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INTRODUCCIÓN 

En la actualidad, las enfermedades cardiovasculares (ECV) son la principal causa de muerte en 

los países desarrollados y se considera que seguirá siendo en el futuro. La Organización 

Mundial de la Salud registró que en el año 2008 murieron por esta causa 17,3 millones de 

personas, representando un 30% de todas las muertes registradas en el mundo. Se calcula que 

en 2030 morirán cerca de 23,3 millones de personas por ECV, sobre todo por cardiopatías e 

ictus y se prevé que sigan siendo la principal causa de muerte. 

Una de las principales causas de las enfermedades cardiovasculares es la alteración del 

metabolismo lipídico, produciendo acumulación de lípidos a nivel arterial y la formación de 

placa de ateroma, causantes de cardiopatía isquémica y  otros accidentes cardiovasculares 1.  

Los lípidos plasmáticos son aportados por la dieta mediante absorción intestinal y por la 

síntesis endógena a nivel hepático. En el torrente sanguíneo, son transportados a lugares de 

modificación y almacenamiento. El metabolismo lipídico está finamente regulado para 

mantener el aporte entre las fuentes de aporte y las vías de eliminación (vías metabólicas y de 

excreción). La alteración de cualquiera de los mecanismos que mantienen la homeostasis 

produce una alteración en las concentraciones de los lípidos provocando una dislipemia1.  

1. Metabolismo lipídico  

El metabolismo lipídico está finamente regulado por factores genéticos, ambientales y la 

interacción entre ambos. Todos ellos pueden alterar el metabolismo generando una situación 

conocida como dislipemia 1.  

Clínicamente los lípidos más importantes en plasma son los triglicéridos (TG) y el colesterol2. El 

colesterol juega numerosos papeles: es componente de las membranas celulares, precursor de 

hormonas esteroideas y de la vitamina D, y es necesario para la activación neuronal, como 

señal molecular3. El 80% del colesterol es derivado de la síntesis endógena por la HMG-CoA 

Reductasa y, sólo un pequeño porcentaje proviene de la dieta. Los TG son una llave energética  

formada por tres ácidos grasos unidos a un glicerol. Son sintetizados en el intestino y en 

células hepáticas y transportados hacia el plasma. Posteriormente se produce la lipolisis en la 

superficie endotelial, liberando los ácidos grasos en las células periféricas para su β-oxidación o 

su almacenaje4.  
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1.1 Metabolismo de las lipoproteínas 

La insolubilidad del colesterol y los TG requiere que sean transportados por macromoléculas 

esferoidales llamadas lipoproteínas. Las lipoproteínas son agregados moleculares esféricos de 

20 A de grosor formadas por un núcleo de lípidos apolares (colesterol esterificado y TG) 

cubiertos por una capa polar de 2 nm formada a su vez por apolipoproteínas (Apo), 

fosfolípidos y colesterol libre (CL)4.  

El grupo de las lipoproteínas alberga 5 grandes clases en función de sus características físico 

químicas: quilomicrones (QM), lipoproteínas de muy baja densidad (VLDL), lipoproteínas de 

baja densidad (LDL), lipoproteínas de densidad intermedia (IDL) y lipoproteínas de alta 

densidad (HDL). Las principales lipoproteínas transportadoras de TG son los QM y las VLDL, 

mientras que el colesterol es principalmente transportado por las LDL y las HDL5.  

Figura 1.1: Lipoproteína 

 

Imagen de una lipoproteína LDL. Se observan los esteres de colesterol, colesterol no 

esterificado, TG, FL y la apolipoproteína Apo B-100.  

1.1.1 Metabolismo de los quilomicrones 

Los QM  son las lipoproteínas más ricas en TG, con un contenido superior al 85%, y tan solo un 

2% de proteína. Además, contienen las Apo B-48, Apo C-III, Apo C-II y Apo A-V4. Los TG 

derivados de la dieta son hidrolizados en el intestino por medio de la lipasa pancreática en 2-

monoacilglicerol (2-MG) y ácidos grasos (AG), que pueden ser absorbidos por los enterocitos 

por difusión o por transporte específico como CD366. En el interior del enterocito, el 2-MG y 

AG son resistentizados en TG por la acil-CoA diacilglicerolaciltransferasa (DGAT)7. 
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Posteriormente la proteína MicrosomalTriglyceride Transfer Protein (MTP), en conjunto con la 

proteína DisulphiteIsomerasa (PDI), facilita la lipidación de la Apo B-48, en el primer paso para 

la formación del QM. Posteriormente, son trasladados al aparato de Golgi mediante el 

complejo COP II (proteína Coatomere II) y los transportadores SAR1a y SAR1b. Los QM 

nacientes son exocitados desde la membrana basolateral del enterocito hacia el torrente 

circulatorio6.  

Una vez ha entrado la lipoproteína en la circulación, intercambia apolipoproteínas con las HDL 

enriqueciéndose en Apo E y Apo C-II y Apo C-I hasta formarse el QM maduro.  

Figura 1.2. Síntesis de Quilomicromes 

 

Tomada de Hassing HC, Surendran RP. “Pathophysiology of hypertriglyceridemia”.BiochimicaetByophysica Acta.2011 

 

El QM maduro es sustrato de la lipoprotein lipasa (LpL) 8, enzima glicoproteica anclada por 

medio de los glicosaminoclicanos a la superficie endotelial. La LpL es sintetizada en el 

parénquima celular del tejido adiposo, corazón o músculo esquelético. El factor 1 de 

maduración de la lipasa (LMF1) es esencial para el propio ensamblaje dimérico de la LpL9. 

Posteriormente, la LpL es transportada a la superficie endotelial donde se une a la proteína 

glicosil-fosfatidil-inositol anclado a la lipoproteína de alta densidad unida a una proteína 1 

(GPIHBP1)10. La GPIHBP1 proporciona una plataforma para la LpL y las lipoproteínas ricas en 

TG, resultando allí la hidrólisis de TG. Parece que tiene una función esencial para el transporte 

de LpL desde el endotelio celular hacia la superficie de los capilares11. 
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Figura 1.3: Lipolisis periférica de TG. 

