de ventana modificacion configuracion de red (en union)

89

Unirte a una partida en red

pss...

Parece que hahabida un error.

Puede que la direccidn IP introducida seaemonea o que el
anfitrion hava comenzado |a partida sin ti.

| Wolwer

Figura A.12: Prototipo de ventana de error conectando a partida

Sala de Espera

Juzadores conectados:

Esperando @ que &l anfitridn mmience &l jusgn... Jugador
= Jueador |1
Mapaselecdonado: Plaa de EBpana, ZamAsnza & o
Reglas del juegn:
- Mimero maximo de mches enemizos: g

- Mimero maximo de coches neutrales: 1n

- Gxolinafinita:

HEEE

- Danos &n el mde:

Selecdonabando:

k| Mar=r Preparado

Figura A.13: Prototipo de ventana de sala de espera (en union)

90

Iniciar partida nueva

ConfEuraddn reelas deljussn

Apodo: | lugador |

[000.000.000.000 |

Seleccign de Mapa:

Confeuradan del Sistema WESPA,

Configuracidn avanzada de red

Wiapa #1 H Configuracidn avareada de Mapas
Tamafio del Mapa:
PEI;]LEFID I'-'Erl.'nm Grl;mz

(e) (|

Figura A.14: Prototipo de ventana de crear una nueva partida

Configuracion avanzada dered

Cambiar &l puerto =n el que esaucha el]
serddor:

Cambiar el puerto con elquete
conect&s:

LEEl

Guardar mnfiEuradon v
woluer

Restaurar walores Deshacer cambims
por defecto wohter

Figura A.15: Prototipo de ventana modificar configuracion red (en creacion)

91

Configuracion reglas del juego

Dificultad: | Media || /| G=olina finita Camtidad: | Ala |
&/ Dafios en el coche Cantidad:
MNimern de bandos: Penalzaddn porsalirte: I

Mimero maximo de mdies enemigos: E

Mumero maximo de @mdhes neutrales:

Guardar @mnfguradan v

o ler

Deshacer cambims
wohter

Figura A.16: Prototipo de ventana de reglas del juego

Configuracion avanzada de Mapas

Alim: Di re ccidn:

| Zrageea centra | | Flaza de Espafis, Zarazoza [o] [wer

| CRs | | Calle Marade Luna, Zaragnza v [Year]

| Ilapa #3 | | Eth avenue, Maw York City - [Tl [:‘-“.Imacenar |
[tapa w4 | | | [wer || Aimacenar |
[TWlapa#E | | [v] [War | |p'-'-.|macenar |

Atencion: alguardar los cambims, s e procederd a des@rear |s mapas selecdonadms vse guardardn en
Caché. Es por esto que estaoperaddn puede tardar hastaun minuto.

Guardar amnfieuradon v

wobser

Deshacer cambim
wohter

Figura A.17: Prototipo de ventana de gestiéon de mapas

92

Figura A.18: Prototipo de ventana vista previa mapa

Sala de Espera

Esperando a que &l anfitridn cmmience &l jusgn...

Mapaselecdonado: Flaza de Epafia, Zareema
Regla del jues=n:
- Nimero maximo de mdhes enemizos: g

- Nimero macimo de coches neutrales: 10

- Gxolinafinita:

HER

- Danos &n el mde:

[Empezar

Jugadores conectados:
Jusador

Jugador (1)

Figura A.19: Prototipo de ventana sala de espera (en creacion)

93

Aleunos jugadores todavia no estan preparados,
idesedempezar & todas formas?

Esperar un pom

. Comenzar
m&E | | b

Figura A.20: Prototipo de ventana confirmacion creacion

RAWY-X

Cargando...
Preparese para comenzar

Cargando calles

Figura A.21: Prototipo de ventana cargando partida

94

Resumen dela partida

Duraddn de la partida: 12min.
Nombre: Puntms: Equipm: Funtos:
Tu 152 Fojo 221
Jugador 3 1495 Azl 152
Jugador 2 =11

[Yoher al mend principal]

Figura A.22: Prototipo de ventana resumen después de partida

A.5.

Modos de juego

A lo largo de diferentes reuniones y conversaciones por correo electronico se
analiz6 que diferentes modos de juego debian desarrollarse. Las tablas que contie-
nen las conclusiones de dichas reuniones se pueden observar en las figuras A.23 y

A.24.
Cuando se Enemigos [Competidores | Comportamiento
TIPO Jugadores | Equipos Objetivo & P P .
acaba 1A humanos enemigos
1.n 1 Bandéras i no Perse-gwr
Enemigos| Huir
Capturar banderas o si Perseguir
. . Banderas
coches enemigos por tiempo o no . -
2..n 2..n L si
por objetivo . . .
Enemigos Si Huir
Seguir un plan finito L 1 * si n? Perseguir
2..n 2..n si
1 1 or agotarse no
Seguir un plan infinito P g * si - Perseguir
2..n 2..n el dinero si

Figura A.23: Modos de juego. Los objetivos marcados como asterisco (*) son tareas
que pueden ser de los diferentes tipos desglosados en la figura A.24

Como se puede observar en la figura A.23, todos los modos de juego finalmente
implementados corresponden a los de esta tabla a excepcion del modo de juego

95

Tipo Donde Alias Explicacion

en coche| llegar con el coche hasta el objetivo
direccion | aparcar aparcar en una plaza libre cercana
apie |aparcary llegara pie hastael objetivo
en coche| llegar con el coche hasta el objetivo
negocio | aparcar aparcar en una plaza libre cercana
apie |aparcary llegara pie hasta el objetivo

ira

Figura A.24: Tipos de tarea de los modos de juego

de realizar tareas de aparcamiento «parking special mode», esto es asi ya que ese
modo de juego no estaba previsto inicialmente y se desarrolld6 durante la etapa
final del proyecto, con el objetivo de tener un modo de juego que facilitase la
realizacion de los experimentos asociados a la explotacion. Este modo de juego es
una variacion del modo «seguir un plan finito» con la particularidad de que cada
ronda se divide en dos «subrondas» de forma que en la primera de ellas la tarea es
siempre de tipo «llegada en coche» y la segunda de tipo «lograr aparcamiento».

96

Anexo B
Diseno

En este capitulo se mostraran las diferentes capas y moédulos que componen
la arquitectura disenada, junto con las clases mas importantes de cada modulo.
También se explicara el despliegue de la aplicacion cuando se usan los servidores
dedicados y el servidor de recogida de estadisticas. Por tltimo, se finalizara expli-
cando el llamado game loop (bucle de juego) y los hilos existentes en la ejecucion.

También es importante anotar la autoria externa del diseno visual y sonoro de
los vehiculos y otros elementos del juego, si bien en su mayor parte han tenido que
ser modificados para ajustarlos a las necesidades del videojuego.

B.1. Arquitectura de la aplicaciéon

La arquitectura de la aplicacién permite obtener un diseno a alto nivel del
sistema, identificando los médulos de los que consta y las relaciones entre dichos
modulos. El diseno que se ha realizado no se ha basado en ningtin modelo espe-
cifico existente, sino que se ha realizado un diseno especifico para el videojuego
desarrollado.

En la figura B.1 se muestran los distintos médulos de los que se compone la
aplicacion y sus relaciones. El papel realizado por cada uno de los moédulos se
expone a continuacion.

= Menis: es el modulo que controla los mentis del juego y todo lo necesario
para su funcionamiento: obtencion de direccion IP, carga de la configuracion
y los parametros, etc.

= Gestor de escenarios: controla la gestion de los escenarios, desde lo relativo
a su almacenamiento hasta su obtencion a través de las APIs de OpenStreet-
Map.

97

<<component>> gl <<component>> gl <<component>>
Gestor de escenarios Menu in-game Salida

/ \

<<component>> {l <<component>>
Menuas Cliente

<<component>> a
Fisica

<<component>>
Gestor de conexiones

<<component>> a <<component>> a <<component>> a
Logger Terreno Actores

<<component>>

. << >>
Servidor maestro component:

\ Interfaz con DMS

<<component>> a <<component>> a
P Servidor DMS
<<component>> '
Estadisticas
P
<<component>> <<component>> <<component>>
Servidor estadistico Gestor de rondas Inteligencia Artificial

Figura B.1: Diagrama de componentes

= Cliente: el nicleo con la parte cliente del juego, que es la representaciéon
visual de la partida y las funciones necesarias para obtener a través de la red
los datos del mundo de juego.

» Salida: contiene todo lo relacionado con el sonido(gestor de misica mp3 y
gestor de efectos de sonido, con sus correspondientes filtros) y con la gestion
y representacion de sprites.

= Meni in-game: es el médulo que controla el menii de pausa que se habilita
durante la partida.

= Servidor: el niicleo con la parte servidor del juego. Contiene todo lo relativo
a la partida a excepcion de su representacion.

= Gestor de rondas: gestiona las rondas y los objetivos pendientes y controla
el modo de juego aplicado.

= Inteligencia artificial: contiene las clases referidas al manejo auténomo de
los vehiculos y también lo referente a los algoritmos de path-finding.

= Terreno: es el modulo en el que se definen los diferentes tipos de entidades
usadas para la representacion de los escenarios.

98

= Actores: contiene a todos los actores de la partida.
= Fisica: se encarga de la simulacion fisica de la partida.

= Gestor de conexiones: es el modulo que contiene todos los elementos que
intervienen en la transmision de informacion a través de la red.

= DMS: contiene los interfaces del sistema DMS y la implementacion de la
estrategia utilizada (en este caso VESPA).

» Interfaz con DMS: contiene los interfaces que deben implementar los ac-
tores para ser accesibles desde el DMS.

= Logger: es el modulo que controla la presentacion en la consola de diferentes
trazas de ejecucion.

» Estadisticas: contiene todo lo necesario para la obtencion de estadisticas
del juego y del DMS.

» Servidor maestro: permite el uso de un servidor dedicado para las partidas
y contiene también el proceso que se usa para la comunicacién remota con
dicho servidor.

» Servidor estadistico: contiene todo lo relacionado con el servidor de reco-
gida de estadisticas.

B.2. Capas de la arquitectura

Se pueden distinguir dos capas diferenciadas en la arquitectura: la capa del
nucleo y la capa de los suplementos.

= Nicleo: Esta capa contiene todos los elementos necesarios para el funciona-
miento del juego. Cualquier cambio dentro de esta capa alterara el funcio-
namiento del juego. Dentro de esta capa se controla tanto lo referente a la
partida como a la navegacion por los ments.

= Suplementos: Esta capa contiene los elementos que no son imprescindibles
para el funcionamiento del juego y que pueden ser alterados, sustituidos o
eliminados sin afectar al resto de modulos. Un ejemplo es el facil reemplaza-
miento del médulo DMS (Data Management Strategy) que es explicado con
detalle en el anexo D.1.

En la figura B.2 se representa la clasificacion de los distintos modulos del dia-
grama de componentes diferenciados segin su capa (en color blanco los médulos
de la capa nicleo y en gris los modulos de la capa suplementos).

99

Capa Nucleo

<<component>> a <<component>> a <<component>>
Gestor de escenarios Ment in-game Salida
<<component>> gl <<component>>
Menus Cliente

<<component>> a

<<component>> Fisica

Gestor de conexiones
P 1
\

<<component>> El \ <<component>> El <<component>> gl

Logger \ Terreno Actores

- \

<<component>>

. << >>
Servidor maestro component; El

Interfaz con DMS

| <<component>> a | <<component>> gl
| Servidor | DMS
L — |
<<component>> | ’ e ____
Estadisticas !
| — I
<<component>> I <<component>> <<component>>
Servidor estadistico | Gestor de rondas Inteligencia Artificial
I _

_ _ Capa Suplementos

Figura B.2: Capas de la arquitectura

B.3. Despliegue

En esta seccion se puede ver el despliegue de los diferentes componentes, des-
glosado en dos figuras (figura B.3 y figura B.4) segiin si se usa o no un servidor
dedicado.

Es importante anotar que todos los componentes de la aplicaciéon se distribu-
yen conjuntamente empaquetados en un fichero JAR, por lo que estos diagramas
muestran Gnicamente los componentes de los que se hace uso desde cada ubicacién.

En el caso de no usar un servidor dedicado (figura B.3), el jugador anfitrion
crea la partida conectandose la parte cliente de la aplicacion con la parte servidor
(a través de la red, de igual forma que si la conexion se realizara entre diferentes
computadores). El resto de jugadores se conectaran unicamente sus partes cliente
de la aplicacion con la parte servidor del jugador anfitriéon. Cuando finalice la
partida, las estadisticas recogidas durante la partida se almacenaran en ficheros
locales del computador del jugador anfitrion y también realizara una conexion con
el servidor de recogida de estadisticas, para que en el caso de que éste responda,
enviarle dichas estadisticas.

100

/—Computador anfitridn ~

Estadisticas

Guardar estadisticas del juego

Usuario interesado

servidor en estadisticas

(Juego)

al J

Conectarse
al servidor

Cliente
(Juego)

Conectarse Conectarse
al servidor al servidor

Enviar estadisticas . e
—Computador recogida estadistica
Yz P g SN

Jugador 1 Servidor Estadistico

Cliente
(Juego)

Guardar estadisticas del juego

Estadisticas

Jugador 2 Jugador n Miembro del equipo de

recogida de estadisticas

Figura B.3: Pseudo diagrama de despliegue sin servidor dedicado

101

La principal diferencia cuando se hace uso de un servidor dedicado (figura B.4)
radica en que no existe un jugador anfitrion de la partida, sino que todos los juga-
dores son iguales. Estos jugadores no se conectaran directamente con el servidor
de la partida, sino que realizaran una peticiéon al servidor maestro, que convenien-
temente estard recibiendo mensajes en el mismo puerto que lo haria un servidor
normal, y éste les contestara a los clientes enviandoles el puerto en el que se en-
cuentra funcionando el servidor de la partida (que se creara en el caso de que no
estuviese en funcionamiento). Conociendo este puerto, los clientes se conectaran
al servidor de la partida de la misma forma que se conectarian en el caso de no
usar servidor dedicado. Todo este proceso se habra realizado de forma transparen-
te para el usuario, que habra de seguir el mismo método que el utilizado para la
conexion con un servidor no dedicado.

Usando servidor dedicado hace acto de presencia un componente mas que es
el terminal, el cual consiste en una interfaz que permite modificar la configuraciéon
del servidor dedicado de forma remota.

/—Computador dedicade ~

Estadisticas

Guardar estadisticas del juego

Servidor Maestro

Servidor
(Juego)

]

Cambiar pardmetros

Y /*/4
Conseguir estadisticas Pedir servidor \
alqueunirte pegir servidor Conectarse) N
alqueunirte ; Enviar estadisticas
alservidor
Computado Conectarse/Computadgr recogida estadisticas—
Computado al servidor

Servidor Estadistico

Cliente
(Juego)

Terminal

(Juego)

Guardar estadisticas del juego

Estadisticas

Interesado en Jugador 1 Jugador n
estadisticas

Figura B.4: Pseudo diagrama de despliegue con servidor dedicado

102

B.4. Diagramas de clases

En esta seccidon pretende establecer una definicion maés especifica de cada uno
de los componentes anteriormente descritos, estableciendo para cada uno de ellos
las clases que los componen y cual es su cometido.

A continuacion se detallan todos los modulos mencionado anteriormente (ver
seccion B.1) a excepcion del modulo «DMS» y el modulo «Interfaz con DMSy | ya
que éstos ya han sido explicados con todo detalle en el anexo D.1.

B.4.1. Mobdulo de salida

El moédulo de salida actiia como controlador de los dispositivos grafico y sonoro
del computador, facilitando al resto de modulos representar de forma visual y
sonora los elementos del juego.

Este moédulo consta dos partes diferenciadas, una dedicada a la representacion
grafica y otra dedicada a los aspectos sonoros.

La parte dedicada a los graficos esta formada por la clase «SpriteCache» que

hereda de «ResourceCachey, la cual es la version genérica de un recurso que deba
ser utilizado de forma recurrente.
La clase «ResourceCache» permite almacenar recursos de cualquier tipo en una
estructura HashMap de forma que posteriormente sean accedidos con facilidad. La
case «SpriteCache» es la clase derivada para el caso de almacenamiento de recursos
de tipo Bufferedlmage, que son los que nos interesan para la representacion visual
de las entidades.

La otra parte del médulo es la dedicada al sonido, la cual a su vez se divide en
las clases relacionadas con la reproduccion de sonidos WAV, que se han obtenido
del libro «Developing Games in Javas [4] y en las clases relacionadas con la repro-
duccion de sonidos MP3, para lo cual se ha usado la libreria JLayer' modificandola
para que soporte la reproduccién en bucle, las listas de reproduccion y el cambio
dindmico de volumen. De ésta parte se ha representado en el diagrama tinicamente
la clase «MiPlayer» ya que es la modificacion respecto a la libreria. El resto de
clases del paquete «sonido» estdn dedicadas a la parte de sonido WAV.

De la parte dedicada al sonido WAV cabe destacar las clases «Filter3d» y
«FilterVolume» ya que son las tinicas nuevas desarrolladas respecto a las mostradas
en [4]. Estas clases permiten aplicar a los sonidos un filtro de distancia y de volumen
respectivamente, siendo el primero utilizado para los efectos sonoros ligados a los
actores de la partida (p.ej. el sonido que emiten las ambulancias, que disminuye con
la distancia) y el segundo utilizado para todos los sonidos, ya que es imprescindible
poder controlar el volumen del juego.

'http://wuw.javazoom.net/javalayer/javalayer.html

103

http://www.javazoom.net/javalayer/javalayer.html

menus sonido
Contenedor Sound MiPlayer FilteredSoundStream
N|
T)
—| LoopingBytelnputStream SoundFilter
util
ThreadPool ;/ \K
I LB SoundManager FilterVolume Filter3d
(:P P
§
PooledThread
SoundPlayer
juego
MiCanvas_cliente otros actores
ResourceCache <<Interface>>
BasicActor
Q < B
4 \
SpriteCache Actor ActorFX
IA\\ I
I 1

Figura B.5: Clases del modulo de salida

104

ResourceCache

#resources : HashMap

+ResourceCache()
#loadResource(name : String) : Object
#getResource(name : String) : Object
#loadResource(url : URL) : Object

T

SpriteCache

#loadResource(url : URL) : Object
+getSprite(name : String) : Bufferedimage

Figura B.6: Detalle de las clases «SpriteCache» y «ResourceCache»

MiPlayer
+AUDIO PARAMETER : String = "audioURL"
-playerThread : Thread = null
-playList : ArrayList<String> = null
-playListCursor : int
<<Property>> -volume : float = 1f
-player : AdvancedPlayer = null
-dev : AudioDevice

+MiPlayer()

#getAudioDevice() : AudioDevice
#getAudioStream() : InputStream
+addFileName(name : String) : void
+clearPlayList() : void
#stopPlayer() : void

#play(in : InputStream, dev : AudioDevice) : void
#createPlayerThread() : Thread
+startP() : void

+stop() : void

+destroy() : void

+run() : void

-setVolumelnternal() : void
+setVolume(v : float) : void

Figura B.7: Detalle de la clase dedicada al sonido MP3

105

SoundFilter

+reset() : void

+getRemainingSize() : int

+filter(samples : byte []) : void

+filter(samples : byte [], offset : int, length : int, cut : boolean) : int
+getSample(buffer : byte [], position : int) : short
+setSample(buffer : byte [], position : int, sample : short) : void

/"

Filter3d
-NUM SHIFTING SAMPLES : int = 500
-maxDistance : int FilterVolume
-lastVolume : float <<Property>> -volume : float
-source : BasicActor +FilterVolume(volumen : float)
-listener : BasicActor +filter(samples : byte [], offset : int, length : int, cut : boolean) : int
+Filter3d(source : BasicActor, listener : BasicActor, maxDistance : int) +setVolume(volumen : float) : void
+filter(samples : byte [], offset : int, length : int, cut : boolean) : int

Figura B.8: Detalle las clases dedicadas al sonido WAV

B.4.2. Moé6dulo de ments

El modulo de ments es el que contiene todas las clases utilizadas para la re-
presentacion y el manejo del ment del juego.

Las clases principales son «Contenedor» y «PantallaAnimaday.

La clase «Contenedor» es instanciada desde «VentanaPPal», que es la clase inicial
del juego cuando se ejecuta como Applet (cuando se ejecuta como aplicacion de
escritorio la clase inicial es «StartClassy, que salvo que se requiera un servidor
dedicado, servidor estadistico o terminal, crea una instancia de «VentanaPPaly).
La clase «Contenedor» contiene el JPanel en el que se mostraran las pantallas de
los ments y es la encargada de iniciar el cliente y el servidor.

La clase «PantallaAnimada» es la superclase de la que derivan todas las pantallas
de los ments y contiene el comportamiento basico de las pantallas.

Dentro de este moédulo también se incluyen una serie de clases necesarias para
realizar ciertos cometidos del ment, como redimensionar una imagen JPEG, com-
probar si dicha imagen no esta daniada, simplificar una cadena de texto eliminando
los caracteres no latinos, etc. Todas estas clases se sitiian en el paquete «utily.

Otro paquete contenido es «workers», que contiene las clases derivadas de
«SwingWorker» de las que hacen uso las pantallas para realizar tareas costosas
en tiempo sin congelar el hilo de ejecucién que las muestra.

El paquete «red» contiene las clases que se necesitan para obtener los datos
de la informacion de la partida (durante su trascurso o en su finalizacion) para
representarla en la pantallas de sala de espera (al unirte) y en la pantalla con el
resumen de la partida (al finalizarse).

Por tltimo, también existen las clases «Parametros» y «ParametrosConfig»

106

pantallas
_l PantallalniciarVespaPagina2 PantallaCarga
util
RXCardLayout PantallalniciarRed PantallaVerMapa
StringSimplifier InetAddresses PantallalniciarReglas PantallaUnirteError
IPAddressValidator KonamiCode PantallaRuntimeError F rirteSalaDeEspera
F/\N
PantallaCreditos PantallaResumenFinal 4
red
PantallalniciarVespa PantallaUnirte
WaitingRoom
)8 ‘6\ PantallaDesarrollo PantallaUnirteRed
ListaPlayers WaitingRoominfo
PantallaOpciones 4
Pantallalniciar X
GameOver
RN Pantallalnicial Q
ListaPlayers GameOverinfo Par iciarMapas
<
<_
MyKeyListener PantallaOpcionesControles
ParametrosConfig L ,—
PantallaAnimada
ParametrosVespa Controles
g ®/ workers
Parametros WorkerUnirteJoin
Ll
Contenedor WorkerGetPubliclP
StartClass &
> VentanaPPal | - --->
WorkerViewMapTabla
(=== - =-=====- ¢ ______
Il MiCanvas_servidor.! : : WorkerViewMapCrear
. <' 1 N
| | 1
____________ '
¢ TrainedSkills \:Z WorkerAddMap
WrapperCarga !_M'iEa;v'a;_cliénte_ |
| |
e o WorkerSearchMap

Figura B.9: Clases del médulo de ments

107

Contenedor

-cards : JPanel

-bi : Bufferedlmage

-rop : RescaleOp

-imgFondoCalle : Bufferedimage

+altura : int = 960

-translateTimer : Timer

-pane : Container

<<Property>> -imgTiraBlanca : Bufferedimage
<<Property>> -imgFondoCoche : Bufferedimage
-tcanvas : Thread

-PLAYBACK FORMAT : AudioFormat = new AudioFormat(44100,16,1,true,false)

-volumenEfectos : float

-volumenMusica : float

+parametros : Parametros

+ventana : VentanaPPal
+soundManagerEfectos : SoundManager
-soundManagerMusica : MiPlayer
+sonidoOver : Sound

+sonidoClick : Sound
+ipAddressValidator : IPAddressValidator

+Contenedor(pan : Container, ventan : VentanaPPal, tipoLlamada : int, parametro : Parametros)
+translate(translate : int) : void

+borrar() : void

-initSounds() : void

-startMusic() : void

+lanzarJuego() : void

-lanzarServidor(carga : PantallaCarga, serverReady : Semaphore) : void
+lanzarCliente(carga : PantallaCarga, serverReady : Semaphore) : void
+setSoundVolume(volumen : float) : void

+setMusicVolume(volumen : float) : void

+pintarCargando() : PantallaCarga

+calcularModoDeJuego(modoJuego1 : int, modoJuego?2 : int, modoJuego3 : int) : byte

+calcularModoDeJuegolnverso(modo : int) : int []

+getimgTiraBlanca() : Bufferedimage
+getimgFondoCoche() : Bufferedimage

Figura B.10: Detalle de la clase «Contenedor»

108

PantallaAnimada

-cards : JPanel

#bi : Bufferedimage

#rop : RescaleOp
#imgFondoCalle : Bufferedimage
#ventana : VentanaPPal
+contenedor : Contenedor

#mkl : MyKeyListener

+PantallaAnimada(cards : JPanel, ventana : VentanaPPal, bi : Bufferedimage, rop : RescaleOp, img
-initComponents() : void

+crearlmagenOpaca(imageSrc : URL) : Bufferedimage

+crearlmagenTransparenteBl(imageSrc : URL) : Bufferedimage

+crearlmagenTransparenteROP(opacity : float) : RescaleOp

+pintarimagenOpaca(g : Graphics, img : Bufferedimage, observer : ImageObserver) : void

+pintarimagenTransparente(g2 : Graphics, img : Bufferedimage, rp : RescaleOp, x : int, y : int) : void

+cambiarPantalla(ventana : String) : void

#sonidoOver() : void

#sonidoClick() : void

#labelMouseEntered(evt : MouseEvent, label : JLabel) : void
#labelMouseExited(evt : MouseEvent, label : JLabel) : void
#buttonMouseEntered(evt : MouseEvent, label : JLabel) : void
#buttonMouseExited(evt : MouseEvent, label : JLabel) : void
#buttonMousePressed(evt : MouseEvent, label : JLabel) : void
#buttonMouseReleased(evt : MouseEvent, label : JLabel) : void
#pintarCuadrado(panel : JPanel, g : Graphics) : void
#pintarCuadradoOpaco(panel : JPanel, g : Graphics, c : Color) : void
+isFocusable() : boolean

#volverAtras() : void

#iniciarKeyListener(contenedor : Container) : void
#iniciarMouseMotionListener(contenedor : Container, mmml : MouseMotionListener) : void

#guardarConfigEnFichero() : void
#cargarConfigDeFichero() : boolean

Figura B.11: Detalle de la clase «PantallaAnimaday

109

que contienen los valores de configuraciéon almacenados en las pantallas y los va-
lores descritos mediante el fichero de texto ParamConfig.txt respectivamente. La
clase «TrainedSkills» es la que contiene las funciones y estructura necesarias para
el calculo de la pericia del jugador (ver 3.3), y la clase «WrapperCarga» es la uti-
lizada para poder transmitir el estado actual de carga de la partida desde la clase
«Cliente» a la barra de progreso de la pantalla de carga.

B.4.3. Moédulo gestor de escenarios

El modulo gestor de escenarios contiene las clases que permiten el manejo y
almacenamiento de los mapas.

mapas juego

ProcesarXmiConsulta MiCanvas_servidor
GestionDeMapas

ProcesarXmlMapa Lugar @

—

DATstruct workers

ProcesarXmlMapaSoloContar WorkerAddMap

_l WorkerSearchMap

util

ImageResizer JPEGTest WorkerViewMapCrear

HTTPRequestPoster WorkerViewMapTabla

Figura B.12: Clases del m6dulo de gestor de escenarios

La clase «GestionDeMapas» es la principal y contiene funciones para crear los
diferentes tipos de ficheros necesarios (ver anexo C.2.2) y procesarlos, asi como
todas las funciones que se requieren desde la pantalla del meni «Configuraciéon
avanzada de mapas» (listar los mapas, descargar uno nuevo, descargar la visuali-
zacion, etc.). También contiene el listado de APIs que podran ser usadas para la
obtencion de los ficheros.

110

GestionDeMapas

<<Property>> -path : String

-pathTemp : String

<<Property>> -listadoMapas : ArrayList<DATstruct> = new ArrayList()
-listadoAPIs : ArrayList<String>

+GestionDeMapas(p : String)

+getTempPath() : String

+visualizarMapa(elLugar : Lugar, radio : float, temp : boolean) : String

+bajarMapa(alias : String, direccion : String, radio : float, elLugar : Lugar) : String

-crearFicheroDAT(name : String, alias : String, direccion : String, radio : float, lat : float, lon : float, m2 : double, n
-crearFicheroXML(name : String, lat : float, lon : float, radio : float) : boolean

-createXMLfromAPI(name : String, centroLat : double, centroLon : double, radio : float, textoAPI : String) : booleg
-crearFicheroJPG(name : String, lat : float, lon : float, radio : float, temp : boolean) : void

+listarMapas() : boolean

-buscarArchivosDat() : ArrayList<String>

+procesarDat(name : String, path : String) : DATstruct

+obtenerBordes(name : String) : Float []

-existeFicheroDAT(name : String) : boolean
-existeFicheroXML(name : String) : boolean
-existeFicheroJPG(name : String, temp : boolean) : boolean
+borrarMapa(name : String) : void

+borrarFichero(name : String, sufijo : String) : void
-copiarDefaultMaps(path : String) : void

-copiarMapa(path : String, name : String) : void
-procesarList() : ArrayList<String>
+calcularEscaladoRadio(val : float, max : float) : float

+calcularEscaladoEspacio(disponible : float, actual : float) : float

+calcularM2(elLugar : Lugar, radio : double) : double
+sliderValueToRadio(val : int, max : int) : float

+nearMeridian(lon : float, radio : double) : boolean

+checkMapExists(string : String) : boolean
+printMapNames() : void

-getAPIs() : ArrayList<String>
-leerFicheroAPIs() : ArrayList<String>
-crearFicheroAPIs() : void
+getListadoMapasString() : String
+getNumeroMapas() : int
+getNameFromOrdinal(val : int) : String
+setPath(p : String) : void

+getPath() : String

+getListadoMapas() : ArrayList<DATstruct>

Figura B.13: Detalle de la clase «GestionDeMapas»

111

La clase «DATstruct» contiene la estructura de almacenamiento de los ma-
pas, mientras que la clase «Lugar» tiene la estructura de almacenamiento de las
peticiones de obtencion de dichos mapas.

Lugar
+id : long
+lat : float
DATstruct +lon : float
+name : String +nombre : String
+alias : String +Lugar(id : long, lat : float, lon : float, nombre : String)
+direccion : String
+radio : float
+id : long ProcesarXmlIConsulta
*tipo : String -dom : Document
+lat : float <<Property>> ~lugares : Hashtable
+lon : float - -
+m2 : double +ProcesarXmlConsulta(uri : String)
+numMCaminos - int -imprimirResultados() : void
+numNodos - int -parsearArchivoXml(uri : String) : void
-parsearDocumento() : void

-obtenerLugar(elemento : Element) : Lugar
+getLugares() : Hashtable

Figura B.14: Detalle de las clases «DATstructy, «Lugar» y «ProcesarXMLConsul-
ta»

Las clases «ProcesarXML...» se utilizan para procesar el contenido de los fi-
cheros XML descargados que contienen el listado de resultados de la busqueda
«ProcesarXMLConsulta» y los datos del escenario en formato OSM. La diferencia
entre las clases «ProcesarXMLMapay y «ProcesarXMLMapaSoloContar» radica
en que esta ultima es la utilizada para calcular el nimero de nodos del escenario
y mostrarlo en la tabla de la pantalla del mentu, mientras que la primera es la
utilizada para cargar los datos al mundo de juego.

B.4.4. Mobdulo de servidor maestro

El médulo de servidor maestro contiene las clases necesarias para el funciona-
miento del servidor dedicado y del terminal cliente con el que se puede modificar
sus parametros.

La clase «MasterServer» es la encargada de la inicializaciéon del servidor maestro
y la configuracion del directorio. Recibe conexiones TCP de los terminales e inicia
el servidor de la partida cuando es requerido.

Para tratar con las conexiones de los terminales, con cada nueva conexioén crea
un hilo de ejecucion con una instancia de la clase «HiloMasterServery. Esta clase
tiene las funciones necesarias para modificar la configuracién de la partida.

112

ProcesarXmiMapa

<<Property>> -nodos : Hashtable
<<Property>> -caminos : Hashtable
<<Property>> -capas : ArrayList
<<Property>> -multipolygons : Hashtable
<<Property>> -bordes : Float[]

-file : String

-tempVal : String

#servidor : MiCanvas_servidor
-tempNodo : Nodo

-tempCamino : Camino
-tempMultiPolygon : MultiPolygon

+ProcesarXmIMapa(servidor : MiCanvas_servidor, fileName : String)
-imprimirResultados() : void

-parsearArchivoXml() : void

+startElement(uri : String, localName : String, qName : String, attributes : Attributes) : void
+characters(ch : char [], start : int, length : int) : void
+endElement(uri : String, localName : String, qName : String) : void
+getLugares() : ArrayList<Lugarinteres>

+getNodos() : Hashtable

+getCaminos() : Hashtable

+getMultipolygons() : Hashtable

+getCapas() : ArrayList

+getBordes() : Float []

Figura B.15: Detalle de la clase «ProcesarXMLMapa»

113

—

]

menus

ParametrosConfig

masterServer

HiloMasterServer

Parametros

—

ConfiguracionV

ConfiguracionP

MasterServer

KK

mapas

GestionDeMapas

Configuracion

71S 7%

MasterClient

—

—

juego

Main

MiCanvas_servidor

StartClass

VAN
|
|
1
|
|
1

L)

Figura B.16: Clases del mddulo de servidor maestro

114

La clase «MasterClient» es la encargada de realizar la conexién mediante TCP
con el servidor maestro y tiene las funciones necesarias para obtener y modificar
la configuracion actual de las partidas que inicie dicho servidor.

Si los parametros usados asi lo requieren, tanto «MasterServery como «Mas-
terClient» son instanciadas desde la clase «StartClass», que es la clase inicial de
la aplicaciéon cuando esta no se ejecuta como Applet.

B.4.5. Moé6dulo de servidor estadistico

El moédulo de servidor estadistico contiene las clases necesarias para el desplie-
gue del servidor de recogida de estadisticas y el envio y recepciéon de éstas.

La clase «StatServer» se encarga de iniciar el proceso y escuchar peticiones de
conexion, creando instancias de la clase «HiloStatServer» cuando dichas peticiones
de conexion son aceptadas.

La clase «HiloStatServer» contiene funciones para recibir los diferentes tipos
de estructuras de estadisticas por parte de los servidores.

Por ultimo la clase «EnvioEstadisticas» es una clase en la cual se definen mé-
todos (estaticos) para que los servidores puedan enviar los diferentes tipos de
estadisticas a los servidores de recogida de estadisticas.

B.4.6. Mobdulo de estadisticas

El médulo de estadisticas contiene las clases que permiten la creaciéon de las
diferentes estructuras de estadisticas (de aparcamiento, de juego y de VESPA) y la
estructura que contiene el resumen de la configuracion actual de la partida. Ade-
mas también contiene las funciones necesarias para almacenar en ficheros dichas
estructuras de forma legible al usuario.

Para cada tipo de fichero que se desea generar cuando las estadisticas estén

activadas, se tiene una clase en la que se contiene su estructura «TADEstadis-
ticasAparcamientoy, « TADEstadisticasJuego», «EstadisticasVespa (EV)» y «Cu-
rrentConfigInfo (CCI)», para estadisticas de aparcamiento, de la partida, de VES-
PA y para el resumen de la configuracion respectivamente.
Para cada uno de estos tipos se tiene una clase con las funciones necesarias para
limpiar el directorio donde se almacenan los ficheros y crear el fichero, ademas de
los métodos llamados desde el juego y mediante los cuales se calculan las estadis-
ticas.

Las estadisticas de aparcamiento tienen dos clases asociadas « TADEstadistica-
sAparcamiento» y «TADEstadisticasAparcamientoTC» cuya diferencia es que la
primera es llamada por los jugadores humanos mientras que la dltima esta ideada
para vehiculos del trafico, por lo que la funcién que incluyen para anotar un apar-

115

—

Main
StartClass
+main(args : String []) : void[

StatServer AV

StatServer

HiloStatServer

-continueRunning : boolean

-s : Socket -sv_socket : ServerSocket
-path : String -port : int
+HiloStatServer(socket : Socket, path : String) -path : String

*run() : void +StatServer()
+receiveCCl(cliente : Socket) : CCl +run() : void

+receiveEA(cliente : Socket) : ArrayList<TADEstadisticasAparcamiento>

-mainLoop() : void
+receiveEV(cliente : Socket) : EV

-initTep(port : int) : void
+receiveEJ(cliente : Socket) : ArrayList<TADEstadisticasJuego>

+closeTcp() : void

+aceptarCliente() : Socket
-createFolder() : void

EnvioEstadisticas

+host : String

+port : int

+CCl :int

+EA : int

+EATC :int

+EVP :int

+EV :int

+EVR :int

+EJ :int

-sendUUID(socket : Socket, uuid : UUID) : void
-sendType(socket : Socket, type : int) : void
+enviarCCl(cci : CCl, uuid : UUID) : void
+enviarEA(ea : ArrayList<TADEstadisticasAparcamiento>, uuid : UUID, tc : boolean) : void
+enviarEV(ev : EV, uuid : UUID, player : boolean) : void

+enviarEVR(evr : EV, uuid : UUID) : void

+enviarEJ(ej : ArrayList<TADEstadisticasJuego>, uuid : UUID, tc : boolean) : void

Figura B.17: Clases del modulo de servidor estadistico

116

1] []

estadisticas menus
EstadisticasAparcamientoTC EstadisticasVESPA
mapas
QF GestionDeMapas
CurrentConfiginfo
EV
@
TADEstadisticasAparcamiento D
DATstruct
EstadisticasJuego CcCl
EstadisticasAparcamiento (:\ﬁ)I(Parametros
TADEstadisticasJuego

Figura B.18: Clases del modulo de estadisticas

CurrentConfiginfo

+StatisticsOn : boolean

-pathName : String

+createCleanFolder(uri : String, date : String) : void

+createFolder(path : String, uuid : String) : void

+writeFile(p : Parametros, mDJ : byte, numPlayers : int, timeElapsed : int, mapData : DATstruct) : void
+writeFile(cci : CCl, path : String, uuid : String) : void

-protocol2String(p : int) : String

+getPath() : String

Figura B.19: Detalle de la clase «CurrentConfigInfo (CCI)»

117

EstadisticasAparcamiento

-pathName : String
-lista : ArrayList<TADEstadisticasAparcamiento>

+createCleanFolder(uri : String, date : String) : void

+createFolder(path : String, uuid : String) : void

-cleanValues() : void

+writeFile() : void

+writeFile(path : String, uuid : String, laLista : ArrayList<TADEstadisticasAparcamiento>) : void
+writeFile(laLista : ArrayList<TADEstadisticasAparcamiento>) : void

+objetivoConsequido(id : int, tiempo : int, frames : int, vespaEnabled : boolean, aparcadoEnVespa :
+getLista() : ArrayList<TADEstadisticasAparcamiento>

TADEstadisticasAparcamiento

+id : int

+tiempo : float

+frames : float
+vespaEnabled : boolean
+aparcadoEnVespa : boolean
+protocolo : int

+TADEstadisticasAparcamiento(i : int, t : int, f : int, VE : boolean, aEV : boolean, p : int

Figura B.20: Detalle de las clase «TADEstadisticasAparcamientoy» y «Estadistica-
sAparcamiento»

118

camiento exitoso varia, asi como también el formato con el que se representaré en
el fichero.

Las estadisticas de VESPA se almacenan tanto individualizadas para cada
vehiculo como de forma agregada para toda la partida, por lo que la clase «Es-
tadisticasVESPA» se diferencia de las demés en que incluye un método para la
agregacion de los datos y también otro para la representacion en fichero con dife-
rente formato.

B.4.7. Médulo logger

El modulo logger permite la activaciéon o desactivacion de la impresion por
pantalla de diversas trazas de ejecucion.

LoggerPrediccion Loggerinterpolacion
-enabled : boolean = false -enabled : boolean = false
+print(txt : String) : void +print(txt : String) : void

Figura B.21: Clases del modulo de logger

Consiste de tinicamente dos clases, pensadas para las trazas referentes a la
prediccion y a la interpolacion, pero es facilmente expandible anadiendo una nueva
clase para cada nuevo tipo de traza.

También es facilmente expandible para que se seleccione si la traza se pintara
por pantalla (como actualmente) o en fichero.

B.4.8. Moédulo de ment in-game

El médulo de ment in-game contiene las clases necesarias para mostrar el meni
de pausa y permitir navegar por él mediante los eventos del ratén y la tecla escape.