 
Tomada de Hassing HC, Surendran RP. “Pathophysiology of hypertriglyceridemia”.BiochimicaetByophysica Acta.2011 

La LpL hidroliza los triglicéridos a 2-MG y AGL que son capturados por los tejidos adiposo y 

muscular. EL QM, tras perder los TG, mediante intercambio con las HDL, pierde contenido en 

Apo C-II y se enriquece en Apo C-III, dando lugar a los QM remanentes (QMr). Los QMr van al 

hígado, donde son metabolizados por la lipasa hepática (LH) 12.  

La Apo E es esencial para el aclaramiento de los QMr, ya que contiene residuos cargados 

positivamente que facilitan la unión con los dominios negativos de los receptores hepáticos. 

Finalmente los QMr ricos en Apo E y LpL, son reconocidos por el receptor LDL y por el LRP1 

(proteína relacionada con el receptor LDL 1) e internalizados en las células hepáticas mediante 

endocitosis 13.  
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Figura 1.4: Aclaramiento hepático de remanentes 

 

Tomada de Hassing HC, Surendran RP. “Pathophysiology of hypertriglyceridemia”.BiochimicaetByophysica Acta.2011 

1.1.2 Metabolismo de las VLDL 

Las VLDL son lipoproteínas de origen hepático precursoras de las LDL y participan en el 

transporte de las grasas endógenas. Son ricas en TG, que suponen el 55% de la masa total 

frente al 10-15% de colesterol. También contienen Apo B-100 y pequeñas cantidades de Apo 

Cs y E.   

Los TG son sintetizados en el hígado y empaquetados en partículas de VLDL con Apo B-100 

como proteína principal. Los AG requeridos son derivados de la síntesis de novo, usando 

glucosa como sustrato, o por lipolisis en el tejido adiposo por acción de la lipasa sensible a 

hormonas (HSL). Los AGL penetran en el hígado y la enzima 

aciltransferasadiacilglicerolmicrosomal (DGAT) generará TG para almacenarlos en pequeñas 

gotas7. La enzima MTP es esencial para la lipidación de Apo B-100 y el complejo COPII es 

responsable de la translocación de  partículas pequeñas de VLDL desde el RE hasta Golgi, 

donde se acaba formando la VLDL madura con las Apos B y E14.  

Se ha postulado que la Apo C-III puede contribuir a la producción de VLDL, por lo menos en 

modelos animales15. Un aumento de la expresión de Apo C-III coincide con un aumento de la 

expresión de VLDL. Cuando las VLDL llegan al plasma, son retenidas por los proteoglicanos 
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heparin sulfato y sus TG son hidrolizados por la acción de LpL liberando AGL y glicerol. Las 

lipoproteínas VLDL intercambian apolipoproteinas con las HDL de manera similar a lo que 

sucede en los QM. Finalmente, la partícula queda libre y convertida en VLDLr, conocida como 

IDL. Esta partícula puede ser captada de nuevo por el hepatocito mediante LDLr o ser 

metabolizada a LDL por la LH.  

El papel de Apo A-V en la facilitación de la producción de VLDL remanentes no está 

determinado. Recientemente se ha demostrado que niveles altos de Apo A-V, localizado en 

gotas lipídicas en el hígado, coinciden con altos niveles de TG almacenados, sugiriendo un 

papel de Apo A-V en la movilización de TG en la producción de VLDL16. La disponibilidad de 

parte de TG determina el destino de Apo B y consecuentemente la secreción de partículas de 

VLDL17.  

Por otra parte, las VLDL pueden ser reconocidas por receptores en función de su contenido en 

Apo E en tejidos como corazón, músculo esquelético, tejido adiposo, cerebro y macrófagos 18.  

Las IDL son productos de la degradación de las VLDL  que contienen Apo B100, Apo C y Apo E. 

Tienen un diámetro de cerca de 35 nm y una vida media corta, por lo que, normalmente, están 

en sangre en concentraciones muy bajas 4.  

Figura 1.5: Síntesis hepática de VLDL 

 

Tomada de Hassing HC, Surendran RP. “Pathophysiology of hypertriglyceridemia”.BiochimicaetByophysica Acta.2011 
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1.1.3 Metabolismo de las LDL 

La lipoproteína LDL es el principal transportador de colesterol. Su eliminación del plasma es 

dependiente del receptor de las LDL que reconoce Apo B-100. Las LDL (en su forma 

esterificada) contienen el 60-70% del colesterol total (CT) plasmático, por tanto, son las 

principales transportadoras de colesterol, cuya eliminación del plasma depende del receptor 

de las LDL que reconoce la única apolipoproteína que portan, la Apo B-1004. 

Aproximadamente el 70% de los LDLr se encuentran en los hepatocitos y el 30% en las células 

periféricas19. La expresión de los LDLr es dependiente del contenido celular de colesterol y está 

controlada por SREBPS (Sterol Regulatory Element Binding Proteins). Las LDL son las 

lipoproteínas con mayor potencial aterogénico y, por ende, la principal diana de tratamiento4.  

1.1.4 Metabolismo de las HDL 

Las HDL son un complejo macromolecular compuesto, aproximadamente, por un 50% de 

lípidos y un 50% de proteínas. Contienen el 20-30% del CT y su función principal es el 

transporte del colesterol desde los tejidos periféricos hasta el hígado para su catabolismo. Sus 

principales Apos son Apo A-I, Apo A- II, Apo A-IV, Apo C y Apo E4.  

La biosíntesis de HDL es un proceso complejo que incluye la síntesis y secreción de las Apos 

componentes de la HDL, la adquisición de lípidos extracelulares (fosfolípidos y colesterol) y el 

ensamblaje de la HDL madura20.  La Apo A-I es la principal proteína de las HDL, constituyendo 

el 70% del contenido proteico de la partícula. La Apo A-II  es la segunda proteína más 

importante, constituyendo el 20% de las proteínas de HDL. Las recién sintetizadas 

apolipoproteÍnas de HDL deben adquirir fosfolípidos (FL) y colesterol. En este paso, el 

transportador ABCA1 (ATP-BindingCassete AI) tiene un papel importante en la lipidación de la 

Apo A-I facilitando el eflujo de colesterol hacia las lipoproteínas pobres en lípidos y que 

contienen Apo A-I.  Dicho transportador se localiza en intestino e hígado y parece ser el 

responsable de la mayoría de  la lipidación  inicial de Apo A-I libre 21.  

En este paso de la formación de las HDL, dos moléculas de Apo A-I se unen alrededor de un 

núcleo hidrofóbico con estructura de bicapa fosfolipídica, adquiriendo la estructura discoidal o 

también llamada cinturón22. Las HDL nacientes van adquiriendo lípidos a través del flujo del 

colesterol y de la lipolisis de las lipoproteínas ricas en TG. Estas HDL nacientes se encuentran 

en muy baja concentración en el plasma, tan solo un 5%, ya que rápidamente se transforman a 

maduras23.  
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La masa lipídica de las HDL proviene, principalmente, de tejidos periféricos, aunque los 

mecanismos mediante los cuales se produce la lipidación no se conocen en su totalidad. El 

proceso de maduración de la HDL se realiza por diferentes vías: una parte importante de las 

HDL nacientes maduran gracias a la lipolisis de partículas ricas en TG, principalmente VLDL y 

QM. La LpL actúa sobre estas partículas liberando lípidos superficiales, FL y CL. Los productos 

liberados se unen a las HDL nacientes. Las HDL nacientes también intercambian lípidos con las 

HDL maduras en un proceso de remodelado mediante la acción de la lipasa hepática (LH), la 

proteína transferidora de ésteres de colesterol (CETP) y la proteína transferidora de FL (PLTP). 

Los FL derivados de las VLDL y los QM se transfieren a las HDL a través de la PLTP, pero, para la 

maduración total de la partícula es necesario que el CL se esterifique y formen el núcleo 

hidrofóbico característico. El colesterol internalizado en la partícula de HDL  es esterificado por 

la enzima LACT (Lecitina Colesterol Acil Transferasa) 24, que cataliza la transferencia de grupos 

2- acilo de la lecitina al CL21. 

Figura1.6: Síntesis y maduración de las partículas de HDL 

 

Fosfolípidos, FL; Colesterol no esterificado, CL; Colesterol esterificado, CE. 

“Molecular regulation of HDL metabolism and function: implications for novel therapies”. J. Clin. Invest. 2006 
 

El riñón, el hígado y los tejidos esteroidogénicos son los principales sitios implicados en el 

catabolismo de las HDL. La eliminación de las HDL puede llevarse a cabo bien por captación 

selectiva de colesterol u otros lípidos de la partícula, o bien por endocitosis y degradación de 

toda la partícula.  
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El colesterol transportado por la HDL se retira principalmente en hígado por medio del 

receptor Scavenger SR-BI25. Este receptor es capaz de captar selectivamente colesterol, tanto 

libre como esterificado, pero no apolipoproteínas20. Estudios realizados con este receptor en 

hepatocitos polarizados, sugieren que SR-BI participa en la internalización de las partículas 

completas de HDL, la eliminación del colesterol y secreción de partículas HDL  delipidadas26.  

Otro mecanismo clave en la eliminación del colesterol transportado por la HDL es el catalizado 

por la CETP27, 28. Esta enzima cataliza el intercambio de TG desde las lipoproteínas de baja 

densidad, LDL, y VLDL por el CE de la HDL, resultando un empobrecimiento de CE y un 

enriquecimiento en TG de la partícula HDL. 

Figura 1.7: Catabolismo de las HDL en el hepatocito 

 

Molecular regulation of HDL metabolism and function: implications for novel therapies”. J. Clin. Invest. 2006. 

1.2 Metabolismo de los triglicéridos 

Los niveles de TG en plasma pueden tener un origen endógeno  (derivados de dietas ricas en 

ácidos grasos) o endógenos (provenientes de la síntesis hepática). En el intestino los TG de la 

dieta son hidrolizados por la lipasa hepática en 2 monoglicerol (2-MN) y ácidos grasos libres 

(AGL) formando micelas29. Los AGL entran en los enterocitos por medio del transportadores 

FABP (proteína unida a los ácidos grasos), como los CD36. En su interior los TG son re-

sintentizados de nuevo por medio de la enzima DGAT, estos pueden ser hidrolizados de nuevo 

por la ACTGL y por lipasa sensible a hormonas4. Posteriormente la MTP media el ensamblaje 

de los TG a la Apo B-48 y Apo E en un primer paso de formación de los QM. Estos QM se 

secretan al sistema linfático, después de su secreción los QM adquieren la Apo C-II, Apo C- III, 

que modulan en plasma el metabolismo de lipoproteínas ricas en TG30. 
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Los QM son secretados al sistema linfático, entran en la vena cava y circulan hasta que 

interactúan con la lipoprotein lipasa (LpL), la secreción de esta enzima depende de LMF1 y está 

asegurada al endotelio vascular por los proteoglicanos y por GPIHBP14.  

Los QM contienen Apo A-V, Apo C-II y Apo C-III. Apo C-II es un cofactor necesario para la LpL, 

mientras que Apo C-III puede interferir con LpL, inhibiéndola4 Ha sido demostrado que Apo A-V 

mejora la hidrólisis de lipoproteínas ricas en TG (TRL) 31,  aunque este mecanismo no está 

definido completamente.  

En el hígado, los TG son sintetizados a partir de AGL extraídos del plasma o de AG sintetizados 

de nuevo. La enzima central para la síntesis de novo de AG es la FAS (Sintetasa de Ácidos 

Grasos) que cataliza la conversión del Malonyl-CoA a Palmitato. La enzima FAS es inducida por 

SREBP1 (Sterol Regulatory Element Binding Protein 1), que se auto regula por los AG 

poliinsaturados, glucosa y la insulina. La MTP hepática media el ensamblaje de TG con los 

ésteres de colesterol, la Apo B-100 y la Apo E, para formar VLDL32.  

En el tejido adiposo y los capilares musculares, los TG de los QM y las VLDL son hidrolizados en 

AGL por la lipasa unida al endotelio vascular. Los AGL son re-esterificados y almacenados en 

adipocitos o se lleva a cabo la β- oxidación de los mismos para obtener energía 32.   