Este modulo se compone de cuatro clases («Principal», «Opciones», «Contro-
les» y «SalirConfirmacion») que contienen la estructura de las diferentes pantallas
del ment (principal, opciones, controles y abandonar) y otras cuatro («MenulnGa-
mePrincipaly, «MenulnGameOpciones», «MenulnGameControlesy y «MenulnGa-
meSalirConfirmaciony) con las respectivas acciones de pintado y manejo de dichas
pantallas.
Ademas, la clase «MenuEscape» contiene la estructura de pantallas y es con la
que se comunican las clases de manejo.

La clase «MiBoton» es la que contiene la estructura de la representacion de los
botones utilizados en las pantallas.

119

MenulnGameControles -menulnGameControles
1
MenuEscape MenulnGameOpciones -menulnGameOpciones
1
D 1
Opciones MenulnGamePrincipal -menulnGamePrincipa
1
Principal MenulnGameSalirConfirmacion
-menulnGameSalir 1
SalirConfirmacion
-menuEscape
Controles MiBoton
D ©

MiCanvas_cliente

AccionesYTeclas

Figura B.22: Clases del m6dulo de ment in-game

MenulnGameControles
+ACCION LENGTH :int
+TECLA LENGTH :int
+BOTON LENGTH : int
-cliente : MiCanvas_cliente
-menuEscape : MenuEscape

+MenulnGameControles(cli : MiCanvas_cliente, me : MenuEscape
+mouseClicked(e : MouseEvent) : void

+mousePressed(e : MouseEvent) : void

+mouseReleased(e : MouseEvent) : void

+cl_paintMenuEscape(g : Graphics2D) : void

-accionClicked(texto : String) : void

Figura B.23: Detalle de la clase «MenulnGameControles»

120

MenuEscape

SalirConfirmacion +principal : Principal
+botonSi : MiBoton +controles : Controles
+botonNo : MiBoton @ +salirConfirmacion : SalirConfirmacion

+opciones : Opciones

+SalirConfirmacion()

+MenuEscape()
Opciones \IX/ 79 QV\
+botonHecho : MiBoton MiBoton
+botonMusicaMas : MiBoton Principal

+texto : String
K—> +rectangulo : Rectangle
+highlighted : boolean +Principal()

+botonMusicaMenos : MiBoton
+botonEfectosMas : MiBoton
+botonEfectosMenos : MiBoton

+botones : ArrayList<MiBoton>

+MiBoton(txt : String)

+Opciones()

X

Controles
+botonOK : MiBoton
+controles : AccionesYTeclas

+Controles()

¥

AccionesYTeclas
-listaAcciones : ArrayList<String>
-listaTeclas : ArrayList<String>

+AccionesYTeclas()

+addAccionYTecla(accion : String, tecla : String) : void
+getAccion(i : int) : String

+getTecla(i : int) : String

+size() : int

Figura B.24: Detalle de la clase «MenuEscape» y las relacionadas

121

B.4.9. Modbdulo de terreno

El modulo de terreno es el encargado de soportar la representacion de los
distintos elementos que conforman los elementos estaticos del escenario.

Lugarinteres

DFSAlgorithm
+nodosVecinosTCHash...
Nodo Camino
v _Ways\/ PonData
. +misNodos * *
+nodosVecinosHashSet
-nodes * -outerWays JinnerWays *
JoinedWay MultiPolygon
s> &
1 +efecto
DanyoVelocidadYCalle +efecto

Figura B.25: Clases del modulo de terreno

En éste modulo hay que destacar tres clases: «Nodo», «Camino» y «MultiPoly-
gonx». Son las clases que representan a los respectivos tipos de datos de OpenS-
treetMap y contienen las funciones necesarias para su creacién y manejo.

Hay que destacar que un multipoligono esta formado por caminos y éste a su vez
estd formado por nodos. Ademaés cada nodo tiene una lista con sus nodos vecinos
(nodosVecinosHashSet) y otra lista casi idéntica (nodosVecinosTCHashSet) pero
en la que solo aparecen los nodos accesibles con las restricciones de los vehiculos del
trafico (que no pueden circular por los mismos tipos de terreno que los jugadores
y enemigos).

122

La clase «LugarInteres» es una subclase de «Nodo» y contiene la estructura y
los métodos necesarios para que pueda ser elegido como objetivo en los modos de
juego que funcionan mediante tareas (por ejemplo pintar el radio del objetivo o
calcular sus plazas de aparcamiento cercanas).

La clase «DanyoVelocidadYCalle» contiene el tipo de efecto causante por el te-
rreno: ralentizacion de velocidad, infranqueable, causa danos, etc. y ademas tam-
bién contiene la calle a la que pertenece. Esta clase se usa para no tener que
recalcular los efectos sobre los vehiculos cada vez que se detecte que un elemento
del terreno esta en colisién con un vehiculo.

Por tdltimo también existe la clase «DFSAlgorithm» que contiene un algoritmo
de buiisqueda primero en profundidad usado para calcular los «sectores» en los que
se divide el escenario, es decir, que nodos son accesibles desde otros nodos. Esto se
usa para evitar representar nodos que pertenecen a caminos a los que es imposible
que los vehiculos accedan.

Para més informacion ver anexo C.3.

B.4.10. Moédulo gestor de conexiones

El moédulo gestor de conexiones contiene todas las clases implicadas en el envio
y recepcion de datos a través de los protocolos TCP y UDP.

Este moédulo puede dividirse en dos partes: las clases de uso general en toda la
aplicacion (paquete «conexions) y las clases que solo se usan durante la partida
(paquete «juego.red»).

Respecto a los primeros, las clases « TCP _servidor», «TCP _cliente» y «TCP _ -
master related» contienen las funciones usadas para la comunicacion mediante el
protocolo TCP para el servidor, el cliente y el servidor dedicado y su terminal
respectivamente. Todas ellas implementan la interfaz « TCP__comuny, que tnica-
mente contiene los valores asociados a los tipos de mensaje que son comunes a
todas las implementaciones.

Las clases «<UDP _servidor» y «UDP _cliente» son las clases equivalentes para el
protocolo UDP.

La clase «Cliente» es la encargada de almacenar en el servidor los datos de cada
cliente conectado. No solo se almacena la IP y puerto sino también la secuencia
del altimo paquete recibido y enviado y una lista donde se almacenan los ultimos
estados enviados para poder realizar la descompresion delta.

La clase «GestorTCPCliente» crea un hilo de ejecucion en el cliente y se encarga
de realizar la peticion de unién a la partida y, mas adelante, recibir los datos de
cada nueva ronda, la informacion de finalizacion de la partida y también los eventos
GUI que se muestran al jugador.

La clase «GestorConexiones» es la version anéloga para el servidor, dedicidndose
a enviar dichos datos también se encarga de gestionar la unién de jugadores a la

123

1

[1

juego

N

TCP_cliente

MiCanvas_servidor

MiCanvas_cliente

conexion
Cliente <<Interface>>
TCP_comun
PAVARANV A
e 1 S
1
TCP_servidor I
= -
1
1

TCP_master_related

GestorConexiones

GestorTCPCliente

UDP_servidor

UDP_cliente

GestorSnaps

[]

red
EventoGUI InputSnapshot
Snapshot
P
FullSnapshot
<

util

A SnapYBueno

Figura B.26: Clases del modulo de gestor de conexiones (1 de 2)

AcumuladorLO

AcumuladorActor

2\

AcumuladorLRP

AcumuladorHumo

AcumuladorParking

AcumuladorCar

AcumuladorFlag

AcumuladorObstaculo

T

AcumuladorRedCar

AcumuladorAmbulance

AcumuladorTrafficCar

AcumuladorPlayer

Figura B.27: Clases del modulo de gestor de conexiones (2 de 2)

124

UDP_cliente

Cliente
+InetAddress : InetAddress
+port : int
+lastAckState : int
+lastState : int

- - - - -oldStates : HashMap
+UDP_cliente(cliente : MiCanvas_cliente)
+nitClient() : void +Cliente(InetAddress : InetAddress, port : int, lastAckState : int)

+getOldState(sequence : int) : Snapshot
+addOldState(lastState : Snapshot, sequence : int) : void
+setLastAckState(lastAckState : int) : void
+setlLastState(lastState : int) : void

+timeoutTime : int

+blockTime : int

-socket : DatagramSocket
-cliente : MiCanvas_cliente
-tiempoUltimaRecepcion : long

+closeClient() : void

+sendInputSnapshot(inputSnapshot : InputSnapshot) : void
+receiveSnapshot() : Snapshot

+cl_conexionPerdida() : boolean

Figura B.28: Detalle de las clases «UDP _cliente» y «Cliente»

partida y de proporcionarles el estado inicial de la partida (FullSnapshot).

Respecto a las clases que se usan durante la partida, «FullSnapshot», «Snaps-
hot» e «InputSnapshot» contienen la estructura de los paquetes de datos transmi-
tidos entre clientes y servidor.

La primera contiene el estado inicial del juego, es decir, los elementos estaticos que
no van a cambiar durante el trascurso de la partida y que por lo tanto solo seran
necesarios de enviar cuando el jugador se conecte.

La segunda contiene el estado actual del juego: los elementos dindmicos que pue-
den variar (p.ej. los vehiculos o los objetivos).

La tercera contiene los eventos de teclado recogidos en el cliente y que deben
transmitirse al servidor en cada ciclo.

La clase «SnapYBueno» es una simple estructura formada por un «Snapshot»
y un valor booleano, que indica si es correcto segin el sistema de control de flujo.
Se usa en el cliente para almacenar los snapshots pendientes de procesar. La clase
«GestorSnaps» es la encargada de realizar este control de flujo de paquetes.

La clase «EventoGUI» contiene la estructura utilizada para los mensajes que
se muestran en pantalla al jugador cuando ocurren ciertos eventos, y contiene
también los métodos necesarios para su creacion.

Dentro de las clases usadas durante la partida también se encuentran los acu-
muladores, que son clases creadas para solucionar el problema causado por el envio
de tnicamente actores cercanos (ver anexo C.6.5). Estas clases estan contenidas
en el paquete «juego.red.acumuladores» y se dispone de una clase por cada tipo
de objeto que se ha de enviar solo en ciertas ocasiones.

125

GestorSnaps

EventoGUI +bufferRecibidos : ArrayList<SnapYBueno>
+DURACION : int +ultimoBueno : Snapshot
+text : ArrayList<String> +GestorSnaps(ultimoBueno : Snapshot)
+length : int -setUItimoBueno(ultimoBueno : Snapshot) : void
+EventoGUI() +addRecibido(ultimoRecibido : SnapYBueno) : void
+EventoGUI(l : int) +esperar() : boolean

+addLine(t : String) : void +removeOne() : SnapYBueno
+checkSnapshot(newState : Snapshot) : boolean
-sequence more recent(s1 :int, s2 : int) : boolean

Figura B.29: Detalle de las clases «GestorSnaps» y «EventoGUI»

AcumuladorActor

+changed_angle : boolean
+changed_globalX : boolean
+changed_globalY : boolean
+changed_speed : boolean
+changed_currentFrameServidor : boolean
+changed_frameSpeed : boolean
+changed_tServidor : boolean
-secuenciaReseteo : Integer

+AcumuladorActor()

+acumularCambios(a : Actor) : void
#resetearCambios() : void
+markForReset(sequence : int) : void
-isMarkedForReset(sequence : int) : boolean
+resetlfRequired(sequence : int) : void

Figura B.30: Detalle de una clase acumulador

126

B.4.11. Modbdulo de fisica

El moédulo de fisica contiene las funciones y estructuras que permiten realizar
tareas como la deteccion de colisiones.

fisica
Edge =
+v1 : Position2D Isica
—~¥H+v2 : Position2D ®+detectCoIIision(B‘I : PhysicsRectangle, B2 : PhysicsRectangle) : boolean
— — -IntervalDistance(MinA : float, MaxA : float, MinB : float, MaxB : float) : float
+Edge(v1 : Position2D, v2 : Position2D)

+edges|] * gi

FloatPair Collisioninfo
PhysicsRectangle +a : float +depth : float
+VertexCount : int = 4 +b : float +normal : Position2D

+EdgeCount :int=2 +FloatPair(a : float, b : float)
+edges : Edge[] = new Edge[EdgeCount]

+vertices : Position2D[] = new Position2D[VertexCount]
+vertices|] : Position2D[] = new Position2D[VertexCount]
+edges|] : Edge[] = new Edge[EdgeCount]

+PhysicsRectangle(center : Position2D, width : int, height : int, angle : float)
+projectToAxis(Axis : Position2D) : FloatPair

1

0 +vertices[] util
Position2D

+Position2D()

+Position2D(a : float, b : float)

+Position2D(v : Position2D)

+isZero() : boolean

+parallelComponent(unitBasis : Position2D) : Position2D
+perpendicularComponent(unitBasis : Position2D) : Position2D
+dot(v : Position2D) : float

+rotate(theta : float) : Position2D

+translate(dx : float, dy : float) : Position2D

+v3| [+addition(v : Position2D) : Position2D HHnor...
1 { | ¥subtraction(v : Position2D) : Position2D 1
+multiplication(s : float) : Position2D

+division(s : float) : Position2D

+length() : float

+lengthSquared() : float

+interpolate(alpha : float, x0 : Position2D, x1 : Position2D) : Position2|
+distance(a : Position2D, b : Position2D) : float

+normalize() : Position2D

+intermediatePoint(a : Position2D, b : Position2D) : Position2D
+writeExternal(out : ObjectOutput) : void

+readExternal(in : Objectinput) : void

Figura B.31: Clases del modulo de fisica

La clase «Fisica» realiza la deteccion de colisiones entre actores (no con ele-
mentos del terreno) y hace uso de la clase «PhysicsRectangle» que contiene los
ejes y vértices que representan al actor y tiene funciones para proyectar dicha re-
presentacion sobre los ejes (necesario para calcular la colision segin el teorema
Separating Azis theorem (ver anexo C.4.2).

127

B.4.12. Mobdulo de inteligencia artificial

El modulo de inteligencia artificial realiza los calculos de path-finding (paquete
«astary) y del control de la conduccion del vehiculo.

juego
inteligencia
ObstaculoEsferico HiloPathFinding
astar
AStarNodeComparator
SteeringYDesired
AStarAlgorithm
MapPointToPathReturnValue
@L AStarNode
PathWay REtatey Resultado Peticion
cameFrom
ResultCNAP
A; NodoyNodo
SteeringBehaviors
source
camino target
—l steer
—————
d
actores terreno \|/ node
me MiCanvas_servidor
Car Camino Nodo
9
Sk Vi
/|\—| J camino
[
| listaPeticiones|A listaResultadosIA
util listaln
- Position2D MiListaSincronizada listaOut
I <_
A 5

Figura B.32: Clases del modulo de inteligencia artificial

Dentro del paquete «astar» se encuentra la clase «AStarAlgorithm» que, me-
diante el uso de las clases «AStarNode» (representacion de un nodo) y «AStarNo-
deComparator» (comparador de nodos), realiza una busqueda A* sobre los nodos
que forman los caminos del terreno para encontrar la ruta méas corta entre dos
puntos.

Esta clase es llamada desde la clase «HiloPathFindingy», que tiene un hilo de

128

ejecucion propio y recibe a través de la clase «MiListaSincronizada» peticiones
(clase «Peticiony») de path-finding, las computa y cuando el resultado esté listo
devuelve el resultado (clase «Resultadoy) a través del mismo medio.

Respecto al control de la conduccion, las clase més importante de las que
intervienen es «SteeringBehaviors», que contiene los métodos invocados desde el
vehiculo para la realizacion de los diferentes comportamientos indicados en [17] y
en su mayor parte desarrollados en OpenSteer? (ver C.5.1).

«SteeringY Desired» es una estructura donde se tiene el vector que indica el giro
a realizar junto al vector que indica la direccién a la que se encuentra el objetivo.

«ObstaculoEsferico» contiene una posicion en dos dimensiones y un radio y
se asocia con las entidades que deben ser esquivadas por los diferentes comporta-
mientos desarrollados.

Por dltimo «PathWay», «MapPoint ToPathReturnValue» y «ResultCNAP» son
clases que se han obtenido de la implementacion de la libreria OpenSteer y son
usadas por los métodos que implementan los diferentes comportamientos de control
del vehiculo.

B.4.13. Modbdulo cliente

Este médulo se compone de todos los elementos que intervienen en la parte
cliente de la aplicacion y no encajan en el resto de modulos.

En la figura B.33 se da una vista general de la interaccion de la clase «MiCan-
vas_ cliente» con el resto de clases del modulo y también las relaciones con el resto
de modulos que no hayan sido vistas todavia.

La clase principal es «MiCanvas _cliente» y contiene métodos para el pintado
del mundo de juego y la interfaz grafica de usuario, el tratamiento de red (incluyen-
do la interpolacién, extrapolacion y prediccion), la captura de eventos del teclado,
el manejo de las entidades locales, las acciones realizadas en el cliente para liberar
de gasto de procesamiento al servidor (célculo de aparcamientos cercanos, etc.).

Dentro de este modulo hay muchas otras clases de apoyo, la mayoria en el
paquete «juego.otros».

Una de estas clases es «RadarVespay, que permite representar el radar y con-
tiene métodos para pintar en ¢l diversos tipos de elementos.

Una clase asociada a ésta es «MiniMapEvent», que tiene la representacion de los
eventos proporcionados por VESPA con la minima informacion necesaria (ya que
seré transmitida a través de la red).

La clase «Flechay contiene la estructura y funciones necesarias para calcular y
mostrar en pantalla las flechas que indican la posiciéon de los objetivos y enemigos
respecto del jugador.

2http://opensteer.sourceforge.net/

129

http://opensteer.sourceforge.net/

1]

terreno
MultiPolygon DanyoVelocidadYCalle Camino Nodo
NZ N2
| : |
actores
rondaYObjetivos Actor Car
ModosDeJuego l l
| S
<<Interface>> V
ExplicacionRondaSalaDeEspera Stage OnlyPosition <<Interface>>
BasicActor
JAN
i JAN
Opciones 1 joococ===o
é—I [ActorFX Player
% MiCanvas_cliente —
Tarea J
otros
ExplicacionRonda ResourceCache
RadarVespa
red util SpriteCache Flecha
FullSnapshot Snapshot SnapYBueno
InputSnapshot EventoGUI Angulos — <<Enum>>
MiniMapEvent TipoObjetivo
TextStroke
PosicionPlayerSinPrediccion

Figura B.33: Clases del modulo de cliente

130

RadarVespa

-mapWidth : float
-mapHeight : float

-maxA : int

-maxB : int

-scale : float

-cliente : MiCanvas_cliente
-a:int

-b :int

-offsetA : int

-offsetB : int

-comienzoX : int
-comienzoY : int
#spriteCache : SpriteCache

+RadarVespa(c : MiCanvas_cliente, maxWidth : int, maxHeight : int, width : float, height : float, comienzoX ...
+paintBackground(g : Graphics2D) : Rectangle

+paintEvents(g : Graphics2D, listaPuntitos : List<RadarRepresentationOfEvent>) : ArrayList<MiniMapEvent>
+paintTooltipsEvents(g : Graphics2D, lista : ArrayList<MiniMapEvent>, mouseX : int, mouseY : int) : void
-drawToolTip(g : Graphics2D, x : int, y : int, text : String) : void

+paintOnlyMyPlayer(g : Graphics2D, jugador : Player) : void

+paintGasolineras(g : Graphics2D, gasolineras : ConcurrentHashMap) : void

+paintPuestosPerritos(g : Graphics2D, puestosPerritos : ConcurrentHashMap) : void

+paintLugares(g : Graphics2D, lugares : ArrayList<Tarea>) : void

+paintOff(g : Graphics2D) : void

Figura B.34: Detalle de la clase «RadarVespa»

MiniMapEvent

+x :int
+y rint
+width : int
+height : int

+typ : RadarRepresentationOfEvent

+MiniMapEvent(x : int, y : int, w : int, h : int, typ : RadarRepresentationOfEvent)
+contains(mx : int, my : int) : boolean
+typ2String(cliente : MiCanvas_cliente) : String

Figura B.35: Detalle de la clase «MiniMapEvent»

131

Flecha

-angle : short
-spriteNames : String[]
-currentFrame : byte
-width : int

-height : int

-objetivo : Object
-jugador : Player

-red : float

-green : float

-blue : float

-tipoActor : TipoObjetivo
-spriteCache : SpriteCache
-attribute : SpriteCache

+Flecha(cliente : MiCanvas_cliente, j : Player, color : Color
-setSpriteNames(names : String []) : void

+paint(g : Graphics2D) : void

+setObjetivoA(actor : OnlyPosition) : void

+setObjetivoL (| : Lugarinteres) : void

+setObjetivoD(c : Float) : void

-calcularAngulo() : void

Figura B.36: Detalle de la clase «Flecha»

B.4.14. Mob6dulo servidor

Este médulo se compone de todos los elementos que intervienen en la parte
servidor de la aplicaciéon y no encajan en el resto de moédulos.

En la figura B.37 se da una vista general de la interaccion de la clase «MiCan-
vas_servidor» con el resto de clases del modulo y también las relaciones con el
resto de modulos que no hayan sido vistas todavia.

La clase principal es «MiCanvas_servidor», que contiene métodos para el tra-
tamiento de red, inicializacion del mundo de juego, calculo de puntuaciones e
inicializacion y finalizacion del servidor.

Esta clase interactia con el resto de médulos previamente citados.

B.5. Game Loop (bucle de juego)

El game loop es una secuencia presente en todos los juegos que generalmente
consiste en obtener los comandos del jugador, actualizar el estado del juego, realizar
las tareas de la IA, reproducir los efectos de sonido y pintar el juego.? Esta secuencia
se ejecuta infinitas veces hasta que se acabe la partida.

3http://www.koonsolo.com/news/dewitters-gameloop/

132

http://www.koonsolo.com/news/dewitters-gameloop/

[1

rondaYObjetivos

Ronda

ObjetivosRally

k . 1 [1
1 inteligencia actores
<<Interface>> 1 ObjetivosTareas HiloPathFindi
s - — iloPathFinding
10bjetivos 1<F i = HistoricoJugador
1
: ObjetivosAparcar
pooo
- u &
: — - - otros <<Interface>> Player
Tarea - { ObjetivosSupervivencia SpriteCache BasicActor
ModosDeJuego ExplicacionRonda A : J7
3 Actor Car
op Expl = laDeEspera
3 T
/I'\ MiCanvas_servidor Parking
terreno N R
\
7 DFSAlgorithm PosYAngle «anterface» —
red Stage CollisionInfo FloatPair
FullSnapshot Lugarinteres
“ & g
EventoGUI Fisica Edge
Camino <<Enum>> 9_
TipoLugar
©
Snapshot Nod
odo
PhysicsRectangle

Figura B.37: Clases del médulo de servidor

133

En http://www.koonsolo.com/news/dewitters-gameloop/ se muestran va-
rios posibles disenos del game loop, de los cuales se escogié realizar el primero de
ellos: FPS dependientes de la velocidad del juego (constante) por ser una solucion
facil de implementar y que mantiene la sencillez del cédigo, lo cual es importante
yva que al tratarse de un juego en red y como también se van a introducir conceptos
como la predicciéon e interpolacion, se va a complicar mucho el coédigo . Ademas,
contando con que todos los ordenadores implicados (servidor y clientes) tienen po-
tencia suficiente para conseguir los FPS establecidos, la velocidad en todos ellos
serd la misma.

En el Algoritmo B.1 se observa el codigo bésico tanto en el cliente como en el
servidor. En actualizar juego se realiza todo lo necesario para actualizar el mundo
de juego (distinto segin si es el cliente o el servidor) y en mostrar objetos en
pantalla (solo lado cliente) se pinta el mundo de juego en pantalla. En las siguientes
secciones (Anexos B.5.1 y B.5.2) se explica en detalle el contenido de estas dos
funciones asi como también de inicializacion y finalizacion.

Algoritmo B.1: Game loop

inicializacion

while(el juego continua)
actualizar juego
mostrar objetos en pantalla <—— Solo en el cliente

}

finalizacién

B.5.1. Servidor

El servidor tiene el siguiente esquema de funcionamiento (ver Figura B.38):

inictalizacion: se crea el escenario (nodos, caminos, aparcamientos, gasoline-
ras...) y después se crea el gestor de conexiones, el cual es el encargado de
recibir las peticiones de conexiéon de los clientes y enviarles el estado de juego
actual para que se puedan unir. Esta fase de inicializacion acaba cuando el
primer cliente se une a la partida.

actualizar juego: recibe los comandos de los jugadores (enviados mediante UDP)
y los procesa. Después llama al gestor de rondas para que compruebe el es-
tado de los objetivos y dictamine si se debe avanzar de ronda o si el juego
se ha acabado. Finalmente envia a los clientes los datos actualizados de los

134

http://www.koonsolo.com/news/dewitters-gameloop/

Inicializacién

Crear Gestor de Conexiones
Crear escenario —) . .
(interactua con los clientes)

-'.il'.'.'.'.'.'.'.'.'.'.'.. S

' Game loop :
' Recibir y procesar entradas de los jugadores E
: ;
: / T no(juego_finalizado)
E Comprobar :
' objetivos de | _) Enviar estado del "mundo” !
E la ronda y los objetivos actualizados :
' a los clientes '
1]

juego_f-in-aliz-ado

1 Finalizacion

: Enviar informacion sobre el Guardar estadisticas

E Enviar sefial de juego (puntuaciones, tiempos, —>» y enviarlas al Servidor

f "juego_finalizado" etc.) a los clientes de estadisticas (si existe)
.

1

Figura B.38: Funcionamiento del servidor

135

actores en sus cercanias y, en el caso de haberse modificado, los objetivos de
la ronda.

finalizacion: se envia a los clientes una senal de que el juego ha acabado, y
cuando se ha recibido el ack de todos ellos, se les envia las estadisticas
finales de la partida (puntuacion, tiempo...). Finalmente, si la configuracion
actual asi lo requiere, se guardaran en ficheros las estadisticas de explotacion
recogidas, y si el servidor de recogida de estadisticas esta operativo, también
se le enviaran a él (ver Capitulo 3).

Hay que destacar que al tener cada actor un hilo de ejecucién propio, la actua-
lizaciéon de su estado no se realiza dentro de la logica del hilo del servidor sino que
se realiza de forma asincrona.

Otro aspecto importante es que a cada cliente no se le envian los datos de todos
los actores sino solamente de aquellos que por su cercania tengan interés para él.
Se profundizara mas en este aspecto en el Anexo C.6)

B.5.2. Cliente

El cliente tiene el siguiente esquema de funcionamiento (ver Figura B.39):

inictalizacion: primero se inicia la musica de la partida (la del ment se ha fina-
lizado al crear la clase cliente). Después se crea el gestor de conexion TCP,
que es el que iniciara la peticién de conexion al servidor. Se enviaran y re-
cibiran todos los datos requeridos para unirte a la partida y se procesaran
para que el estado de juego sea el mismo que del servidor.

actualizar juego: se recogen de teclado los comandos de los jugadores y se en-
vian al servidor. Se recibe del servidor el estado actualizado del juego y se
almacena en un buffer. Se extrae el estado mas antiguo de los almacenados en
el buffer (se eliminan después de extraerlos) y se le aplica la descompresion
delta para obtener los datos que contiene. Después se aplica la prediccion
e interpolacion (ver Anexo C.6), se hace la comprobacion de colisiones de
los actores FX (son aquellos que solo existen en el cliente por representar
efectos visuales o sonoros) y se actualiza su estado.

mostrar objetos en pantalla: se pintan todos los elementos del juego en pan-
talla.

finalizacion: se detiene la musica y los efectos de sonido, pintas la animacion
de fin de la partida y esperas a recibir las estadisticas finales de la parti-
da. Finalmente cargas las pantallas de los ments, mostrando inicialmente la
pantalla de estadisticas o la de error en caso de que haya ocurrido alguno.

136

conectar con el servidor)

Crear Gestor de
Conexiones (para >

para unirse a una partida

Enviar y recibir
los datos necesarios -)

Procesar el estado
actual del juego

Game loop

Recibir y procesar la informacion
sobre el estado actual del juego

del servidor

¥

Realizar compensacion
de latencia de red

Recoger entrada del jugador
y enviarla al servidor

§ no(juego_finalizado)

Actualizar elementos
—> locales al cliente

(efectos visuales y
sonoro, etc.)

Actualizar la pantalla
con el estado actual
—) del mundo (eventos,
vehiculos, etc.)

Detener musica _)
y efectos de sonido

Animar la pantalla juego para la pantalla final
_) (puntuaciones de cada _)
equipo y jugador, tiempos)

de "game over"

Finalizacién $

Recibir informacion del

Volver al menu
principal

Figura B.39: Funcionamiento del cliente

137

B.5.3. Actor

Cada actor tiene el siguiente esquema de funcionamiento (ver Algoritmo B.2):
Tiene un bucle similar al game loop del cliente y servidor, que finalizara cuando el
actor muera o se acabe la partida, y que contiene un método actualizar al que se
le llama una vez por ciclo (la misma velocidad que el bucle del servidor) y cuando
se finaliza el bucle se llama a la funcion eliminarse, que elimina al actor de las
listas en las que estd incluido y si era uno de los objetivos de la ronda lo da por
completado, ademés segin su clase también detiene el hilo de path-finding y los
de VESPA.

Algoritmo B.2: Bucle del actor

while(vivo & no(partida acabada))

{

actualizar

}

eliminarse

El método actualizar tiene el funcionamiento que se puede ver en el Algorit-
mo B.3, y bésicamente consiste en comprobar si el actor sigue vivo (se comprueba
al comienzo de cada ciclo) y si lo esta se llama a las funciones actualizar y com-
probar colisiones que realizan las acciones del actor y comprueban si existe alguna
colisién con otro actor respectivamente.

Algoritmo B.3: Método actualizar del actor

if (estd marcado para eliminacién)

{
}

else

{

vivo = falso

actuar
comprobar colisiones

}

Este bucle del actor se ejecuta en el servidor, ya que en el cliente solo se
reciben los datos calculados. Sin embargo, existen ciertos aspectos de los actores
(normalmente relacionados con su pintado) que se calculan en el mismo cliente, por
no necesitar un resultado que sea consistente en todos los clientes. Estas acciones

138

se ejecutan desde la funcion actuar FX. Ejemplos de estas acciones son los cambios
de luces en la sirena de la ambulancia o el cambio de sprite del humo.

Existen dos tipos de actores: los actores de la clase Actor (p.ej. vehiculos, humos,
gasolineras...), que son los actores que tienen que existir en todos los clientes con
su estado sincronizado con el servidor, y los actores de la clase ActorFX, que
representan efectos visuales o sonoros y solo existen en el cliente que necesita
representarlos (p.ej. explosiones, simbolos de mareo al colisionar con el humo...).
Ambos tipos implementan el interfaz BasicActor ya que es la que usa el sonido
(que puede ser generado por actores de ambas clases) (ver Figura B.40). El bucle
de los actores FX es igual al de los actores normales exceptuando que no llaman
a la funcion comprobar colisiones, ya que no tienen consistencia fisica (de tenerla
dejarian de ser actores FX y necesitarian ser actores normales para que el servidor
sincronice su estado con todos los clientes).

<<Interface>>

BasicActor
Actor Actor FX

Figura B.40: Las clases Actor y ActorFX implementan la interfaz BasicActor

B.6. Hilos de ejecuciéon

En esta seccién se van a explicar que hilos existen durante la ejecucion y como
estdn comunicados unos con otros. Los diferentes hilos de ejecuciéon se pueden
dividir en hilos de la interfaz, hilos del cliente e hilos del servidor.

El esquema de ejecucion es el siguiente (ver Figura B.41):
Cuando se inicia el juego, se crea la clase VentanaPPal (encargada de cargar la
configuracion almacenada y crear los directorios si es necesario), la cual termina
pasando el control a la clase Contenedor, que es en la que se muestran las pantallas
de los ments. La clase Contenedor crea un hilo adicional para el gestor de misica

139

(clase MiPlayer), y un nimero de hilos determinado (dependiente de la configu-
racion de audio) para el gestor de sonidos FX (clase SoundManager).

Cuando desde el ment se elija la opcion de crear una partida nueva, el hilo prin-
cipal creard la clase Cliente y se creard un hilo adicional con la clase Servidor.
Ademas, el hilo del gestor de musica llegara a su final y se creara uno nuevo con
la musica deseada (la forma de cambiar de cancion es cerrar el hilo y crear uno
nuevo).

Cuando la opcion de mentd elegida no sea crear una nueva partida sino unirse a
una partida existente, se omitira la creacién del servidor y su hilo.

Dentro del cliente, se creara un nuevo hilo en el que se ejecutara el gestor de
conexiones TCP (clase GestorTCPcliente), y cuando la partida llegue a su fin, el
hilo principal (clase Cliente) enviara senales de interrupcion a este hilo asi como
a todos los demas dependientes del cliente (gestor de sonidos y gestor de musica).
Finalmente, una vez interrumpidos todos, el cliente volvera a invocar al mena
principal (clase Contenedor) sobre su mismo hilo.

Por su parte el servidor (ver Figura B.42) tiene como similitud la creacion de
un gestor de conexiones TCP (clase GestorConexiones), pero no tiene hilos de
sonido ya que es una parte que se ejecuta inicamente en el cliente.

Ademés, a diferencia del cliente, en el servidor cada actor tiene su propio hilo de
ejecucion, los cuales seguiran funcionando hasta que el actor sea eliminado de la
partida (por ejemplo por haberse destruido) o el valor del servidor que indica si la
partida ha finalizado se vuelva cierto.

Algunos actores a su vez crean nuevos hilos, caso del hilo de path-finding y los
hilos de VESPA (dependientes de la implementacion, ver capitulo D.1), siendo los
actores los responsables de enviarles una senal de interrupcién cuando el hilo del
actor vaya a ser eliminado.

A diferencia del cliente, que al acabar devuelve el hilo de ejecuciéon al menu prin-
cipal, el servidor al finalizarse termina su hilo de ejecucion.

La comunicacién entre los diferentes hilos, mas alla del envio de interrupciones
ya citado, se realiza siempre sobre variables comunes, utilizando sincronizacion de
bloques.

140

VentanaPPal
—>| Contenedor

Y

\MiPIayeD (SoundManager

- - - - >N - - —_ _ L _ _ F—N — — — —

Servidor

\

GestorTCPcliente

MiPlayer

>Partida acabada >Interrupt >Interrupt >Interrupt

—_—,— - —_——_——_——_— —_——_——_——_——_——_——_——_——_——_——_— ;_—_J

—_——————_—_—__— V- — — — — — — — =

Figura B.41: Vista general de los hilos de ejecucion

141

Servidor

TrafficCar i

j}-ﬂlos VESPA | Hilo Path-findi...

Parking i || Gasolinera i | PuestoPerritos i GestorConexion...

Seconecta |\
primer jugador

Player i

Hilos VESPA

L /7

Hilos VESPA || Hilo Path-findi...

Hilos VESPA

Partida acabada

>\nterrupt >Interrupt >Interrupt >Interrupt >Interrupt

Figura B.42: Detalle de los hilos de ejecucion del servidor

142

Anexo C

Sobre el videojuego

En este anexo se trataran en detalle todos aquellos aspectos sobre el desarrollo
del videojuego que no han podido ser tratados en el capitulo 2 o han sido tratados
de forma resumida.

C.1. Menats del juego

En esta seccion se veran todas aquellas cuestiones que por motivo de espacio
no pudieron ser explicadas en el capitulo correspondiente (2.3).

C.1.1. Tipografia

Los ments del juego se disenaron para utilizar la tipografia OCR-B 10BT, dado
que ésta poseia el aspecto idéneo para la imagen que se buscaba transmitir. Sin
embargo, debido a los derechos de autor, no es posible redistribuir dicha fuente
tipografica, y ademas incluso dandose la posibilidad de redistribuirla, no todos los
usuarios desearfan instalarla como requisito previo para jugar. Es por esto que
al ejecutar el juego, si se detecta que dicha fuente estd instalada en el sistema, se
usard, sin embargo si no se encuentra instalada, Java elegird una fuente alternativa
(de la misma familia a ser posible) para sustituirla.

Por esta razon, y al ser la fuente escogida poco comin, es probable que la
mayoria de usuarios vean las pantallas de meniis con una apariencia distinta a
la disenada. Para evitar esto, se pensé que una forma de solucionar este proble-
ma seria sustituir todos los textos por imagenes de dichos textos en la tipografia
deseada, pero se descarto6 por la complicacion que supone y por el inconveniente
de tener tantas imagenes cargadas en memoria.

En lugar de esto, finalmente se decidié iinicamente comprobar que no existan erro-
res de disefio con la tipografia Arial, que es la tipografia sustituta en los tres

143

sistemas operativos para los que se diseno el juego: Mac OS, Windows y Ubuntu.

C.1.2. Directorio del juego

La gran mayoria de los juegos requiere guardar distintos parametros y configu-
raciones. Como ellos, Vanet-X usa un directorio de juego en el que se almacenan
los mapas descargados y la configuracion de los diferentes parametros de juego.

Siempre que se inicia la aplicaciéon se comprueba si existe el directorio de juego
por defecto y en caso contrario crea el sistema de archivos necesario, mostrandose
una ventana emergente en la que se informa al usuario que directorio se va a usar
(y en el caso de que se haya creado nuevo, indicandoselo).

El directorio de juego por defecto esta situado en la carpeta por defecto del usuario
proporcionada por el sistema operativo. En sistemas Windows esta carpeta es Mis
Documentos, mientras que en sistemas Unix se sitta en el directorio SHOME.

Aunque siempre se inicia el juego con el directorio por defecto, en los ments se
puede cambiar cual es el directorio en uso. Al cambiar de directorio se reinicia el
interfaz por lo que se cargan los valores almacenados en los ficheros de configuracion
del fichero elegido.

Si el directorio elegido estaba vacio, se crea el sistema de archivos con los valores
de configuracion por defecto.

El sistema de archivos tiene la siguiente estructura (Figura C.1):

) Directorio base

£ config

= paramConfig.txt

=) Maps
= OSM_APIs.txt
& $nombre_mapa_1$.jpg
= $nombre_mapa_1$.xml
= $nombre_mapa_1$.dat

) Stats

=) temp
{; searchresult$random$.tmp

ﬁ. $nombre_mapa_2$.jpg

Figura C.1: Estructura del directorio de juego

144

= En el directorio base el fichero config, en el que se guardan todos los para-
metros modificables mediante las pantallas de ment, y el fichero de texto
ParamConfig.tzt, que contiene otros parametros, modificables por el usua-
rio, relacionados con el rendimiento del juego y opciones de habilitacion de
diversas caracteristicas como las estadisticas (ver Figura C.2).

#radioMaxMapa :
0.0050 .
#radioPeqMapa #WOLFSON (ON=1)
0.0030 0
#MaxBytesUDP #maxPlayers
6000 8
#MaxExtrapolation #cochesBuscandoParking
5 30
#MaxInterpolation #TIEMPO_CAMBIO
2 20000
#NUM_PARKINGS FIJOS #MARGEN_TIEMPO_CAMBIO
30 20000
#NUM_PARKINGS #RADIO_PARKING_VALIDO
15 500
#NUM FX #PARKING_PROTOCOL (@=Time,l=Distance,2=EP,3=Null)
20 3
#timeoutWaitingPlayers #DISTANCIA_CERCA
60 7000
#framesPropagacionExplosion #debugRadar (ON=1)
5 1
#maxTC #VESPA_StatisticsOn (ON=1)
50 1
#maxRC #Parking_Player_StatisticsOn (ON=1)
8 1
#maxNodos #Parking_Traffic_StatisticsOn (ON=1)
10000 1
. #Game_StatisticsOn (ON=1)
1

Figura C.2: Ejemplo de contenido del fichero «ParamConfig.tzt»

= Una carpeta Maps, en cuyo interior se guardan los ficheros .dat, .jpg y .xml
en los que se contienen los datos de cada mapa descargado, y también un
fichero de texto OSM A PIs.tzt (ver Figura C.3) que contiene las url de las
APIs de descarga de mapas, para que el usuario pueda modificarlas.

http://jxapi.openstreetmap.org/xapi/api/0.6/map?bbox=
http://www.overpass-api.de/api/xapi?map?bbox=

Figura C.3: Ejemplo de contenido del fichero « OSM A PIs.txt»

= Una carpeta Stats en la que se guardan las estadisticas recogidas durante
las partidas. En la seccion D.2.3 se ve detalladamente los elementos de su
interior.

145

= Una carpeta temp que contiene los ficheros temporales creados durante la
ejecucion, como son los resultados de las bisquedas y las previsualizaciones
de los mapas no descargados, y que se eliminan automaticamente al cerrar
la aplicacion.

C.1.3. Prevencion de errores

Se han implementado diversos métodos para impedir acciones en los ments
que puedan causar errores en la ejecucion del juego. El primero de ellos es la
comprobaciéon de los campos de texto.