Los QM se remodelan en partículas pequeñas, densas, de vida corta y ricas en colesterol 

esterificado, llamadas QMr, y las VLDL convirtiéndose, del mismo modo, en VLDLr (también 

llamados IDL). Los QMr y algunas IDL son aclarados mediante endocitosis a través de la unión 

de la Apo E a los receptores LDL y en su ausencia, por los receptores  LRP1. IDL puede ser 

hidrolizado por la LH generando partículas pequeñas ricas en colesterol esterificado, 

denominadas partículas  LDL ricas en CE 32. 
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Figura 1.8: Metabolismo de los TG 

 

 

2. Dislipemias 

Las dislipemias son un conjunto de patologías caracterizadas por alteraciones en las 

concentraciones lipídicas plasmáticas. Es un término genérico para denominar cualquier 

situación clínica en la cual existan concentraciones anormales de colesterol total, colesterol 

HDL (c-HDL), colesterol LDL (c-LDL) o TG1.  

2.1 Hipertrigliceridemia 

La hipertrigliceridemia (HTG) está definida como la concentración de TG en plasma en ayunas, 

sin tratamiento previo, por encima del percentil 90 ajustado por sexo y edad en la población 

(3.0 mmol/l en adultos de edad media) 32. La HTG es una forma común de dislipemia que se 

encuentra frecuentemente asociada con una enfermedad coronaria prematura. La aparición 

del evento cardiovascular puede verse adelantada en caso de pacientes fumadores en 5 o 10 

años. La hipertrigliceridemia está correlacionada negativamente con la concentración de c-

HDL33.  
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Existen varios trastornos genéticos comunes relacionados con las HTG que pueden generar un 

evento cardiovascular prematuro (ECP), que incluyen la hiperlipemia familiar combinada (HFC), 

la dislipemia residual en pacientes con diabetes mellitus tipo 2 y la 

hipoalfalipoproteinemiafamilar, pudiendo ser los responsables del 50% de los ECP. En 

contrapartida, otra forma hereditaria de HTG, la hipertrigliceridemia familiar monogénica no 

está asociada con ECP3.  

La obesidad, en particular la troncular, está asociada con un incremento de los niveles de TG, 

una disminución de los niveles de c-HDL. y resistencia a la insulina, siendo éste el mayor factor 

que puede contribuir a la dislipemia asociada con la diabetes tipo 234.  

La HTG secundaria puede deberse a otras anormalidades como la diabetes descontrolada, el 

consumo de alcohol, hipotiroidismo, enfermedad renal o una infección por el virus de la 

inmunodeficiencia humana34.  

2.2 Fenotipos de las hipertrigliceridemias 

Los pacientes con HTG presentan un cuadro que puede cursar con xantomas palmares, 

hepatoesplenomegalia, pancreatitis lipémica, así como la formación de placas de ateroma que 

suponen un aumento del riesgo de padecer un evento cardiovascular34. 

La HTG de tipo 1 o hiperquilomicronemia (OMIM 238600), tiene una frecuencia en la población 

menor a 1:106 suele aparecer en la infancia o adolescencia y se caracteriza por niveles de TG 

de 1000-10000 mg/dl debidos a deficiencia en la actividad de la LpL o Apo C-II33. Suele ir 

acompañada de alteraciones cutáneas y oculares, así como pancreatitis recurrente32. 

Actualmente, se conocen más de 80 variantes disfuncionales en el gen LPL que producen la 

reducción o eliminación de la actividad LpL, resultando en la acumulación de TRL30. Mutaciones 

en homocigosis en APOC2 pueden generar un fenotipo similar, ya que codifica para la Apo C-II, 

un cofactor clave para la LpL. Variaciones en homocigosis que se han demostrado 

disfuncionales para el gen APOC2 son causantes de variaciones en la actividad de LpL en 

plasma33.  

La mayoría de las HTG primarias se diagnostican en adultos, con un rango de TG entre 200 y 

2000 mg/dl, principalmente debido a la acumulación de partículas VLDL, que pueden 

acompañarse o no de QM. Normalmente los pacientes son asintomáticos pero dependiendo 

del grado de HTG, pueden presentar xantomas eruptivos, lipemia retinalis, hepatomegalia, 

síntomas focales neurológicos, dolor recurrente epigástrico y pancreatitis35. Apo A-V es una 

apolipoproteina clave, cuya relación con la HTG fue confirmada con la evidencia de 
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triglicéridos altos en ratones knockout (KO) 32. Recientemente, se han identificado mutaciones 

en los genes LMF1 y GPIBHP1 como causales de este tipo de HTG 10, 11 12,36,42 y 59. 

Tradicionalmente se ha usado la clasificación Fredrickson (Tabla 1.1) para fenotipar las 

dislipemias. Actualmente, se ha observado que la frontera entre estos fenotipos no es tan 

clara, y, en la práctica clínica, las decisiones terapéuticas se basan en el nivel de TG y el 

contexto asociado a la anormalidad lipídica12.  

Tabla 1.1: Clasificación de Fredrickson de las dislipemias primarias.  

 Prevalencia en la 
población 

Perfil lipídico 
Variación 

lipoproteína 
Variaciones genéticas 

HLP tipo 1 1:10
6 

TG 
 

CT 

Alto QM con 
Baja LDL y VLDL 

Mutaciones en LPL y también 
en Apo C-II 

HLP tipo 2A 1:50 CT Alto LDL Mutaciones en Apo B y LDLr 

HLP tipo 2B 5% 
TG 

 
CT 

Alto VLDL 
Alto LDL 

Mutaciones en Apo B, Apo C- 
III y USF1. 

HLP tipo 3 1:104 
CT 

 
TG 

Alto CT 
Alto TG 

Mutaciones en homocigosis 
en Apo E 

HLP tipo 4 5-10% 
TG 

 
CT 

Alto VLDL No se conoce 

HLP tipo 5 1:108 

CT 
 

TG 

Alto QM 
Alto VLDL 

Mutaciones en heterocigosis 
en LPL en el 5-10% de los 

casos. 

 

HLP: hiperlipoproteinemia. TC: Colesterol total. TG: triglicéridos. LDL: Lipoproteína de baja densidad. VLDL: Lipoproteína de  muy 

baja densidad. LPL: lipoproteína lipasa.              Muy elevado (por encima del percentil 99 por edad y por sexo).        Elevado (por 

encima del percentil 95 por edad y sexo).            Moderadamente elevado (por encima del percentil 90).  

 

2.3 HTG y el riesgo cardiovascular  

Una moderada HTG es factor de riesgo independiente para enfermedades arterioescleróticas, 

particularmente para un evento cardiaco prematuro37, 38. El estudio de cientos de sujetos 

durante más de 10 años, muestran que un incremento de 1 mmol/l en los niveles de TG 

plasmáticos incrementan el riesgo de un ECP del 32% al 76%, incluso después de ajustar el c-

HDL39. Más recientemente, se ha confirmado que concentraciones en plasma de TG en ayunas 

tienen una fuerte asociación con el riesgo de ECP40, 41. Complejos mecanismos subyacen la 

asociación TG- arterioesclerosis, ya que existen anormalidades metabólicas, como la obesidad, 
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la Diabetes Mellitus tipo 2, niveles de c-HDL bajos, concentraciones elevadas de LDL, altos 

niveles de AGL, la hiperinsulinemia y el incremento de la viscosidad plasmática que pueden 

estar asociadas con niveles altos de TG. Sin embargo, se ha demostrado que las lipoproteínas 

ricas en TG (QM y VLDL) y sus remanentes pueden contribuir directamente la formación de la 

placa de ateroma42.  

3. Variantes genéticas asociadas a la hipertrigliceridemia 

Junto con las influencias ambientales, variantes genéticas comunes y raras pueden determinar 

las concentraciones de TG en plasma. Identificar genes y variantes genéticas asociadas con la 

concentración de TG en plasma permite mejorar el entendimiento sobre las vías metabólicas 

de las lipoproteínas ricas en TG  e identificar a los sujetos con alta susceptibilidad al desorden 

metabólico, lo que permite desarrollar intervenciones terapéuticas para mejorar los niveles de 

TG, su concentración, disminuyendo así el riesgo de ECP43.  

El entendimiento de la arquitectura genética, mediante e estudio de todas las variantes 

genéticas que puedan tener efecto sobre las concentraciones plasmáticas de TG, se ha visto 

incrementado substancialmente mediante el estudio de los GWAS (Genome Wide Association 

Study). Los GWAS muestran asociaciones entre variantes genéticas comunes con frecuencias 

superiores al 1% (polimorfismo de un solo nucleótido o SNPs), y otros rasgos cualitativos y 

discretos44. Gracias a estos estudios se han identificado  nuevas regiones genómicas que 

pueden relacionarse con los TG para estudios posteriores45-46. Sin embargo, para establecer 

totalmente la arquitectura genómica de las concentraciones de TG en plasma se requieren 

experimentos complementarios, incluyendo secuenciación, estudio con modelos animales, 

estudios de linaje y familiares, funciones celulares y experimentos bioquímicos44.  

3.1 Lipoprotein lipasa (LpL) y triglicéridos 

La existencia de la enzima LpL fue descubierta por primera vez en 194347. La LpL es una 

glicoproteína de 55 KDa, localizada en la cara luminal de las células endoteliales. El gen LPL se 

encuentra en el cromosoma 8 y se extiende 30 kb, contiene 9 exones. La producción de LpL 

está altamente regulada en la transcripción, post- transcripción y mecanismos 

postraduccionales47.  

La LpL se sintetiza en gran cantidad en los tejidos que requieren AGL para su metabolismo 

energético, predominantemente en corazón, tejido adiposo y músculo esquelético. 

Posteriormente, es secretada al torrente sanguíneo donde se unirá a la GPIHBP1 en la 

superficie de las células endoteliales48.  
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La síntesis, procesamiento (glicosilación) y secreción de LpL está regulada bajo control 

hormonal. Se ha demostrado en estudios con ratas que la adición de insulina, genera un 

aumento de la actividad de LpL. En humanos, el aumento de la ingesta de carbohidratos 

genera un incremento de LpL de 3 a 6 h después, aunque el papel de la insulina todavía no es 

claro 49. También se ha demostrado que el sistema adrenérgico disminuye la actividad de LpL 

en tejido adiposo y aumenta la síntesis de LpL en el musculo43.  

La LpL hidroliza los TG de QM y VLDL liberando AGL, que podrán ser usados para re-sintetizar 

de nuevo TG en tejido adiposo o ser β-oxidados en el músculo. La acción de LpL es 

dependiente de Apo C-II, un cofactor esencial para su activación. Sin embargo, la Apo C-III 

puede inhibir la lipolisis mediante inactivación de LpL. 

Figura 1.9: Estructura de la lipoprotein lipasa 

Modelo para la unión de los QM y LpL GPIHBP1 en la superficie de células endoteliales. GPIHBP1 está atado a la 

superficie de la célula endotelial por un anclaje GPI y contiene un dominio de ácido amino-terminal que se propone 

ser un lugar de unión específica para los QMy LpL. El dominio ácido de GPIHBP1 puede unirse a quilomicrones 

través de la interacción con los dominios cargados positivamente de apolipoproteínas expuestos en la superficie de 

las lipoproteínas. El dominio ácido de GPIHBP1 también puede servir como el sitio de unión para LpL, que contiene 

dominios de unión a heparina cargados positivamente. La interacción entre los quilomicrones GPIHBP1-enlazados y 

LpL puede implicar la agrupación de las proteínas ancladas a GPI o homodimerización. La lipólisis de TGasociados a 

los quilomicrones libera ácidos grasos libres (FA), que son transportados en las células endoteliales50. 
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La expresión anormal de LpL está asociada con arterioesclerosis, obesidad, diabetes y 

quilomicronemia.49 Estudios realizados con ratones KO para LPL, han demostrado un aumento 

de la concentración de TG con un incremento en las VLDL después del nacimiento y de los  QM 

después de mamar. La acumulación de TRL es letal tras 18 horas desde el inicio de la 

alimentación. A la inversa, la sobreexpresión de LpL en ratones confiere un fenotipo protector, 

aumentado el aclaramiento de QM y VLDL y disminuyendo la concentración de TG cerca de un 

75%51.  