Tanto al pulsar los botones de navegacion de avanzar de pantalla y guardar
cambios, como cuando un campo de texto pierde el foco, se hace uso de la clase
javaz.swing. Input Verifier para comprobar si los campos de la pantalla actual son
correctos. En caso negativo el campo incorrecto se marca con fondo rojo y en algu-
nos casos también se crea una ventana emergente avisando de dicha incorreccion.

Algunas acciones tienen unos tiempos de espera considerables, y por ello en esos

casos usando la clase javaz.swing.SwingWorker se desligo la accion del hilo EDT
(Event Dispatch Thread) para que no lo bloquease y no diese la apariencia de que
la interfaz se ha quedado «congeladax. Esto tiene el peligro de que como se tiene el
control de la interfaz mientras se ejecutan las acciones deseadas, el usuario puede
realizar acciones cuya ejecuciéon antes de haber terminado la ejecucion de la otra
accion en curso puede causar errores.
Es por ello que mientras exista una ejecucién en curso, se bloquean los botones que
podrian causar comportamientos indeseados si son pulsados a la vez. Un ejemplo
serfa pulsar el boton de unirte a una partida y mientras esperas a que se ejecute
volverle a pulsar (lo cual seria muy comtn debido a la caracteristica impaciencia
de la mayoria de usuarios).

Otro posible error es iniciar una partida sin tener seleccionado ningtn escenario
(por no tener ninguno descargado), posible error que se previene dirigiendo en
ese caso al jugador a la pantalla Configuracion avanzada de mapas para que se
descargue un mapa.

Por dltimo, existe un posible error que solo puede sucederle al creador de la
partida, y que consiste en después de finalizar una partida, crear rapidamente otra
nueva, sin dejar tiempo a que el «lado servidor» de la aplicaciéon termine de enviar
las estadisticas al resto de jugadores y finalice, en cuyo caso en la nueva partida
apareceria un error indicando que los puertos escogidos estan ya asociados.

Para evitar este problema, se establece un tiempo minimo desde que abandonas

146

una partida hasta que el botén para crear una nueva responde a los eventos del
usuario.

C.1.4. Pantallas de error

Cuando aparece un error critico durante una partida, que hace que se tenga
que finalizar y volver al ment, no solo se imprime la traza del error por la salida
de error por defecto, sino que también se crea una pantalla de error, anterior a
la pantalla de estadisticas, en la que se imprimen las diferentes trazas de error
diferenciadas por pestafias segiin el elemento que las haya causado.

Si por el contrario, aparece un error pero no es critico, se continia jugando la
partida pero se muestra un mensaje permanente en la esquina inferior izquierda de
la pantalla avisando al jugador de la existencia de ese error y de que por esa razéon
pueden darse comportamientos extranos. Cuando finalmente el jugador abandone
la partida, también aparecera la pantalla de error anteriormente citada con los
errores y los elementos en los que han tenido lugar.

También existe otra pantalla de error diferente que aparece en los casos en los
que ha habido un error al intentar unirte a una partida.
Este error puede tener diferentes causas (la partida estd completa, no existe, las
versiones de juego del servidor y el cliente no coinciden...) y es por ello que esta
pantalla tiene una zona de texto cuyo contenido es modificable dinAmicamente vy,
en funcion de la causa del error de conexién, se mostraran diferentes textos.

C.1.5. Pantallas de mapas

En la pantalla Configuracion avanzada de mapas, ademés de poder anadir y

eliminar mapas, se ha elaborado una opcién para poder previsualizar el mapa
seleccionado o el area que se desea descargar. Esta previsualizacion se realiza ob-
teniendo de una API la imagen en la que se representa el area seleccionada.
Esta imagen se presenta en tamano reducido en dicha pantalla, y pulsando sobre
ella se accede a una nueva pantalla en la que se visualiza la imagen a un mayor
tamano. Mientras que el tamano reducido siempre es el mismo, en la pantalla de
ampliacion la imagen no se amplia mas allA de su tamano original, solamente se
reduce en caso de que sea necesario para que encaje en el espacio disponible.

Cuando se desea previsualizar un mapa descargado, como la vista previa se ha
descargado a la vez que los datos OSM XML, no hay mas que elegir esa imagen y
mostrarla.

Sin embargo, cuando se desea previsualizar el area de la busqueda actual, como
existe un control deslizante para ajustar el tamano a descargar, la forma de no tener
que pedir una nueva imagen a la A PI cada vez que se varie el tamano seleccionado

147

es descargando la imagen con el tamano maximo que se permite seleccionar y
luego mediante una funciéon de recorte, mostrar tinicamente el drea proporcional
al tamano elegido actualmente.

C.1.6. Otros aspectos importantes

Un aspecto importante de la implementacion es que todas las pantallas de los
ments se cargan en memoria al inicio de la ejecucion, de forma que se evita tiempo
de espera por carga cuando se navega entre los mens.

Cuando se inicia una partida, se descargan de memoria, ya que no van a ser usadas
hasta que la partida finalice, momento en que se volveran a cargar.

Otro elemento importante de la implementaciéon es que se ha anadido un ntimero
de versién al juego para que cuando te conectes a un servidor se compruebe que
ambos funcionan bajo la misma versién de la aplicacion. Esta comprobaciéon se
realiza inicialmente al pulsar el boton Unirte de la pantalla Unirte a una partida
existente, ya que cuando se pide al servidor la informacion de la partida que se
mostrard en la pantalla Sala de espera, la cual contiene informaciéon de la partida
en curso y los jugadores conectados, también se aprovecha para comprobar que las
versiones del juego sean idénticas.

La comprobacién no solo se realiza en este momento, sino que se comprueba
en todas las ocasiones en las que se vuelve a realizar alguna peticion al servidor
antes de unirte (botones Actualizar y Unirte de la pantalla sala de espera). Esto
es asi ya que, aunque es una posibilidad muy remota, podria darse el caso de que
mientras esperas en la sala de espera, el servidor haya finalizado la partida, y se
cree otra nueva en la misma direccion IP con otra version diferente del juego.

También hay que anotar que en la sala de espera, en el caso de tratarse de una
partida competitiva, se pide al usuario seleccionar el equipo al que desea unirse,
estando siempre seleccionado por defecto el equipo que tiene menos jugadores, lo
cual se ha podido calcular gracias a la informacién que el servidor ha proporcionado
a peticién del usuario.

Otro aspecto adicional es que durante el desarrollo del juego se requeria poder
cambiar diversos parametros desde el mismo juego evitando asi la necesidad de
recompilar cada vez. Estos parametros no deberian ser modificables en la versiéon
final, ya que principalmente era para probar ciertos aspectos que estaban todavia
en fase de pruebas. Una vez acabadas dichas pruebas se decidi6é que era buena idea
mantenerlos, y por ello se ide6 una pantalla que estuviese oculta y s6lo se mostrase
con fines de desarrollo.

148

Para esta tarea se ide6 usar el Konami Code!, que es usado en muchos videojuegos
y sitios web? para acceder a trucos o caracteristicas ocultas.

También es importante destacar que el diseno de los ments se ha realizado
usando el layout nulo ya que como la ventana de la aplicaciéon tiene un tamano
fijo, los componentes no variardn de posicioén ni de tamano, y por esa razon se ha
considerado innecesario usar otro layout mas complejo.

C.2. Obtencién de mapas

Como se ha explicado en el capitulo 2.4, para cumplir el segundo y tercer
objetivo del Proyecto Fin de Carrera («desarrollar lo necesario para que se compita
en escenarios creados a partir de datos reales obtenidos de algin sistema que
proporcione mapas de carreteras» y «desarrollar una funcionalidad de descarga
de mapas, de forma que introduciendo la localizacién en la que deseas jugar se
descargue una porcion de mapa alrededor del punto elegido») se escogio el servicio
OpenStreetMap, por ser gratuito y tratarse de un proyecto colaborativo con un
uSo en expansion.

En esta seccion se mostraran los detalles del estudio del sistema OpenStreet-
Map, la implementacion realizada y los problemas que se encontraron durante
dicha implementacion.

C.2.1. OpenStreetMap

Segtin la correspondiente entrada de la wiki de OpenStreetMap?, existen varias
fuentes donde conseguir los datos, los cuales se encuentran en formato OSM XML*.
Estas fuentes son la propia API principal®, Xapi (OSM Extended APT)® y Overpass
API’, cuyas diferencias se explican a continuacion:

API principal se trata del método de acceder a los datos usado por las aplica-
ciones que requieren capacidades de edicion, ya que es el inico método que
no se realiza con acceso de solo lectura. Para evitar su sobrecarga, tiene la
descarga de datos limitada a &reas menores de 0,25 grados cuadrados y se

'http://en.wikipedia.org/wiki/Konami_Code
’http://konamicodesites.com/
3http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs
“http://wiki.openstreetmap.org/wiki/0SM_XML
Shttp://wiki.openstreetmap.org/wiki/API
Shttp://wiki.openstreetmap.org/wiki/Xapi
"http://wiki.openstreetmap.org/wiki/Overpass_API

149

http://en.wikipedia.org/wiki/Konami_Code
http://konamicodesites.com/
http://wiki.openstreetmap.org/wiki/Databases_and_data_access_APIs
http://wiki.openstreetmap.org/wiki/OSM_XML
http://wiki.openstreetmap.org/wiki/API
http://wiki.openstreetmap.org/wiki/Xapi
http://wiki.openstreetmap.org/wiki/Overpass_API

recomienda que las aplicaciones que no tengan capacidades de ediciéon usen
los otros métodos en lugar de éste.

Xapi es un protocolo de API de solo lectura, muy similar a la API principal.
Tiene diversas mejoras de rendimiento y tiene un mayor limite de descarga
de datos: 10 grados cuadrados. Los datos que devuelve son compatibles con
el protocolo de la API principal.

Overpass APT al igual que Xapi, es un protocolo de API de solo lectura, ideado
no para la edicion sino para el consumo de datos. Su principal diferencia de
los otros dos métodos es que posee un poderoso lenguaje de consulta aunque
tiene una capa de compatibilidad con las consultas de Xapi.

A diferencia de la API principal, cuyo acceso se realiza siempre sobre la misma
URL, los otros dos métodos tienen implementaciones funcionando en varios servi-
dores, los cuales pueden variar con el paso del tiempo y pueden sufrir sobrecargas
o caidas de servicio con mayor frecuencia. Por este motivo, para garantizar que se
logra usar al menos un servicio que funcione, en Vanet-X se hace uso de una lista,
modificable por el usuario, de APIs externas, las cuales se intentan usar de forma
secuencial hasta hallar una que esté operativa, y finalmente, si ninguna lo estaba,
se hace uso de la API principal.

Al igual que existen diferentes APIs para conseguir los datos en formato OSM
XML, también existen diferentes servicios que te permiten lograr imégenes estati-
cas del mapa. En la correspondiente entrada de la wiki de OpenStreetMap® existe
una tabla comparativa entre las caracteristicas de estos servicios.

En este proyecto se ha usado OSM Static maps API® por ser el que méas se
adaptaba al resultado que se queria obtener, que era conseguir el mapa mediante
una caja que delimite sus coordenadas y mediante el zoom que se quiere aplicar.
En el momento de decidir qué servicio usar, este era el tinico que contaba con
estas caracteristicas, ya que los demas en lugar de delimitar el area por una caja
de coordenadas, lo hacian solo mediante el zoom y estableciendo los pixeles de la
imagen resultante.

El motivo de que se necesitase poder delimitar el area por coordenadas era que
se queria conseguir mostrar en la imagen exactamente el drea descargada en OSM
XML, o al menos de forma lo mas aproximada posible.

Coémo se ha mencionado anteriormente, los datos de OpenStreetMap se descar-
gan en formato OSM XML, por lo que para tratarlos se necesita usar un parser

8http://wiki.openstreetmap.org/wiki/Static_map_images#Comparison_Matrix
“http://pafciul7.dev.openstreetmap.org/

150

http://wiki.openstreetmap.org/wiki/Static_map_images#Comparison_Matrix
http://pafciu17.dev.openstreetmap.org/

XML.

Se eligio usar XFRCES Java Parser dado que es muy completo, soporta com-
pletamente las APIs XML de Java SAX, DOM y JAXP, y se distribuye bajo la
licencia Apache 2.0. La eleccion del API XML fue SAX ya que por eficiencia es
la tinica opcion si se desea manipular documentos XML demasiado grandes, como
podria ser el caso. Ademdas como no guarda el documento entero en memoria, es
una solucién muy rapida y eficiente.

Para usar los datos descargados, dado que usan coordenadas geograficas en for-
mato WGES84, se ha necesitado realizar una conversion a coordenadas UTM (Uni-
versal Transverse Mercator), que en lugar de expresarse en longitud y latitud se
expresan en metros. Una vez realizada esta conversion, y después de aplicar un
modificador para adaptarlas a las unidades de medida del juego, las coordenadas
ya pueden ser utilizadas en nuestro plano de juego.

Como realizar esta conversion entre sistemas de coordenadas es una labor com-
pleja, se hizo uso del codigo proporcionado abiertamente por Chuck Taylor en su
sitio web'?. Como este codigo esta realizado en lenguaje JavaScript, se realizo una
conversion para adaptarlo al lenguaje Java en el que se ha desarrollado el resto
del proyecto.

C.2.2. Implementaciéon

El proceso de la obtencién de un mapa se ha implementado de la siguiente
forma:

1. Se hace una peticion HTTP GET con las palabras clave de la direccion que
deseas al servicio OpenStreetMap Nominatim Tool, el cual devuelve un listado
de los lugares coincidentes con las busqueda realizada. Cada lugar incluye el
nombre, coordenadas y otros datos que no nos son relevantes.

2. Una vez seleccionada del listado la localizacion deseada, se hace una peticion
de mapa al API elegido con los datos de la «bounding box» que delimitara el
area. Esta «caja delimitadora» se forma a partir de las coordenadas propor-
cionadas por el listado y el valor del radio deseado por el usuario, obtenido
a través de los ments del juego. El API devolvera un documento con for-
mato OSM XML que contendra los datos requeridos. Si el API al que se ha
realizado la peticiéon no funciona correctamente, se repite el proceso con el
siguiente APT del listado de APIs.

Ohttp://home.hiwaay.net/~taylorc/toolbox/geography/geoutm. html

151

http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html

3. Una vez obtenidos los datos en formato OSM XML, se parsean para intro-
ducirlos en la estructura de nodos, caminos y multipoligonos de Vanet-X.
Ademas, mientras se introducen, se realizan también acciones asociadas co-
mo dividir los elementos del terreno en diversas capas para su pintado o
calcular los bordes del escenario.

Es importante apuntar que a pesar de que el formato de los datos es el mismo
independientemente del API utilizado, ciertas etiquetas opcionales pueden variar,
como sucede con la etiqueta «bounds», que indica los bordes del adrea descargada
pero que solo esta presente en los datos descargados de la API principal de OpenS-
treetMap. Por esta razén, cuando se parsean los datos, se comprueba la existencia
de esta etiqueta y si no esta presente se obtiene este dato del fichero .dat creado
al descargar el mapa.

Los mapas descargados se almacenan y consultan localmente, de forma que una
vez descargados ya no es necesario volver a conectarse a la API ni para obtener
los datos en formato OSM XML ni para obtener la imagen de vista previa de la
zona descargada. De esta forma, es posible jugar a Vanet-X aun sin tener cone-
xion a internet, solo siendo necesario tener los mapas descargados en la carpeta
correspondiente.

Cuando te descargas un nuevo mapa, se consigue mediante las correspondientes
APIs los datos OSM XML y la imagen de la vista previa, y se guardan en la
carpeta «Maps» del directorio de juego en los ficheros nombre_del mapa.xml y
nombre_del _mapa.jpg respectivamente. El nombre del mapa se obtiene mediante
la funcion hash de la direccion concatenada con el radio del mapa, de esta forma
se evita poder volver a descargar un mapa cuya area sea la misma que otro ya
existente.

Ademas de estos dos ficheros, se crea nombre_del mapa.dat, que tiene la es-
tructura mostrada en la Tabla C.1 y con sus datos es posible volver a obtener la
imagen de vista previa y los datos OSM XML en caso de haber sido eliminados.
Los ficheros de este tipo son los usados por el menu para crear la tabla de mapas
disponibles.

El sistema esta disenado de forma que cuando se requiere usar un mapa selec-
cionado, bien sea para visualizar su vista previa o para usarlo en una nueva partida,
o se actualiza la lista de mapas del menu, si los ficheros .zml o .jpg no existen, se
usan los datos del fichero .dat para descargarlos y almacenarlos de nuevo.

Una decision de diseno tomada fue la inclusion de varios mapas predefinidos
para que el usuario no estuviera obligado a descargarse un mapa para empezar a
jugar, de forma que se disminuyese el intervalo de tiempo necesario para empezar
a jugar desde que se inicia el juego por vez primera.

152

Alias

Direccién

Radio

Latitud

Longitud

Area (en m?)

Nimero de elementos «way»
Niamero de elementos «node»

Tabla C.1: Estructura de archivo de mapas .dat

Los mapas elegidos lo fueron por tener una gama de diferentes tamanos y haberse
realizado en ellos multiples pruebas que garantizasen una buena jugabilidad.

También se decidi6 durante la fase de diseno que estos mapas no pudieran ser
eliminados, objetivo que no se implement6 de forma exacta sino que se optoé por
crear de nuevo los ficheros cada vez que se inicie el juego. Asi nos aseguramos que
aunque hubiesen sido eliminados de forma manual desde el explorador del sistema
operativo, los mapas estarian siempre presentes para empezar una nueva partida.

Otra de las decisiones de disenio fue establecer unos limites para la descarga
de mapas. No limites de cantidad sino de tamano de elementos y area del mapa
descargado.

Como establecer un limite es una tarea muy dificil ya que depende mucho de
la potencia del ordenador, se ide6é mostrar en la tabla de mapas descargados el
nimero de elementos y el tamano de cada mapa y asi el usuario, basandose en
su experiencia previa con otros mapas, pueda comparar esos datos y predecir el
rendimiento que experimentara.

A pesar de esto, finalmente se decidié establecer también un limite basandome
en la potencia de un ordenador medio, pero facilmente modificable mediante un
fichero de texto de configuracion. Este limite establecido es de una cantidad de
elementos inferior o igual a 10,000 y una extension menor o igual a 0,005° de
longitud /latitud, lo cual varia dependiendo de la localizacion pero en la latitud de
Espafa es aproximadamente 1km?.

C.2.3. Problemas encontrados

Uno de los problemas encontrados fue que al final del desarrollo de este Pro-
yecto Fin de Carrera, OpenStreetMap cambi6 el tipo de los identificadores de los
elementos que forman la estructura OSM XML del tipo Integer a Long, causan-
do que tuviera que modificar el parser XML y la estructura interna utilizada en

153

Vanet-X para adaptarla a la nueva realidad.

Otro problema encontrado fue que durante varias horas el servicio mediante el
cual se obtienen las imagenes de previsualizacion de los mapas (OSM Static maps
API) dejo de estar operativo. Gracias a esto se vio que el sistema desarrollado no
estaba hecho a prueba de fallos y se mejor6 anadiendo las siguientes caracteristicas:

= Sila funcion de basqueda por nombre (OpenStreetMap Nominatim Tool) no
funciona, en el combo box en el que deberia aparecer el listado de posibles
coincidencias aparece un texto indicando el error y no deja anadir el mapa.

= Sila funcién de descarga del OSM XML no funciona, cuando pulsas el botéon
de agregar mapa aparece una ventana emergente informando del error. Ade-
maés, cuando se actualiza la lista y falta un mapa e intenta descargarlo, se
borra el mapa del listado para que deje de estar seleccionable y no se pueda
iniciar la partida con él.

= Si lo que no funciona es la funcién de previsualizar el mapa, se genera una
imagen corrupta. Cada vez que se debe mostrar una imagen, el sistema ana-
liza si es correcto y en caso contrario se muestra una imagen de error (como
la de la Figura C.4).

Figura C.4: Imagen que se muestra cuando no se ha podido previsualizar el mapa

C.3. Elementos del terreno

En Vanet-X los elementos del terreno estan estructurados de forma muy similar
a la estructura seguida por el proyecto OpenStreetMap para poder realizar una
conversion sencilla.

Existen tres tipos de elementos: nodos, caminos y multipoligonos. Los caminos
estdn formados por nodos y los multipoligonos estdn formados por caminos. Los
tnicos elementos renderizables son los caminos y los multipoligonos, y se dividen
en capas (dieciséis) para que segin el elemento al que representen (definido por sus
etiquetas) se pinten por encima o por debajo de otros elementos. Asi por ejemplo
cualquier tipo de carretera o camino se pintara en las capas 5 a 13 (dependiendo
de su tipo), mientras que un elemento de tipo «barriery (barrera) se pintara en la
capa 15, por lo que siempre se vera «encima» de la carretera.

154

El criterio seguido para la ordenacion de las capas ha sido en parte inspirado por el
utilizado en el proyecto JOSM ' pero modificado para conseguir una visualizacion
acorde a las necesidades del juego (ya que el proyecto JOSM esta pensado para
ser pintado como mapa). El ancho de cada tipo via también ha sido realizado
inspirado por las relaciones utilizadas en los mapas del proyecto JOSM 2.

Como los datos descargados de OpenStreetMap representan un &area finita, se

han de establecer unos limites al escenario de juego. Estos limites son atravesa-
bles, pero mas alla de ellos el mapa terminard bruscamente ya que fuera del area
descargada solo se contintian los caminos iniciados en el interior, pero no se crean
nuevos.
Por ello, se representan visualmente como unas lineas rojas discontinuas y al atra-
vesarlos aparece un aviso en la pantalla en el que se advierte de que te encuentras
fuera del area mapeada y este aviso permanece hasta que te reincorporas al interior
de la zona delimitada del escenario.

C.3.1. Nodos

Un nodo tiene la siguiente estructura:
Tiene un identificador (el mismo que el del elemento «node» de OSM al que re-
presentan), un listado con las etiquetas también obtenidas de OSM y una posicion
expresada en pixeles que es el resultado de la conversion de las coordenadas W(GS84
a UTM y éstas a su vez a las del sistema del juego, donde 10 pixeles equivalen a
un metro y se toma como referencia (0,0) la esquina superior izquierda de la caja
delimitadora del 4drea descargada.
También tiene dos listados con los nodos con los que esta directamente conectado,
uno con los nodos que son accesibles con las reglas de transito de los vehiculos
enemigos y otro con las de los vehiculos del trafico. Ademas también se incluye un
listado que contiene la distancia a otros nodos no directamente conectados, que se
va rellenando dindmicamente durante la ejecucion y sirve para evitar la repeticion
de ciertos calculos (ver seccion C.5.4 y Figura C.3).
Otro dato que incluye, y es muy importante, es un listado con los identificadores
de los caminos en los que esta incluido este nodo. Gracias a este dato se pueden
calcular los nodos interconectados.
Por tltimo, también se incluye a que «sector» pertenece.

"http://josm.openstreetmap.de
2http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/
data/osm/visitor/paint/MapPainter. java?rev=4628

155

http://josm.openstreetmap.de
http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/MapPainter.java?rev=4628
http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/MapPainter.java?rev=4628

Los «sectoresy es un concepto introducido para asegurar que todos los vehiculos
que aparezcan en nodos pertenecientes al mismo sector podran llegar a encontrarse.
El concepto es el siguiente: se dividen todos los nodos en diversos sectores, de forma
que un nodo estara en el mismo sector que todos los demés nodos a los que sea
posible acceder desde él en el grafo de nodos interconectados. Es decir, si dos nodos
estan en diferente sector significa que para realizar el recorrido entre uno y otro
en algiin momento serd necesario salirse de los caminos y circular campo a través.

Una vez calculados todos los sectores, se elige como sector «bueno» el que tiene
un mayor nimero de nodos, y este sector serd el tinico en el que podran aparecer
los actores. De esta forma se garantiza que un vehiculo enemigo que te persiga
siempre podra llegar a alcanzarte.

Un lugar de interés es un nodo que tiene dos datos adicionales: una lista con
los tres aparcamientos més cercanos y el valor de la distancia existente desde el
nodo hasta el camino mas cercano transitable por los jugadores. Es un concepto
introducido para permitir los objetivos de tipo tarea en los modos de juego de
resolver tareas y de supervivencia.

Los nodos elegidos para ser [ugar de interés son los que representan bancos,
tiendas, restaurantes, hoteles, y otros puntos de interés.

C.3.2. Caminos

Los caminos pueden ser de dos tipos: areas, cuyos nodos inicial y final coin-
ciden y forman un camino cerrado, o verdaderos caminos, con un inicio y final
diferenciados. La diferencia es tinicamente estética ya que se pintan de diferente
forma pero mantienen en comin el resto de caracteristicas.

La estructura es la siguiente:

Un camino cuenta con el identificador y las etiquetas obtenidas del elemento «way»
de OSM al que hace referencia. También cuenta con un listado de los nodos que
componen el camino y una lista con los segmentos rectos entre los nodos, que se
utilizan para pintar, calcular si los vehiculos estdn sobre el camino y para crear los
puntos intermedios donde se crearan las plazas de aparcamiento y los puestos de
comida.
Estos mismos segmentos rectos que forman el camino también estén representados,
aunque con distinto formato, en una lista que usa el steering behavior de path
following para mantenerse sobre la calzada.

Otros datos que también estan presentes son el ancho, el color o la capa a la que
pertenece, asi como otros muchos parametros con propiedades para la circulaciéon

156

(por ejemplo indicando si el camino es transitable por los vehiculos del trafico o si
se trata de una calle de sentido tinico).

Un valor muy importante son las propiedades del terreno, es decir, el «efecto»
que produce sobre los vehiculos: infranqueable, ralentiza la velocidad del vehiculo,
causa dano a los vehiculos, etc.

Al igual que los nodos, también debido a la inclusién de los modos de juegos
donde aparecen tareas como objetivos, se ha incluido una lista con los tres aparca-
mientos méas cercanos, en este caso al punto medio del primer segmento del camino,
ya que es este el que se utiliza como objetivo de las misiones de tareas.

C.3.3. Multipoligonos

Los multipoligonos son las estructuras con las que se representan las areas
complejas, bien por el gran nimero de caminos que la componen o por necesitar
definir areas en el interior de otras areas (por ejemplo un patio de luces en el
interior de un edificio).

Es la tnica de las relaciones OSM representadas en el juego.

Para crear esta estructura en el juego, debido a su complejidad, se copi6 la
implementacion utilizada en el proyecto JOSM '3, aunque se simplifico ligeramente.

Ademaés de esta implementacion, también se desarrolld otra alternativa mas
simple (sin permitir roles en los componentes) que pudiera ser utilizada en los
casos en los que la otra implementacion no da buenos resultados (por ejemplo en
los rios). Las dos implementaciones comparten la estructura utilizada y el valor de
una variable es la que determina que implementacion es la usada.

La estructura general de un multipoligono, independientemente de cuél de las
dos implementaciones se use, es la siguiente:
Al igual que los otros elementos, cuenta con el identificador y las etiquetas obte-
nidas del elemento de OSM al que hace referencia, y como los caminos, también
cuenta con la capa en la que se debe pintar y con las propiedades del terreno al
que representa.

Si la implementacion utilizada es la de JOSM, cuenta con una lista de elemen-
tos «PolyData», los cuales tienen una estructura que permite que cada camino
formante del multipoligono tenga un rol definido, que puede ser anillo interior o
exterior del area. Sin embargo si la implementaciéon es la simple, se cuenta con
una variable que contiene el poligono representando el area, la cual no puede tener
huecos ni contar con varios anillos interiores o exteriores.

13http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/
data/osm/visitor/paint/relations/Multipolygon. java?rev=4628

157

http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/relations/Multipolygon.java?rev=4628
http://josm.openstreetmap.de/browser/josm/trunk/src/org/openstreetmap/josm/data/osm/visitor/paint/relations/Multipolygon.java?rev=4628

C.4. Fisica y colisiones

Como se ha explicado en el capitulo 2.6, el sistema encargado de las fisicas del
juego puede dividirse en cuatro algoritmos: deteccion de colisiones (con el terreno
o con los actores) y aplicacién de fuerzas resultantes de la colision (también de
forma diferenciada para colisiones con el terreno y colisiones con los actores).

A continuacién se explican estos algoritmos en detalle.

C.4.1. Deteccion de colision con elementos del terreno

Es necesario conocer sobre qué elemento del terreno se encuentra un vehiculo, ya
que dependiendo de sus propiedades el vehiculo debera reaccionar de una manera
u otra. Para averiguarlo se utiliza el siguiente algoritmo:

Para cada elemento del terreno, se llama a una funcion (diferente si se trata de
un camino o de un multipoligono) en la que, conociendo el centro de la posicion
del vehiculo, el radio de la menor circunferencia capaz de contenerlo y los cuatro
vértices del menor rectangulo rotado que lo contiene, se realiza primero un pri-
mer calculo en el que se comprueba si el menor rectangulo capaz de contener al
elemento del terreno («bounding boz») colisiona con la menor circunferencia que
contiene al vehiculo.

Este calculo es capaz de determinar con total seguridad si no existe colision, aho-
rrandonos realizar cidlculos mas complejos. Sin embargo, si el resultado del célculo
es que si que colisiona, se debe realizar un segundo célculo, éste mas costoso, en
el que se comprueba si alguno de los cuatro vértices del rectdngulo rotado que
representa al vehiculo esti contenido dentro del elemento del terreno.

Con este segundo calculo ya se puede determinar definitivamente si existe o no la
colision.

Este proceso se realiza con todos los elementos del terreno, no sblo con la
primera colisién coincidente ya que puede que exista otra colisibn con un terreno
con propiedades mas restrictivas (como se explica mas adelante en esta misma
seccion). Sin embargo, en cuanto se han registrado que el vehiculo va a sufrir las
més restrictivas de las propiedades («velocidad: sin problemasy, «infranqueable:
si» y «obras: si») ya se puede dejar de continuar con la busqueda ya que nunca se
encontrara una colisién cuyas propiedades sobrescriban estas.

Otra optimizacion realizada es omitir todos los elementos de la capa que con-
tiene los edificios, ya que se decidié que se pintaran por debajo de las capas que
contienen los caminos transitables y que no fueran colisionables. Esta decision se
tomo ya que la idea inicial de que fueran colisionables presentaba un gran proble-
ma, y era que en muchos casos estaban situados invadiendo la calzada por lo que
existian caminos que se estrechaban o se interrumpian por los edificios complicando
exageradamente el algoritmo de path-finding necesario.

158

Figura C.5: Detecciéon de colisiones con el terreno. En esta captura los bordes de los
«bounding box» estan pintados de diferente color segin si realmente existe colision
(verde), existe colision con el boundig box (amarillo) o no existe colision (no hay
linea). Ademas en el caso de existir colision se pinta de rojo los segmentos del
camino.

159

C.4.2. Deteccion de colisiéon con otros actores

La deteccion de colisiones con otros actores sigue un esquema similar al anterior
en cuanto a que primero se realiza una comprobaciéon poco costosa que es capaz de
descartar la colision, y en caso de que no la descarte, se realiza una segunda com-
probacion en detalle que si que es capaz de determinar con exactitud la existencia
de colision.

La primera comprobacién consiste en comprobar si las menores circunferencias
capaces de comprender a los vehiculos se intersectan.

La segunda comprobacion consiste en aplicar el Separating Azis theorem, el cual
afirma que si dos poligonos conversos no colisionan, existe un eje perpendicular a
una arista de uno de los poligonos en el cual la proyeccion de los objetos no se
superpone.t* Ver Figura C.6.

SD

ASD &A.ID

ASI&AL

Figura C.6: Separating Azis theorem

Yhttp://www.codezealot.org/archives/55#sat-algo

160

http://www.codezealot.org/archives/55#sat-algo

El algoritmo utilizado se ha basado en el propuesto en el articulo «A Verlet
based approach for 2D game physicsy de Benedikt Bitterli [3], simplificindolo ya
que en nuestro caso los poligonos son siempre rectangulos.

Por norma general las circunferencias y rectangulos rotados utilizados para la
deteccion de colisiones estan situados de forma que abarquen el actor deseado por
completo. Sin embargo, en el caso de las falsas plazas de aparcamiento («falsas» ya
que siempre estan ocupadas), es deseable que la colision se realice con el vehiculo
aparcado (que en realidad no existe como elemento independiente sino que forma
parte del aparcamiento). Por esta razon se modifican el rectangulo y la circunfe-
rencia para que coincidan con la imagen del vehiculo aparcado, como se puede ver
en la Figura C.7.

Figura C.7: Captura en la que se observa el rectangulo rotado (verde) y la circun-
ferencia (rojo) que contienen la zona colisionable del parking. También se aprecia
la circunferencia que marca el obstaculo que debe evitar el steering behavior de
obstacle avoidance (azul)

161

C.4.3. CAlculo de la fuerza resultado de una colisién con
otros actores

El algoritmo que calcula la fuerza que se debe aplicar en una colisién con un
actor es el siguiente:

1. Calculas la fuerza resultante de las fuerzas de los dos vehiculos implicados.

2. Si el otro vehiculo estd en estado «inmovily te restas la fuerza calculada en
el paso 1. En caso contrario le sumas esa fuerza al otro vehiculo.

3. Estableces la velocidad del vehiculo a cero.

El calculo de la fuerza resultante descrito en el paso 1 se calcula de la siguiente
manera:

1. Obtenemos los vectores velocidad de los dos implicados. Ver Figura C.8.a

2. Realizamos una rotacion de forma que la linea imaginaria entre los dos im-
plicados quede en el eje Y. Ver Figura C.8.b

3. El vector resultado (provisional) es la componente Y del vector velocidad de
mi vehiculo, salvo que se trate de un choque «por alcance» en cuyo caso se le
debe restar la componente Y del vector del otro vehiculo. Ver Figura C.8.c

4. Para asegurar que no se genere una fuerza de atraccion cuando el vector
estd en sentido opuesto al otro implicado (sentido negativo de la Y), se debe
asegurar que el valor resultado nunca serd mayor a -1.

(Es -1 y no 0 porque asi nos aseguramos de que siempre exista fuerza de
repulsion entre los coches).

5. Se vuelve a rotar el vector resultado invirtiendo la rotacién realizada en el
paso 2. Ver Figura C.8.d

C.4.4. Aplicacién del resultado de la colisién con el terreno

La resolucion de la colisién con un elemento del terreno es diferente, y mucho
més simple, que la realizada en las colisiones con otros actores.

El algoritmo que analiza si existe colision con algin elemento del terreno (es
decir, circulas sobre él), en el caso de que se produzca colision, devuelve una estruc-
tura que contiene las propiedades del terreno: si causa dano, velocidad permitida,
si es infranqueable y si se trata de un tramo en obras.

162

esultado

X\

\Y

2

(©) (d)

Figura C.8: Céalculo del vector fuerza resultante de una colision

163

Como el vehiculo puede colisionar con varios elementos del terreno simultanea-
mente, las propiedades que devuelve el algoritmo son los maximos de cada valor
perjudicial (dafio, infranqueable y obras) y el menor valor velocidad de todos los
elementos sobre los que esta circulando. Por ejemplo, si el vehiculo circula sobre
una carretera residencial en obras que atraviesa un curso de agua, el valor de la ve-
locidad se obtendra de la carretera ya que tendré un valor «camino sin problemas»
(el mejor valor posible).

Con este valor del terreno que devuelve el algoritmo, se realizan las siguientes
comprobaciones:

= Si el vehiculo colisiona con un terreno para el que no es apto (salvo que se
trate de una plaza de aparcamiento), se marca al vehiculo como inmovil, se le
establece velocidad nula, y se mueve a la posicion del ciclo anterior (la justo
anterior a la colision). Al marcar el vehiculo como inmoévil no se volvera a
efectuar las comprobaciones de colision con el terreno hasta que no vuelva a
moverse (concretamente se mueva mas de 1,25 metros).

= Si el valor «velocidad» de terreno es «ralentizary, se le marca al vehiculo
una variable para que en el siguiente ciclo su movimiento se vea reducido a
la mitad.

En la Tabla C.2 se muestra una relacion de los posibles valores del terreno.

«Velocidad» detener, ralentizar, sin problemas
«Obrasy si, no
«Infranqueabley» si, no
«Dano» extremo, ligero, no

Tabla C.2: Posibles valores del terreno

C.5. Inteligencia Artificial

En esta seccion se ofrece una vision detallada de la inteligencia artificial desa-
rrollada para el juego.

C.5.1. Steering behaviors

Como se ha explicado en el capitulo 2.7.2, se han utilizado los llamados Steering
behaviors, comportamientos basicos de movimiento de los actores. Todos ellos se
han obtenido de [17].

164

Los comportamientos implementados son los siguientes:

Seek (buscar) es el comportamiento bésico en funcion del cual se pueden crear

Flee

los demas. Consiste en dirigir el vehiculo hacia el objetivo. Esto lo logra
ajustando la direccién de forma que la velocidad estd radialmente alineada
con el objetivo. La velocidad deseada es un vector en direccion del vehiculo
al objetivo, cuya longitud puede ser la velocidad actual del vehiculo o la
velocidad maxima (en Vanet-X se ha usado la velocidad maxima). Notese
que si se aplicase esta velocidad deseada, el vehiculo empezaria a orbitar
en torno al objetivo, ya que es una fuerza de atraccion. El vector direccion
deseado (marcado como direccion seek) se obtiene como la diferencia de la
velocidad deseada y la velocidad actual del vehiculo. Ver Figura C.9.

(huir) es el comportamiento inverso a seek. En lugar de dirigir el vehiculo
hacia el objetivo lo dirige en el sentido contrario, de forma que se aleje lo
maximo posible del objteivo. Ver Figura C.9.

Pursuit (persecucion) es similar a seek pero el objetivo es movil en lugar de fijo.

Consiste en aplicar el comportamiento seek con la posicion futura predicha
del objetivo. Esta prediccion se realiza suponiendo que el objetivo no varie su
trayectoria, y se calcula su posicion futura calculando la distancia recorrida
en un tiempo 7'y anadiéndosela a la actual. Eis muy importante establecer
un 71" apropiado, T'= D X c es considerado un valor apropiado, siendo D la
distancia entre los dos vehiculos y ¢ un parametro de giro. Ver Figura C.10.

Evasion (evasién) es el comportamiento inverso a pursuit, es decir, usando flee

en lugar de seek. Ver Figura C.10.

Arrival (llegada) tiene el mismo comportamiento que seek mientras estas lejos

del objetivo. La diferencia radica en que disminuye la velocidad conforme te
acercas al objetivo hasta llegar a detenerse sobre él.

Obstacle avoidance (evitacién de obstaculos) dota al vehiculo de la habili-

dad para esquivar obstaculos de su entorno. Consiste en mantener una zona
delante del vehiculo en la que compruebas si hay algtin obstaculo y en caso de
que lo haya se aplica un cambio de trayectoria en sentido contrario. De esta
forma, a diferencia del resultado si se hubiera aplicado flee, solo se cambia
la trayectoria en caso de que alguno de los obstaculos efectivamente esté en
la trayectoria del vehiculo. Para representar los obstaculos se usan esferas
que los contengan, y siempre tiene prioridad la mas cercana al jugador (si
hay méas de una que colisiona con la trayectoria solo se tiene en cuenta la
primera). Ver Figura C.11.

165

camino flee

velocidad
actual
. .. camino seek
direccion

flee

direccion
seek

velocidad deseada
(flee)

velocidad deseada
(seek)

objetivo

Figura C.9: Comportamientos seek y flee

166

presa

ahora

pursuit

evasion

futuro

Figura C.10: Comportamientos pursuit y evasion

167

Figura C.11: Comportamiento obstacle avoidance: el obstaculo B es el primero en
la trayectoria por lo que se aplica una fuerza para evitarlo.

168

Wander (deambular) genera una trayectoria aleatoria. En lugar de generar una
fuerza aleatoria en cada ciclo, lo cual generaria una trayectoria demasiado
nerviosa, se mantiene «memoria» de cuél ha sido la fuerza anterior para
generar unas transiciones suaves. Fsto se realiza de la siguiente manera: se
genera una esfera ligeramente avanzada respecto al vehiculo, y la fuerza que
se genere serd el vector desde el vehiculo hasta un punto del perimetro de la
esfera. Para producir la fuerza del siguiente ciclo se anade un desplazamiento
aleatorio al valor anterior, y la suma se constrine de nuevo al perimetro de
la esfera. Fn la Figura C.12 se puede observar que la fuerza maxima de giro
viene dada por la esfera grande y la cantidad del desplazamiento aleatorio
(esfera pequena) determina la velocidad con la que cambia.

Figura C.12: Comportamiento wander

Path following (seguimiento de ruta) permite que un vehiculo circule por un
camino sin salirse. No hay que confundirlo con obligar a un vehiculo a ir
exactamente por el camino, como si fuera sobre un rail, sino que este com-
portamiento produce un resultado més natural, ya que el vehiculo puede
seguir la trayectoria que quiera siempre que no se salga del camino.

En la implementacion utilizada se representa el camino como una polilinea

169

con un radio, como si de un «tubo» se tratara. El objetivo de este compor-
tamiento es mover el vehiculo por dentro de este camino sin salirse del radio
del «tuboy». Si el vehiculo no esta inicialmente dentro, la primera accion es
acercarse al camino, y después seguirlo.

El procedimiento para calcular la fuerza de direccion a aplicar es el siguiente:
se calcula una prediccion de la posicién futura del vehiculo, como la realizada
en el comportamiento obstacle avoidance, y se proyecta sobre el punto mas
cercano de la polilinea. Si la distancia de la proyeccion a la polilinea es menor
que el radio, significa que no te vas a salir del camino y no se necesita co-
rregir la trayectoria. En caso contrario, se debe usar el comportamiento seek
teniendo como objetivo el punto de la polilinea sobre el que se ha proyectado
la posicion futura. Ver Figura C.13

. SN

Figura C.13: Comportamiento path following

Unaligned collision avoidance (esquiva de obstaculos no alineados) esun
comportamiento que trata de evitar que colisionen vehiculos moviéndose en
diferentes direcciones. El funcionamiento consiste en que cada vehiculo cal-
cula cual va a ser su mayor aproximacion a cada uno de los demas vehiculos.
Si la mayor aproximaciéon a un vehiculo es en el futuro, y la distancia que

170

tendran es menor a una establecida (circulos de la Figura C.14) implica que
hay un riesgo de colisiéon. Si se ha calculado que habra alguna posible co-
lision, el vehiculo tratara de evitar la mas cercana de todas aplicando una
fuerza que le aleje de la colision.

futuro

futuro

Figura C.14: Comportamiento unaligned collision avoidance

Estos comportamientos se pueden combinar para formar comportamientos mas
complejos. Esta combinacion puede realizarse de miltiples formas, la escogida es la
siguiente: se ordenan los steerings por prioridad, y se analizan en orden de forma
que se aplicara el primero que de como resultado una variacion de la trayectoria.
De esta forma si en un comportamiento hemos dado prioridad a no salirse de la
pista (path following) antes que a esquivar los otros vehiculos (unaligned collision
avoidance), es posible que nos choquemos contra uno de ellos a costa de asegurar-
nos mantenernos dentro de la calzada.

Otra forma posible serfa sumando los resultados obtenidos con los distintos stee-
rings (pudiendo tener unos mas peso en la suma que otros).

Todos los comportamientos complejos (explicados en la siguiente seccion) tienen
la misma composicién de prioridades de steerings, variando tnicamente en los

171

vehiculos que se contabilizan en la unaligned collision avoidance (Solo trafico y
enemigos o también jugadores) y en el comportamiento menos prioritario (arrival,
pursuit, evasion...) y su forma de ejecucion (steering, steering suave...). Este diseno
se puede ver en la Figura C.15.

Las formas de ejecucion anteriormente citadas y su funcionamiento son los si-
guientes:

steering: modo normal, maneja los controles del vehiculo segiin el vector
recibido.

= steering suave: gira mas o menos suavemente dependiendo del cambio de
angulo necesario para encararnos al objetivo.

= steering always up: sin frenar, siempre al maximo de velocidad.

= steering reverse gear: en marcha atras.

C.5.2. Comportamientos complejos

Todos los actores dotados de inteligencia artificial tienen un comportamiento
en comun, y es el de pasar de estado normal a marcha atras y viceversa. Este com-
portamiento se ha realizado dado que la inteligencia artificial no es perfecta y hay
ocasiones en las que los vehiculos acaban saliéndose de los limites de la carretera,
siendo necesario un procedimiento para que den marcha atras y se reincorporen
a la circulacion. El diagrama de este comportamiento se puede ver en la Figura
C.16. El estado «normal» es diferente para cada tipo de vehiculo y se detalla a
continuacion diferenciado segtn el tipo de vehiculo.

Enemigos: su comportamiento depende de si el vehiculo tiene un rol de perse-
guidor o de perseguido. Si es el perseguidor, sigue el camino dictado por el
path-finding usando un comportamiento de llegada con los nodos del camino
para que frene al llegar a cada nodo y asi tome los cruces entre calles a
una menor velocidad (steering PF_ARRIVAL, ver Figura C.15). En el mo-
mento en que se encuentra en la misma calle del objetivo, ya no hace falta
usar el camino proporcionado y se aplica un comportamiento de persecuciéon
(steering PF_PURSUIT) sobre el vehiculo objetivo (siempre se eligira co-
mo objetivo al jugador mas cercano). El comportamiento es de persecucion
v no de busqueda para que se anticipe a los movimientos de la presa.

En caso de que se trate del perseguido, el comportamiento es el siguiente:
si el vehiculo que le persigue esté cerca (a menos de 100 metros), aplica
un comportamiento de huida (steering PF FLEFE) sobre el perseguidor, de

172

7N

[\
ﬂ\ Path following |

S

\

<0 =0,
S
steering
‘J Obstacle
Path following ‘ avmday

<>0 =0,

steering

Obstacle
avoidance

Unaligned

(collision

avoidance

< 0/\= 0
A A
steering Steering *
Unaligned
collision *
avoidance

Figura C.15: Prioridades en la composicion de comportamientos a base de steerings

173

ARRIVAL_TC
Y

ARRIVAL_parking

ARRIVAL

PURSUIT

EVASION

FLEE

UCA_random

Steering suave

Arrival

Steering

Arrival

Steering

Pursuit

Steering always
up

Evasion

Steering always
up

Flee

Steering always
up

Seek

Marcha atras }1

Objetivo logrado o Inmovilmas deun
tiempo expirado determinado tiempo

Figura C.16: Diagrama de estados IA: vision general

forma que tratara de alejarse lo maximo posible de su posicién actual. Sin
embargo, si el perseguidor esta lejos, se usard un comportamiento de eva-
sion (steering PF EVASION,) ya que de usar el anterior comportamiento,
el vehiculo siempre huiria hacia el extremo del escenario més alejado del
perseguidor, hasta salirse del mapa y quedandose alli atascado. Ver Figura
C.17.

Ambulancias: su comportamiento es muy simple: elige un nodo al azar y se dirige
a él. Cuando llega hasta él, elige otro y asi sucesivamente. Existe un tiempo
limite para alcanzar el nodo, si tarda mas elige un nuevo nodo objetivo.

Trafico: tiene el comportamiento mas complejo de los tres. Como se muestra en
la Figura C.18, dentro de su estado normal tiene cuatro posibles subestados:

» Circular: consiste en elegir un nodo objetivo y alcanzarlo. Este estado
se repite hasta que al vehiculo le llega una senal que indique que hay
menos coches buscando parking de los establecidos. Ver Figura C.19.

= Buscar aparcamiento: es el mismo comportamiento que el anterior pero
ahora esta atento a aparcamientos vacios. De esta forma si visualiza un
aparcamiento libre pasara al siguiente estado (Aparcar), mientras que
si en un tiempo establecido no ha logrado visualizar ninguno vuelve
al estado anterior (Circular). Ademas, si recibe un evento VESPA de
parking libre se dirige a la posicion del evento (aunque por el camino
puede encontrar otro aparcamiento libre més cercano y aparcar en él).

= Aparcar: consiste en realizar la maniobra de aparcamiento sobre el apar-
camiento libre objetivo. Se realiza mediante un comportamiento de lle-
gada para que el vehiculo frene al aparcar. Si se logra aparcar se avanza

174

7N

‘;/aSoy cazador o \‘

‘ ?
\ presa?)

N

Cazador Presa

JéE/Io bjeti vg\ // \

[- \ Cercadel
| enmimisma |

é
\ille?/ \ persegmdo))
S/\No

/ /Sl No
Perseguir . Alcanzar Huir Evadirse
siguiente nodo
Steering Steering Steering Steering
PF_PURSUIT PF_ARRIVAL PF_FLEE PF_EVASION

Figura C.17: Detalle del estado Normal de la inteligencia de los vehiculos enemigos

Hay menos coches de los establecidos
buscando aparcamiento

. Buscar
Circular .
aparcamiento
Tiempo paraencontrar
aparcamiento excedido
) El parking objetivo estaba Vesun parking
Tiempo de espera X lib
. ocupado o se ha excedido lore
excedido

eltiempo paraaparcar en él

Esperar
aparcado

Aparcas en
el parking Aparcar

Figura C.18: Detalle del estado Normal de la inteligencia de los vehiculos del trafico

175

S

éElnodo
| objetivo estaen
\mimisma calle?/

\

Alcanzar nodo / \

. [éTienes
Steering | siguiente nodo? |
PF_ARRIVAL_TC ' /

\\\7 B /
S i\

- —

‘J/ élo has \\
| alcanzado? |
r'd " S\
/// - - T
/éEltiempo para\ ﬁstableces elsiguiente noh

| alcanzarloha | [delcamino como el préximo |

\ expirado? / \nodoaconseguir /
\ / -

-

(Buscas en que nodo esta }
_buscas cual es el siguiente /

/N

/ . \
‘c’ ¢Ahoratienes ‘
\siguiente nodo?)

N4

Si/\N

(o]

Alcanzar Alcanzar nodo
siguiente nodo objetivo
Steering Steering

PF_ARRIVAL_TC PF_ARRIVAL_TC

Figura C.19: Detalle del estado Circular y Buscar aparcamiento de la inteligencia
de los vehiculos del trafico

176

al siguiente estado (Esperar aparcado) mientras que si no se ha logrado
se retrocede al estado anterior.

= Fsperar aparcado: consiste en esperar quieto dentro de la plaza de apar-
camiento durante un tiempo determinado. Una vez completado ese tiem-
po se vuelve al estado inicial (Circular).

C.5.3. Soluciones a las carencias de la TA

A pesar de los esfuerzos realizados por conseguir una inteligencia artificial sol-
vente, hay ocasiones en el juego en el que es necesario aplicar ciertas «trampas»
para corregir los errores de la inteligencia. Estas situaciones solucionadas son dos
y ambas estan relacionadas con los vehiculos del trafico: solucionar que a veces se
quedan atascados al salirse de la carretera y no son capaces de reincorporarse a la
calzada, y evitar un molesto efecto de «nerviosismo» consistente en que giran de
una forma poco gradual y estan continuamente corrigiendo su trayectoria.

Desatascador de vehiculos

Como norma general, cuando los vehiculos controlados por la TA se salen de la
calzada, al cabo de unos segundos dan marcha atras y se reincorporan satisfactoria-
mente. Sin embargo, hay ocasiones que por la topologia del terreno la inteligencia
desarrollada no es capaz de reincorporarse y se queda el vehiculo atascado. Para
estas ocasiones se ha realizado un método que determina si en efecto el vehiculo
esta bloqueado y le aplica una rotacion de 90° para ver si asi en esa nueva posicion
es capaz de reincorporarse.

El funcionamiento detallado es el siguiente:

Para cada vehiculo se tiene un registro con sus tltimas cinco posiciones (las cuales
se recogen cada dos segundos) y se comprueba si ha existido movimiento signifi-
cativo en total o en alguno de esos cuatro intervalos (para evitar que si te mueves
pero acabas en la posicién inicial no cuente como movimiento). Si en esos diez
segundos el vehiculo ha recorrido menos de 6,25 metros, se considera atascado, y
en el siguiente ciclo del juego se le realiza una rotacion de 90° en el sentido de
las agujas del reloj. De esta forma el vehiculo seguira rotando cada diez segundos
mientras siga atascado, hasta que la IA consiga reincorporarlo a la calzada.

Corrector de trayectoria nerviosa

Los vehiculos del trafico tenian un movimiento espasmodico en lo concerniente
al angulo, variaban de angulo en cada ciclo y resultaba un efecto muy feo a la
vista.

177

El motivo de este movimiento espasmodico es que la velocidad de giro de los
vehiculos del trafico es mayor que la de los deméas vehiculos, en parte por circular
a menor velocidad y también porque se comprob6 que aumentando esta velocidad
se obtenian mejores resultados en la esquiva de los obstaculos y en el seguimiento
de la calzada.

Como, por estos motivos, cambiar esta velocidad de giro no era una opcion,
se desarrollo la siguiente solucion: lograr que la velocidad de giro de los vehiculos
fuera variable, rapida en los casos en los que se necesita y lenta en el resto para
evitar estos «temblores» indeseados.

Esto se consigui6 calculando la diferencia entre el vector velocidad del vehiculo y el
vector que indica la direcciéon hacia la que se encuentra su objetivo. Si la diferencia
entre estos vectores es mayor de 90°, se considera que se necesita hacer un giro
pronunciado, y se aplica la velocidad de rotaciéon normal, sin embargo si es menor,
se trata de un giro pequeno y se aplica una velocidad de rotacién menor para que
el giro resultante sea mas reducido.

De esta forma, gracias a esta solucion, los vehiculos podian realizar giros més
suaves por lo que no tenian que estar constantemente corrigiendo su trayectoria.
Sin embargo, aunque supuso una gran mejora, no se considerd suficiente, y se
plante6 una segunda soluciéon adicional: que aunque estos temblores tengan lugar
realmente, «ocultarlos» al usuario. Esta solucién se aplica no solo a los vehiculos
del trafico sino a todos los controlados por la inteligencia artificial.

La idea de esta soluciéon es la siguiente: en lugar de pintar el vehiculo con su
verdadero angulo, se guardan los tltimos angulos y se calcula su media, la cual
serd la que se utilice para pintarlo, consiguiendo asi una mayor suavidad en los
cambios de angulo.

Esto se ha implementado de la siguiente forma:
Para cada vehiculo se guarda una lista con sus ultimos cinco angulos. Cuando vas
a pintar el vehiculo, antes de hacerlo, eliminas el angulo méas antiguo de la lista
y anades el actual. Si la velocidad es negativa se realiza esto ya que siempre es
necesario incorporar los nuevos angulos a la lista, pero se pinta usando el dngulo
normal, ya que marcha atras no se producen estos «temblores» en el movimiento.
Sin embargo, si la velocidad es positiva se aplica la formula

(ap +1i4) + (ao + i3) + (ap + i2) + (ap +1i1) + ao
5)

(C.1)

angulo =

siendo ag el angulo mas antiguo de la lista y 7,, el incremento del angulo desde
el angulo ag hasta a,,.

178

C.5.4. Path-finding

Para realizar la busqueda de caminos (path-finding) se hace uso del algoritmo
de btisqueda A *!?, el cual necesita conocer la estructura de las interconexiones
entre nodos y sus distancias. Como se hace uso de este algoritmo muy a menudo
(cada vez que tenemos un nuevo objetivo o cuando el objetivo ha cambiado de
calle), esta relacion de interconexiones y sus distancias se calcula una tnica vez
al iniciarse el servidor, antes de que dé comienzo la partida, por lo que después el
acceso a estos datos se realiza con un bajo coste.

El algoritmo del path-finding no es el inico que accede a esta estructura de
nodos, sino qué también se utiliza para calcular la distancia entre dos nodos cua-
lesquiera. Esto es necesario ya que cuando se calcula el camino a seguir se busca
el nodo mas cercano a tu posicion y se forma el camino a partir de él, existiendo
la posibilidad de que ese primer nodo esté en sentido contrario al objetivo (ver
Figura C.20). Para evitar que esto suceda, se calcula si el primer nodo estd mas
alejado del objetivo que el vehiculo, y en ese caso se coge como primer nodo el
siguiente, que ya estard bien encaminado.

Cémo por este motivo se requiere con mucha frecuencia conocer la distancia entre

Figura C.20: Camino con primer nodo en sentido opuesto

dos nodos, y s6lo es conocida la distancia entre nodos que estén interconectados,
es habitual tener que realizar calculos de la distancia vectorial entre nodos no
interconectados, y muchas veces se repiten los calculos. Por ello, se decidi6 que
después de calcular la distancia, almacenarla de forma que la proxima vez que

5obtenido de http://code.google.com/p/jianwikis/wiki/
AStarAlgorithmForPathPlanning

179

http://code.google.com/p/jianwikis/wiki/AStarAlgorithmForPathPlanning
http://code.google.com/p/jianwikis/wiki/AStarAlgorithmForPathPlanning

se requiriera solo hiciera falta consultarla, y después de realizar varias pruebas se
comprob6 que en efecto esto suponia una reducciéon considerable del niimero de
calculos necesarios. Los resultados de estas pruebas se pueden ver en la Tabla C.3.

Nodos interconectados 18k
Nodos no interconectados | se repiten 11k
no se repiten | 6k

Tabla C.3: Numero de usos del calculo de la distancia entre dos nodos

Otro aspecto importante del path-finding a tener en cuenta es que coémo los
vehiculos del trafico y los enemigos tienen distintas zonas por las que les es permi-
tido circular, se ha desarrollado el algoritmo A * y la estructura de interconexiones
de nodos de forma duplicada, una para cada tipo de vehiculo. Ademas, en el ca-
so del algoritmo para el trafico, se tienen en cuenta los sentidos de las calles de
una Unica direccion, para evitar que tomen caminos que en la vida real no son
correctos.

C.5.5. Normas de circulacion

Como se ha mencionado en la seccion anterior, el trafico respeta el sentido de la
circulacién en las calles de un solo sentido, de forma que no obtienen caminos que
atraviesen calles en contradirecciéon. Sin embargo, en el resto de calles no respetan
la norma de circulacion de circular por el carril derecho de la via.

Esta caracteristica no se implement6 ya que resulté muy complicado idear un
método sencillo para que los coches circulasen inicamente por el lado derecho de los
caminos, y ademas se encontro el inconveniente de que, como los vehiculos pasarian
de ocupar toda la calzada a tinicamente los carriles de su sentido, tendrian menos
espacio para maniobrar y por lo tanto empeoraria sustancialmente la efectividad
del manejo de los vehiculos por parte de la inteligencia artificial.

Por el esfuerzo requerido para lograr esta caracteristica, se consider6 que rea-
lizar una simulacién detallada de las normas de circulacién hasta este nivel de
precision estaba fuera del alcance del Proyecto Fin de Carrera, y se decidi6 garan-
tizar unicamente el sentido de circulaciéon de las calles de un tnico sentido.

C.6. Funcionamiento en red
En esta seccion se trataran aspectos relacionados con el modelo de red utilizado

en Vanet-X, incluyendo desde el funcionamiento basico hasta las técnicas de mejora
y optimizaciones realizadas.

180

C.6.1. Funcionamiento basico

El esquema del funcionamiento es el siguiente:

|Cliente|
|Servidor]|
S|

S|

B

C]

C]

C]

crea y envia InputSnapshot (contiene los eventos de teclado) al servidor.
elimina los clientes que lleven varios ciclos sin enviar nada.
recibe los Snapshots enviados por los clientes.

para cada InputSnapshot recibido, resetea sus acumuladores si es necesario
(ver seccion C.6.5), establece cual es la secuencia del tltimo ack de dicho
cliente y almacena sus datos (eventos de teclado) para que los use poste-
riormente. El actor Player es asincrono y pedird usar estos datos de forma
asincrona, siendo entonces cuando se establezca la secuencia del ultimo es-
tado recibido por dicho cliente.

crea un Snapshot personalizado para cada cliente (con solo lo que esta dentro
de una determinada distancia de su jugador) y lo envia.

recibe todas las Snapshots enviadas desde la tltima recepcion y se queda con
la mas actual, guardandola en un buffer y marcando si es buena o no (sera
buena si hace ack al ultimo estado). En el caso de que sea buena se almacena
también como tltimo estado recibido (para que el siguiente InputSnapshot
que generemos utilice la secuencia de dicho estado como nueva secuencia de
ack, y asi se evite el problema de anadir latencia artificialmente a la conexion
al realizar interpolacion).

coge el primer Snapshot del buffer (o0 no coge nada si aun no hay suficientes
elementos en dicho buffer).

si dicho Snapshot es bueno, aplica con el anterior Snapshot procesado la
descompresion delta para con esos datos actualizar el estado de juego del
cliente.

Otros aspectos importantes del funcionamiento de red son los siguientes:

El servidor se crea con direccion de red wildcar para que acepte conexiones
de todas las interfaces, y el cliente se unira siempre a la direcciéon IP privada.
De esta forma se evitan problemas con ciertas configuraciones de red con
router + switch, que hacen que no sea posible conectarse a tu propia IP
ptblica desde dentro de dicha red.

181

= El servidor espera un tiempo establecido a que se conecte el cliente y si pasado
ese tiempo el cliente no se ha unido, el servidor considerara que ha habido
un error en la inicializacion del cliente y se concluira. Este comportamiento
no se da al crear un servidor dedicado (ver seccion D.2.1).

= Cuando el cliente trate de unirse a una partida, el servidor comprobara la
cantidad de jugadores conectados a la partida, y si estd llena mostraré indi-
candotelo.

= Si se pierde la conexién el cliente muestra un error sale al mend principal.
En el caso de que el error haya sido solo por parte del cliente, el servidor
seguira funcionando si quedan més jugadores y el cliente desconectado no es
el jugador 1.

Uso de Sockets (TCP y UDP combinado)

Una caracteristica de los videojuegos de tiempo real (un juego de coches es
uno de ellos) es que los mensajes tienen que llegar lo méas rapido posible, ya que si
llegan mas tarde de lo previsto generalmente no sirven de nada ya que el estado del
"mundo de juego"habra cambiado. Es por esta razén por la que la fiabilidad no es
una prestacion interesante ya que si se pierde un paquete, conseguiras entregarlo
tarde, por lo que no servird de nada, y ademaés se habra sobrecargado la red.
Para disimular este efecto (llamado latencia o lag) que se obtiene al perder pa-
quetes de datos, se introducen técnicas como la prediccion, que consiste en que
el cliente también tiene una copia local del «mundo» y de los métodos que va a
ejecutar el servidor, y ejecuta todo igual que el servidor con la esperanza de llegar
a los mismos resultados.

Estos resultados el cliente los da temporalmente por buenos y los utiliza para pin-
tar por pantalla y que asi, aunque tarde en responder el servidor, el cliente pueda
jugar fluido y sin parones.

Posteriormente, si cuando al cliente le llega el paquete que ha enviado el servi-
dor con sus resultados (que son los validos) se comprueba que el cliente se habia
equivocado en su prediccion, se suelen utilizar otras técnicas para corregir el es-
tado local del cliente sin que el jugador lo note. Estas tltimas técnicas no se han
aplicado por considerarse fuera de los objetivos del Proyecto Fin de Carrera.

La razon de utilizar sockets en lugar de RMI o alguna otra tecnologia de més
alto nivel es que, como se acaba de explicar, para este modelo de red es esencial
el rendimiento del protocolo, ya que se van a transmitir paquetes de datos un
minimo de 25 veces por segundo, sin necesidad de fiabilidad, y todos los proto-
colos de més alto nivel introducen muchas mejoras pero generalmente a costa del
rendimiento [21].

182

El uso de los siguientes protocolos es el siguiente: se usa TCP para enviar el
estado inicial del servidor antes de que comience el juego y UDP a partir de ese
momento, ya que una vez comenzado el juego no importa que se pierdan mensajes,
pero es necesario que el estado inicial llegue correctamente a todos los jugadores, y
utilizar TCP evita programar dichas caracteristicas de fiabilidad. Como desventaja
de este uso de TCP, esto supone otro puerto extra que necesita abrirse en los NAT
y firewalls.

Apertura de puertos

Para el correcto funcionamiento de este modelo de red, como ocurre en muchos
juegos, es necesario abrir puertos si estas detras de un NAT.

Fueron estudiadas diferentes posibilidades de evitar esto. Una era utilizar el
protocolo UPnP, como algunos clientes de P2P, pero esta solucion estaba muy
desaconsejada en varios foros dedicados al tema de desarrollo de videojuegos ya
que existen grandes problemas de seguridad en el protocolo.

Otra posibilidad estudiada es el NAT Punch-through. Este método se basa en que
exista un servidor que no esté detras de un NAT y a través de él se pongan en
contacto los clientes y se averigiie el puerto que usa cada uno. Una implementacion
de este método es Raknet!S.
El problema de este método radica en la necesidad de tener siempre un servidor
maestro en funcionamiento.

Finalmente, como los jugadores habituales estan acostumbrados a este requeri-
miento de abrir puertos, y dado que aplicar estas soluciones esta fuera del alcance
del Proyecto Fin de Carrera, se decidié seguir con el requerimiento de abrir los
puertos necesarios para jugar.

Control del flujo de mensajes

El manejo de las comunicaciones UDP no se realiza en un hilo separado sino
en el hilo principal de ejecucioén.
Esto es porque la principal ventaja de tener las comunicaciones en un hilo sepa-
rado es poder recibir los paquetes en cuanto estén, sin tener que esperar a que el
hilo principal termine de hacer los célculos de movimiento, colisiones y pintar la
pantalla.
Sin embargo, aunque tuviésemos el paquete en el mismo instante en que se recibe,
no vamos a usarlo hasta que el hilo principal no llame a la funciéon de actualizar
los datos, con lo que lo Ginico que estariamos haciendo es meter el paquete en un
buffer y esperar a que el hilo principal lo consuma, que es lo mismo que se consigue

Yhttp: //www.jenkinssoftware.com/raknet/manual/natpunchthrough.html

183

http://www.jenkinssoftware.com/raknet/manual/natpunchthrough.html

con el comportamiento normal de los sockets (conforme van llegando los paquetes
se almacenan en un buffer hasta que ta los pides) [13].

C.6.2. Interpolacién-extrapolacién

La interpolacion y la extrapolacion son métodos aplicados en el cliente para
conseguir una representacion fluida del resto de actores cuando la conexion con el
servidor no es lo suficientemente buena.

El problema de un modelo de red basico, sin la aplicacion de estos métodos, es
el siguiente. En cada ciclo, el servidor envia al cliente un estado (Snapshot) con
la actualizacion del mundo de juego. Para enviar el minimo de datos necesarios,
dicho estado se realiza calculando la diferencia delta respecto al anterior estado
que se sabe que ha procesado el cliente.

Este dato es conocido en el servidor ya que el cliente, en cada InputSnapshot que
envia al servidor, le informa de cuél es el Gltimo estado procesado.

El problema radica en que, debido a la latencia de la conexion, la informacién de
que el cliente ha procesado un nuevo estado tarda en llegar al servidor, por lo que
éste le puede seguir enviando nuevos estados creados respecto al que se cree que es
el estado del cliente pero que en realidad ya no lo es. Cuando estos estados lleguen
al cliente, no podrén ser descomprimidos ya que se han creado en base a un estado
anterior al actual. Son lo que vamos a llamar un Snapshot no bueno. Y si en un
ciclo no se recibe un estado bueno (se recibe uno no bueno o no se recibe ninguno),
no se puede actualizar el estado del mundo de juego, permaneciendo sin cambios.
Y no que no se reciban estados buenos de forma constante implica que los actores
avancen «a trompicones» por el escenario.

Para evitar este efecto visual indeseado, se aplica la siguiente idea: tener un
buffer de estados recibidos méas nuevos que el que se va a procesar, de forma que
si uno no es bueno, se pueda interpolar la posicién del actor con los datos de uno
de los estados almacenados «futuros» (Ver Figura C.21).

Esto tiene el inconveniente de anadir més latencia artificialmente, ya que la tnica
forma de tener ese buffer de estados futuros es procesar los estados no al recibirlos
sino con un cierto retraso establecido (Ver Figura C.22).

Cuando los estados malos recibidos de forma consecutiva superan la capacidad
del buffer de interpolacion (dicha capacidad es modificable desde el fichero de texto
ParamConfig.txt), se procede a aplicar otro método diferente: la extrapolacion.

Esta simplemente consiste en tomar como base los tltimos datos validos reci-
bidos de cada actor y extrapolarlos al estado que se requiere representar.

184

Interpolacién (buffer = 1)

—»
Secuencia Snapshot recibido: 1 2 3 4 5 6 7 8 9 10 11 12
Calidad Snapshot recibido: B B M B B M B B M M B B

Secuencia Snapshot procesado: | x 1 2 a4 5 7 X 7 8 x 7 1

Figura C.21: Interpolacion con buffer de 1 estado. La calidad de un Snapshot
recibido puede ser buena (B) o mala (M). Una X en la secuencia del Snapshot
procesado indica que no se ha procesado ninguno, ya que no habfa ocupaciéon
suficiente del buffer, mientras que una flecha indica que se realiza interpolacion.

Snapshot que Ultimo Snapshot
procesamos recibido
Tiempo de interpolacién
(buffer =2)
- s Y
| I | | |
| ! | ! | >
Snapshots: 12 13 14 15 16

Figura C.22: Diferencia entre el iltimo estado recibido y el estado que se pinta en
pantalla, debido al buffer de interpolacion

185

Un ejemplo simplificado es el siguiente: el coche A tiene posicion (13,45) y una
velocidad por ciclo de (2,1), por lo tanto se puede aventurar que hay muchas
probabilidades de que en el siguiente estado su posicion sea (15,46).

El problema de la extrapolaciéon es que la precision de los resultados decrece
rapidamente conforme méas estados se deban extrapolar. Es decir, estando en el
estado X es facil acertar la posicion que tendra en el estado X-+1, pero si quieres
calcular la posicion X+10 es probable que el margen de error sea demasiado grande.
Esto es asi ya que en la posicion de un vehiculo intervienen méas elementos, como
por ejemplo colisiones contra otros vehiculos o contra elementos del terreno. Por
tanto, se ha optado por realizar la extrapolacion solo hasta una cantidad definida
en el fichero de texto ParamConfig.txt, no actuando mas alla de ese valor por
considerarse que el error puede ser demasiado grande.

Hay que anotar que, aunque en el motor Source |22] se realiza una extrapolacion
al uso, en Vanet-X se ha considerado conveniente intentar mejorar el margen de
error usando una simplificacion de la prediccion (que se explicara a continuacion),
es decir, en lugar de simplemente actualizar la posicion teniendo en cuenta el vector
velocidad, se aplica también las mismas reglas que en el servidor si se salen de la
calzada o estan sobre un terreno que disminuya la velocidad. De esta forma, con
muy poco procesamiento adicional, se garantiza una mayor precision del resultado
que obtengamos.

C.6.3. Prediccion

Otro de los problemas causados por la latencia de la conexion es que, al igual

que el resto de actores, el vehiculo del jugador no tiene un movimiento fluido y
ademés, debido a que los eventos de teclado deben enviarse al servidor y éste
devolver un estado actualizado, las teclas pulsadas se ven reflejadas con retraso,
siendo muy incémodo para el jugador.
Este problema de que las acciones del jugador se vean representadas con retraso
viene dado por el esquema cliente-servidor tradicional, con servidor autoritativo, en
el que se debe esperar a la respuesta del servidor a tus acciones antes de pintarlas.
Ver Figura C.23.

La prediccién consiste en lo siguiente: el cliente trata de predecir con el menor
error posible el resultado que devolvera el servidor, y lo aplica de forma que en el
cliente se ven reflejados los cambios del jugador instantdneamente. Posteriormente,
cuando recibimos el resultado del servidor, se aplica, y sobre esta nueva posicion se
vuelven a realizar las predicciones restantes (para lograr el movimiento instantaneo
del jugador se realiza la prediccion de cada uno de los estados enviados al servidor

186

Cliente Servidor

Pintamos P = (1071052 p =(10,10)
estado 10 EventOS de tegy do

Pintamos p=(11,10)
estado 11 3

Pintamos M))
estado 12

Figura C.23: Efecto de la latencia de red

pero atin no contestados). De esta forma se corrigen los posibles errores cometidos
en la prediccion, aunque de forma algo brusca.

Para evitar esta brusquedad en la correccion se podria aplicar un suavizado para
que esa correccion se realice a lo largo de varios ciclos en lugar de instantdneamente
(como se realiza en el motor Source [22]), pero se ha considerado que no era un
aspecto imprescindible para los objetivos de este Proyecto Fin de Carrera y por lo
tanto se ha dejado para mejoras futuras.

Para realizar la prediccion se siguen los siguientes pasos: se crea un buffer que
contiene los eventos de teclado de cada estado. Cuando se envia un InputSnapshot
al servidor se almacenan junto con su niimero de secuencia, y al recibir un Snapshot
del servidor se eliminan los eventos de teclado cuyo estado ya haya sido superado.

Posteriormente, tanto si se procesa un Snapshot bueno como si no, se aplica la
prediccién sobre el vehiculo del jugador de la siguiente forma: para cada estado que
se lleve de retraso (la diferencia entre el tltimo que se haya recibido del servidor y
el actual del cliente) se cogen los eventos de teclado del primer estado almacenado
en el buffer y se simulan los calculos que se realizan en el servidor y se calculan
las colisiones (desactivables en ParamConfig.tzt). Es importante tener en cuenta
que los célculos de colisiones son una mera aproximacion ya que se comprueba la
colision del vehiculo del jugador en el estado que se esta prediciendo con el resto
de actores en el tltimo estado recibido del servidor.

Este proceso se repite para cada estado retrasado partiendo como base del resultado
de la prediccion del estado anterior.

187

C.6.4. Compresiéon delta

Para reducir la cantidad de datos enviados, se aplica el método conocido como
compresion delta'”, que consiste en no enviar toda la informacién sino solo la
diferencia respecto al ultimo envio.

Esto puede realizarse de dos maneras. La primera es diferencia a nivel byte, que
consistiria en que si en el estado anterior se ha enviado posicion—(12,15) y ahora se
quiere enviar posicion=(14,14), se envie posicion=(+2,-1), de forma que en valores
muy grandes se pueda reducir el tamano requerido para enviarlos (ejemplo: en lugar
de enviar un valor de tipo Long, enviar un Short con la diferencia).

La otra manera de aplicarlo, es la diferencia a nivel de aplicacion, que consistiria
en enviar unicamente los elementos de la estructura que hayan tenido cambios.
Por ejemplo si de un vehiculo se mantiene la velocidad constante y solo cambia la
posicién, enviar tnicamente esta dltima, ahorrando asi enviar la velocidad.
También existe la posibilidad de combinar ambas formas, aplicando la diferencia
respecto a la estructura, y en los elementos que quedan para enviar, aplicar la
diferencia respecto a byte, pero ha sido el segundo método (diferencia a nivel de
aplicacion) la forma elegida en este Proyecto Fin de Carrera.

Para poder realizar la compresion delta, es necesario que el servidor almacene
cual es la secuencia del altimo estado aplicado por cada cliente, dado que no todos
los clientes tendran el mismo estado, y también almacene todos los datos de los
ultimos estados, desde el mas antiguo de los aplicados en los clientes hasta el
altimo.

Con estos datos, el servidor le envia a cada cliente los datos resultantes de realizar
la compresion delta entre el estado actual del servidor y el estado actual (conocido)
del cliente.
Al realizar la compresion delta se coge el Snapshot que se toma como base para
la compresion delta y para cada actor se comprueba si cada valor de la estructura
(posicion, velocidad, ete.) ha sido modificado y se anota, para que solo se envien
los elementos modificados.

En el lado del cliente tinicamente se necesita tener almacenado el dltimo estado
procesado, para descomprimir el Snapshot que se reciba.

C.6.5. Envio de solo actores cercanos

Inicialmente se enviaban los datos de todos los actores (aparte de la compresion
delta) sin importar si estaban cerca del jugador y por lo tanto eran de interés o
estaban lejanos y daban igual sus datos (ya que para el cliente no es necesario

"https://en.wikipedia.org/wiki/Delta_encoding

188

https://en.wikipedia.org/wiki/Delta_encoding

saber el angulo o la velocidad de un coche que esta en la otra punta del mapa).
Para reducir el tamano de los paquetes de red que se han de enviar, se ha optado
por enviar todos los actores, pero si estan lejanos solo enviar su identificador -
necesario siempre- y un booleano que indique lejania.

Esto introduce un problema, y es que para la compresion delta ya no hay que
comprobar si una variable de un actor ha tenido modificaciones respecto al estado
anterior sino respecto al ultimo estado que se sabe que ha recibido el cliente en el
que los datos del actor hayan sido enviados (porque el actor estaba cercano).

Un ejemplo de este problema se muestra en la Tabla C.4.

Estado enviado 10 (11| 12 | 13 | 14
Lejano NO | SI'| SI | NO | NO

Valor enviado 25 |45] 45 | 45 | 45

Ha cambiado (en servidor) | 7 | SI [NO | NO | NO
Valor recibido 25 | - - 45 | 45
Aplicar cambios (en cliente) | 7 | - | - | NO | NO

Tabla C.4: Problema de no enviar actores lejanos

Para solucionar este problema, se introduce un «acumulador» donde se acu-

mulen los cambios realizados a cada variable de un actor entre diferentes estados
(Ver Tabla C.5).

Estado enviado 10 (11] 12 | 13 | 14
Lejano NO | SI | SI | NO | NO

Valor enviado 25 |45 | 45 | 45 | 45

Ha cambiado (en servidor) | ? | SI | NO | NO | NO
Valor recibido 25 | - - 45 | 45
Acumulador ?7 | SI| SI | SI | NO
Aplicar cambios (en cliente) | 7 | - | - | SI | NO

Tabla C.5: Se crean los acumuladores como solucién para poder enviar solo actores
cercanos

El funcionamiento de los acumuladores es el siguiente. Cuando el servidor calcula
para cada cliente que valores han cambiado (y por lo tanto deben enviarse), si el
cliente estd lejano, se almacena en su acumulador el resultado de realizar un OR
entre el valor booleano que se acaba de calcular (que indica si ha habido cambio
respecto del ltimo estado), y el valor almacenado previamente.

189

Si el cliente vuelve a estar cercano, para determinar si debe aplicarse el cambio, se
realiza un OR entre el valor booleano del acumulador y el que se calcula respecto
del dltimo estado, restableciendo posteriormente los valores del acumulador.

Hay que anotar que este restablecimiento de los valores del acumulador no se
realiza instantaneamente sino cuando se recibe la confirmacion (ack) de que el
cliente ha recibido el Snapshot en el que se le enviaban los cambios.

También hay que tener en cuenta que no se puede acumular todo en el mismo
actor ya que lo que se acumula esta personalizado para cada cliente. Es decir, es
necesario un acumulador por cada pareja actor-cliente.

Para el funcionamiento de las flechas que indican la direccion en la que se en-
cuentran las banderas y los enemigos, es necesario conocer siempre la posicion de
estos tipos de actores, aunque estén lejos. Por esa razon se hace uso de una estruc-
tura de tipo lista que contiene las posiciones de los actores de este tipo que se han
enviado como lejanos.

Una solucién analoga a la explicada para el envio de inicamente actores cercanos
hay que aplicarla a cualquier variable que indique cambio de un valor que sea
establecida a cierta o falso manualmente.

Esto se aplica al envio de los eventos del radar asociado a cada jugador y a los
objetivos de la ronda.

En la Tabla C.6 se observa una traza en la que se aprecia el funcionamiento de
este método para el envio de los objetivos de la ronda.

C.6.6. Optimizaciones

Ademas de las técnicas arriba nombradas, se han realizado otras optimizaciones
que se describen a continuacion.

Uso de Ezxternalizable en lugar de Serializable

El envio de los datos se realiza mediante el uso de Ezternalization en lugar de
Serialization debido a que ofrece un mayor control y de esta forma se logra un
menor tamano de los paquetes enviados.'®

Atn asi, el uso de ObjectOutputStream introduce cabeceras nada despreciables
(de 40 bytes o méas), ya que se incluyen los descriptores de clase.

Para lograr reducir estas cabeceras, se hace uso de obj.writeExternal(stream) en

18http://thejavacodemonkey.blogspot.com.es/2010/08/java-serialization-using-
serializable.html

190

http://thejavacodemonkey.blogspot.com.es/2010/08/java-serialization-using-serializable.html
http://thejavacodemonkey.blogspot.com.es/2010/08/java-serialization-using-serializable.html

PRUEBA CON LAG DE 1 ESTADO Y BUFFER PARA INTERPOLACION DE 2

nueva.changed lugaresObjetivos false acumulador.changed lugaresObjetivos false
acumulador.changed lugaresObjetivos <<- false

game:ronda.changed objetivos //<-- aqui se cambian los objetivos en el servidor
nueva.changed lugaresObjetivos true acumulador.changed lugaresObjetivos false
acumulador.changed lugaresObjetivos <<- true

resetearas en 74 //<-- se marca que se resetee cuando llegue el ack del estado 74
nueva.changed lugaresObjetivos false acumulador.changed lugaresObjetivos true
acumulador.changed lugaresObjetivos <<- true

nueva.changed lugaresObjetivos false acumulador.changed lugaresObjetivos true
acumulador.changed lugaresObjetivos <<- true

nueva.changed lugaresObjetivos false acumulador.changed lugaresObjetivos true
acumulador.changed lugaresObjetivos <<- true

nueva.changed lugaresObjetivos false acumulador.changed lugaresObjetivos true
acumulador.changed lugaresObjetivos <<- true

cl _processSnapshot:changed lugaresObjetivos //<-- se procesa en el cliente
//<-- llega el ack del estado 74, por lo que se resetea el acumulador a falso
nueva.changed lugaresObjetivos false acumulador.changed lugaresObjetivos false
acumulador.changed lugaresObjetivos <<- false

Tabla C.6: Traza de funcionamiento del acumulador

191

lugar de stream.writeObject(0bj)'®, aunque no siempre, ya que es necesario que el
paquete comience con los descriptores de clase de la estructura que contiene a las

demas (es decir, el Snapshot).