3.2 Apolipoproteína A-V y triglicéridos 

El gen que codifica para la Apo A-V (APOA5) fue identificado bioinformáticamente dentro de la 

agrupación génica APOA5-APOA4-APOC3-APOA1 en el cromosoma 1152. El gen APOA5 de 1,9 

Kb está formado por 4 exones que codifican 366 aminoácidos. Se expresa exclusivamente en el 

hígado, particularmente en zonas de regeneración hepática. El 80% de Apo A-V está asociado 

con QMs, VLDLs y HDLs, mientras que aproximadamente el 20% es retenido a nivel 

intrahepático asociado con gotas lipídicas16. La Apo A-V en plasma afecta, probablemente, a la 

distribución de moléculas de Apo C-III en VLDL, aunque el papel intracelular de Apo A-V no 

está claro. Presumiblemente, Apo A-V afecta directamente al ensamblaje intracelular de VLDL 

o a su secreción a nivel hepático53.  

El papel de Apo A-V  todavía debe ser dilucidado. Ensayos celulares sugieren que el complejo 

QM/Apo A-V, pero sin partículas de Apo E y Apo C- III está ávidamente unido al dominio ácido 

de GPIHPB1, aunque Apo A-V puede no competir con el LpL unido. Por otro lado, los QM 

unidos requieren tanto de Ly6, como del dominio ácido. Así los quilomicrones se unen a 

GPIHPB1 en presencia tan solo de LpL, y Apo A-V no parece desempeñar un papel esencial en 

este proceso.  

Se ha observado en ratones que la sobreexpresión de APOA5  disminuye marcadamente la 

concentración de TG plasmáticos, mientras que en ratones KO para APOA5 se observa una 

severa HTG (los TG se ven multiplicados por cuatro, respecto a concentraciones basales) 34, 54. 

La expresión de APOA5 está regulada por factores transcripcionales, que están involucrados en 

las lipoproteínas plasmáticas y en la homeostasis de la glucosa, sugiriendo que responde a 

múltiples señales ambientales54. ApoA-V es claramente crucial en el metabolismo de las 

lipoproteínas ricas en TG tanto en ratones como en humanos, aunque su regulación y 

funciones moleculares son todavía desconocidas. Algunas variantes comunes de APOA5 se han 

asociado con los niveles de TG en plasma en numerosas etnias55. 
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Los análisis funcionales realizados en las mutaciones en APOA5que se asocian con HTG, han 

revelado generalmente una pérdida de la actividad de LpL, particularmente cuando existe 

mutaciones en extremo C-terminal, que interfiere con la capacidad de Apo A-V para 

interactuar con lípidos y lipoproteínas56.  

3.3 Factor de Maduración de la Lipasa 1 y triglicéridos 

Las proteínas LpL, LH y lipasa endotelial son enzimas lipolíticas involucradas en el metabolismo 

lipídico. En 1983 fue descrita por primera vez una mutación en ratón denominada  deficiencia 

combinada de lipasa (cld) que cursaba con deficiencia tanto de LpL como de LH58. Los ratones 

homocigotos para la mutación cld desarrollan QM postparto y mueren por isquemia y cianosis 

debida a un aumento de la viscosidad sanguínea57, 9. El fenotipo cld fue mapeado en el 

cromosoma 17 usando análisis de ligamiento, y posteriormente se identificó el gen Tmen112, 

renombrándolo como Lmf1 (factor 1 de maduración de la lipasa)9. Estudios posteriores han  

demostrado que Lmf1 está localizado en tejidos que expresan LpL o HL. La proteína Lmf1 se 

localiza en la membrana del RE estimulando la maduración tanto de LpL como de HL9, 57.  

La mutación cld produce un truncamiento prematuro de Lmf1 que afecta a un dominio 

conservado de función incierta, que impide la maduración de las lipasas, independientemente 

de la localización subcelular y sin requerir ninguna intervención directa58. Se ha demostrado, 

en estudios, in vitro que mutaciones en Lmf1comprometen la actividad de Lmf159. 

En humanos se ha identificado el gen LMF1,homólogo al de los ratones, localizado en el 

cromosoma 16, como un candidato para el metabolismo de TG. En un estudio realizado con 11 

pacientes con hiperquilomicronemia y un defecto en la actividad de LpL se identificó la 

mutación Y439X  que genera un codón Stop en el exón 9 de LMF1 de un paciente que 

presentaba episodios de pancreatitis recurrente y una concentración de TG de 30 mmol/l. La 

mutación W464X fue encontrada en pacientes con una actividad disminuida en LpL y HL en un 

76% y un 27% respectivamente9. Así, LMF1 parece ser un gen clave que regula el metabolismo 

de TG60.  

Lmf1 es una proteína transmembrana localizada en el RE. La proteína está formada por 5 

segmentos transmembrana, que separan la proteína en 6 dominios, la mitad de los cuales dan 

al lumen del retículo endoplasmático y la otra mitad al citoplasma61. Los defectos en Lmf1 

producen una deficiencia combinada de LpL y HL. Ambas, junto con la lipasa endotelial, son 

lipasas homodiméricas, pero no afecta a la lipasa pancreática, monomérica. Por tanto, la 

proteína Lmf1 interviene en la dimerización y maduración de estas lipasas, para convertirlas en 
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enzimas activas (Figura 1.9) 62. Las mutaciones identificadas truncan el dominio C- terminal, 

que indica el papel esencial de esta región en la maduración de las lipasas (Figura 1.10). 

Mientras que la mutación Y439X causa una pérdida completa de la funcionalidad, la mutación 

W464X es menos severa, generando tan sólo una pérdida de la funcionalidad del 60%63.  

Figura 1.10: Papel del factor de maduración de la lipasa 1 en el ensamblaje y maduración de 

la lipoprotein lipasa.  