Es importante tener en cuenta que si no se envia la informacion del descriptor
de clase, en ocasiones es necesario enviar un byte extra para saber qué tipo de
clase es y asi poder hacer la creacion del tipo oportuno.

Compactacién de booleanos

Debido a que un valor del tipo booleano se puede representar con un tinico bit
pero sin embargo se serializa ocupando un byte, se ha realizado una «compacta-
cion» de los diversos valores booleanos presentes en las estructuras, agrupandolos
en valores de tipo Byte.

En las figuras C.24, C.25, C.26, C.27 y C.28 se muestran varios ejemplos de
como se han realizado estas agrupaciones.

Byte: Ox hex 0-Nulo
1-Bajo

2 - Medio
|
Combustlble W 3- Alto

Figura C.24: Agrupacion de booleanos de la clase Opciones

(ordinal del Enum)

Byt@: 0x - — (hEX) y se coge el ordinal del Enum

N

TipoLugar TipoLLegada

Figura C.25: Agrupacion de booleanos de la clase Tarea

Byte: 0x - — (hex) y se coge el ordinal del Enum

Damage Petrol

Figura C.26: Agrupacion de booleanos de la clase WaitingRoom

Yhttp://docs.oracle.com/cd/E14571_01/web.1111/e13727/design_best_practices.
htm

192

http://docs.oracle.com/cd/E14571_01/web.1111/e13727/design_best_practices.htm
http://docs.oracle.com/cd/E14571_01/web.1111/e13727/design_best_practices.htm

——

Byte: :2: |

Damage Petrol

Manual _
0 - false
shutdown 1-true

Figura C.27: Agrupacién de booleanos de la clase GameOver

Byte: E——E—_E__E_E_i y se coge el ordinal del Enum
1 1 1 1 1 1
(%} T TM\LO\
Velocidad Obras
Dano

Figura C.28: Agrupacion de booleanos de la clase Danyo VelocidadY Calle

C.6.7. Unioén de jugadores a la partida

A pesar de que inicialmente se habia planteado que la conexion de los jugadores
a la partida se realizara de forma simultanea al comienzo de la misma, como suele
suceder en la gran mayoria de los juegos de coches, mas tarde se vio la necesidad
de cambiar el modo de conexion ya que, al no tratarse de un juego de coches al
uso, en el que tiene lugar una carrera y no tiene sentido unirte una vez empezada,
en Vanet-X la mecanica de juego es muy diferente y tenia sentido dotar al juego
de este tipo de conexion, que es la habitual en los juegos de accion.

Con este nuevo tipo de conexion que se decidid, la partida comienza cuando se
ha conectado el primer jugador, y cualquier otro usuario que lo desee puede unirse
sobre la marcha.

En la Figura C.29 se puede ver la secuencia temporal del proceso de conexion del
primer jugador a la partida. Para los siguientes jugadores el proceso es el mismo,
con la tnica diferencia de que la partida ya habra comenzado anteriormente.

El proceso es el siguiente:

El servidor, después de crear todos los datos necesarios para comenzar la partida
(terreno, elementos, etc.) crea una instancia de su gestor de conexiones, el cual
es el encargado de todas las peticiones de los clientes que se realicen de forma
asincrona.

Las peticiones asincronas son las siguientes: uniéon a la partida, informacion
de la partida (para la sala de espera) y puntuaciones al acabar la partida. Todas
ellas se realizan por TCP. El resto de transmisiones de red se realizan de forma
sincrona: el envio del estado del mundo inicial al unirse el jugador a la partida

193

Servidor

T
| crear Gestor Conexiones

Esperar cliente listo

Comenzar partida

Cliente i

Gestor Conexiones

|

crear Gestor TCP cliente

conectarse al socket

Comando"ATCP"

\\

conectarse al socket

comando “Join'

lazas libres
d cliente, apodo, otros datos |

apodo modificade

:\.
'MW
I |

Cliente listo

Identificador cliente
|

Gestor TCP clientei

Figura C.29: Secuencia temporal de la unién de jugadores a la partida

194

(por TCP) y los envios a los clientes del estado del mundo en cada ciclo del juego.

El cliente, al iniciarse, también crea su propio gestor de conexiones (llama-
do gestor TCP del cliente), ya que también existen transmisiones asincronas del
servidor al cliente.

La primera conexién es una peticion del gestor del cliente al del servidor para
obtener su identificador de cliente tinico, y también se realiza para almacenar dicha
conexion para las futuras comunicaciones asincronas con el cliente como destino.
Acto seguido, es el cliente el que se conecta con el gestor del servidor, con el
objetivo de primero comprobar si quedan plazas libres en la partida (en caso con-
trario el cliente acaba y se vuelve al menu principal), y después el cliente envia
su identificador (el cual habia sido previamente recibido del servidor, y el objetivo
de reenviarlo es asociar las conexiones sincrona y asincrona), su apodo deseado y
otros datos.

El servidor, al recibir el apodo, comprueba que no haya existido desde que se ini-
cio la partida otro jugador con el mismo apodo, y en caso contrario lo modifica
(anadiéndole un ntiimero incremental entre paréntesis), reenviandoselo acto segui-
do al jugador. Finalmente, también envia el estado inicial del mundo y el estado
correspondiente al ciclo actual, junto con la estructura que contiene la explicacion
de la ronda que se muestra al jugador y las puntuaciones actuales.

Tras esto, el cliente envia una senal al servidor indicando que esté listo, para que
éste le anada al juego y lo comience en caso de ser el primer jugador en unirse.

C.7. Modos de juego y gestion de rondas y objeti-
VOS

En esta seccion se explicaran detalles de la implementacién del modo «tareas»
(que también estd presente en los modos «supervivencia» y «aparcar» ya que
parten de la misma base) y de los elementos introducidos por resultar necesarios
para dichos modos (plazas de aparcamiento y capacidad de salir del coche).

C.7.1. Modo tareas

Los modos diferentes a «capturar las banderas» y «capturar los vehiculos
enemigosy (modos llamados «rally» por su semejanza al clasico videojuego Rally-X
original), necesitan de la creacion de nuevas estructuras que soporten los cambios
de la mecanica de juego que suponen.

En este apartado se profundizara en los elementos para el modo de juego «ta-
reas» ya que tanto «supervivencia» como «aparcary tienen las mismas estructuras

195

con ligeras variaciones, y dado esta similitud no se ha considerado necesario expli-
carlas de nuevo por separado.

En este modo de juego, los objetivos ya no son actores (banderas o vehiculos)
sino elementos del terreno, que pueden ser lugares de interés (nodos que se han
considerado relevantes por representar tiendas, hospitales, etc.) o direcciones. Y
para estos objetivos ya no sélo existe la opcién de lograrlos en coche sino que
también se incluye la posibilidad de que se requiera lograrlo aparcando en una
plaza de aparcamiento considerada cercana o lograrlo saliendo del coche (después
de haberlo aparcado) y llegando a pie hasta el objetivo.

Por esta razon se ha creado una nueva estructura llamada «Tarea», que incluye
todos los datos requeridos de un objetivo: tipo de lugar, tipo de llegada y distancia
al primer y tercer aparcamiento méas cercano. Los datos referidos a las distancias
a aparcamientos son necesarios ya que cuando el tipo de llegada requerido es
aparcando, la puntuacioén obtenida por el jugador no se calcula de la misma forma
que habitualmente (mas puntos contra menos tiempo se tarde en lograr el objetivo)
sino que viene dada por una funcion (C.2) que bonifica la cercania al objetivo.
Ademas, solo cuentan como aparcamientos cercanos, y por lo tanto validos, los tres
més cercanos (salvo en el modo de juego «aparcary ideado para la explotacion, ver
capitulo 3.5).

100 * distancia del objetivo al parking

puntos =

(C.2)

distancia del objetivo al jugador

El tipo de llegada de la tarea viene dado por una funcion de probabilidad (ver
Tabla C.7). En una misma ronda pueden existir hasta tres objetivos simultaneos,
en cuyo caso ambos seran del mismo tipo (direccion o lugar de interés) y contaran
con el mismo tipo de llegada.

‘ Probabilidad ‘ tipo ‘
60 % en coche
30 % aparcar cerca
10% a pie

Tabla C.7: Eleccion de «tipo de llegada» en una tarea

Es importante anotar que cuando el objetivo generado es de tipo direccién, el
objetivo en realidad representa solo un punto de la calle, y en los modos de llegada
«en coche» y «a pie» se da por completado al acercarte a menos de 200 pixeles
(25 metros) de distancia. El punto elegido siempre es el punto medio del primer
segmento del camino.

Los objetivos de tipo direccion por defecto sblo se generan en calles con nombre, ya

196

que asi si conoces la zona, sabes hacia donde encaminarte ya durante el tiempo de
intermision, sin tener que esperar a que comience la ronda y aparezca el objetivo en
el mini-mapa. Sin embargo, si en el area descargada como escenario no existen calles
con nombres, y tampoco existen lugares de interés, entonces si que se generaran
objetivos en calles sin nombres, para asi poder jugar en el escenario.

Salvo que suceda este caso extraordinario en el que no existen calles con nombre,
el algoritmo de decision de nuevos objetivos tiene una probabilidad de 50 % de
generar un objetivo de tipo direccion y el otro 50 % de que sea de tipo lugar de
interés.

C.7.2. Plazas de aparcamiento

El primero de los elementos introducidos para soportar la mecanica del juego
deseada en los modos «tareas» y «supervivencia» son las plazas de aparcamiento.

Las plazas de aparcamiento se deben pintar en los laterales de la calzada y
alineadas a ella. Para conseguirlo, se introdujo el concepto de los «puntos de par-
king» de las calles: se calcula cual es el punto intermedio de cada segmento que
forma la calle, y se proyecta en los ejes laterales del camino, creando dos «puntos
de parking» uno a cada lado de la calzada. Estos puntos sblo se crearan si estan a
més de 30 pixeles (el valor del radio de una plaza de aparcamiento) de otras calles,
para asegurar que los aparcamientos no sobresaldrian por la otra calle. Estos pun-
tos calculados son los posibles puntos de aparicién de las plazas de aparcamiento.
En la Figura C.30 se puede observar los puntos intermedios de cada segmento (cir-
cunferencia verde) y sus correspondientes puntos de parking (circunferencia azul,
remarcada por una exterior de color rojo para aumentar su visibilidad). Como se
puede observar, en este caso no todos los puntos intermedios han generado pun-
tos de parking, ya que en el caso de dos de ellos no se han generado por resultar
demasiado cercanos a un cruce de caminos.

Como las plazas de aparcamiento sobresalen ligeramente en el interior de la
calzada, se debe adaptar la inteligencia que controla los vehiculos para que las
esquive. Esto se ha logrado creando un obstaculo esférico en su posicion e intro-
duciéndolo en la lista de obstaculos que tiene en cuenta el steering behavior de
obstacle avoidance. Evidentemente cuando un vehiculo de trafico se encuentra en
estado «aparcary», se desactivard de su steering behavior el obstaculo esférico del
parking objetivo para permitir atravesarlo y asi estacionar en él.

Hubo un problema al realizar esta implementaciéon y es que se descubrié que
habia ocasiones en las que los vehiculos no esquivaban correctamente las plazas
de aparcamiento. El motivo era que los obstaculos esféricos tenian su centro en el
borde del camino, y si el vehiculo se acercaba pegado al borde de la calzada, su
steering behavior le indicaba que para esquivarlo podia torcer en las dos direcciones
en lugar de so6lo hacia el centro del camino. Este problema radica en el hecho de

197

r——h_ﬁ |

Figura C.30: Captura mostrando los puntos de parking (azul rodeado de una cir-
cunferencia roja) ylos puntos intermedios (verde)

198

haber implementado la union de steering behaviors con un sistema de prioridades
en lugar de uno aditivo (ver capitulo C.5.1).

Para solucionarlo, en lugar de optar por cambiar la implementacion de la union de
steering behaviors, se tuvo la idea de incrementar el radio del obstaculo y colocar
su centro mas alejado del borde del camino, de forma que asi el comportamiento
de esquiva de obstaculos sélo devolviese la opcion de girar hacia el interior de la
calzada.

La contrapartida de éste método es que si este obstaculo esférico sobresale por otra
calle debido a que se encuentra muy cercana, la inteligencia evitaré esa zona que
sobresale a pesar de que realmente no exista ninguna posible colision.

En la Figura C.7 (pag. 161) se observa el obstaculo esférico de las plazas de apar-
camiento (circunferencia azul).

Cuando el tipo de llegada es «aparcar», para que el jugador sepa cuales son los

aparcamientos véalidos para lograr el objetivo, se pintan unas lineas desde dichos
aparcamientos hasta el objetivo, indicando sobre ellas la puntuacién que otorga
cada aparcamiento.
Estas lineas no aparecen constantemente, ya que entonces encontrar una plaza de
aparcamiento seria tan sencillo como acercarte al objetivo y luego seguir una de
las lineas hasta el aparcamiento, sino que solo aparecen cuando estis a menos de
una determinada distancia del aparcamiento.

C.7.3. Capacidad de salir del vehiculo

El otro elemento introducido se trata de la capacidad del jugador para aban-
donar el vehiculo y llegar a los objetivos caminando.

Para realizarlo, se ha decidido que el actor «Player» siempre sea el elemento
bajo control del jugador, tanto cuando vaya en coche como a pie, y que en el caso
de ir a pie se cambien sus constantes de velocidad y la imagen que se mostrara.
Como ademés de estos parametros hay otros muchos que también varian, se ha
creado una estructura dentro de la clase «Player» en la que se guardan esos valores
mientras el jugador va a pie y se recuperan cuando vuelve a montarse en el vehiculo.

También se ha creado una nueva clase actor: «DummyPlayer», que tiene la
apariencia de nuestro vehiculo y colisiona con los mismos actores que cualquier
otro vehiculo, excepto con los jugadores, a los que permite que le atraviesen para
que asi el jugador pueda volver a montar en el vehiculo.

C.7.4. Modo supervivencia

El modo supervivencia tiene una mecénica diferente al modo «tareas» pero se
basa en los mismos elementos, tinicamente modificando ciertos aspectos y funcio-

199

nes.

Las tnicas diferencias destacables de la implementacion son la modificacion del
algoritmo que decide qué objetivos crear y la modificacion del finalizador de la
partida, que ahora ya no es no completar los objetivos sino empezar la ronda con
una cantidad negativa de puntos.

La decision de qué objetivos crear en la ronda se ve complicada por la aparicion

de las rondas especiales. Estas son rondas que aparecen cada mucho tiempo y que
suponen que los jugadores deban completar el objetivo generado si no quieren
perder una cantidad considerable de puntos.
Estos objetivos son lugares de interés donde se puede comer (restaurante, cafeteria,
etc.) o, en el caso de no existir lugares de interés de ese tipo, se crean dos «puestos
de comiday, que se crean con las mismas reglas que las plazas de aparcamiento y
sirven para permitir que aparezcan estas rondas especiales en cualquier escenario
independientemente de los tipos de lugares que incluya.

La decision del tipo de objetivo sigue el siguiente esquema (inspirado en las
rondas especiales del modo zombi del Call of Duty: World at War):

= No puede tocar realizar una ronda especial antes de la ronda tercera.
= A partir de esa ronda, la probabilidad aumenta un 10 % en cada ronda.

= Cuando se realiza una ronda especial, la probabilidad par la préxima ronda
se establece en cero y no volvera a incrementarse hasta dos rondas mas tarde.

= Si la ronda especial no tiene lugar, el objetivo tendra una probabilidad del
50 % de ser de tipo direccion y otra tanta de ser de tipo lugar de interés, al
igual que ocurria en el modo «tareas».

De esta forma garantizamos que este tipo de rondas no tengan lugar demasiado

a menudo para que al jugador le dé tiempo a reunir los puntos suficientes para
sobrevivir en caso de no lograr el objetivo de dicha ronda.

200

Anexo D

Sobre VESPA y la explotaciéon

En este anexo se trataran en detalle todos aquellos aspectos sobre VESPA y la
explotacion del juego como método de evaluacion que no han podido ser tratados
en el capitulo 3 o han sido tratados de forma resumida.

D.1. VESPA

En esta seccion se realizara una breve introduccion al sistema VESPA, se expli-
caran las interfaces desarrolladas asi como la implementacion desarrollada, también
se explicara la implementacion realizada para simular en el juego la existencia de
atascos y por ultimo se veran diversos problemas y posibles mejoras encontradas
durante la implementacion de VESPA.

D.1.1. Breve introducciéon a VESPA

VESPA (Vehicular Event Sharing with a mobile P2P Architecture) es un sis-

tema disenado para vehiculos para compartir informacién en redes ad-hoc entre
vehiculos. La originalidad de VESPA es que soporta cualquier tipo de evento en la
red (p.ej. plazas de aparcamiento libres, accidentes, frenados de emergencia, obs-
taculos en la calzada, informacioén del trafico en tiempo real, informacién relativa
a la coordinacion de vehiculos en situaciones de emergencia, etc.).
VESPA se basa en el calculo de una probabilidad de encuentro (EP) para deter-
minar si un vehiculo se encontrard con un determinado evento, en cuyo caso el
sistema decidira avisar al conductor. La probabilidad de encuentro también se usa
para realizar de forma eficiente la diseminaciéon de informacién entre vehiculos.

En la Figura D.1 se muestra una visiéon general de los mddulos de los que
se compone el sistema VESPA (existe un modulo adicional llamado agregador
de datos pero no se muestra en la figura ya que no ha sido implementado en la

201

implementacion de VESPA elaborada para el juego).

Datos

diseminados

\ / Datg:
Dato remoto Datos
/ Oyente de datos remotos - 8

Datos

recibidos

D.1.

Sensores del
vehiculo

Asignador de

Conductor Dato relevante / recursos escasos

Evento local

Evento local Dato Informacién
para el
* V conductor
Dato
W Dato relevante Evaluador de - Procesador de *
Gestor de diseminacion relevancia #7|1 consultas continuas
de datos >4

Gestor de almacenamiento
Conductor

Cache local
Gestor de datos de datos

Gestor de comunicaciones

Figura D.1: Mddulos del sistema VESPA

2. Interfaces desarrolladas

La implementacion del sistema VESPA se ha realizado de forma que se permita
una facil sustitucion por una implementaciéon diferente de VESPA o incluso por
otro DMS (Data Management Strategy). Para ello se han definido las interfaces y
clases abstractas basicas que se necesitan para poder interaccionar desde el juego
con VESPA. Posteriormente se ha realizado una implementacion «recortaday» del
sistema VESPA como instanciacion de dichos interfaces.

Se han desarrollado dos tipos de interfaces diferentes:

Una interfaz IDataManagementStrategy, que declara los métodos que deben
ser implementados por una DMS para permitir su integracién con el video-
juego. En esta interfaz se han definido métodos para definir los tipos de
eventos interesantes para el conductor, un método para generar un evento,
etc.

Otras cuatro interfaces que permiten la interaccion del DMS con las entida-
des que implementan dichas interfaces (p.ej. obtener una referencia al gestor
de datos del vehiculo, obtener informacién sobre el historial de posiciones
registradas en el dispositivo GPS, etc.). Estas cuatro interfaces son las si-
guientes: IVisible, que debe ser implementada por todas aquellas entidades
que puedan ser «observadas» por el DMS, I'Vehicle, que debe ser implemen-
tada por todos los vehiculos que equipen un sistema DMS, para permitir que

202

al DMS interactuar directamente con él, e IPlayerVehicle e ITraffic Vehicle,
que han de ser implementados por todos los vehiculos equipados con sistema
DMS' de jugadores y del trafico respectivamente.

Ademas de estas interfaces principales, también se han desarrollado las siguien-
tes:

= Una interfaz IFvent, que representa a la estructura de un evento del siste-
ma DMS. Esta interfaz no contiene ningin método ya que es una estructura
que no se utiliza dentro del juego, Gnicamente de forma interna a la imple-
mentacion del DMS y por ello se deja total libertad al desarrollador que
implemente un nuevo DMS.

= Ademaés, también se ha creado una clase GenericEvent, que implementa a
IEvent y que ha sido dotada de la estructura y métodos que se han conside-
rado basicos para cualquier DMS, de forma que pueda extenderse o utilizarse
«tal cual» por un desarrollador externo encargado de implementar un DMS
diferente.

= Otra interfaz IDmsOptions, que debe ser implementado de forma que con-
tenga las opciones/parametros necesarios para la inicializacion del DMS.

= Por dltimo una clase FactoryDMS que es una factoria para crear instancias
de diferentes DMS. Esta clase contiene un tunico método createDMS(...), que
debe ser extendido para reconocer un valor especifico de la propiedad Java
dataStrategy (o un valor en un fichero de texto de configuracion) que identi-
fique la nueva DMS y cree la instancia de dicha DMS cuando se requiera.

Ademas también hay otras clases, ya implementadas, que deben ser tenidas en
cuenta ya que se utilizan en los métodos de las interfaces arriba mencionadas:

» ContextOfEvent: Representa el contexto del evento (posicion, tiempo, etc.).

» GpsHistory: Tiene el registro historico de posiciones del vehiculo y los mé-
todos necesarios para calcular los vectores de direccién y movilidad.

» Position2D: Representa un vector bidimensional y tiene los métodos nece-
sarios para su manipulacién. Es el tipo de vector de posicién usado en el
juego.

= Position4D: Representa una posicion espacio-temporal. Es el vector usado
en GenericBvent y en la implementacion de VESPA desarrollada.

203

= RadarRepresentationOfEvent: Representa un evento con el minimo de infor-
macioén necesaria para ser representado en el radar.

s WrapperParkingFvents: Contiene una lista con los identificadores de las pla-
zas de aparcamiento mostradas actualmente en el radar, junto con un objeto
que sirve para realizar la sincronizacion de dicha lista.

» WrapperRadarPoints: Contiene una lista con la informacién minima de cada
evento de radar que debe ser representado, junto con un objeto que sirve
para realizar la sincronizacion de dicha lista.

En la Figura D.2 se puede apreciar la arquitectura de la conexiéon entre el juego
y el DMS.

D.1.3. Implementacién desarrollada

A partir de las interfaces previamente creadas, se ha desarrollado una imple-
mentacion del sistema VESPA que cumpla las caracteristicas basicas del sistema.
Unicamente no se han implementado las caracteristicas del célculo de la probabi-
lidad de encuentro (EP) con mapas de carreteras digitales (en su lugar se realiza
usando vectores geograficos) y la agregacion de datos.

Para el desarrollo de esta implementacion se ha tratado de dividir el trabajo en
los mo6dulos basicos que componen el sistema VESPA (ver Figura D.1), de forma
que se pueda sustituir dicha implementacion de VESPA por otra no solo de forma
completa sino también solo los médulos precisos.

Para realizar esta implementacién modular se ha hecho uso del patréon de diseno
Factory method para cada uno de los modulos necesarios.

En la Figura D.3 se observa la estructura de la arquitectura VESPA imple-
mentada y en la Figura D.4 se muestra como se comunican los diferentes modulos
entre si junto con las principales funciones de los interfaces que los representan.

A continuacion se detallan las ideas generales de la implementacion de VESPA
desarrollada, asi como los algoritmos principales.

Existen cuatro hilos de ejecucion: el del modulo sensor, encargado de supervisar
el entorno y crear los eventos locales, el del mdédulo gestor de almacenamiento,
encargado de comprobar periédicamente los eventos almacenados y eliminar los
que correspondan, el del médulo procesador de consultas continuas, encargado de
revisar los eventos almacenados y mostrar al conductor los que correspondan, y el
del moédulo de entrada de radio, encargado de la escucha de los eventos remotos
enviados a través de mensajes de radio.

En las figuras D.5, D.6, D.7 y D.8 se muestran las tareas realizadas en cada
hilo de ejecucioén.

204

SERVER-SIDE

Player

TrafficCar

ITrafficVehicle

Interface

Interface
IPlayerVehicle

Car

Parking _D Actor

- - Interface
D IVehicle

v

Interface
- - -7 7 D IVisible

MiCanvasServidor

IEvent (—

Interface

IDataManagementStrategy

A

VespaEvent

FactoryDMS

VESPA

Figura D.2: Arquitectura de la la conexion entre el juego y el DMS

205

&
Interface FactorylAllocatorScarceResources
| IAllocatorScarceResources 1|
Interface <€ FactorySensor .
ISensor < ﬂ\ - =| AllocatorScarceResources
=1
' 4 sensor
; Y +
N Interface t Interface & FactoryRelevanceEvaluator
; IVespa >
& i IRelevanceEvaluator
Interface <€ FactoryRadioln <' .
IRadioln 4 - J 4 ‘E A ! RelevanceEvaluator
1
+ - Radioln 1 L 1]
Vespa
T Y
* Interface X FactoryContinuousQueryProcessor
& 1| icontinuousQeryProcessor !
Interface FactoryRadioOut Qeryl .
IRadioOut q - ' ContinuousQueryProcessor
! .
A ~ = RadioOut
Interface (—— FactoryDataDisseminationManager *
. . o« FactoryStorageManager
IDataDisseminationManager 4 . | | Interface < Y 9 9
> IStorageManager
i DataDisseminationManager 4‘ i
|

- - StorageManager

- — —[> implementa

Figura D.3: Estructura de la arquitectura VESPA implementada

La estructura de un evento VESPA es la mostrada en la Tabla D.1.

206

generateEvent(...)
eventReception(...)
isinterestedInParkings()

createParkingEvent(...
Sensor g () AllocatorScarceResources
evaluateParkingEP(...)

setTimeStartedSearching()
enviarCoordinar(...)

Radioln (__)
Vespa getSearchMode()
eventReception(...) \

_) RelevanceEvaluator

ContinuousQeryProcessor

RadioOut

evaluateEP(...)
relevanceCheck(...)
importanceCheck(...)
storageCheck(...)
diffusionCheck(...)

addRelevantType(...)
diffusion(...) clearRelevantType(...)
relevanceCheck(...)
setDeprecatedParking(...)
unsetDeprecatedParking(...)

DataDisseminationManager
StorageManager
disseminate(...)
notDisseminate...) getCache()
store(...)

Figura D.4: Comunicacion entre los diferentes médulos implementados

207

Sensor Vespa StorageManager DDM RadioOut Radioln

loop | [detectado gvento]

check ForEvents(...) D

newEvent(...)

Se calcula la EP

optJ TP 5= storge ool

store(...)

OE I [EP >= diffysion threshold]
|°°E | [cancelagion]

disseminate(...)

b

diffusion...)

eventReception(...)y
Ld

Sensor Vespa StorageManager DDM RadioOut Radioln

Figura D.5: Hilo de ejecucion de la deteccion de un evento (el médulo sombreado
es del vehiculo receptor)

208

Radio Out Radio In Vespa DDM

euentReception(...}’

euentHecepticn(...}}

alt el evento es nuevo]

T
Se calcula la EP

Y se repite el
proceso igual
que en &l caso
de un evento
recibido por el
sensor

el evento no es nuevg]

nutDisseminate(...}’

se cancela la
difusion de
este evento

Radio Out Radio In Vespa DDM

Figura D.6: Hilo de ejecucion de la recepcion de un evento (el modulo sombreado
es del vehiculo emisor)

209

Storage Manager

I
loop] [slempre]
DEMaintenance(...) ;

Para cada evento se calcula EP
y sl [EP < storage threshold]
se elimina de la cache.

Storage Manager

Figura D.7: Hilo de ejecucion del gestor de almacenamiento

Continuous Query Processor

loop] [siempre]
query(...) :
[

Para cada evento se calcula EP y si
[EP == relevance threshold] y [
(importance evento ==

importance threshold)

o tipo de evento relevante]

afiade el evento al radar.

Continuous Query Processor

Figura D.8: Hilo de ejecucion del procesador de consultas continuas

210

String

ukey

clave dnica, generada concatenando el identi-
ficador tinico del vehiculo con el identificador
localmente tnico del evento.

int

version

para distinguir entre diferentes actualizaciones
del mismo evento.

float

importance

ayuda a determinar cuando se debe informar
de la informacién al conductor. Contiene un
valor entre 0 y 1.

Position4D

currentPosition

tiempo y posicién correspondiente a la genera-
cién del evento.

Position4D

directionRefPosition

tiempo y posiciéon de una referencia anterior
para permitir a cada vehiculo evaluar la direc-
cién del evento, lo cual es necesario para es-
timar su relevancia. Contiene el valor NULO
si se trata de un evento no dependiente de la
direccion.

Position4D

mobilityRefPosition

tiempo y posicién de una referencia anterior
para permitir a cada vehiculo evaluar la mo-
vilidad del evento, lo cual es necesario para
estimar su relevancia. Contiene el mismo valor
que currentPosition en el caso de que sea un
evento estacionario.

Position4D

lastDiffuserPosition

posiciéon del dltimo vehiculo que retransmitié
el mensaje. Es usado por el protocolo de dise-
minacion.

int

hopNumber

indica el nimero de redifusiones del mensaje.

String

description

describe de forma precisa el evento representa-
do.

String

type

anadido de mi implementacién para agilizar
ciertos calculos. Puede tener los siguientes
valores: {DirectedMobile, DirectedNotMobile,
NotDirectedMobile, NotDirectedNotMobile}.

nt

actorld

anadido de mi implementacién, necesario para
saber a qué plaza de aparcamiento hace refe-
rencia un evento de aparcamiento libre, ya que
si la veo ocupado tengo que hacer caso omi-
so de dicha plaza hasta que me llegue en otro
evento.

Tabla D.1: Estructura de evento VESPA implementada

211

A continuacion se detallan los algoritmos mas importantes de la implementa-
cion.

Algoritmo D.1: Deteccién de un evento
##+# Hilo de ejecucion del médulo Sensor ###

void Sensor.run()
{
while (continueRunning)
Sensor.checkForEvents();
sleep

}

void Sensor.checkForEvents()
{
for all flags
if (distance(flag,yo)<= SIGHT _RANGE)
vespa.generateEvent("Flag",flag.id);

}

void Vespa.generateEvent(String description, int id)

{

currentPosition = obtener ultimo registro del gps

if (evento es dirigido)

directionReferencePosition = obtener vector direccion del gps
else

directionReferencePosition = null;

if (evento es movil)

mobilityReferencePosition = obtener vector movilidad del gps
else

mobilityReferencePosition = currentPosition;

if (listOfEventsByld.containsKey(id)) //serd una actualizacion

oldEventData = listOfEventsByld.get(id);

event = crear nuevo evento VESPA con version = oldEventData.version + 1;
else //serd un nuevo evento

event = crear nuevo evento VESPA

put event on listOfEventsByld list //para diferenciar nuevos eventos de actualizaciones
put event on listOfEventsByKey list //para no procesar retransmisiones de tus eventos
Vespa.DMProcess(event);

212

}

void Vespa.DMProcess(VespaEvent event)
{
EP = calculo de la EP
if (EP >= umbral de difusion)
DataDisseminationManager.disseminate(event);

if (EP >= umbral de almacenamiento)
StorageManager.store(event);

}

void DataDisseminationManager.disseminate(VespaEvent event)
{
distance = distancia entre event.lastDiffuserPosition y mi posicion
waitingTime = Dx(1—(distance/RADIO _RANGE))*1000; //calculo de T en segundos
if (waitingTime<0)
waitingTime = 0;

afiadir evento a la lista listOfEventsPendigToBeSent
programar un temporizador en waiting Time segundos para ejecutar <
DataDisseminationManager.MyTimerTask.run(event);

}

void DataDisseminationManager.MyTimerTask.run()

{

if (listOfEventsPendigToBeSent contiene este evento+version)
DataDisseminationManager.disseminateNow(event);

}

void DataDisseminationManager.disseminateNow(VespaEvent event)

{
event.hopNumber++
event.lastDiffuserPosition = mi posicion
RadioOut.diffusion(event);

/* Si en D" segundos no hemos recibido el mismo evento, debemos reenviarlo ya que
significarad que nadie lo ha recibido. Asi que ponemos de nuevo el evento en la
lista de eventos pendientes de enviar y programamos un envio. Cuando recibamos
el evento, eliminaremos el evento de la lista de forma que cuando el temporizador
finalice ya no estard en la lista de pendientes y no se enviard.x/

afiadir evento a la lista listOfEventsPendigToBeSent

programar un temporizador en D’ segundos para ejecutar <

213

DataDisseminationManager.MyTimerTask.run(event);

}

void RadioOut.diffusion(VespaEvent event)

{

for all {players, redCars, trafficCars, ambulances} diferentes de mi
if (distancia entre el otro actor y yo es menos que RADIO RANGE vy el otro +
actor tiene VESPA habilitado)
elOtroActor.Radioln.eventReception(event);

}

xxx En el sistema VESPA del otro vehiculo #xx

void Radioln.eventReception(VespaEvent event)

{
}

listaDeEventos.addDato(event);

Algoritmo D.2: Recepcion de un evento
##+# Hilo de ejecucién del médulo Radio In #4##

void Radioln.run()
{

while (continueRunning)

{
event = listaDeEventos.getDato();
Vespa.eventReception(event);

}
}

void Vespa.eventReception(VespaEvent event)
{
esNuevo = true;
if (listOfEventsByKey contiene el evento)
oldEventData = listOfEventsByKey.get(event.ukey);
if (event.version <= oldEventData.version)
esNuevo = false;

if (esNuevo)
se afiade el evento a la lista listOfEventsByKey
DMProcess(event);

else
DataDisseminationManager.notDisseminate(event);

214

}

void DataDisseminationManager.notDisseminate(VespaEvent event)
if (listOfEventsPendigToBeSent contiene el evento con la misma version y el <
hopNumber del recibido es mayor que el almacenado)
eliminamos el evento de la lista listOfEventsPendigToBeSent

Algoritmo D.3: Hilo de ejecucion del gestor de almacenamiento
#F#+# Hilo de ejecucion del médulo Storage Manager ##+#

void StorageManager.run()
{
while (continueRunning)
StorageManager.DBMaintenance();
sleep

}

void StorageManager.DBMaintenance()
for all eventos almacenados en cache
EP = calculo de la EP
if (EP < umbral de almacenamiento)
se elimina el evento de la cache

Algoritmo D.4: Hilo de ejecucion del procesador de consultas continuas
##+# Hilo de ejecucion del médulo Continuous Query Processor ###

void ContinuousQueryProcessor.run()
while (continueRunning)
ContinuousQueryProcessor.query(game current sequence);
sleep

}

void ContinuousQueryProcessor.query(int currentSequence)
se vacia la lista listOfRadarPoints del vehiculo
for all eventos de la cache
EP = calculo de la EP

215

if ((EP >= umbral de relevancia) && (event.importance >= umbral de importancia
|| listOfRelevantTypes contiene event.description)
afiadimos la representacion del evento a la lista listOfRadarPoints del vehiculo

El calculo de la probabilidad de encuentro (EP) ha sido desarrollado adaptando
(v arreglando, ya que la version usada no era la final y contenia errores) el algoritmo
del simulador, que aplica la siguiente formula [6]:

100
EP = D.1
axAd+ X At+yxAg+(xc+1 (D-1)

siendo Ad la minima distancia al evento a lo largo del tiempo, At el tiempo hasta
lograr el mayor acercamiento al evento, Ag la diferencia entre el tiempo en que
se ha generado el evento y el momento en que el vehiculo estard mas cercano
al evento, c el dangulo entre el vehiculo y el evento y «, 3, v v (coeficientes de
penalizacion.

D.1.4. Protocolo de reserva

El funcionamiento teérico del protocolo de reserva es el siguiente [5]: El vehicu-
lo que abandona la plaza de aparcamiento se convierte en el coordinador de la
misma. Este envia un mensaje para informar a todos los vehiculos a su alcance
que dicha plaza esta disponible y permanece un tiempo T a la escucha de posibles
respuestas.

Cada vehiculo que esté interesado le respondera al coordinador aportando su iden-
tificador y la informacion necesaria para que el coordinador pueda elegir a qué
vehiculo asignar la plaza.

Cuando el coordinador elija a un vehiculo, le enviara un mensaje notificindoselo,
debiendo éste responder al coordinador confirmando la recepcién del mensaje y
que tomara la plaza de aparcamiento.

Si el coordinador no ha sido capaz de encontrar un vehiculo interesado, se cam-
bia de coordinador. Este proceso lo inicia el actual coordinador, que enviara un
mensaje a los vehiculos cercanos. Los vehiculos que reciban el mensaje (y no sean
ya coordinadores de otra plaza) responderan indicando su estimacion de cuantos
vehiculos cercanos buscan aparcamiento. El coordinador ordenara las respuestas
seglin las estimaciones y contactard con los vehiculos de la lista en orden hasta
que uno confirme la recepcion y pase a ser el nuevo coordinador. En el caso de no
poder realizar este cambio de coordinador, el actual coordinador mantendra este
rol y después de un periodo de tiempo difundira de nuevo el mensaje sobre la plaza
disponible.

216

En la implementaciéon que desarrollada se ha simplificado un poco este proce-
dimiento, pero manteniendo las ideas fundamentales para que el resultado sea, si
bien no idéntico si muy similar.

Las diferencias radican en que, como gracias a las estructuras del mundo de juego,
el vehiculo coordinador puede conocer qué vehiculos a su alcance estan interesados
sin necesidad del intercambio de mensajes, éste proceso se realiza de esta forma
«simulada», enviandose tinicamente el mensaje final, que en este caso contiene la
situacion de la plaza de aparcamiento libre.

El cambio de coordinador también se realiza sin envio de mensajes y ademas se
ha modificado el parametro de ordenacién, que ya no es el nimero de vehiculos
cercanos buscando aparcamiento sino que ahora se realiza una ordenaciéon segin
la lejania al coordinador actual.

Algoritmo D.5: Métodos del protocolo de reserva

enviarCoordinar(datos parking)
{
enviarEvento(datos parking)
si devuelve falso:
cambiarCoordinador(datos parking)
si devuelve falso:
stablecer un temporizador y cuando finalice se ejecutara esta misma funcién.

}

booleano enviarEvento(datos parking)
{
Cuenta VESPAs (en alcance & buscando parking) (*)
Si 0:
devuelve falso
si 1:
Le envia evento Parking (por VESPA)
devuelve cierto
si 24
Busca al que lleve mas tiempo buscando/mas cercano/mayor EP (*)
Le envia evento Parking (por VESPA)
devuelve cierto

}

booleano cambiarCoordinador(datos parking)
Busca el VESPA (en alcance) mas lejano (*)
si existe:
establecer un temporizador en ese coche y cuando finalice se ejecutara <

217

enviarCoordinar(datos parking) (*)
devuelve cierto
sino:
devuelve falso

}

Nota importante: cuando pone (*) significa que es una funcién «trucada» que <
se hace con datos que no conoce VESPA sino que se obtienen directamente del juego.

Para determinar a qué vehiculo asignar la plaza disponible de entre todos los
candidatos, se han elaborado tres estrategias diferentes: aquél que lleva més tiempo
buscando una plaza, aquél més cercano o aquel con una mayor EP.

Esta elecciéon de estrategia viene determinada por una variable del fichero de texto
de configuracion (ParamConfig.tzt) y se aplica a todos los vehiculos con VESPA.

D.1.5. Necesidades de la implementacién

En el desarrollo de la implementacion de VESPA para Vanet-X han aparecido
diversos problemas debido a la necesidad de poder generar eventos «por observa-
ciony (el conductor sera el que los cree al ver un cierto elemento) en lugar de por
generacion propia que seria lo habitual (p.ej. eventos de servicios de emergencia,
accidentes, obstaculos, etc.).

Esta necesidad de generar eventos en base a observaciones viene dada por los even-
tos que informan de la presencia de una bandera objetivo y por los que avisan de
un vehiculo enemigo.

Respecto a los eventos de vehiculos enemigos otra opcion seria asumir que el vehicu-
lo enemigo es robado y tiene el sistema VESPA instalado y activo debido al sistema
antirrobo. En la implementacion realizada se han tenido en cuenta las dos posibi-
lidades y la eleccion del método a utilizar es una variable configurable en el ment
de opciones de VESPA.

Para permitir la generacion de eventos mediante observacion se ha incorporado
un método de calcular los vectores de movilidad y direccion de forma externa y
también un método para diferenciar si el evento que se ha de crear es un evento
inédito o es una actualizacion de otro previamente creado (por el mismo sistema).