 

Las chaperonas y factores de plegamiento  ayudan al péptido naciente, tan pronto como los péptidos penetran en la 

luz del RE, el translocón Sec61ayuda a su plegamiento. Esto proporciona vigilancia en la maduración de las 

proteínas, asegurando que todas las cadenas nacientes permanecen en el retículo endoplasmático hasta su 

completo plegamiento. Por otra parte, las proteínas mal plegadas son dirigidas a por diferentes vías de degradación 

del RE (denominado ERAD), lo que proporciona garantías contra las proteínas mal formadas. Además, la 

maduración de la lipasa requiere de la chaperona Calnexina (CNX), que es un factor general que es requerida en la 

maduración eficiente de la lipasa. LMF1 probablemente promueve las etapas posteriores de plegamiento y 

ensamblaje en las lipasas, mientras CNX juega un importante papel en la estabilización de la salida de la porción N- 

terminal en las lipasas durante su plegamiento
 64

. 
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Figura 1.11: Estructura del factor de maduración de la lipasa. 

 

LMF1 puede unirse a las proteínas y estabilizar sus formas, en contraste, las lipasas malformadas no pueden 

asociarse con LMf1 y terminarán en ERAD. De hecho, en cld, los homodímeros de LPL disminuyen severamente, 

mientras que las lipasas malformadas se acumulan, así la disfuncionalidad de LMF1 genera un plegamiento 

insuficiente64.  
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HIPÓTESIS Y OBJETIVOS 

En la actualidad las enfermedades cardiovasculares son la principal causa de muerte en los 

países desarrollados y se considera que lo seguirá siendo en el futuro.  La hipertrigliceridemia 

(HTG) es una dislipemia asociada frecuentemente a enfermedad cardiovascular prematura. La 

mayoría de las HTG son debidas a una interacción compleja entre factores genéticos y 

ambientales, como la obesidad y la resistencia a la insulina, entre otros65. La 

hiperquilomicronemia grave que se presenta en la infancia y cursa con pancreatitis recurrente 

y niveles de TG entre 1.000-10.000 mg/dl ha sido ampliamente estudiada asociándose a la 

herencia recesiva de mutaciones en los genes LPL y APOC235. Sin embargo, la HTG que se asocia 

con eventos cardiovasculares, se presenta en adultos y los niveles de TG plasmáticos se 

encuentran entre 500-2.000 mg/dl, sus causas moleculares no están del todo elucidadas y se 

ha planteado como posible causa la herencia dominante de mutaciones o la interacción de 

diferentes variantes comunes32,41. Varios son los genes que se han relacionado con este tipo de 

HTG, como por ejemplo: LPL, APOA5 y LMF1. 

Considerando estos datos establecimos las siguientes hipótesis:  

- La población adulta afecta de HTG primaria grave presenta una mayor cantidad de 

variantes genéticas patogénicas comunes y no comunes en genes asociados con 

hiperquilomicronemia que la población general. 

- La HTG primaria grave con valores >500 mg/dl es causada por mutaciones 

funcionalmente graves en heterocigosidad, y/o acumulación de variantes patogénicas 

comunes asociados con TG elevados.  

Teniendo en cuenta estos hechos planteamos los siguientes objetivos:  

1. Identificar las variantes génicas, comunes y no comunes en los genes candidatos: LPL, 

LMF1 y APOA5 en sujetos con HTG grave de causa primaria. 

2. Conocer si existe asociación entre las variantes alélicas de los genes LPL, LMF1 y 

APOA5 y la HTG mediante comparación de las frecuencias alélicas de la población 

hipertrigliceridemia frente a los 1000 genomas.  

3. Analizar bioinformáticamente el efecto de las variantes encontradas en los genes 

candidatos. 

4. Analizar in vitro la funcionalidad de las mutaciones no estudiadas previamente. 

5. Establecer la segregación familiar de las variantes genómicas encontradas de novoen 

nuestra población de estudio. 
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MATERIAL Y MÉTODOS 

1. Descripción de la muestra: 

Se seleccionó un grupo de 112 sujetos (87 varones y 25 mujeres) procedentes de la Unidad de 

Lípidos del Hospital Universitario Miguel Servet, con edades comprendidas entre los 21 y los 

73 años, afectos de hipertrigliceridemia (HTG) grave definida con niveles de triglicéridos (TG) > 

500 mg/dl en dos determinaciones diferentes tras una dieta hipolipemiante y sin tratamiento 

farmacológico previo.  

 Se descartaron los pacientes con hipertrigliceridemias secundarias: 

- Diabetes descompensada (hemoglobina glicosidada superior al 7,5%) 

- Índice de Masa Corporal (IMC) superior a 30 kg/m2 

- Consumo de alcohol superior a 30gr/día 

- Insuficiencia renal crónica (filtrado glomerular por debajo de 30 ml/min o creatinina 

sérica por encima de 2 mg/dL) 

- Tratamiento con fármacos que aumenten los triglicéridos: estrógenos, 

antirretrovirales, corticoides, andrógenos y ácido retinoico 

- Hemocromatosis 

- Hipotiroidismo 

 

2. Obtención de la muestra: 

Las muestras de sangre se obtuvieron por punción venosa, tras ayuno previo de 10-12 horas. 

Se extrajeron 10 ml de sangre en tubos con 1 mg/ml de EDTA (Ácido etilendiaminotetracético) 

como anticoagulante. A continuación la muestra sanguínea se centrifugó a 1800 xg a 

temperatura ambiente durante 15 minutos en una centrífuga Kubota 5220. Posteriormente el 

plasma se distribuyó en alícuotas de 500 µl y se conservó a -80 °C. El precipitado con las células 

sanguíneas se reconstituyó con un volumen de suero fisiológico igual al que se ha retirado de 

plasma y se guardó a -80 °C para análisis posteriores. 