El método para distinguir entre nuevos eventos y actualizaciones consiste en
que cada vez que se genere un nuevo evento hay que almacenar sus datos en una
estructura indexada por el identificador del objeto al que representa (una bandera,
otro vehiculo o a si mismo). De esta forma, si se trata de un evento «de posiciony
(«jugadory, «servicio de emergencia» o «enemigoy», ya que son los tnicos que
pueden actualizar su posicion), antes de la generacion del evento se ha de revisar
esta estructura para comprobar si ya existe una entrada para el objeto en cuestion,

218

en cuyo caso deberemos crear una actualizacion.

El método para calcular el vector de direccion (mostrado en el Algoritmo D.6)
consiste en acceder a los datos guardados de la ultima actualizacion del evento
(almacenado en la estructura indexada creada como solucion del problema ante-
rior) y usar estos datos para calcular el valor de directionReferencePosition. Esto
se realiza calculando la distancia entre el valor almacenado de dicha variable y
la posicién actual, de forma que si es menor que una distancia determinada se
devuelve dicho valor antiguo pero si es mayor se devuelve la posicion actual.

De esta forma se consigue que se vaya actualizando el vector cada cierta distancia.
El método para el cilculo del vector de movilidad es andlogo a éste.

Algoritmo D.6: Obtencion del vector direccion

Position Vespa.getMyDirectionVector(Position currentPosition,
Position directionReferencePosition)

if (directionReferencePosition == null ||
distancia(currentPosition,directionReferencePosition)
>= TRAVELHISTORYDIRECTIONMINDIST)
return currentPosition;

else
return directionReferencePosition; //el valor antiguo

D.1.6. Atascos (elaborados para el aprovechamiento de VES-
PA)

Se ha incluido este apartado dentro de la seccién dedicada al sistema VESPA
ya que la inclusion de los atascos en el mundo de juego estd completamente ligada
a este sistema.

Se ha realizado una implementacion realista desde el punto de vista del jugador
pero que no lo es tanto desde el punto de vista de los vehiculos del trafico contro-
lados por el computador, ya que tienen acceso a una lista comin de segmentos de
calle en situacion de atasco en lugar de tener listas separadas conforme reciben los
eventos.

A continuacién se explican las ideas generales seguidas en la implementacion
realizada.

La notificacion de un atasco se produce cuando un vehiculo del trafico lleva méas de
10 segundos sin moverse (sin estar aparcado), por lo que se presupone que puede
formar un embotellamiento y se avisa de ello.

219

Dicho aviso se realiza mediante la creacion y emision de un evento VESPA, de tipo
«accidente», que se mostrara en el radar de los vehiculos de los jugadores.

Los vehiculos del trafico evitan los atascos al calcular su ruta mediante el algoritmo
de path-finding. Para realizar esto los datos del evento VESPA no son suficientes
sino que se necesita el segmento exacto donde tiene lugar el atasco. Por este motivo
se utiliza una lista global donde se almacenan los atascos que existen actualmente,
de donde los vehiculos del trafico pueden obtener los datos necesarios para evitar
dicho atasco correctamente. A pesar de que en ese aspecto no dependen de los
eventos recibidos por VESPA, en realidad si que los dependen ya que es solo
cuando reciben un nuevo evento de atasco cuando recalculan la ruta actual.

Con esta implementacion relativamente sencilla y parcialmente realista se logra
incluir los atascos en el mundo de juego de forma que pueden ser utilizados para
mostrar las ventajas que supone contar con un sistema como VESPA.

En la Figura D.9 se observa la ejecuciéon de una version de desarrollo de Vanet-X
en la que en el radar se muestran en rojo los segmentos de calles notificadas como
atasco.

Score: 0{1st)
Health:
Smoke:

Chemin des Alliés

Figura D.9: Atascos representados en el radar (en negro)

220

D.2. Anadidos para la explotaciéon

En esta seccion se explicard en detalle diferentes aspectos relacionados con
la explotacion del juego como método de evaluacion de estrategias de gestion de
informacion. Estos aspectos son: el servidor dedicado, el servidor de recogida de
estadisticas y el sistema de generacion de estadisticas.

D.2.1. Servidor dedicado

Como en la mayoria de los juegos en linea, en Vanet-X se ha implementado la
idea de contar con un servidor dedicado que pueda dejarse en permanente funcio-
namiento en un computador (generalmente con mejor potencia y ancho de banda
de lo habitual en un ordenador doméstico), de forma que los jugadores puedan
unirse a dicho servidor.

El funcionamiento es el siguiente: existe un proceso (Master server) que esta
siempre en funcionamiento y que acepta las peticiones de conexion de los clientes.
Con cada peticion, este proceso comprueba si ya esta creada una instancia del lado
servidor de Vanet-X, creandola si no existia. Posteriormente devuelve al cliente el
puerto a través del cual se podrd unir a la partida.

Dicha instancia del servidor finalizara cuando se acabe la partida (por lograr
o fallar los objetivos) o se hayan desconectado todos los jugadores. De esta forma
no hace falta tener permanentemente una partida en marcha con el consumo de
CPU que conlleva sino que se iniciard y finalizara cuando sea necesaria.

Ademas, el proceso Master server esta disenado a prueba de fallos! de for-
ma que aunque tenga lugar un error critico en el servidor, el proceso se reinicie
automéaticamente y vuelva a estar a la espera de nuevas peticiones.

Al ejecutar el servidor dedicado, se requerira que el usuario seleccione la carpeta
de juego, donde se almacenaran las estadisticas y de donde se obtendran los escena-
rios disponibles y la configuracion y parametros que se usaran al crear el servidor.
Posteriormente, también se requererird que se seleccione cual sera el escenario que
se usara para la partida.

Salvo la situacion del directorio de juego, que es fija para toda la ejecucion
del servidor dedicado, los demas parametros pueden ser modificados mediante dos
métodos:

1. El primer método para cambiar esta configuraciéon y pardmetros es obtener
acceso al computador en el que funciona el servidor dedicado y sustituir los

ISalvo fallos de la Maquina Virtual Java

221

archivos correspondientes del directorio de juego.

El fichero paramConfig.txt puede ser editado con un editor de texto, pero
para realizar cambios en la configuracion (fichero config) el método consiste
en iniciar un servidor normal (como si fueras a jugar), en los menis realizar
los cambios deseados, dandole siempre a guardar cambios, y -muy importante
si se cambia el modo de juego- iniciar la partida. Una vez iniciada se puede
cerrar la aplicacion cuando se desee, pero este paso es basico ya que los
cambios realizados en el modo de juego solo se guardan al darle al boton de
iniciar la partida.

Para las situaciones en las que no se puede tener acceso directo al direc-
torio de juego del servidor dedicado, se ha creado un terminal que se usa
para comunicarse mediante comandos con el servidor dedicado mediante el
protocolo TCP/IP y que tiene las siguientes opciones:

» cambiar el escenario que se usara al crear el servidor (no se cambia el
escenario de la partida en curso): el terminal recibe el listado de los
escenarios disponibles y envia tu eleccién al servidor dedicado.

» modificar la configuracion del juego (fichero config): se pide al usua-
rio que introduzca uno a uno los nuevos valores deseados, mostrandole
previamente los valores actuales.

» modificar la configuracion de VESPA (fichero config):: de igual forma
que el anterior.

» modificar los parametros (fichero paramConfig.tat):: de igual forma que
el anterior.

= recuperar los ficheros de estadisticas generados, decidiendo el usuario si
desea conservar los ficheros en el servidor o eliminarlos.
Para poder realizar estas acciones es necesario que el usuario del terminal

introduzca una contrasena establecida al crear el servidor dedicado.

El servidor dedicado estda implementado de forma conjunta con el resto del

juego, siendo necesario ejecutar el juego con los pardmetros -dedicated puerto_-
maestro puerto_partida contraseiia, donde el primer argumento indica en que
puerto estara a la escucha de nuevas conexiones de los clientes (este es el puerto
que deben conocer los clientes), el segundo indica el puerto en el que se creara la
partida y el tercero la contrasena que se pedird cuando se intente acceder desde el
terminal.

Asimismo, el terminal, que también esta implementado de forma conjunta,
puede ser accedido ejecutando el juego con los parametros -terminal IP puerto,
debiendo coincidir los dos argumentos con la direccién y puerto en los que funciona
el proceso servidor dedicado. La contrasena de acceso es requerida posteriormente.

222

A continuacién se muestran la estructura del c6digo usado para el servidor dedi-
cado (Algoritmo D.7) y las interacciones esquematizadas entre el cliente, el servidor
y el servidor dedicado (figuras D.10, D.11 y D.12).

D.2.2. Servidor de recogida de estadisticas

Uno de los objetivos de este Proyecto Fin de Carrera es recoger estadisticas
acerca del uso y funcionamiento del sistema VESPA. Por ello, hay que desarrollar
un método por el cual se puedan obtener dichas estadisticas atin cuando la par-
tida no se desarrolle en los servidores dedicados sino en partidas creadas por los
usuarios.

La forma de realizar esto es que el servidor, al finalizar la partida, después de
generar los ficheros de estadisticas los envie a un servidor externo que se encargara
de recogerlos y almacenarlos. A dicho servidor externo se le llamara Statistics
server

La estructura del codigo del servidor de recogida de estadisticas se muestra en
Algoritmo D.8 y Algoritmo D.9.

Cada servidor tiene definido un puerto y una direccion DNS dindmica, modifica-
ble en ParamConfig.txt, al que se conectard para enviar los ficheros de estadisticas
después de crearlos.

El Statistics server, cada vez que se inicie, actualizara la direccion IP a la que
apunta dicha direcciéon DNS dindmica, haciendo uso de de la API asociada al
servicio.

El almacenamiento de los ficheros en cada servidor local se realiza almacenando
todos los ficheros creados durante la partida en un directorio cuyo nombre es la
fecha y la hora de inicio de dicha partida en formato «aaaa_mm_ dd hh_mm_ ss»
(ver seccion D.2.3 para mas detalles). Sin embargo, esta solucion no es vélida para
el Statistics server ya que puede recibir los datos de varias partidas con fecha y
hora coincidentes.

Por esta razon se ha decidido que cada cliente envie al Statistics server un identi-
ficador tnico (haciendo uso de la clase java.util. UUID) que se tome como nombre
del directorio. Este identificador cambia cada vez que se inicia una nueva partida
y no coincidira con los de otros clientes por lo que es una eleccién 6ptima para ase-
gurar que cada directorio contenga tinicamente los ficheros enviados por el cliente
que le corresponde.

Al igual que el servidor dedicado, el servidor de recogida de estadisticas esté
implementado de forma conjunta con el resto del juego, siendo necesario para su
uso ejecutar el juego con el parametro -statserver.

223

Algoritmo D.7: Estructura del servidor dedicado

inicializar directorio base
elegir escenario
cargar parametros y configuracién
while (continuar)
inicializar servidor TCP
while (continuar)
aceptar cliente
if (peticion terminal)

{

Ejecucién paralela (en nuevo hilo):
recibir contrasefia
if (contrasefia correcta)
recibir tipo de peticidn
procesar peticién

else

{

if (no hay partida creada)

{

crear una partida nueva

}

enviar puerto del juego a cliente

}
¥

cerrar servidor TCP

}

224

Cliente Servidor Servidor
Maestro

pide puerto partida
comprueba si existe

— el servidor

existe el servidor

devuelve puerto
partida
g

se conecta a partida
o pide informacion

Figura D.10: Esquema conexion con servidor dedicado (hay una partida en curso)

. Servidor :
Cliente Servidor
Maestro
pide puerto partida
comprueba si existe
E— el servidor
. —>
: el servidor no
= responde
" crea el servidor
>
" servidor se
" inicia
servidor listo
devuelve puerto I
partida
<
- —
se conecta a partida
o pide informacion

Figura D.11: Esquema conexion con servidor dedicado (no hay ninguna partida en
curso)

225

Cliente Servidor

pide puerto partida

devuelve puerto
partida
<

\>

se conecta a partida
o pide informacion

Figura D.12: Esquema conexidén sin servidor dedicado

Algoritmo D.8: Estructura del servidor de recogida de estadisticas

Crear carpeta destino
while (continuar)
inicializar servidor TCP
while (continuar)
aceptar conexion
crear hilo para el manejo de esa conexion

}

cerrar servidor TCP

}

Algoritmo D.9: Estructura del hilo que maneja la conexion (Statistics server)

recibe el identificador del cliente

recibe el tipo de estadistica que se enviara
recibe la estadistica del tipo especificado
escribe la estadistica en fichero

cierra conexion

226

D.2.3. Estadisticas

Uno de los objetivos de este Proyecto Fin de Carrera es poder recoger estadis-
ticas de VESPA y otros aspectos para poder analizarlos posteriormente. Para ello,
se obtienen diferentes tipos de estadisticas: del juego, de VESPA y de las tareas de
aparcamiento. Todas estas estadisticas se generan en diversos ficheros de texto, al-
macenados en una misma carpeta con un nombre tnico e identificativo, junto a los
cuales también se genera un fichero de texto adicional que incluye los pardmetros
de configuracion actuales, para asi poder replicar la prueba en un futuro.

La estructura de almacenamiento de dichos ficheros se puede observar en la
Figura D.13.

) Stats
= CurrentConfigInfo.txt

= gameStats.txt

= Player parking.txt

= Traffic parking.txt

=1 VESPA

= ALL vehicles.txt

= vehicle (player) id.txt

. vehicle (traffic car) id.txt

Figura D.13: Estructura del directorio de estadisticas

A continuacién se detalla el contenido de cada tipo de fichero de estadisticas
creado:

« CurrentConfigInfo.txt»: contiene todos los valores de los parametros (fichero
«ParamConfig.tzt») y de la configuracion (fichero «config») usados, asi como
también el tiempo de ejecucion de la partida. Ver Figura D.14.

«gameStats.txt»: contiene las estadisticas propias del juego, indicando para ca-
da jugador: puntuacion, equipo al que pertenece, uso del sistema de compar-
ticion de datos (VESPA) y nivel de habilidad del jugador. Ver Figura D.15.

«Player parking.txt»: precedido por una leyenda, contiene las estadisticas de
los aparcamientos logrados por los vehiculos controlados por los jugadores,
a razéon de un aparcamiento por linea e incluyendo para cada aparcamiento:
identificador del vehiculo, tiempo que ha costado aparcar segtn el reloj del
sistema (valor tinicamente orientativo, ya que no es fiable en ordenadores
poco potentes en los que el juego funcione con cambios bruscos de fotogramas

227

& CurrentConfiginfo.txt - Bloc de notas

grchivo Edicion Formato YWer Awuda

Execution time: 0:10

——————————————— CURRENT COMFIG ——————————————

Map address: UvHC Université de valenciennes et du Hainaut Cambrésis Les
Map size: 0.7908B5574888710593 km2

Game mode: Special parking mode
Players: 1

Traffic cars: 10

Enemy cars: 4

Intermission time: 3 s.

Capture and task modes time Timit: 300 s.
survival mode time 1imit: 120 s.

Fercentage of VESPA usage: 50%
manual sighting enabled: false
Radio range: 200 m.

sensor update interwval: 2.0 s.
Sight range: 40 m.

Storage manager update interval: 30.0 s,
Continuous guery processor update dnterval: 2.0 s.
Flag importance: 0.0

Redcar importance: 0.0

Flayer dmportance: 0.0

ohstacle importance: 1.0
Emergency service importance: 1.0
Parking Tmportance: 0.0

Accident dimportance: 1.0

0D: 1.0 s.

D': 2.0 s.

rRelevance threshold: 0,73
piffusion threshold: 0.75

Storage threshold: 0.6

Importance threshold: 0.5

Alfa: 6.6606666E—4

Beta: 0.0055555557

Gamma: 0.0Q027777778

Zeta: 0.0037037036

Parking protocol: EP

Parkings: 10

vehicles searching: 10

wolfson methaod: false

Fixed qarking time: 20 s.

variable parking time: 20 s.

Parking radius: 500 m.

——————————————— EMD OF CURREMT COMNFIGE ———————————————

Figura D.14: Ejemplo de contenido del fichero « CurrentConfigInfo.txt»

! pameStats.ixt - Bloc de notas

Archivo Edicion Formato Yer Awyuda

pi ck Score Team vespa enahled ski11
Han 0 1 True 0.02al7801

Figura D.15: Ejemplo de contenido del fichero «gameStats.txty

228

por segundo), ciclos de juego que ha costado aparcar, indicador de uso del
sistema de comparticion de datos (VESPA), indicador de si el aparcamiento
se ha realizado en una plaza indicada por el protocolo de aparcamiento de
VESPA y, por tltimo, protocolo de aparcamiento usado (Ninguno, segin
Encounter Probability (EP), segun tiempo de buisqueda o segin distancia).
Ver Figura D.16.

B Player, parking.txt - Bloc de notas E@g|

archivo Edicion Formato Wer Awuda
H* LEGEND ExXPLAMATION #

wehicle id:
the identificator number of the wehicle
Time elapsed:
how many time the vehicle spent searching for a parking (in system clock time)
Frames elapsed:
how many frames the wvehicle spent searching for a parking (the game s designed to
work at 25 frames per second)
This measuring unit is more reliable for slow computers
D35 enabled:
shows if the wehicle uses a data sharing system
Parked in a parking shown by DSS:

true if the parking where the vehicle parked was shown by ts data sharing system
#o———————— #

vehicle id Time elapsed Frames elapsed DSs enabled Parked in a parking shown by
D55 protocal

1 56.141 1403.0 Tfalse false 3

1 0.829 245.0 false false 3

1 38.016 B850.0 false false 3

1 18.781 465.0 false false 3

1 50,14 1253.0 Tfalse false 3

Figura D.16: Ejemplo de contenido del fichero «Player parking.txt»

«Traffic parking.txt»: idéntico al anterior pero conteniendo los aparcamientos
logrados por los vehiculos controlados por el computador. Ver Figura D.17.

Estadisticas VESPA: respecto a las estadisticas relacionadas con VESPA, se
genera un fichero por cada vehiculo dotado de dicho sistema y un fichero
adicional que recoge la suma de todos los datos de todos los anteriores fiche-
ros.

Los ficheros tienen la siguiente estructura (ver Figura D.18):

= Nimero de eventos detectados por el vehiculo.
= Nimero de eventos creados que sean nuevos respecto del total.

= Nimero de eventos creados que sean actualizacion de eventos pasados
respecto del total.

= Total de eventos procesados.

= Del total de eventos procesados, cantidad y porcentaje de eventos en-
viados al médulo de diseminacion.

229

I Traffic parking.txt - Bloc de notas g@g|

Archivo Edicion Formato Wer Awuda
LEGEND ExXFLANMATION # -~

wvehicle 1d:

the identificator number of the wehicle

Time elapsed:

how many time the vehicle spent searching for a parking €in system clock time)
Frames elapsed:

how many frames the wvehicle spent searching for a parking (the game s designed to
work at 25 frames per second)

This measuring unit is more reliable for slow computers

0SS enabled:

shows 1f the wvehicle uses a data sharing system

Parked in a parking shown by DSS:

true if the parking where the wvehicle parked was shown by ts data sharing system
e e B e e e e e #

vehicle id Time elapsed Frames elapsed 055 enabled parked in a parking shown by
Dss Protocal

19679991 3.203 10.0 true false 3

21356007 6.406 90,0 true false 3

G871020 6,64 06,0 false false 3

36071546 11.281 212.0 true false 3

32239016 13,281 262.0 True false 3

4391908 18,719 398.0 true false 3

26540814 47,281 1112.0 True true 3

635756 50.234 1186.0 false false 3

21500561 47.281 1182.0 false false 3

27130050 51.11 1208.0 true false 3

13694207 2,313 58.0 false false 3

19422668 92,078 2232.0 True true 3

28936750 94,0953 2304.0 fTalse falge 3 w

Figura D.17: Ejemplo de contenido del fichero « Traffic parking.txt»
= Del total de eventos procesados, cantidad y porcentaje de eventos que
se han almacenado.
= Nimero de eventos recibidos que sean nuevos respecto del total.

= Nimero de eventos recibidos que ya se hubieran recibido con antelacién
respecto del total.

» Tiempo medio de espera antes de la redifusion de un evento.
= Numero de redifusiones.

» Niamero de cancelaciones de redifusion (por haber recibido el mismo
evento de vuelta)

s Namero de eventos eliminados de la caché de almacenamiento.

= Numero de eventos eliminados de la caché en cada operacién de man-
tenimiento.

= Nimero de operaciones de mantenimiento de la caché efectuadas.

= Numero de eventos mostrados al conductor.

= Numero de eventos mostrados al conductor en cada operacion query.
= Numero de operaciones query efectuadas.

s Numero maximo de eventos almacenados en la caché.

230

B ALL vehicles.bx - Bloc de notas

Archivo Edicion Formato Wer Awuda

Events detected by sensor

58

Created events that are "nowel events"

62 of 115 (53, 51%)

Created events that are "update events"

5% of 115 (46, Q9%

Total processed events

1588

Events sent to dissemination

1316 of 1588 (82,87%)

Events sent to storage

1501 of 15858 (94, 52%

Movel events received

1473 of 13703 (10,75%)

Repeated events received

12230 of 13703 (89,25%)

Average waiting time before rediffussing (T2
430,52 ms

Events actually sent

2428 of 3661 (6H,20%)

Events actually not sent (hecause we receive back the same event)
1234 of 3681 (33,71%)

Cache events deleted

31

Cache events deleted in sach maintenance operation
0,65 (1,85%% of total cached events)

Times called cache maintenance operation

48

Events shown to the driwver

G985

Events shown to the driver in each guery operation
26,08 (B4,00% of total cached events)

Times called guery operation

37

Cache maximum size

a1

Parking protocol: number of petitions asking if interested
7H

Parking protocol: number of responses answering interested

garking protocol: number of coordinator changes

garking protocol: number of petitions and responses for changing coordinator
E?ta1 parking protocol ewvents (except "Parking” ewvent)

Total events (including parking protocol events)

13796

Events shown regarding events processed Conly players)
111 of 112 ¢99,11%)

FParkings shown

3 of 37 (100, 00

vESPA parkings achiewved

1 of 1 ¢100,00%)

VESPA parkings not achiewved

0 of 1 C0,00%)

Figura D.18: Ejemplo de contenido del fichero «ALL vehicles.txt»

231

= Numero de peticiones del protocolo de aparcamiento preguntando por
vehiculos interesados en aparcar.

= Nimero de respuestas del protocolo de aparcamiento indicando el inte-
rés del vehiculo en aparcar.

= Nimero de cambios de coordinador del protocolo de aparcamiento.

= Nimero de peticiones y respuestas del protocolo de aparcamiento en la
bisqueda de nuevo coordinador.

= Total de eventos del protocolo de aparcamiento exceptuando los eventos
Parking.

= Nimero total de eventos incluyendo también los del protocolo de apar-
camiento.

= Nimero de eventos considerados relevantes para el conductor respecto
a los procesados.

= Nimero de eventos de aparcamiento mostrados respecto del total de
eventos creados.

= Namero de plazas de aparcamiento indicadas por VESPA logradas.

= Namero de plazas de aparcamiento indicadas por VESPA no logradas.

D.3. Rendimiento del juego

El rendimiento del juego depende de los siguientes aspectos: nimero de jugado-
res, nimero de vehiculos del trafico y vehiculos enemigos, modo de juego, nimero
de nodos del escenario escogido y uso del sistema VESPA. Todos estos aspectos
se pueden modificar en la configuracion de la partida, de forma que los usuarios
con ordenadores menos potentes pueden variar la configuracion para conseguir un
buen rendimiento. Ademas, en el fichero de configuracion ParamConfig.txt se han
habilitado dos pardmetros para desactivar el fondo dindmico de los menis y para
deshabilitar el uso de transparencias en el juego: «Low CPU usage menu» y «Di-
sable in-game transparenciesy, lo cual incrementa notablemente el rendimiento en
ordenadores poco potentes.

En las figuras D.19 y D.20 se puede observar el uso de CPU y de memoria
utilizado para algunas de las configuraciones mencionadas en el capitulo 3.8.

Al tratarse de un juego en red es importante conseguir un tamano reducido de
los paquetes de red enviados. En la tabla D.2 se observa las cantidades minima
y méaxima de datos requeridos por cada tipo de elemento enviado en red. Estos
datos se refieren a los paquetes enviados por el servidor a cada cliente. El tamano

232

Servidor Cliente

s09 s0%
0% 40%
309 309
20% 20%
10% 10%
0% o . RAN. [

40 ME

E

30 ME

28 ME - 25 ME
20 M | 20 me
15 ME /\/W/ANW[\MW 15 ME
10 ME 10 ME
She| _— sme
1me

0 ME

235530 23500 235 235530 23500 235

Figura D.19: Rendimiento con servidor dedicado para la configuracion: 2 jugadores,
25 trafico, 4 enemigos, mapa «Trementinesy. Arriba: uso CPU (naranja), abajo:
uso de memoria (azul).

de los paquetes enviados por los clientes al servidor es fijo y es de 58 B/ciclo (1,45
KB/s).

Minimo Maéaximo

B/ciclo | KB/s | B/ciclo | KB/s
Jugador 17 0.42 39 0.97
Trafico 13 0.32 35 0.87
Enemigo 13 0.32 35 0.87
Ambulancia 12 0.3 34 0.85
Parking 9 0.22 23 0.57
Bandera 8 0.2 22 0.55

Tabla D.2: Tamafio minimo y méximo de envio en red (servidor — cliente) segiin
tipo de elemento

233

1003 4
0%
A%
F 0%
B0

B0

.
S
-
o)
A , A A

0% T

125 ME

100 ME

75 ME A

50 ME

25 ME

0 mMe

160500 150930 18:10:00 18:10:30

Figura D.20: Rendimiento con servidor no dedicado para la configuracion: 1 ju-
gador, 50 trafico, 8 enemigos, mapa «Trementinesy. Arriba: uso CPU (naranja),
abajo: uso de memoria (azul).

234

Anexo E
Articulo IMMOoA’13

En este anexo se adjunta una copia del articulo presentado para el workshop
IMMoA’13 (International Workshop on Information Management for Mobile Ap-
plications), realizado conjuntamente con Sergio Ilarri y Eduardo Mena.

235

236

Vanet-X: A Videogame to Evaluate Information
Management in Vehicular Networks

Sergio llarri
[IS Department
University of Zaragoza
Zaragoza, Spain

silarri@unizar.es

ABSTRACT

Vehicular Ad Hoc Networks (VANETS) are attracting con-
siderable research attention, as they are expected to play
a major role for Intelligent Transportation Systems (ITS).
Thus, according to a recent survey by ABI Research®, about
62% of new vehicles will be equipped with vehicle-to-vehicle
(V2V) communications by 2027. Vehicular networks offer
new opportunities for the development of interesting mobile
applications for drivers, but at the same time they also bring
challenges from the data management point of view. Thus,
for example, techniques should be developed to estimate the
relevance of the information exchanged among the vehicles
and to propagate the relevant data in the network efficiently
and effectively. As testing the proposals in a real large-scale
scenario is impractical, simulators are often used.

In this paper we present Vanet-X, an online multiplayer
driving videogame that we have developed to help in the
difficult evaluation task of data management strategies for
VANETSs. The idea behind the proposal is to exploit the
potential of players around the world driving vehicles in the
videogame to effortlessly collect data that can be used to
extract some conclusions and fine-tune the proposed data
management strategies. So, for example, the videogame
allows to evaluate if a certain data management strategy
is able to provide useful information to the driver/player
(i.e., if the presented information represents an advantage
for him/her). We argue that this videogame can be a good
complement for existing simulators. As a proof of concept,
we have performed some preliminary tests that show the
potential interest of the proposal.

1. INTRODUCTION

The widespread availability of mobile devices and the de-
velopment of wireless communication technologies (such as
Wi-Fi, WAVE, etc.) have encouraged the development of

"http://wuw.abiresearch.com/press/

v2v-penetration-in-new-vehicles-to-reach-62-by-202.

Eduardo Mena
[IS Department
University of Zaragoza
Zaragoza, Spain

emena@unizar.es

Victor Rujula

[IS Department
University of Zaragoza

Zaragoza, Spain

han.vikktor@gmail.com

services for drivers within the context of Intelligent Trans-
portation Systems (ITS). In particular, Vehicular Ad Hoc
Networks (VANETs) have become an attractive research
area [1, 14, 15, 20, 24, 26, 30]. In these vehicular net-
works, the vehicles can exchange information directly by us-
ing short-range wireless communication technologies. This
decentralized architecture provides some advantages over
other solutions such as the use of 3G communications: e.g.,
no need of an infrastructure, quicker transmission of safety-
related data in the vicinity, localized communications with-
out the need of a centralized server, and free of charges
(which also encourages the participation of peers in the net-
work). Numerous types of events can be relevant for drivers
(e.g., accidents, traffic congestions, an ambulance asking the
right of way, available parking spaces, etc.). These events
can be exchanged in the vehicular network and stored lo-
cally by the vehicles. Then, a query processor can periodi-
cally evaluate the interest of those events and decide if they
should be shown to the driver; there may be implicit queries
(e.g., information about an accident in the direction of travel
will be relevant for any driver) and explicit queries (e.g., a
driver may indicate his/her interest in finding an available
parking space or in receiving information about other spe-
cific types of events).

However, although VANETS offer interesting opportuni-
ties for the development of data services for drivers, they
also bring new challenges. Thus, several difficulties arise
from the point of view of data management [5]. As an ex-
ample, estimating the relevance of events in order to dis-
seminate them effectively and efficiently in the network is
a challenge [2]. Similarly, disseminating information about
a scarce resource (e.g., an available parking space) to many
vehicles can lead to competition situations among them to
try to reach the resource [7]. As a final example, the rele-
vance of events must also be considered in order to decide
if a specific event received by a vehicle should be shown to
the driver or not [3].

A big challenge is how to evaluate the data management
techniques proposed. Evaluating them in a real scenario
with a significant number of vehicles is simply impractical
and expensive. Therefore, simulations are frequently used
in this field. However, even with simulations the evalua-
tion task can be very time-consuming. For example, many
proposals depend on a number of parameters that can be
fine-tuned for a given scenario (e.g., see [2, 31]), and de-
termining a good choice of parameters for general evalua-
tion is quite challenging. On the other hand, crowdsourcing
strategies where users play the role of drivers could help to

introduce human behavior and facilitate new tests initiated
by the users themselves.

So, in this paper we propose a complementary approach
that can be used in conjunction with the use of simulators.
In particular, we argue that we can benefit from players hav-
ing fun with a driving game to easily collect interesting data
that can be used to extract some conclusions and fine-tune
the proposed data management strategies. The videogame
is inspired by the classic videogame Rally-X (http://www.
klov.net/game_detail.php?game_1id=9259, videogame re-
leased in 1980) but it is a new development, with different
goals, game modes, and spirit. So, the basic idea is that
the vehicles can receive information through the vehicular
network and different data management techniques can be
plugged in the videogame (e.g., different data dissemination
strategies). Data received from other vehicles, if evaluated
as interesting by the local query processor in the car, are
shown on a radar and can provide a competitive advantage
to the player. During the game, a variety of data are col-
lected (e.g., number of messages received by the vehicles,
network overhead, time required by the vehicles to complete
their goals in the game, etc.), that can be analyzed later. So,
while playing, players contribute to collect data for a variety
of scenarios, and these data can be exploited to evaluate the
effects of particular data management strategies.

The structure of the rest of this paper is as follows. In
Section 2 we describe the high-level architecture of the video-
game and its features. In Section 3 we summarize the main
behaviors implemented for the computer-managed vehicles.
In Section 4 we present some basic aspects about the way the
data are collected for later analysis. In Section 5 we present
the results of the first experiments that we have developed
as a proof of concept. In Section 6 we present some related
work. Finally, in Section 7 we present our conclusions and
some lines of future work.

2. ARCHITECTURE AND FEATURES

Vanet-X is a car videogame that can be played by multiple
players connected to the Internet (see Figure 1 for a snapshot
showing parking spaces).

2.1 Main Features

We summarize some features of the game as follows:

BEX
Score: 130 (1st) 87
Health: | € "

Rue Marc Lefrancy

Figure 1: Cars and parking spaces in Vanet-X

e [t is implemented in Java as a Java applet, so only a
Java Virtual Machine and a browser is needed to play.
A desktop application version is also available.

Both real (human) and computer-controlled players
can participate in the game. Human players can join
a game through the Internet.

The game can be configured to execute on a server and
create new games when necessary. Alternatively, the
computer of any user can play the role of a server and
start a new game that other users can join.

Any real map can be used in the game, by selecting
and downloading the data of the desired area from
OpenStreetMap (http://www.openstreetmap.org/).

To increase the playability, real maps are combined
with some extra elements, such as enemy cars, smoke
emission devices to disturb enemies (see Figure 2), evo-
lution of events in game time rather than in real-world
time, higher maximum speeds for cars controlled by
humans, when the driver has a task to go to a certain
building he/she has to park nearby and then go by foot
to the destination (he/she will be a vulnerable target
for enemy cars, that will try to hit him/her, as shown
in Figure 3), the car can get damaged and be repaired
by paying a certain price (points accumulated during
the game), there is infinite or limited fuel depending on
the game mode (requiring refueling in a petrol station
when running out of fuel in the second case), etc.

BEX

Score: 200 (1st)

Health: £ "

Rue Menneveux

EEX

Score: 362 (1st) B
Health: | €
Smoke:

Rue de Chateaubriand

Figure 3: Driver going by foot

A wide range of game modes is available (see Table 1).
Thus, for example, we offer games where the goal is
to collect some items along the roads, and task-based

games where the players have to complete a series of
goals in sequence (with tasks such as parking the ve-
hicle, going to a certain building/business or address,
etc.) as soon as possible to win the game. As shown
in the table, some game modes can be cooperative,
competitive, or both. For the tasks implying going
to a certain location, the task may require reaching
that location with the car, park and then get there by
foot, or just park as near as possible (in this last case,
the score for completing the task will be inversely pro-
portional to the distance between the parking location
and the final destination). Competitive games involves
from 1 to 4 teams in the game, being the winner the
team that obtains more points during the game.

Possibility to
get out of the
car and walk

Infinite
fuel

Multiplayer

Game mode
mode

Inmortal

Capture the flag cooperative

(capture 5 flags) competitive ne no configurable
Capture the cooperative

?:De::)y cars (1 or competitive yes no no
Solve tasks (1-3 cooperative N

asks) compatitive no yes configurable
Survival (1 or 2 cooperative N

tasks) competitive no yes configurable
Park (find one

available parking competitive yes yes no

spot)

Table 1: Summary of game modes

e Some default data management strategies, inspired by
the work performed in the VESPA project [2, 3, 4, 6,
7], have been implemented. Different tuning parame-
ters can be modified through the graphical user inter-
face of the videogame (see Figures 4 and 5). Moreover,
the design of the videogame allows an easy integration
of other data management alternatives.

VanetX

BEX

" Storage Manager
VESPA configuration Updatesimtenyalis &
s
v 5 Continuous Query Proc
Update interval:
Advantage f using VES -~
Event type

Percentage of cars s0%
equipped Wwith VESPA sl

M Manual sighting of enemies and other players

M[Expert configuration

Recided
Radio
Radio range: 200

Mega-expert config:

Restore default Undo changes Save set
and go back

settings

Figure 4: Data management: basic options

e There is a “radar” (e.g., on the right part of Figure 2
we show a basic radar, and on the right part of Fig-
ure 1 a radar in debug mode that shows some extra
elements about the scenario) that can provide some
information to the players. For example, a player can
see the following on the radar: his/her location, the
petrol stations, and the destination location (if any).
Besides, if the option to use a data sharing strategy for
that vehicle has been enabled, it will also show data
about interesting events received from other vehicles,
such as free parking spaces, enemy vehicles, items to

Vanet-X

VESPA configuration (Expert)

Allocator Scarce Resources

Delay: B

Relevance Evaluater

Restore default | Undo changes | |

Save settings
settings and go back

and go back

Figure 5: Data management: advanced options

pick up (e.g., flags in Figure 6), priority vehicles like
ambulances, etc.

Score: 0(1st)
Health:
Smoke:

Cours des Cinquante Otages

Figure 6: Picking up flags during the game

From a more technical point of view, we have used the
Java programming language to develop the video game. Be-
sides, some auxiliary libraries have been useful. For exam-
ple, we use Apache Xerces2 Java (http://xerces.apache.
org/#xerces2-j) to extract data from the XML files ob-
tained from OpenStreetMap, JLayer (http://www. javazoom.
net/javalayer/javalayer.html) to decode and reproduce
MP3 files for the game music, Guava-12.0 (https://code.
google.com/p/guava-libraries/), etc.

2.2 Basic Architecture

The basic architecture of the videogame is presented in
Figure 7 (the part concerning the collection of statistics
about the game is not shown here, as it will be described in
Section 4). At a high-level, we can briefly describe the main
components as follows:

e A client application receives commands from the player,
sends them to the server, and receives from the server
information about the objects that should be rendered
on the screen (see Figure 8).

e The server receives the input from the clients, up-
dates the current status of the game (e.g., by consider-
ing the movements performed by the vehicles and the
tasks that they complete), and generates new goals and
events as needed (see Figure 9). The server is multi-
threaded, with a thread per vehicle that performs a

CLIENT-SIDE
ClientApplication

A

TCP/UDP

SERVER-SIDE

GoalsManager
\ g

GameManager

ConnectionManager

Interface
-T=- D IVehicle

"getPosition()
getGpsHistory()
getDMSinterface()

Interface
ID:

setAsRelevant(..)
generateEvent(..)
startParkingSearch()

Create Connection Send and receive
Manager (toconnect ~ |—J»| the data needed >
to the server) to join a game

Process the current
status of the game

Receive and process information
about the current state of the <€
game from the server

Receive player input
and send it to the server

"
'
'
'
'
H
'
T not(game_ends) }
'
'
'
'
'
'
'
'
'
'
'

Perform network Update the screen

latency compensation 3] |ocal to the client with the current status
(visual and sound a of the world (events,
effects, etc)) vehicles, etc.)

Update elements

7

Return to the
sound effects over" screen (scores of each team and main menu

player, times invested)

'

H

'

H Stop music and Animate the "game game for the final screen
: > >

.

'

Figure 8: Basic functioning of a client

basic cycle of “while a vehicle is alive, perform actions
and check for potential collisions”.

ialization

'
H
'
i Create connection Manager
Create Scenario : ¢ nag H
(to interact with the clients) '
'
'

i, W '
Feememcscacscsmscsssasssassscssadfosmascssasamasasa
' Game loop

H | Receive and process players’ inputs |
'

'

'

'

H Check round goals

'

'

'

'

'

'

'

'

Send the status of the "world"
and the up-to-date goals

"
'

'

'

'

H

Tnot(game,ends) H
'

'

'

'

H

'

to the clients '
'

'

game_ends

\ Finalization

Send information about the
game (scores, times invested, —)
etc)) to the clients

Save game statistics and

'
'

:

send them to the H

indication '
'

'

'

'
H

'

! Send the "game over"
1 Statistics Server (if any)
'

'

Figure 9: Basic functioning of the server

e An interface IDataManagementStrategy declares the

methods that should be implemented by a data man-
agement strategy to allow its integration with the vi-
deogame (e.g., a method to define the types of events
that are interesting for the driver, a method to gener-
ate an event, etc.).

e Another interface IVehicle is implemented by the ve-
hicles to allow interacting with them (e.g., to obtain
a reference to the data manager in the vehicle or to
obtain information about the GPS location).

Any data management strategy can potentially be inte-
grated in this framework, as long as it implements the in-
terface IDataManagementStrategy and calls the appropriate
methods to inform the vehicles (interface [Vehicle). So, we
can easily plug in different alternative data management
techniques for testing.

3. BEHAVIORS OF THE VEHICLES

We have implemented several behaviors for the vehicles
controlled by the computer, which adapt the steering behav-
iors proposed in [23]. In particular, we consider the following
basic behaviors:

e Seek implies directing the vehicle towards a certain
static target, by adjusting its direction and speed.

e Flee is the opposite behavior to Seek, as it implies get-
ting as much further as possible from the target.

e Pursuit is similar to Seek, but in this case the target
is a moving object. So, the expected movement of the
target is estimated, to try to catch it.

e FEwasion is the opposite behavior to Pursuit (i.e., based
on Flee instead of Seek).

e Arrival implies the progressive reduction of speed as
the vehicle approaches the target.

e Obstacle avoidance provides vehicles with the ability
to dodge vehicles and other obstacles.

e Wander generates a random trajectory, to represent a
vehicle traveling around with no clear objective. This
is useful, for example, to represent a vehicle that is
searching for an available parking space in the vicinity.

e Path following allows a vehicle to circulate within the
boundaries of a certain path.

e Unaligned collision avoidance is a behavior that tries
to avoid the collision of vehicles moving in different
directions. Thanks to this behavior, vehicles can es-
timate a potential collision risk with other vehicles in
the near future, to try to avoid it.

Of course, all the vehicles exhibit the whole set of behav-
iors at the same time, applying a priority ordering in case
several behaviors could be applied at the same time and are
in conflict to each other. Based on the previous basic be-
haviors, we have defined the schema of a normal behavior
for different types of vehicles: enemy cars (that try to catch
the players or flee from the players, depending on the game
mode), ambulances (as representatives of emergency vehi-
cles which may ask the right of way), and traffic cars (that
represent neutral cars in the game). As an example, the
basic behavior of traffic cars is shown in Figure 10.

The number of cars searching
for parking is below the required
threshold configured

Search for
parking

Patience of the driver
xceeded (no parking found:
in a reasonable time)

Circulate

The parking space was
finally occupied by Available Parking

Waiting time occupying
the parking space exceeded another vehicle, the space found

parking did not succeed
Perform
Wait parked Parking successful parking
maneuver

Figure 10: Basic behavior of a traffic car

4. DATA COLLECTION AND EXPLOITA-
TION

In this section, we summarize the strategy applied for data
collection during the game and the corresponding exploita-
tion of results. If a certain configuration option that acti-
vates the collection of statistics during the game is enabled,
several data are collected: data about the scores obtained by
the players, the time needed by vehicles (the ones controlled
by humans as well as those managed by the computer) to
perform certain tasks (such as parking), and other measures
about the performance of the data management strategy
applied (e.g., events created, events that are considered rel-
evant by each vehicle, etc.). When the game ends, all these
data are stored in several files on the game server, along with
a file that contains information about all the configuration
parameters used in that game (e.g., game mode, configura-
tion parameters used for the data management strategy con-
sidered, the wireless communication range simulated, etc.).

To centralize the data collected, it is possible to set up a
Statistics Server, which is a process executing continuously
on a certain computer. In this way, the clients playing the
game automatically connect to the Statistics Server when a
game ends, in order to communicate the statistics collected
during the game. Besides, it is possible to connect to the
Master Server by using a terminal client (called Statistics
Client) that allows seeing and modifying the configuration
parameters as well as retrieving the statistics files generated.
Another option is to avoid the use of a Statistics Server and
collect the statistics in the computer that plays the role of
a server for a game. If we consider configuration settings
where there is a predefined game server and all the clients
connect to it to start a new game or join an existing game,
this option also keeps the statistics in a single location. How-
ever, if there are several game servers then the statistics
would have to be centralized manually.

Figure 11 provides an overview of the way the differ-
ent components of the game, and particularly the Statis-
tics Server, are distributed in a network. Notice that we
actually distinguish between a Master Server and a Game
Server. The Master Server is executing on the server ma-
chine and a client first connects to it (so, it is the entry point
for clients); then the Master Server checks if a Game Server
is available and if not it creates one; finally, it returns the
port number of its Game Server to the client, as the client
will interact with the Game Server during the game.

It should be noted that, as we collect information about
the performance of human players, the skills of those players

-Computer

Master Server Create.
Change parameters

and retrieve
game statistics

[—]
Save game statistics

Game Server

Send game statistics
Computer-

Request server

to play Connect

Computer: to server

\

Statistics Server

/
Statistics Client

Game Client |/

Save game statistics
-

Human interested
in statistics Player i

Figure 11: Deployment of components in a network

with the game will have an impact on the results and this has
to be taken into account when exploiting the results. Indeed,
directly comparing the achievements of several human play-
ers without considering their game skills could lead to wrong
conclusions. For example, playerl without a data sharing
system could perform better than player2 with a data shar-
ing system, but we should not necessarily conclude that the
use of such a data sharing system is harmful. In other words,
we should always compare players with the same skills. For
this reason, each human player is assigned a certain skill
level (which may change along time, as the player improves
his/her performance) and the statistics about players are
tagged with the skill level corresponding to that player. Be-
sides, players that have a skill level below a certain threshold
are (by default) not allow to participate in games with collec-
tion of statistics enabled, as performance data about them
are assumed to be unreliable and besides their clumsiness
could interfere with the normal development of the game.
The skill level of a player is computed based on his/her abil-
ity to complete missions in the game (tasks per time unit).

5. EXPERIMENTAL EVALUATION

We have performed a few preliminary experiments to eval-
uate the interest of our proposal. As a use case for testing,
we focused on the case of available parking spaces, as these
are events that represent scarce resources, which implies ad-
ditional challenges for data management (i.e., the competi-
tion among vehicles should be minimized).

5.1 Data Management Strategies

As a data sharing strategy for the vehicles, we considered
the following options.

5.1.1 VESPA-P: VESPA With No Reservation

First, we adapted the proposal in [2], developed in the
context of the system VESPA (Vehicular Event Sharing with
a mobile P2P Architecture) [4, 6], which is based on the
computation of an Encounter Probability (EP).

The EP between a vehicle and an event estimates the
likelihood that the vehicle will meet the event, based on
geographic computations that estimate the spatio-temporal
relevance of the event. For example, the relevance decreases

with the distance between the event and the vehicle, with the
time since the event was generated (e.g., consider the case
of information about an available parking space, which can
be unoccupied only for a limited amount of time), and the
direction of the vehicle (e.g., if it is approaching the event or
not). In particular, the directions of both the vehicle and the
event are estimated and several penalty coefficients («, 8, v,
and () are used to weigh the importance of four estimated
parameters: the minimum distance to the event over time
(Ad), the time until the closest position to the event (At),
the age of the event at the closest position (Ag), and the
angle between the vehicle and the event (c).

So, when a vehicle receives an event it computes its EP
and disseminates the event again if the computed EP ex-
ceeds a certain dissemination threshold (DT). The intuition
is that vehicles should disseminate data that are relevant
for them (as those data are also probably relevant for the
neighboring vehicles). Two other thresholds are managed:
the storage threshold (ST) and the relevance threshold (RT).
The ST determines the minimum value of the EP for an
event to be stored locally in the vehicle, and the RT the
minimum value needed to show the event to the driver.

Besides, the proposal in [2] proposes a contention-based
approach for data dissemination in order to limit the net-
work overhead in the dissemination of messages (basically,
when there are several candidate vehicles to re-disseminate
an event, the message will be disseminated only by the vehi-
cle located further away from the vehicle that disseminated
the message previously). Several parameters are used in the
protocol, such as D (the maximum time to wait before redif-
fusing) and D’ (time to wait for an acknowledgement that a
message sent previously was received by some other vehicle).

5.1.2 VESPA+P: VESPA With Reservation Protocol

Communicating the availability of a single parking space
to many vehicles could lead to an unfruitful competition
among the vehicles to try to reach the same parking space,
leading to dissatisfaction of the drivers and parking times
that could even exceed those that would be obtained if no
data sharing system were used. For this reason, the work
presented in [7] proposed an enhancement to the previous
approach VESPA-P for the case of scarce resources such
as parking spaces. It provides an allocation protocol that
coordinates a procedure that ensures that the information
about an available parking space is communicated to a single
interested vehicle.

5.1.3 Blind: No Data Sharing

Finally, we also considered an approach where no data
sharing strategy is used. In this case, the vehicles receive no
information and the only data available for the drivers are
what they see with their own eyes. For vehicles trying to
find available parking spaces, this will lead to a blind search.

5.2 Experimental Settings

The basic configuration of the videogame for the experi-
mental evaluation is as follows. The communication range
considered for the vehicles is 200 meters and a maximum of
50% of the vehicles are assumed to be equipped with a data
sharing application. The penalty coefficients used to com-
pute the EP for VESPA are: a=1/1500 (Ad < 500 meters),
B=1/180 (At < 60 seconds), y=1/360 (Ag < 120 seconds),
and (=1/270 (¢ < 90°); these are parameters that can be

considered for a “medium” (not small, not large) dissemi-
nation area, according to [2]. The RT and the DT are both
set to 75%, and the ST is 60%. The query processor on each
vehicle re-evaluates the relevance of the events received with
a refreshment period of 2 seconds, showing on the radar the
events that are considered relevant. For the dissemination
protocol, D is set to 1 second and D’ to 2 seconds.

5.3 Experimental Results

We have simulated a varying number of vehicles moving
in an area of 1 squared kilometer around the street “Sophie
Oury” in the city of Valenciennes (France). In this scenario,
we measured the time needed by the vehicles to find free
parking spaces near certain destinations. In Figure 12 we
show the reduction on the average time needed by a human
player to find an available parking space near the target.
The experimental results show the interest of sharing data
among the vehicles (with both VESPA-P and VESPA+P),
as these data can later be shown on the radar to provide
interesting information to the drivers. Besides, according
to these results, using a reservation protocol to avoid the
competition problem (VESPA+P) is particularly beneficial.

35%
30%

25%

20%
15% VESPA+P
W VESPA-P
10%
5%
1 15 2 2,5

ratio vehicles searching / available parkings

% of time improvement vs. not using a
data sharing application

Figure 12: Time to park by a human

In Figure 13 we compare the performance of human play-
ers (vehicles controlled by humans) and computer players
(vehicles controlled by the computer), by showing the reduc-
tion on the average time needed to find an available park-
ing space near the target when using VESPA+P. According
to these experimental results, we can see that the human
players get more benefit from the use of the data sharing
strategy. The difference may be due to the way the artificial
intelligent behavior of the computer vehicles is implemented.

35%
30%
25%
20%

15% Human player

10%
- I I
1 15 2 25

= Computer players

% of time improvement vs. not using a
data sharing application

0%

ratio vehicles searching / available parkings

Figure 13: Time to park: human vs. computer

The experimental results obtained correspond to data col-
lected during a total of 14 hours playing the videogame
(about 400 parking actions by the human player during this

game time). The results are consistent with our intuition
and with other experimental results obtained previously by
using a simulator. Nevertheless, more tests are needed to
validate the results and evaluate other scenarios. For exam-
ple, we started to obtain some first preliminary results with
games played by more than one human player. It is also in-
teresting to perform experiments with other types of events
(e.g., accidents, obstacles on the roads, etc.); with informa-
tion about them, drivers could try to avoid those hazards
and so decrease the total travel time.

6. RELATED WORK

As far as we know, this is the first attempt to develop a
videogame whose hidden purpose is to help with the eval-
uation of information management strategies for vehicular
networks.

Nevertheless, the idea of trying to benefit from human ac-
tions to improve or evaluate a system is not new. Exploit-
ing the power of people to perform large-scale tasks that are
costly, time-expensive, or hard, is called crowdsourcing [33].
For example, mCrowd [32] benefits from sensors available on
iPhone devices to perform collaborative tasks such as image
tagging or road traffic monitoring. As another example, re-
CAPTCHA [29] exploits CAPTCHAs [22] (Completely Au-
tomated Public Turing test to tell Computers and Humans
Apart), as a security measure to avoid web access to pro-
grams, in order to recognize words from scanned books that
are challenging for OCR (Optical Character Recognition)
systems. According to [10], “The practice of crowdsourcing
is transforming the Web and giving rise to a new field”.

Particularly relevant for our work with Vanet-X are those
proposals that achieve the crowdsourcing results through the
use of a videogame. A notable example is the ESP game [27],
where players implicitly help to label images while playing
the game. The use of videogames as learning tools is a clear
example of the benefits of using educative videogames; as
an example, CodeSpells [11] is a fantasy videogame where
players have to write spells in Java. Other games with a
hidden purpose exist, as commented in [28]. The multiplayer
online game Planet PIj [16] intends to serve as a testbed
environment for Peer-to-Peer (P2P) game architectures. It
is also interesting to mention that the term gamification has
appeared to denote a variety of software that is inspired
somehow by videogames [8, 9].

There exist some driving videogames that, as Vanet-X, are
based on the use of real road maps or city layouts, such as
Mini Maps (https://apps.facebook.com/minimaps/) and
Push-Cars 2: On Europe Streets (http://www.push-cars.
com). However, unlike in Vanet-X, in these games the play-
ers do not contribute to any crowdsourcing task or data
management strategy evaluation.

Finally, a good number of simulators of vehicular net-
works and mobility generators have been developed, such as
TraNS [21], SUMO [19], Veins (Vehicles in Network Simu-
lation) [25], GrooveNet [17], or VanetMobiSim [13]. Some
interesting surveys can be found in [12, 18]. As commented
along the paper, we argue that the videogame-based ap-
proach can be an interesting complement (but not a replace-
ment) to the use of existing simulators to evaluate informa-
tion management strategies for vehicular networks. Besides,
mobility generators and vehicle simulators could potentially
be used to generate neutral traffic for Vanet-X.

7. CONCLUSIONS AND FUTURE WORK

We have developed a videogame that can be used to eval-
uate data management strategies for vehicular networks, as
a complement to existing simulators. Whereas the oppor-
tunity of crowdsourcing through a videogame is attractive,
several challenges arise. Thus, the goal of developing a fun
videogame required the introduction of several elements that
would not appear in a real scenario (like enemy cars), which
could have an impact on the results, but on the other hand
this will attract people to play. Moreover, the results ob-
tained can depend not only on the benefits offered by the
data management strategy but also on the ability of the
specific player. So, whereas the videogame can provide an
ideal tool to collect many data for a variety of scenarios, the
experimental results obtained have to be judged with cau-
tion (e.g., we label the collected data with the skill level of
the player). Even with these limitations, we argue that the
videogame helps to collect with less effort data that can be
used to fine-tune a protocol and/or obtain some initial con-
clusions, prior to the evaluation in more realistic scenarios.

Additional information regarding the videogame is avail-
able at http://sid.cps.unizar.es/Vanet-X/, including a
playable version of the videogame, some videos, and screen-
shots. This is a first step that shows the potential interest of
exploiting videogames to evaluate data management strate-
gies for vehicular networks. As future work, we would like
to optimize and improve the videogame, as well as to de-
velop a complete methodology and architecture to collect
the data, evaluating the interest of the results obtained in
other scenarios and in a larger scale.

8. ACKNOWLEDGMENTS

This research work is currently supported by the CICYT
project TIN2010-21387-C02-02 and DGA-FSE. The data ma-
nagement strategy adapted and used as an example in the
videogame has been proposed in the context of the VESPA
project, and we would like to warmly acknowledge the col-
laboration with Dr. Thierry Delot in that project.

9. REFERENCES

(1] J. J. Blum, A. Eskandarian, and L. J. Hoffman.
Challenges of intervehicle ad hoc networks. IEEE
Transactions on Intelligent Transportation Systems,
5(4):347-351, 2004.

[2] N. Cenerario, T. Delot, and S. Ilarri. A content-based
dissemination protocol for VANETSs: Exploiting the
encounter probability. IEEE Transactions on
Intelligent Transportation Systems, 12(3):771-782,
2011.

[3] T. Delot, N. Cenerario, and S. Ilarri. Vehicular event
sharing with a mobile peer-to-peer architecture.
Transportation Research Part C: Emerging
Technologies, 18(4):584-598, 2010.

[4] T. Delot and S. Ilarri. Data gathering in vehicular
networks: The VESPA experience (invited paper). In
Fifth IEEE Workshop On User MObility and
VEhicular Networks (LCN ON-MOVE 2011), pages
801-808. IEEE Computer Society, 2011.

[5] T. Delot and S. Ilarri. Introduction to the Special
Issue on Data Management in Vehicular Networks.
Transportation Research Part C: Emerging
Technologies, 23:1-2, 2012.

(6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

T. Delot and S. Ilarri. The VESPA Project: Driving
advances in data management for vehicular networks.
ERCIM News, (94):17-18, July 2013. Special Theme
on “Intelligent Vehicles as an Integral Part of
Intelligent Transport Systems”.

T. Delot, S. llarri, S. Lecomte, and N. Cenerario.
Sharing with caution: Managing parking spaces in
vehicular networks. Mobile Information Systems,
9(1):69-98, 2013.

S. Deterding, D. Dixon, R. Khaled, and L. Nacke.
From game design elements to gamefulness: Defining
“gamification”. In 15th International Academic
MindTrek Conference: Envisioning Future Media
Environments (MindTrek’11), pages 9-15. ACM, 2011.
S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and
D. Dixon. Gamification: Using game-design elements
in non-gaming contexts. In 2011 Annual Conference
on Human factors in Computing Systems (CHI’'11) -
Ezxtended Abstracts, pages 2425-2428. ACM, 2011.

A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the World-Wide Web.
Communications of the ACM, 54(4):86-96, 2011.

S. Esper, S. R. Foster, and W. G. Griswold. On the
nature of fires and how to spark them when you’re not
there. In 44th ACM Technical Symposium on
Computer Science Education (SIGCSE’13), pages
305-310. ACM, 2013.

J. Harri, F. Filali, and C. Bonnet. Mobility models for
vehicular ad hoc networks: A survey and taxonomy.
IEEE Communications Surveys € Tutorials,
11(4):19-41, 2009.

J. Héarri, F. Filali, C. Bonnet, and M. Fiore.
VanetMobiSim: Generating realistic mobility patterns
for VANETSs. In Third International Workshop on
Vehicular Ad Hoc Networks (VANET’06), pages
96-97. ACM, 2006.

H. Hartenstein and K. P. Laberteaux. A tutorial
survey on vehicular ad hoc networks. IFEE
Communications Magazine, 46(6):164-171, 2008.

G. Karagiannis, O. Altintas, E. Ekici, G. J. Heijenk,
B. Jarupan, K. Lin, and T. Weil. Vehicular
networking: A survey and tutorial on requirements,
architectures, challenges, standards and solutions.
IEEE Communications Surveys € Tutorials,
13(4):584-616, 2011.

M. Lehn, C. Leng, R. Rehner, T. Triebel, and

A. Buchmann. An online gaming testbed for
peer-to-peer architectures. ACM SIGCOMM
Computer Communication Review, 41(4):474-475,
2011.

R. Mangharam, D. S. Weller, and R. Rajkumar.
GrooveNet: A hybrid simulator for vehicle-to-vehicle
networks. In Second International Workshop
Vehicle-to- VehicleCommunications (V2VCOM’06),
pages 1-8, 2006.

F. J. Martinez, C. K. Toh, J.-C. Cano, C. T. Calafate,
and P. Manzoni. A survey and comparative study of
simulators for vehicular ad hoc networks (VANETS).
Wireless Communications € Mobile Computing,
11(7):813-828, 2011.

J. E. Michael Behrisch, Laura Bieker and

D. Krajzewicz. SUMO — Simulation of Urban

20]

(21]

(22]

23]

(30]

(31]

(32]

33]

MObility: An overview. In The Third International
Conference on Advances in System Simulation
(SIMUL’11), pages 63-68. IARIA, 2011.

S. Olariu and M. C. Weigle, editors. Vehicular
Networks: From Theory to Practice. Chapman &
Hall/CRC, 2009.

M. Piorkowski, M. Raya, A. L. Lugo,

P. Papadimitratos, M. Grossglauser, and J.-P.
Hubaux. TraNS: Realistic joint traffic and network
simulator for VANETs. SIGMOBILE Mobile
Computing and Communications Review, 12(1):31-33,
2008.

C. Pope and K. Kaur. Is it human or computer?
Defending e-commerce with Captchas. IT
Professional, 7(2):43-49, 2005.

C. W. Reynolds. Steering behaviors for autonomous
characters. In Game Developers Conference, pages
763-782. Miller Freeman Game Group, 1999.

M. L. Sichitiu and M. Kihl. Inter-vehicle
communication systems: A survey. I[EEE
Communications Surveys & Tutorials, 10(1-4):88-105,
2008.

C. Sommer, R. German, and F. Dressler.
Bidirectionally coupled network and road traffic
simulation for improved IVC analysis. I[EEE
Transactions on Mobile Computing, 10(1):3-15, 2011.
Y. Toor, P. Miihlethaler, A. Laouiti, and

A. de La Fortelle. Vehicle ad hoc networks:
Applications and related technical issues. IEEE
Communications Surveys & Tutorials, 10(1-4):74-88,
2008.

L. von Ahn and L. Dabbish. Labeling images with a
computer game. In SIGCHI Conference on Human
Factors in Computing Systems (CHI'04), pages
319-326. ACM, 2004.

L. von Ahn and L. Dabbish. Designing games with a
purpose. Communications of the ACM, 51(8):58-67,
2008.

L. von Ahn, B. Maurer, C. McMillen, D. Abraham,
and M. Blum. reCAPTCHA: Human-based character
recognition via web security measures. Science,
321(5895):1465-1468, 2008.

T. L. Willke, P. Tientrakool, and N. F. Maxemchuk. A
survey of inter-vehicle communication protocols and
their applications. IEEE Communications Surveys €
Tutorials, 11(2):3-20, 2009.

B. Xu, A. M. Ouksel, and O. Wolfson. Opportunistic
resource exchange in inter-vehicle ad-hoc networks. In
Fifth IEEE International Conference on Mobile Data
Management (MDM’04), pages 4-12. IEEE Computer
Society, 2004.

T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and

M. Corner. mCrowd: A platform for mobile
crowdsourcing. In Seventh ACM Conference on
Embedded Networked Sensor Systems (SenSys’09),
pages 347-348. ACM, 2009.

M.-C. Yuen, I. King, and K.-S. Leung. A survey of
crowdsourcing systems. In Third International
Conference on Privacy, Security, Risk and Trust
(PASSAT 2011) and Third International Conference
on Social Computing (SocialCom 2011), pages
766-773. IEEE, 2011.

Anexo F

Manual de usuario

245

246

(GUIA DE USUARIO

VANET-X

Autor:
Victor Rujula (victor.rujula@gmail.com)

21 de agosto de 2013

Indice

1. Instalacion

1.1. Requerimientos del sistema
1.2. Compilacion
1.21. Linux /Mac OSX
1.2.2. Windows
1.3, Ejecucion oo
1.3.1. Linux /Mac OSX
1.3.2. Windows
1.4. Finalizacion de la aplicaciono

. Ments del juego

2.1. Menu principalo
2.2. Crear una nueva partida
2.3. Configuracion de las reglas del juego
2.4. Configuracion del sistema VESPA
2.5. Configuracion avanzada dered
2.6. Configuracion avanzada de mapas
2.7. Unirte a una partida existente (enred)
2.8. Configuracion avanzada de red (en union)
2.9. Opciones e
2.10. Ajustes de los controles
2.11. Resumen de la partida
2.12. Pantallas de error Lo

. El juego

3.1. Modosdejuego
3.1.1. Capture the flag
3.1.2. Capture the red cars,
3.1.3. Solve the tasks
3.1.4. Task endurance survival
3.1.5. Parking special mode,

3.2. Controles

3.3. Elementos
3.3.1. Vehiculos
3.3.2. Terrenos
3.3.3. Objetos y lugares de interés

334, Otros. . . o .o
3.4. Interfaz grafica de usuario L.
3.5, Mendin-game
3.6. Pericia del jugador Lo

. Caracteristicas de ayuda a la explotacién

4.1. Creacion del servidor dedicado
4.2. Acceso remoto al servidor dedicado mediante el terminal
4.3. Creacion del servidor de recogida de estadisticas

. Configuracién técnica avanzada
5.1. Modificacion de los APIs usados para la obtenciéon de los mapas . .
5.2. Modificacion del fichero de configuracion ParamConfig.tat

. Resoluciéon de problemas

6.1. Bajo rendimiento (framerate bajo)
6.2. Error de conexion en los primeros segundos de la partida
6.3. Corrupciéon u obsolescencia de losdatos

. Licencias

IT1

36
36
37

40
40
41
41

41

Nota del autor

VANET-X esta localizado en inglés ya que, por la imposibilidad de localizarlo
en diferentes idiomas, se decidié usar el idioma con un mayor publico objetivo. Por
ese motivo cuando se haga referencia en este documento a los diferentes titulos de
los menis o a las opciones que aparecen en dichos ments, se nombraran con la
designacion original, en inglés, indicandose junto a ellos la traduccion correspon-
diente.

1. Instalacion

Este juego no requiere de instalacion, inicamente debe ejecutarse el archivo
JAR que puede obtenerse mediante descarga del sitio web oficial o mediante la
compilacion del cédigo fuente proporcionado.

1.1. Requerimientos del sistema

Se ha comprobado que esta aplicacion funciona correctamente con la siguiente
configuracion:

» Windows XP SP 3 / Ubuntu 11.10 / Mac OS X 10.6.1

2.81 GHz AMD Phenom(tm) IT X3 720 processor
3.25 GB RAM

NVIDIA GeForce GTX 260 @ 1920 x 1080 px.

Java VM 1.7.0_09

Los requisitos imprescindibles para la ejecucion de VANET-X son los siguientes:

= Teclado y ratom.
= Resoluciéon de video igual o superior a 1024 x 768 px.

= Java VM 1.6 o superior.

1.2. Compilacién

El proceso requerido para la compilacion difiere dependiendo del sistema ope-
rativo usado.

1.2.1. Linux / Mac OS X

Usando el script shell Se debe extraer el fichero comprimido y ejecutar el
script shell compilar.sh desde el interior de la carpeta extraida.

\$> sh compilar.sh

Nota: se crea un certificado para firmar el fichero JAR (si no se habia creado
previamente), para lo cual es necesario seguir las instrucciones en pantalla. Pa-
ra ello se crea un fichero de almacenamiento de claves «keystore», situado en la
carpeta desde la que se ejecuta el comando.

Usando Ant Se debe extraer el fichero comprimido y ejecutar Ant desde el
interior de la carpeta extraida.

\$> ant

Nota: se crea de forma transparente al usuario un certificado para firmar el
fichero JAR.
1.2.2. Windows

Usando Ant Se debe extraer el fichero comprimido y ejecutar Ant desde el
interior de la carpeta extraida.

\$> ant

Nota: se crea de forma transparente al usuario un certificado para firmar el
fichero JAR.

Nota: Para instalar ant, se debe descargarlo (por ejemplo de http://ant.
apache.org/bindownload.cgi), extraer el fichero zip en algtn lugar y anadir
a la variable del sistema PATH el directorio bin obtenido de la extraccion. De esta
forma se habilita el uso del comando ant para usarlo desde la linea de comandos.

1.3. Ejecucion

El proceso requerido para la ejecucion difiere dependiendo del sistema operativo
usado.

1.3.1. Linux / Mac OS X

Una vez se haya completado la compilacién, se debe ejecutar el script shell
ejecutar _jar.sh para ejecutar el juego como una aplicaciéon de escritorio Java

\$> sh ejecutar_jar.sh

o ejecutar el script shell ejecutar applet.sh para ejecutarlo como un applet
usando la aplicacién appletviewer.

\$> sh ejecutar_applet.sh

1.3.2. Windows

Una vez se haya completado la compilacion, se debe ejecutar el fichero llamado
RallyX3.jar, creado en el directorio «dist»

\$> dist\RallyX3.jar

1.4. Finalizaciéon de la aplicacién

Para finalizar la aplicacién, tnicamente se necesita pulsar sobre el boton «X»
(Cerrar) de la ventana de la aplicacion.

2. Menaus del juego

En esta seccion se explicaran las funciones realizadas por las diferentes pantallas
del mend. En la figura 1 se puede observar como estan distribuidas estas pantallas.

Menu principal

Crear una nueva partida

Configuracién de las reglas del juego
Configuracién del sistema VESPA
Configuracién avanzada de red
Configuracién avanzada de mapas

Unirte a una partida existente (en red)
Configuracién avanzada de red (en union)

L Opciones

L Ajustes de los controles

Figura 1: Diagrama de navegacion ments

2.1. Menu principal

Start new game

Join an existing game

En el menu principal, se puede escoger entre «Start a new game» (crear una
nueva partida), lo cual nos dirige a configurar y posteriormente comenzar una
nueva partida, bien sea de un solo jugador o multijugador en red, o «Join an
existing gamey (unirse a una partida existente), lo cual nos permite unirnos a una
partida en red en curso.

También se puede modificar diversas opciones (como el volumen, los controles o el
directorio de juego) pulsando sobre «Options» (opciones).

Pulsando en el boton «Creditsy (créditos) se accede a una pantalla en la que
se muestra informacion sobre el autor, una breve introduccion a VESPA y los
agradecimientos.

2.2. Crear una nueva partida

Start new game | VESPA configuration

I Advanced network configuration

Nickname:

mVESPA enabled on

| = 3 L 3 5
i View public 1P [N E | Advanced map configuration

Map selection: Game rules configuration

Nantes, France

Game mode selection:

Capture the Flag =
"
PACESE

|G0 BACK| | START |

En la seccion «Start new game» (crear una nueva partida), se debe seleccionar
el apodo que se mostrara a los demas jugadores, el mapa en el que se desea jugar
y el modo de juego deseado.

Ademas, también se puede ver la direccion IP del computador (tanto la TP publica
como la privada) en el campo de texto junto al boton «view IP» (ver IP). Pulsando
sobre este botén se alterna entre mostrar un tipo u otro de direccion IP.

El resto de jugadores que deseen unirse a la partida necesitaran conocer la direccion
IP publica, por lo que es importante anotarla o recordarla.

En esta pantalla de ment existen cuatro botones de configuracion.
El primero, « VESPA configuration» (configuracion de VESPA), permite cambiar
constantes, valores y modos relacionados con VESPA, asi como también establecer
el porcentaje de vehiculos del trafico equipados con el sistema VESPA.

El segundo, «Advanced network configuration» (configuracion avanzada de
red), permite cambiar el puerto en el cual el servidor escuchard a la espera de
peticiones de conexion de nuevos jugadores, asi como también el puerto que usara
nuestro cliente para conectarse.

Es importante asegurarse de abrir en el NAT /firewall los puertos seleccionados
tanto en TCP como UDP.

En esta pantalla también aparece un desplegable en el cual se debe seleccionar la
direccion IP correspondiente al adaptador de red que deseamos usar para crear la
partida.

El tercero, «Advanced map configuration» (configuracion avanzada de mapas),
nos dirige a una nueva pantalla en la cual se podréa anadir, eliminar y previsualizar
los mapas.

El tltimo, «Game rules configuration» (configuracion de las reglas del juego),
permite cambiar algunas opciones como la dificultad, el nimero de equipos y el
nimero de vehiculos neutrales (del trafico).

Cuando se hayan establecido todas las opciones como se desea, se debe pulsar en
el botén «Starty (comenzar) para comenzar la partida. Si por el contrario deseamos
volver a la pantalla anterior, se debe pulsar en el botén «Go back» (volver).

2.3. Configuracién de las reglas del juego

~

Game rules configuration

Number of Rounds (only 1in
conpetitive game modes): m=

Maximum number of teams:

SO

Petrol Llimit:

Number of neutral cars:

Maximum number

cantity: I T eny

Car damage:

Quasntity: [ETIR il

Time Limit:

“"Capture” and "Solve
the task"™ game modes:

< & = 0:10 =
Intermission time: v Task endurance surwival

gane node:

Restore default Unde changes Save settings
settings and go back and go back

En este meni, en la mitad izquierda, se puede personalizar la dificultad cam-
biando los factores separadamente.
Se debe tener en cuenta que cuando el jugador asume el rol de perseguidor (modo
de juego «capture the red carss) el valor del dano se revierte.
Ejemplo: Un valor bajo de dano del vehiculo, en un modo de juego en el que el
jugador huya de los vehiculos controlados por el computador significa que el juga-
dor tiene una resistencia mayor de la normal, mientras que en un modo de juego
en el que el jugador sea el que persigue a los vehiculos del computador significa
que dichos vehiculos tienen menos resistencia y por lo tanto es méas facil para el
jugador cazarlos.

En la mitad derecha de la pantalla, se puede cambiar el nimero del maximo
de equipos, el nimero de vehiculos neutrales (del trafico), el nimero de vehiculos

6

enemigos y el nimero de rondas establecido como limite en los modos de juego
competitivos.

Debajo, se puede configurar el tiempo limite de los diferentes modos de juego asi
como también el tiempo de espera entre rondas.

2.4. Configuracién del sistema VESPA

VESPA configuration

WESPRL (Wehicular Ewent 5haring with a mobile P2P
Architecture) 1is a system designed for wehicles to
share information in inter-vehicle ad-hoc networks

Advantages of using VESPA: ’

Percentage of cars s0%
equipped with VESPA '

M Manual sighting of enemies and other players

BExpert configuration

Restore default Unde changes Save settings
settings and go back and go back

En este ment es posible configurar una gran variedad de pardmetros relacio-
nados con el funcionamiento del protocolo VESPA.
En la pantalla inicial se encuentra una muy breve descripcion del sistema VESPA
y sus ventajas (accesible manteniendo el puntero encima del simbolo de informa-
cion), también un selector del porcentaje de vehiculos del trafico que se desea que
estén equipados con el protocolo VESPA y una casilla de verificacién que en el caso
de estar activada indica que la generacion de eventos avisando de enemigos y otros
jugadores se realizard mediante observaciéon en lugar de autogeneracion desde los
propios vehiculos.
Por ultimo existe otra casilla de verificacion «Expert configuration» (configuracion
experta) que de activarse despliega méas aspectos configurables del protocolo.

Storage Manager

VESPA configuration Update interval:

WESPA (Wehicular Event Sharing with a mobile P2P Continuous Query Processor
Mrchitecture) is a system designed for vehicles to

Shore fmfermeEhen Tm Teiterereltele ad-les metner s Update interval:

Advantages of using VESPA: .

Event type importance

Flag: | —— W1
Percentage of cars RedCar: P
equipped with VESPA ' Player: .7 oz

W Manual sighting of enemies and other players Obstacle: oz

Emergency

Service: Y e

Expert configuration

Parking: L ——— Lk

. Accident: 100%
Radio Sensor

Radio range: = Update interwval:

Sight range: Mega-expert config: *

Restore default Undo changes Save settings
settings and go back and go back

Las opciones que se pueden configurar son las siguientes:

= Alcance de la radio («Radio range») y alcance de vision («Sight range»),
que indican la distancia a la que se pueden transmitir y observar los eventos
respectivamente.

» Intervalo de actualizacion («Update interval») del sensor («Sensors), del ges-
tor de almacenamiento («Storage Managery) y del procesador de consultas
continuo («Continuous Query Processor»), que indica cada cuantos segundos
entraran en funcionamiento dichos médulos.

» Importancias de los distintos tipos de eventos («Event type importancey),
que indica la importancia que se dara a un evento de dicho tipo, de forma que
cuanto mayor sea mayor sera la posibilidad de que se muestre al conductor.

Ademas, pulsando sobre la flecha amarilla «Mega-expert configy se accede a
una segunda pégina con mas elementos para configurar.

VESPA configuration (Expert)

Data Dissemination Manager
Maximum time to wait before
rediffusing incoming (D): Allocator Scarce Resources

Maximum time to wait before % Delay: 3
rediffusing outcoming (D"):

Data Management Relevance Evaluator
Relewvance threshold: 3 \‘ alfa:
Diffusion threshold: 3 beta:
Storage threshold: 3 FELLER

Importance threshold: 3 zeta:

Restore default Undo changes Save settings
settings and go back and go back

En esta segunda pagina de configuracion se permite modificar més pardmetros
de VESPA. Dichos pardmetros solo deberian ser modificados por una persona con
unos minimos conocimientos del protocolo ya que mediante su modificacion se
puede alterar gravemente el comportamiento del sistema.

2.5. Configuracién avanzada de red

Advanced network configuration

Client port:

(You may need to open it on
your router and firewall)

Server port:

Network interface
adaptor:

F192.168.1.161

Restore default Undo changes Save settings
settings and go back and go back

En esta pantalla de meni existen dos campos de texto y un desplegable.
En el campo de texto superior, se puede modificar el puerto que se usara para

conectar con el servidor que se cree (esto es necesario ya que la aplicacion esta
internamente separada en un servidor y un cliente, incluso para el caso de jugar
un tnico jugador).

En el segundo campo de texto, se puede modificar el puerto en el que la aplicacion
escuchara las peticiones de union de los jugadores que deseen unirse a la partida.
En el desplegable aparecen las direcciones IP asociadas con cada adaptador de
red habilitado, debiéndose elegir la que corresponde al adaptador que nos permite
comunicarnos con la red en la que se hayan el resto de jugadores.

Nota: es importante comprobar que los puertos seleccionados estan abiertos en
el NAT /firewall en los modos TCP y UDP.

2.6. Configuraciéon avanzada de mapas

Advanced map configuration

Create new map

Uses OpenStreetMap and OpenStreetMap Nominatim
tool to search and download the map

Total nodes

Address keywords

G0 BACK

En esta pantalla de ment, en la que se pueden descargar nuevos mapas que
se quedaran almacenados en el directorio de juego para futuras partidas, existen
dos secciones diferenciadas. La mitad derecha, en la cual se puede buscar una
direccion, previsualizar el area resultante y finalmente anadirla como nuevo mapa,
y la mitad izquierda, donde hay una tabla que contiene los mapas agregados y en
la cual podemos previsualizar o eliminar dichos mapas.

10

i

Pays d{a la Loire, 49340, France

Anadir un nuevo mapa al juego es un proceso muy sencillo.
Todo lo que se necesita es escribir la direccion deseada en el campo de texto «Ad-
dress keywords» (palabras clave de la direccion) y pulsar en el boton «Searchy
(buscar). Esto realiza una biuisqueda a través del servicio Nominatim de OpensS-
treetMap. Si hay resultados, éstos aparecerdn en el desplegable «Search results»
(resultados de la busqueda).
Posteriormente, se debe seleccionar el tamano deseado del mapa (usando el control
deslizante «Map size» (tamafio del mapa).
En el campo de texto «Alias» se debe escribir un alias representativo para poder
reconocer el mapa desde el desplegable de seleccion de mapa del menti de creacion
de la partida. Si se desea, es posible previsualizar el drea entorno a la direccion
seleccionada pulsando el boton «View mapy» (ver mapa).
Finalmente, se debe pulsar el boton «Add mapy (anadir mapa) con el fin de anadir
dicho mapa al juego.

Consejo: los resultados devueltos por la bisqueda de una direccidon estan limi-
tados en ntiimero. Por este motivo, si se desea buscar una direccién con muchos
posibles resultados, y no se obtienen los resultados deseados, debe procurar sumi-
nistrarse una descripcién mas precisa de la direccion.

Consejo: cuanto méas pequeno sea el tamano del mapa mejor rendimiento del
juego se obtendra. Ademaés, los mapas con muchos detalles pueden no ser capaces
de ejecutarse en tamanos grandes o incluso medianos.

11

Nota: los mapas anadidos se guardan en la carpeta «Maps» del directorio de jue-
go. Por cada mapa anadido se crea un fichero XML con el contenido descargado de
OpenStreetMap, un fichero JPG con la imagen que se usard para la previsualiza-
cion (también descargada de OpenStreetMap) y un fichero de texto que contiene
datos necesarios para el uso de dicho mapa en el juego.

Nota: al previsualizar un mapa todavia no descargado se creard un fichero tem-
poral con la imagen a mostrar. Dicho fichero se localizara en el directorio «temp»
del directorio de juego, y serd automaticamente eliminado al terminar la ejecucion
del juego.

2.7. Unirte a una partida existente (en red)

Join a network game

Please enter server IP: 192 .168.1.161)|

Nickname:

MVYESPA enabled on my car

ADVANCED NETWORK CONFIGURATION

|G0 BACK| | JOIN

En esta pantalla se configuran los pardmetros necesarios para la uniéon a una
partida en red actualmente en juego.
Con este fin, se debe rellenar la direccion IP piublica del servidor en el campo
«server IP» (IP del servidor) , introducir un apodo para que el resto de jugadores
nos reconozcan y pulsar en el botéon «Join» (unirse).

Adicionalmente, en esta pantalla del meni, se pueden modificar los puertos
que la aplicacion usara para la conexion pulsando en el boton «Advanced network
configuration» (configuracion avanzada de red).

12

2.8. Configuraciéon avanzada de red (en unién)

Advanced network configuration

Client port:
(You may need to open it on

your router and firewall)

Server port:

Restore default Undo changes Save settings
settings and go back and go back

En esta pantalla del mend existen dos campos de texto.
En el primero se puede modificar el puerto que la aplicacién usara para comunicarse
con el servidor de la partida.
En el segundo, se debe introducir el puerto en el que el servidor de la partida esta
a la escucha de nuevas peticiones de uniéon a la partida.

Nota: es importante verificar que el puerto seleccionado en el primer campo de
texto esté abierto en el NAT /firewall en los modos TCP y UDP.

13

2.9. Opciones

Options

Sound

Music volume:

Sound effects volume:

Game Folder Controls

i Select folder : Change controls

Warning: You must
save the changes
to take effect

Unde changes Save settings
and go back and go back

En esta pantalla del menu se puede configurar el volumen de la mtsica (con-
trol deslizante superior) y el volumen de los efectos de sonido (control deslizante
inferior).

También desde aqui se puede ver y modificar los controles del juego (boton «Chan-
ge controlsy) y seleccionar el directorio de juego donde seran almacenados los
ficheros de configuracion y los mapas descargados.

14

2.10. Ajustes de los controles

Control settings

Steer left: [:
Steer right:
Accelerate:
BrakefReverse:

Release smoke:

Park:

Show info:

Warning: Tabulater key
may not work properly

Restore default Unde changes Save settings
settings and go back and go back

Desde esta pantalla se pueden modificar los controles del juego. Para ello no
hay mas que seleccionar el campo de texto correspondiente a la accidén que se desea
cambiar y pulsar la tecla que se desee usar.

2.11. Resumen de la partida

CGame results o e ules

Neutral cars: 35

Petrol Limit: Hedium

Car damage: Medium

Selected map: UWHC Université de Walenciennes et du Hainaut

Total time: @:55

Personal scores Team scores

Scare ~ Team Scare v _

15

Esta pantalla aparece cuando se ha finalizado un partida, bien sea porque el
anfitrion decide acabarla o porque se hayan completado o fallado los objetivos, y
también cuando el jugador decide abandonar la partida en curso.

En ella se muestran detalles como el escenario y las reglas usadas, la duraciéon de
la partida y la puntuaciéon de los jugadores desglosada por equipos en el caso de
una partida competitiva.

2.12. Pantallas de error

En ciertas ocasiones puede aparecer una pantalla de error. En ella se mostrara al
usuario la informacion referente al error ocurrido y le devolvera al ment principal.

Hay dos pantallas de error diferentes: error durante la conexion a la partida y
error durante la ejecucion de la partida.

Error al conectar a la partida

Join a network game

Qops...

There seems to be a error.

IP adress may be wrong or your ports
or the host ones are not accesible

GO BACK

Esta pantalla de error aparece cuando no ha sido posible unirse a una partida.
Esto puede estar causado porque los datos (direccion IP y puerto) sean erréneos
o porque la partida ya haya finalizado.

16

Error durante la ejecucién

Oops... Wwe are sorry

Looks Llike there was an error.

|Show details| | GO BACK|

Esta pantalla aparece cuando ha ocurrido un error en tiempo de ejecucion que
ha causado que la partida finalizase.

Contiene dos botones, uno para volver al ment principal y otro para habilitar
la vista detallada del error, en la que se mostrara la traza del error ocurrido. En el
caso de que haya ocurrido mas de un error, apareceran distribuidos en diferentes
pestanas segun cada hilo de ejecucion.

Cliente

Caonnection lost

GO BACK

17

3. El juego

En esta seccion se mostraran todos aquellos aspectos necesarios de conocer para
poder participar en las partidas, como son los diferentes modos de juego, elementos
de la partida (tipos de vehiculos, tipos de terreno, etc.), controles del jugador y
funcionalidades del ment de in-game.

3.1. Modos de juego

Se han desarrollado cinco modos de juego diferentes: Capture the flag, Capture
the red cars, Solve the tasks, Task endurance survival y Special parking mode.
Excepto el ultimo, que solo esta disponible en modo competitivo, los demas pueden
ser jugados tanto en modo cooperativo como competitivo.

A excepcion del cuarto modo, los demés funcionan mediante un sistema de ron-
das. Cuando comienza una ronda, se tiene unos pocos segundos para conducir
libremente antes de que aparezcan los objetivos y los perseguidores. Pero atn sin
enemigos hay que tener cuidado, jlas colisiones con otros vehiculos también produ-
cen danos!. Después de este tiempo de preparacion, la ronda empieza y se muestra
una cuenta atras con el tiempo disponible para completar los objetivos. Cuando
éstos hayan sido completados, los vehiculos enemigos (si los habia) desapareceran,
se rellenara la salud del jugador y la ronda finalizara.

Jugando en modo cooperativo las rondas son infinitas, se juega hasta que todos
los jugadores mueran, pero en el modo cooperativo las rondas estan limitadas por
un valor que se puede modificar en el menti «Game rules configuration» (configu-
racion de las reglas del juego).

Nota: para repostar en una gasolinera es preciso que el vehiculo esté completa-
mente detenido.

3.1.1. Capture the flag

En este modo de juego se deben capturar todas las banderas (normalmente
cinco) mientras se huye de los vehiculos enemigos que intentan destruirnos.

Hay que tener cuidado ya que se recibe un poco de dano en las colisiones contra
los vehiculos del trafico, y mucho dano colisionando con los enemigos, los cuales
tienen vida infinita.

18

3.1.2. Capture the red cars

En este modo de juego se deben capturar todos los vehiculos enemigos, los
cuales tratan de escapar del jugador.

El jugador tinicamente recibe dano colisionando con vehiculos del trafico, mien-
tras que los vehiculos enemigos solo reciben dano con las colisiones con el jugador
(no reciben dano colisionando contra otros vehiculos).

3.1.3. Solve the tasks

En este modo de juego se deben completar diversas tareas antes de que el
tiempo se agote o los vehiculos enemigos destruyan al jugador.

Existen diferentes tipos de tareas:

» Conducir hasta una direccién o sitio de interés

» Aparcar en una plaza cercana a una direccion o sitio de interés (por cercana
se entiende que sea una de las tres mas proximas al objetivo).

= Llegar a pie a una direcciéon o sitio de interés, para lo cual previamente se
ha tenido que aparcar el vehiculo y asi poder salir de él.

Nota: en las tareas que requieran llegar al objetivo a pie, es recomendable aparcar
lo més cerca posible ya que el jugador es mas lento y vulnerable mientras va a pie
por lo que es una presa facil para los vehiculos enemigos.

3.1.4. Task endurance survival

Este modo de juego tiene una mecénica totalmente diferente del resto de modos
de juego.
Los otros modos usan un sistema estricto de rondas -en los cuales si una ronda
es completada satisfactoriamente los enemigos desaparecen y el jugador avanza a
la siguiente ronda, y en caso contrario se pierde la partida-, sin embargo, es este
modo de juego, los enemigos no desaparecen entre rondas ni tampoco se pierde la
partida si no completas los objetivos de la ronda, sino que simplemente se pierde
la oportunidad de ganar la recompensa de dicha ronda.

La partida se acaba cuando todos los equipos tienen una cantidad negativa de
dinero (que sustituye a los puntos en este modo de juego), hasta ese momento
todos los jugadores que sigan vivos podran seguir jugando.

19

Si una ronda es completada satisfactoriamente, todos los jugadores todavia vivos
recuperan un 50% de vida y los muertos recuperan el 100%. En ambos casos
dichos jugadores perderdn dinero, pero recuperar vida es méas caro si el jugador
estd muerto que si solamente danado.

En cada ronda, el jugador debe completar una tarea, que puede ser lograda
conduciendo, andando o aparcando en uno de los tres aparcamientos méas cercanos
(segin se indique en la tarea), y la cual puede consistir en acudir a una direccion
0 a un sitio de interés de un determinado tipo (p.ej. ir a una farmacia).

3.1.5. Parking spectal mode

Este modo de juego, creado expresamente para facilitar la toma de estadisticas
de aparcamiento, consiste en completar una serie de tareas de aparcamiento me-
diante un sistema de rondas, de forma muy similar al modo «Solve the tasks.
Las diferencias con ese modo radican en que en cada ronda hay un doble objetivo,
que se debe cumplir de forma secuencial, en el que primero se requiere acudir a un
determinado punto dado por una direcciéon o sitio de interés, y a continuacion se
requiere encontrar un aparcamiento situado a menos de 500m.

3.2. Controles

Los controles del juego son muy sencillos, ya que tinicamente es preciso usar
las flechas de direccion, la barra espaciadora y la tecla control.

@
e

e A e A

Las flechas de direccién se usan para controlar el movimiento del vehiculo:
La flecha superior (1) acelera.
La flecha inferior () frena y da marcha atras.
La flecha izquierda (<) gira a la izquierda (rota el coche en sentido contrario a
las agujas del reloj).
La flecha derecha (—) gira a la derecha (rota el coche en el sentido de las agujas
del reloj).

l)

20

La barra espaciadora se usa para crear una nube de humo.

Cirl

e

La tecla Control es usada para aparcar y salir o entrar del vehiculo.

E
La tecla Escape permite desplegar el ment in-game en el cual se pueden visua-
lizar los controles, modificar el volumen y abandonar la partida.

3.3. Elementos

Durante las partidas el jugador encontrara diferentes tipos de vehiculos, terre-
nos y objetivos. A continuacion se explicaran los mas relevantes de estos elementos
del juego.

3.3.1. Vehiculos

Hay varios tipos diferentes de vehiculos:

» Jugadores: reconocibles por ser azules (con una banda central de color
en el caso de necesitar diferenciar los diferentes equipos). Son los vehiculos
controlados por los jugadores.

» Vehiculos enemigos: reconocibles por ser rojos. Son los coches controlados
por el computador que, dependiendo del modo de juego, tratan de cazar al
jugador o huir de él.

También es posible reconocerlos por el sonido del motor que se puede escu-
char cuando se acercan.

21

= Ambulancias: reconocibles por su forma y por su luz estroboscopica roja y
azul. Ademas es posible escuchar su sirena cuando se acerca. Controladas por
el computador. Aparece de forma aleatoria y desaparece cuando ha transcu-
rrido un tiempo minimo y no esta a la vista de ningiin jugador. Puede haber
una dnica ambulancia sobre el escenario, siendo avisados los jugadores de su
aparicion y desaparicion.

= Vehiculos del trafico: el resto de vehiculos que no coinciden con las des-
cripciones anteriores. Controlados por el computador.

3.3.2. Terrenos

Existen diferentes tipos de terrenos, algunos de los cuales son infranqueables
para los vehiculos:

= Calzada pavimentada: de color gris oscuro, es el terreno por el que circulan
los vehiculos del trafico.

= Calle peatonal: de color blanco, solo los vehiculos de los jugadores y los
enemigos pueden circular en ella, sufriendo ademés una ralentizacion a la
marcha.

= Agua: de color azul, es infranqueable.

= Carril bici: de color verde con linea de separacion discontinua, iinicamente
los vehiculos de los jugadores pueden circular por él, sufriendo una ralenti-
zacion a la marcha.

= Obras: de color marréon, Gnicamente los vehiculos de lo jugadores y los
vehiculos enemigos pueden atravesarlas, viéndose ralentizados.

= Playa y césped: de color marrén claro y verde respectivamente, solamen-
te los vehiculos de los jugadores y los enemigos pueden circular por ellos,
sufriendo ademéas una ralentizacién a la marcha.

= Zonas urbanizadas y edificios: son areas de color gris claro y marron
bordeado en negro respectivamente, que son infranqueables para cualquier
tipo de vehiculo.

22

Nota: cuando el jugador circula a pie se le aplican las mismas reglas que si lo
hiciera a bordo del vehiculo.

m

75} ? @p
Hay algunos objetos y lugares importantes que deben ser reconocidos ya que
pueden ser utilizados como objetivo de la ronda segtin el modo de juego elegido.

3.3.3. Objetos y lugares de interés

» Banderas: Una bandera que debe ser tomada para lograr puntos y rellenar
las nubes de humo.

[

= Gasolineras: Un lugar donde se puede repostar combustible.

B

= Sitios de interés: lugares como:

e cafés

e restaurantes de comida rapida
e bancos

e farmacias

e cscuelas

tiendas

23

hostales

moteles

hoteles

® INuseos

Son reconocibles por estar marcados con un circulo verde con el nombre
pintado en letras rojas.

Rk Score: 0(1st)
Y Health: infini

= Plazas de aparcamiento: son los lugares en los cuales, segtin el modo de
juego, el jugador puede abandonar el vehiculo para continuar a pie. También
son los objetivos de diversos modos de juego.
Para realizar un aparcamiento, el jugador debe aproximarse a una plaza vacia
y una vez en su interior (cuando las lineas discontinuas cambien a color rojo)
pulsar la tecla Control. Para abandonar el aparcamiento el procedimiento es
el mismo.

24

Nota: es importante tener en cuenta que el tiempo que una plaza perma-
nece ocupada por un vehiculo del trafico varia (por defecto es entre 20 y 40
segundos), pero algunas plazas nunca se llegaran a desocupar.

3.3.4. Otros

= Nube de humo: se trata de un elemento temporal creado por los jugadores
que, cuando es colisionada por un vehiculo, le causa una reduccién temporal
de la velocidad asi como una pérdida del control de la direccién del vehiculo.
Permanece tinicamente durante diez segundos desde que es creada.

25

@

3.4. Interfaz grafica de usuario

La interfaz grafica de usuario muestra informacion ttil durante la partida.

La informacion que contiene es la siguiente:
1) Puntuacién: muestra la cantidad de puntos logrados hasta el momento.

2) Indicador de salud: muestra la cantidad de dafio recibido por el vehiculo.
Su color varia de forma gradual desde el verde hasta el rojo segtin se reciban
mas danos.

3) Nubes de humo disponibles: muestra cuantas nubes de humo quedan
disponibles. La cantidad maxima es cinco.

4) Cuenta atras: muestra cuanto tiempo queda para lograr los objetivos de la
ronda.

5) Localizacion actual: muestra el nombre de la calle en la que se encuentra
el jugador. En el caso de estar situado sobre una interseccion, se muestra el
nombre de todas las calles de dicha interseccion.

6) Indicador de gasolina: muestra de forma gréfica la cantidad de combusti-
ble restante.

26

7) Radar: muestra un mini-mapa en el que se representan los eventos VESPA
y los lugares de interés.

8) Indicador de FPS: muestra el rendimiento actual de la aplicacién medido
en fotogramas por segundo.

9) Flechas: son flechas de colores que muestran en qué direccion respecto del
jugador se encuentran los objetivos y los perseguidores (si los hay). Las fle-
chas rojas indican la presencia de un perseguidor, mientras que las verdes
indican los objetivos.

El radar muestra de forma gréafica los eventos considerados relevantes en el sis-
tema VESPA, junto con otros lugares considerados de interés para la consecuciéon
de los objetivos de la ronda.

Cada icono representa un evento (salvo los que representan un icono siempre
visible). Se pueden mostrar diferentes iconos refiriéndose al mismo incidente, ya
que varios vehiculos han podido detectarlo. Por lo tanto, no se recibira un tnico
icono en el punto donde el incidente ha tenido lugar, sino varios iconos en torno a
dicho lugar.

Estos son los iconos siempre visibles:

JoCh
== nuestro jugador.

: gasolinera.

27

,: objetivo (lugar de interés o direccion).

Estos son los iconos de eventos VESPA:

FI: bandera.
. accidente u obstaculo en la calzada.

BB servicio de emergencia.
&. o0 jugador.

&. vchiculo enemigo.

P} plaza de aparcamiento libre.

Al comienzo de cada ronda se muestra un recuadro de informaciéon que contiene
el tipo de modo de juego, el niimero de ronda actual y el limite si lo hay, los
objetivos, los perseguidores y el tiempo limite para completar la ronda.

Score: 0(1st)
Health:
Smoke:

Quai Ceineray

Chasers:
Time limit:

Get ready to Start in 1

A

Han joined the game
with the white team

3.5. Menu in-game

Durante el juego se puede acceder a un ment interno que permite realizar diver-
sas acciones. La navegacion por este mend tinicamente puede realizarse mediante
el uso del raton.

28

Options

Show Controls

End Game

Return to game

Estas acciones se categorizan en los siguientes apartados:

Opciones (contiene el cambio de volumen de la misica y los efectos)

Mostrar controles

Abandonar la partida

Volver a la partida

A continuacion se vera cada una de las diferentes opciones.

29

«Options» (Opciones)

Options

Music volume

Effects volume

_4.-1) |

| Done! |

Se muestra una nueva pantalla en la que se puede modificar individualmente
el volumen de los efectos de sonido y el volumen de la misica.

«Show Controls» (Mostrar controles)

Controls

. Steer left Izquierda .
Steer right Derecha
Accelerate Arriba
BrakeReverse Abajo
Release smoke Espacio
Park Ctrl

Show menu Escape
Show info Q

Se muestra una nueva pantalla en la que aparecen las diferentes acciones rea-
lizables por el jugador y las teclas actualmente asignadas a dichas acciones.

30

«End Game» (Abandonar la partida)

Are you sure to exit?

|' Yes, take me out to main menu |

[No,Iwantto continue playing |

Aparece una pregunta de confirmaciéon y en caso afirmativo se abandona la
partida (y en el caso de ser el anfitrion se finaliza la partida de forma que el resto
de jugadores también la abandonan).

«Return to game» (Volver a la partida)

En caso de seleccionar esta opcion, el mena desaparece y se vuelve a tener
control sobre el movimiento del jugador.

3.6. Pericia del jugador

La «pericia» del jugador es un valor que se almacena en la configuracion del
juego y que determina el nivel de habilidad del jugador.
Este valor se actualiza con cada nueva partida y es usado para impedir que juga-
dores noveles accedan a partidas en las que se recogen estadisticas y distorsionen
los resultados.
Se mide en tiempo por tarea y se calcula dividiendo el tiempo de la partida por el
niimero de rondas completadas.

tiempo total de la partida

nivel de habilidad =

nimero de rondas completadas

31

Nota: hay que tener en cuenta que este calculo iinicamente puede realizarse de
forma conjunta para todo el equipo, por lo que todos ganaran el mismo nivel de
habilidad independientemente de su nivel real en la partida.

4. Caracteristicas de ayuda a la explotaciéon

En VANET-X se han desarrollado varias caracteristicas con la funciéon de faci-
litar la recopilacion de los datos obtenidos referentes a las estrategias de gestion
de informacion utilizadas.

Una es el servidor dedicado, que permite tener un servidor en permanente fun-
cionamiento en un computador de forma que los jugadores puedan unirse a dicho
servidor.

Este servidor dedicado tiene un mayor rendimiento que el servidor normal a costa
de no incorporar el cliente necesario para que pueda jugarse desde la misma ins-
tancia del juego. Consiste en un proceso ligero a la escucha de nuevas peticiones
de conexion de clientes, y s6lo cuando éstas se produzcan se creard una instancia
del servidor y se creard una nueva partida (suponiendo que no existiera ninguna).

Otro es el servidor de recogida de estadisticas, un proceso ligero, capaz de estar
en permanente funcionamiento, que recopila los ficheros estadisticos enviados por
los servidores y servidores dedicados al finalizar las partidas.

4.1. Creaci6n del servidor dedicado

Para la creacion de una instancia del servidor dedicado debe ejecutarse el jue-
go con el siguiente comando: java -jar RallyX3.jar -dedicated masterPort
serverPort pass, siendo masterPort el puerto en el que se escucharan las peti-
ciones de conexion, serverPort el puerto en el que funcionara el juego y pass la
contrasena que se requerira a los terminales que traten de conectarse remotamente
para gestionar el servidor (p.ej. java -jar RallyX3.jar -dedicated 5550 5559
batmobile).

\WINDOWStsystem32\cmd.exe - java -jar RallyX3. jar -dedicated 5550 5559 pass HEE

F:“WUictor~Mis documentos“MetBeansProjects“MetRallyd unfuddle~Rallydi~dist>java —u
Jar Rally®3.jar —dedicated 5558 5559 pass .
telect game folder

Cleave blank for default folder: F:“Uictor“Misz documentos-MetRallyd_ MaszterServer
D

Al iniciarse el servidor se requerird introducir el directorio de juego deseado
(o dejarlo en blanco para seleccionar el directorio por defecto) y también el mapa
elegido para la partida.

32

s C:AWINDOWSA\system32vcmd.exe - java -jar RallyX3. jar -dedicated 5550 5559 pass -3 ﬂ

i)

(=l o

R R Rl

& & S

) =]

I L
= 5 ¢

A continuacion el servidor se inicializard y quedara a la escucha de nuevos
clientes.

M 5 () o)

i fin s
& & &

El servidor estd preparado para reiniciarse de forma automatica en caso de
algun fallo.

4.2. Acceso remoto al servidor dedicado mediante el termi-
nal

Para la creacion de una instancia del terminal debe ejecutarse el juego con el si-
guiente comando: java -jar RallyX3.jar -terminal ip port, teniendo como

33

argumentos la direccion IP y el puerto en el que se ubica el servidor dedicado con
el que se desea conectar (p.ej. java -jar RallyX3.jar -terminal 192.168.1.
161 5550).

Si existe un servidor dedicado en funcionamiento en dicha ubicacién se requerira
introducir la contrasena establecida para dicho servidor.

e+ CrAWINDOWSA\system32cmd.exe - java -jar RallyX3.jar -terminal 192.168.1.161 5550

Microsoft Windows XP [Uersion 5.1.2608681
CC» Copyright 1985%-2001 Microsoft Corp.

C:“Documents and Settings“Wictor>f:

F:~»cd "F:»UictorwMis documentos“MetBeansProjects“NetRally¥ unfuddle~Rallyii-dis

"

F:~Uictor~Miz documentos MetBeanzProjectzMNetRallyX unfuddle~Rallyii~dist>java —
jar RallyX¥3.jar —-terminal 172_168.1.161 5554

connecting to 192.168.1.161:5558

Enter password:

Si no existe el servidor o la contrasena es incorrecta, el proceso finalizara.

CAWINDOWSsystem32\cmd.exe - java -jar RallyX3.jar -terminal 192.168.1.161 5550

Microsoft Windows RP [Uersion 5.1.260@01
CC>» Copyright 1985-20P1 Microsoft Corp.

C:~Documents and SettingssWictor>f:
F:“>cd "F:sWictorMiz documentoz“HNetBeanzProjects“NetHallyd unfuddle“Rallyili-dis
tll

F:“WUictor~Mis documentos“MetBeansProjects“MetRallyd unfuddle~RallyXi~dist>java —
jar Rally®3.jar —terminal 192.168.1.161 5558

connecting to 192.168.1_.161:5558

Enter password: pass

Select vhat do you want to change (1: Config, 2: ParamConfig; 3: UESPAConfig, 4:
MHap, 5: Retrieve stat files, B: Exit)

Si la contrasena es correcta, aparecerd el mend con las siguientes opciones:

modificar configuracion del juego: modifica todas las opciones del juego que
se configuran desde las pantallas de los ments, excepto las relativas a VESPA.

» modificar ParamConfig.tzt: modifica los valores de dicho fichero.

= modificar configuracion de VESPA: modifica la configuracién del sistema
VESPA.

» modificar mapa: se solicita la eleccién de un nuevo mapa para la partida.

= recuperar los ficheros estadisticos creados: crea en el directorio que se desee
una copia de todos los ficheros de estadisticas existentes en el directorio
de juego del servidor dedicado, dando la opcién de borrar los originales al
finalizar.

34

» salir: finaliza el proceso.

AWINDOWSvsystem32\emd.exe - java -jar Rallyx3 -terminal 192.168.1.161 5550

Microsoft Windows RP [Uersion 5.1.26H081
CC>» Copyright 1985-20P1 Microsoft Corp.

C:~Documents and Settings Uictor>f:

F:“»cd "F:slictorsMis documentosz“HNetBeanzProjectssNetHallyd unfuddle“~Rallyii-dis
tll

F:“WUictor~Mis documentos“MetBeansProjects“MetRallyd unfuddle~RallyXi~dist>java —
jar Rally®3.jar —terminal 192_168.1.161 5558

connecting to 192_168.1.161:5550

Enter password: pass

Select vhat do you want to change (1: Config, 2: ParamConfig; 3: UESPAConfig, 4:
MHap. 5: RHetrieve stat files, B: Exit)

Actual value for “number of teams': 2

Desired value: 2

Actual value for 'number of rounds'': 26
Desired value: 18

Actual value for '"number of traffic cars': 18
Desired value: 188

Error,. value must be: B<=UALUE<=5@

Desired value: 58

4.3. Creacidn del servidor de recogida de estadisticas

Para la creacién de una instancia del servidor de recogida de estadisti-
cas debe ejecutarse el juego con el siguiente comando: java -jar RallyX3.jar
-statserver.

SAWINDOWSAsystem32vemd.exe - java -jar Rallyx3 -statserver

Microsoft Windows XP [Uersion 5.1.2608681
Gy Copyright 1?85-20M1 Microsoft Corp.

C:“Documents and Settings“Wictor>f:

F:~>cd F:“\Uictor~Misz documentos“NetBeansProjects“NetRally® uwnfuddle~RallyX3-dist

F:“UictorsMis documentossMetBeanzsProjectz“HNetRallyd unfuddlesRallyH3isdist>java —
jar Rally®3.jar —statserver

DDNS change status: ERROR: Address 83.37.117.82 has not changed.

Select game folder (leave blank for default folder: F:“UictorMis documentos-Het
Rally® StatServerd

35

AWINDOWSsystem 3 2emd.exe - java -jar Rallyx3 -statserver

Microsoft Windows EP [Uersion 5.1.2608681
CC» Copyright 1985%-2001 Microsoft Corp.

C:“Documents and Settings“Wictor>f:

F:~»cd F:“\Uictor-Mis documentos“NetBeansProjects“NetRally® uwnfuddle“RallyX3-dist

F:~Uictor~Miz documentos MetBeanzProjectz~MNetRallyX unfuddle~Rallyii~dist>java —
jar RallyX3.jar —-statserver

DDNS change status: ERROR: Address 83.3%7.117.82 has not changed.

Select game folder (leave hlank for default folder: F:xUictor“Miz documentos~-Net
Rally® StatServerd

Uzing already existing directory F:sUictorsMiz documentosz“MNetRalluydi_ StatServer
initializing tcp

main loop

waiting for a client on port 5558

Nada maés iniciarse, el proceso actualiza la direccion IP a la que apunta la DDNS
(DNS dindmica) nrxss.twilightparadox.com, que es con la que conectan los
servidores. Acto seguido, se requiere seleccionar el directorio donde se escribiran
las estadisticas que se reciban, después de lo cual el proceso permaneceri a la
espera de conexiones de los servidores.

5. Configuracion técnica avanzada

Existen diversos parametros del juego que pueden ser modificados de forma
externa a los menus de la aplicacion. Estos parametros modifican aspectos clave
en el funcionamiento del juego por lo que debe tomarse especial precaucion en su
modificacion.

5.1. Modificacién de los APIs usados para la obtencién de
los mapas

En el directorio de juego, en el interior de la carpeta «Maps», se encuentra un

fichero «OSM _APIs.txt» que contiene un listado de URLs apuntando a diferentes
APIs de OpenStreetMap que pueden ser usadas.
El juego, cuando trate de anadir un nuevo mapa, probard primero con la primera
API de la lista y si ésta devuelve un mensaje de error se probara con la siguiente,
y asi sucesivamente. Si se llega al final de la lista sin lograr descargar el mapa, se
haréa uso de la API oficial, cuya URL se contiene dentro del codigo del juego.

36

5.2. Modificacion del fichero de configuracién ParamCon-

fig.txt

En el directorio de juego se encuentra el fichero de texto «ParamConfig.txt»,
que contiene diversos parametros del juego que pueden ser modificados por el

usuario.

El fichero esta estructurado de forma que por cada pardmetro existe una pri-
mera linea con el nombre (que comienza por el caracter #) seguida de otra linea

con el valor que toma.

La lista de los pardmetros incluidos y sus descripciones es la siguiente:

Nombre

Valor por defecto

Descripcion

radioMaxMapa

0.0050

Radio méximo del selector de ta-
mano al anadir un nuevo mapa.
En unidades UTM.

radioPeqMapa

0.0030

Radio minimo del selector de ta-
mano al anadir un nuevo mapa.

En unidades UTM.

MaxBytesUDP

6000

Tamano méximo de los mensa-
jes de red (en bytes)

MaxExtrapolation

Numero maximo de ciclos sobre
los que se podra aplicar la técni-
ca de extrapolaciéon cuando sea
necesaria.

MaxInterpolation

Namero de ciclos sobre los que
se aplicara la técnica de interpo-
lacion. Aumentar este valor re-
ducira los «saltos de posiciény
del resto de vehiculos a costa de
aumentar la latencia del juga-
dor.

NUM_PARKINGS_FIJOS

30

Namero de plazas de aparca-
miento «falsas» (estdn perma-
nentemente ocupadas).

NUM_PARKINGS

10

Nuamero de plazas de aparca-
miento utiles (se ocupan y de-
socupan a lo largo de la parti-

da).

NUM_FX

20

Numero maximo de efectos vi-
suales simultédneos (humos, ma-
reos, etc.).

37

timeout WaitingPlayers

60

Tiempo que puede estar el servi-
dor esperando a que se conecte
el primer jugador antes de abor-
tar la creacion de la partida.

timeout WaitingPlayersDedicated

180

Tiempo que puede estar el ser-
vidor dedicado esperando a que
se conecte el primer jugador an-
tes de abortar la creacién de la
partida.

framesPropagacionExplosion

Nuamero de ciclos en los que se
envia el aviso de que ha habi-
do una explosion al cliente. Este
valor debe aumentarse en caso
de altas latencias, ya que de lo
contrario no se visualizaran las
explosiones.

maxTC

50

Valor maximo para el campo
«Number of neutral carsy de la
pantalla «Game rules configura-
tion».

maxRC

Valor maximo para el campo
«Maximum number of enemy
carsy de la pantalla «Game rules
configurations .

maxNodos

10000

Nimero maximo de nodos de un
mapa. No se permitird descargar
mapas con un numero de nodos
mayor a este valor.

WOLFSON (ON=1)

Aplicacion del método WOLF-
SON en la implementacién de
VESPA.

maxPlayers

Nimero méaximo de jugadores
que se puedan unir a una par-
tida.

cochesBuscandoParking

10

Vehiculos del trafico que estan
buscando aparcamiento (nime-
ro constante en el tiempo).

TIEMPO_ CAMBIO

20000

Tiempo minimo que permanece-
rd un vehiculo del trafico apar-
cado. En milisegundos.

MARGEN_TIEMPO_CAM-
BIO

20000

Tiempo méaximo (adicional so-
bre el minimo) que permanecera
un vehiculo del trafico aparcado.
En milisegundos.

38

RADIO_PARKING_VALIDO

500

Distancia maxima a la que se
considera que un aparcamiento
estd cercano a un objetivo. En
metros.

PARKING PRO-
TOCOL (0=Ti-
me,l=Distance,2=EP,3=None)

Tipo de protocolo de reserva (de
aparcamiento) usado en la im-
plementacion de VESPA.

DISTANCIA_CERCA

700

Distancia méaxima respecto del
jugador a la que se recibiran da-
tos del resto de elementos. Se
debe aumentar si se quiere te-
ner conocimiento de la posicion
del resto de vehiculos en el ra-
dar cuando la opcién «#debu-
gRadar (ON=1)» esta activada.

debugRadar (ON=1)

Muestra en el radar el resto de
vehiculos y las plazas de aparca-
miento y su ocupacion.

VESPA _ StatisticsOn (ON=1)

Activa la recogida de datos esta-
disticos de VESPA.

Parking Player StatisticsOn
(ON=1)

Activa la recogida de datos esta-
disticos de aparcamientos de ju-
gadores.

Parking Traffic_StatisticsOn
(ON=1)

Activa la recogida de datos es-
tadisticos de aparcamientos de
vehiculos del trafico.

Game_ StatisticsOn (ON=1)

Activa la recogida de datos esta-
disticos del resumen de la parti-
da.

Stat server IP

nrxss.twilightparadox.com

URL o direccion TP de la ubi-
cacién del servidor estadistico al
que se desea enviar las estadisti-
cas recogidas.

Stat server port

5558

Puerto en el que escucha el ser-
vidor estadistico al que se desea
enviar las estadisticas recogidas.

Cambio VESPA y protoco-
lo aparcamiento automatico
(0=desactivado)

Cambio automatico entre di-
ferentes implementaciones de
VESPA (VESPA+P, VESPA-P
y sin VESPA). Se debe indi-
car cada cuantas rondas se desea,
que se realice el cambio.

Allow untrained players ignoring
statistics (ON=1)

Permite que jugadores sin habi-
lidad suficiente se unan a parti-
das del modo de juego «Parking
special mode».

39

(disable=1)

Minimum skill level to qualify a | 0.0083 Habilidad minima exigida pa-

player as trained ra que un jugador pueda unir-
se a partidas del modo de juego
«Parking special mode».

Disable in-game transparencies | 0 Deshabilita las transparencias

(disable=1) prescindibles en los graficos del
juego.

Disable prediction of collisions | 0 Deshabilita la prediccién de las

colisiones en el cliente (aumenta

el rendimiento a costa de mayo-
res errores de prediccion)
Data management strategy selec- | vespa Implementacién de Data Mana-
ted gement Strategy deseada.

Nota: la modificacion de los valores por defecto puede hacer el juego injugable
o perjudicar su rendimiento.

Nota: Para volver a usar los valores por defecto se debe eliminar este archivo.
Al volver a iniciar el juego el archivo se creard de nuevo con los valores iniciales.

6. Resolucion de problemas

A continuacién se describen los problemas méas comunes y sus posibles solucio-
nes.

6.1. Bajo rendimiento (framerate bajo)

Posibles causas:

= eleccion de un mapa demasiado extenso o detallado: debe prestarse atenciéon
al nimero de nodos que posee el mapa y descargar el mismo mapa con un
menor tamano.

» demasiados vehiculos: debe probarse a reducir el namero de vehiculos del
trafico y de vehiculos enemigos.

= problema con el pintado de transparencias: se puede comprobar pulsando
la tecla Q durante el juego para desplegar la informacion de ronda, que es
transparente, y observar si en ese momento el framerate disminuye drastica-
mente. En caso afirmativo debe deshabilitarse el pintado de transparencias
mediante el pardmetro #Disable in-game transparencies (disable=1)
del fichero «ParamConfig.txt» (ver apartado 5.2).

40

6.2. Error de conexién en los primeros segundos de la par-
tida

Debe asegurarse que los valores de los pardmetros #DISTANCIA_CERCA y #debug
Radar (0ON=1) del fichero «ParamConfig.txt» coincida en todos los clientes y el
servidor.

6.3. Corrupciéon u obsolescencia de los datos

El formato de los ficheros «ParamConfig.txt», «config» y «data» puede variar
en diferentes versiones del juego. Cuando se actualice a una nueva version, si no
se proporciona ninguna herramienta para realizar la conversion, deben eliminarse
dichos ficheros para que el juego cree las versiones por defecto al iniciarse.

7. Licencias

= Developing Games In Java
Algunos de los algoritmos descritos en el libro han sido usados en esta apli-
cacion.

Copyright (c¢) 2003, David Brackeen
All rights reserved.

Redistribution and use in source and binary forms, with or without modifi-
cation, are permitted provided that the following conditions are met: Redis-
tributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright noti-
ce, this list of conditions and the following disclaimer in the documentation
and /or other materials provided with the distribution.

Neither the name of David Brackeen nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WA-
RRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WA-
RRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TTAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

41

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OT-
HERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JLayer
Available at http://www. javazoom.net/javalayer/javalayer.html.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Library General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your option)
any later version. This program is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Library General Public License for more details. You should
have received a copy of the GNU Library General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

OpenSteer
Algunos de los algoritmos y estructuras de datos de esta libreria han sido
adaptados para el uso en esta aplicacion.

Available at http://opensteer.sourceforge.net/.

OpenSteer is distributed as open source software in accordance with the MIT
License. For more information see http://opensource.org/licenses/mit-
license.php

Xerces

Available at http://xerces.apache.org/#xerces2-j.

This component is licensed under Apache License Version 2.0. For more
information see http://www.apache.org/licenses/LICENSE-2.0.

Guava (Google Core Libraries for Java)

Available at https://code.google.com/p/guava-libraries/.

This component is licensed under Apache License Version 2.0. For more
information see http://www.apache.org/licenses/LICENSE-2.0.

Miisica:

- Methylchloroisothiazolinone (Instrumental Version) album Dirty Wings
(Instrumental Version) by Josh Woodward (Instrumental Versions).
Available under a Creative Commons Attribution 3.0 Unported licence.

42

For more information see http://creativecommons.org/licenses/
by/3.0/. Available at http://www.jamendo.com/es/track/760400/
methylchloroisothiazolinone-instrumental-version

- Video game album Metamorphosis by Howarang Van K. Available un-
der a Creative Commons Attribution-ShareAlike 3.0 Unported licence.
For more information see http://creativecommons.org/licenses/
by-sa/3.0/. Available at http://www. jamendo.com/es/track/923426/

video-game

43

	1 Introducción
	1.1 Motivación del proyecto
	1.2 Objetivos
	1.3 Trabajo previo y herramientas
	1.4 Trabajo relacionado
	1.5 Estructura de la memoria

	2 Videojuego desarrollado
	2.1 Resumen del juego
	2.2 Arquitectura del sistema
	2.3 Menús del juego
	2.4 Obtención de mapas
	2.5 Elementos del terreno
	2.6 Física
	2.7 Inteligencia artificial
	2.7.1 Comportamiento de los vehículos
	2.7.2 Aplicando Steering behaviors
	2.7.3 Búsqueda de caminos

	2.8 Funcionamiento en red
	2.8.1 Modelo de red
	2.8.2 Predicción del lado cliente
	2.8.3 Interpolación de entidades

	2.9 Sistema VESPA
	2.10 Menú de pausa
	2.11 Sonido
	2.12 Modos de juego y gestión de rondas y objetivos
	2.13 Mensajes durante el juego

	3 Explotación
	3.1 Motivación
	3.2 Aplicación
	3.3 Limitaciones
	3.4 Ventajas
	3.5 Elementos añadidos al juego
	3.6 Posibles mejoras de VESPA y problemas encontrados
	3.7 Resultados experimentales
	3.8 Rendimiento del juego

	4 Conclusiones
	4.1 Conclusiones
	4.2 Línea temporal de la realización del proyecto
	4.3 Trabajo futuro
	4.4 Valoración personal

	Bibliografía
	Anexos
	A Análisis
	A.1 Requisitos
	A.2 Casos de uso
	A.3 Diagrama de navegación
	A.4 Prototipado de ventanas
	A.5 Modos de juego

	B Diseño
	B.1 Arquitectura de la aplicación
	B.2 Capas de la arquitectura
	B.3 Despliegue
	B.4 Diagramas de clases
	B.4.1 Módulo de salida
	B.4.2 Módulo de menús
	B.4.3 Módulo gestor de escenarios
	B.4.4 Módulo de servidor maestro
	B.4.5 Módulo de servidor estadístico
	B.4.6 Módulo de estadísticas
	B.4.7 Módulo logger
	B.4.8 Módulo de menú in-game
	B.4.9 Módulo de terreno
	B.4.10 Módulo gestor de conexiones
	B.4.11 Módulo de física
	B.4.12 Módulo de inteligencia artificial
	B.4.13 Módulo cliente
	B.4.14 Módulo servidor

	B.5 Game Loop (bucle de juego)
	B.5.1 Servidor
	B.5.2 Cliente
	B.5.3 Actor

	B.6 Hilos de ejecución

	C Sobre el videojuego
	C.1 Menús del juego
	C.1.1 Tipografía
	C.1.2 Directorio del juego
	C.1.3 Prevención de errores
	C.1.4 Pantallas de error
	C.1.5 Pantallas de mapas
	C.1.6 Otros aspectos importantes

	C.2 Obtención de mapas
	C.2.1 OpenStreetMap
	C.2.2 Implementación
	C.2.3 Problemas encontrados

	C.3 Elementos del terreno
	C.3.1 Nodos
	C.3.2 Caminos
	C.3.3 Multipolígonos

	C.4 Física y colisiones
	C.4.1 Detección de colisión con elementos del terreno
	C.4.2 Detección de colisión con otros actores
	C.4.3 Cálculo de la fuerza resultado de una colisión con otros actores
	C.4.4 Aplicación del resultado de la colisión con el terreno

	C.5 Inteligencia Artificial
	C.5.1 Steering behaviors
	C.5.2 Comportamientos complejos
	C.5.3 Soluciones a las carencias de la IA
	C.5.4 Path-finding
	C.5.5 Normas de circulación

	C.6 Funcionamiento en red
	C.6.1 Funcionamiento básico
	C.6.2 Interpolación-extrapolación
	C.6.3 Predicción
	C.6.4 Compresión delta
	C.6.5 Envío de solo actores cercanos
	C.6.6 Optimizaciones
	C.6.7 Unión de jugadores a la partida

	C.7 Modos de juego y gestión de rondas y objetivos
	C.7.1 Modo tareas
	C.7.2 Plazas de aparcamiento
	C.7.3 Capacidad de salir del vehículo
	C.7.4 Modo supervivencia

	D Sobre VESPA y la explotación
	D.1 Vespa
	D.1.1 Breve introducción a VESPA
	D.1.2 Interfaces desarrolladas
	D.1.3 Implementación desarrollada
	D.1.4 Protocolo de reserva
	D.1.5 Necesidades de la implementación
	D.1.6 Atascos (elaborados para el aprovechamiento de VESPA)

	D.2 Añadidos para la explotación
	D.2.1 Servidor dedicado
	D.2.2 Servidor de recogida de estadísticas
	D.2.3 Estadísticas

	D.3 Rendimiento del juego

	E Artículo IMMoA'13
	F Manual de usuario