3. Obtención del DNA genómico 

El DNA genómico se aisló a partir de 10 ml de sangre periférica recogida sobre tubos con EDTA, 

mediante el producto comercial Flexigene® DNA (Qiagen). Para la obtención de DNA, se 

descongeló rápidamente la sangre en un baño húmedo a 37 °C con leve agitación y se 

almacenó en hielo hasta comenzar el procedimiento. En un tubo tipo falcon de 50 ml se 
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añadieron 25 ml del buffer FG1 (Qiagen) y 10 ml de sangre que se mezclaron invirtiendo el 

tubo 5 veces. Se centrifugó 5 minutos a 2.000 xg. Se decantó el sobrenadante y se dejó el tubo 

abierto y boca abajo durante 2 min. Posteriormente se adicionaron 5 ml de buffer FG2 

/QIAGEN proteasa y se homogeneizó el pellet por completo mediante agitación con vórtex. A 

continuación, se incubó el tubo durante 10 min a 65 °C. Para la precipitación, se añadieron 5 

ml de isopropanol (100%) y se mezcló por inversión hasta que el DNA se hizo visible en forma 

de hilos o un grupo. A continuación, se centrifugó durante 3 min a 2.000 xg, se descartó el 

sobrenadante y se invirtió el tubo sobre un papel absorbente limpio, teniendo cuidado de que 

el sedimento permanece en el tubo. El lavado del pellet se realizó añadiendo  5 ml de etanol al 

70%, se agitó con vortex 5 seg y se centrifugó durante 3 min a 2.000 xg. El sobrenadante se 

decantó y se dejó el tubo invertido sobre un papel absorbente durante al menos 5 min 

teniendo cuidado de que el gránulo permanezca en el tubo. A continuación se deja secando al 

aire el sedimento de DNA hasta que todo el líquido se haya evaporado.  Finalmente se eluyó el 

DNA en 300 µl de buffer FG3 (Qiagen) agitando con vortex suavemente durante 5 segundos y 

se disolvió el DNA mediante una  incubación de 1 hora a 65 °C en un baño húmedo. Las 

alícuotas de DNA se almacenaron a -80 °C en ultrancongeladores (Sanyo). 

4. Análisis de concentración y pureza  

Los ácidos nucleicos, debido a su estructura molecular, absorben la radiación en el rango del 

ultravioleta, a una longitud de onda (λ) de 260 nm. Las proteínas, sin embargo, absorben la 

radiación a una λ de 280 nm. Tras la obtención del DNA se llevó a cabo el análisis de la 

concentración y pureza mediante espectrofotometría con un NanoDrop 1000 

(ThermoScientific).  La medida de la pureza se determinó mediante el cociente entre la 

absorbancia (A) medida a 260 nm y la obtenida a 280 nm. Se consideró que los valores óptimos 

de pureza eran los comprendidos entre 1.8-2.0 para la relación A260/A280.  

Posteriormente, se llevó a cabo una dilución de trabajo del DNA a 100 ng/µl con TE 0.1X. La 

preparación de TE se llevó a cabo a partir de 1.211 g de Trizma®Base (Casa comercial) y 0,336 g 

de EDTA-Na2 (Casa comercial) en 900 ml de agua, ajustándose el pH a 8, mediante la adición de 

ácido clorhídrico, se conservó a 4 °C y posteriormente se realizó una dilución 1:10 que se 

conservó -20 °C.  

5. Amplificación por PCR de los genes de estudio  

Las secuencias genómicas de los genes de interés se obtuvieron dela base de datos del 

Ensembl (www.ensembl.org). 

http://www.ensembl.org/
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5.1 Gen LPL 

Se amplificó el promotor, los 9 exones y los nexos exón-intrón del gen de LPL, tomando como 

referencia la secuencia ENSG00000175445 mediante los cebadores diseñados por Ikeda et 

al66modificados al añadir una secuencia homóloga a M13 en la zona 5’UTR que permitió la 

secuenciación de todos los fragmentos con un único par de cebadores. Para la amplificación de 

todos los fragmentos de PCR se usaron las mismas condiciones. 

La reacción en cadena de la polimerasa requiere la preparación de dos mezclas, la primera con  

agua destilada, tampón 10X (20mM Tris-HCl, pH 7.5, 100mM NaCl, 0.1mM EDTA, 2mM DTT, 

50% glicerol), MgCl2 (Bioline) y el DNA. En la segunda mezcla, se añaden los dNTPs 

(Lifetechnologies), la enzima Taq DNA polimerasa (Biotaq, Bioline) y la pareja de cebadores 

correspondiente. Se adicionó la segunda mezcla tras una primera desnaturalización, buscando 

de este modo disminuir las hibridaciones inespecíficas. Las reacciones se llevaron a cabo en un 

volumen final de 20 μl con las cantidades y concentraciones que se muestran en la tabla 3.1 

Tabla 3.1: Cantidades y concentraciones de los reactivos utilizados en la reacción de PCR 

LPL 

REACTIVO CANTIDAD(µL) CONCENTRACCIÓN FINAL 

dH2O 14  

Tampón (10x) 2 1x 

dNTPs (2mM) 1,6 160µM 

MgCl2 (50mM) 0,48 1,2mM 

Primer F (10µM) 0,4 200µM 

Primer R (10µM) 0,4 200µM 

Biotaq DNA polimerasa (5u/µl) 0,16 0,04U/µl 

DNA genómico (100µg/µl) 1 5ng/µl 

 

Los programas térmicos fueron los mismos para todas las amplificaciones del gen LPL: 

 

 

Los cebadores utilizados son obtenidos del artículo… 

 

 

94ºC   95ºC      50ºC   72ºC       95ºC     66,5ºC  72ºC       95ºC    57,5ºC   72ºC         7ºC       4ºC  
5 min   30seg   20seg   20seg    30seg   30seg    30seg     30seg   20seg   20seg        7 min     ∞ 
 
 
Adicción    10 ciclos (Temperatura de  30 ciclos 
del segundo mix    hibridación disminuye 1 °C por cada ciclo) 
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En la tabla 3.2 se muestran las secuencias de los cebadores utilizados, el tamaño de los 

productos amplificados (en pb) y la temperatura de unión de cada par de cebadores (Tm). 

Tabla 3.2: Cebadores para la amplificación del gen LPL. 

CEBADOR PRODUCTO 

Exón  Nombre  Secuencia  Pb Tamaño 

1u 
Directo 

Reverso  

5´-TGTAAAACGACGGCCAGTAGCGAACAGGAGCCTAACAAAGCAA-3´ 

5´- CAGGAAACAGCTATGACCTTTGGCGCTGAGCAAGTCGC-3´ 

43 

38 

340 

1D 
Directo 

Reverso  

5´- TGTAAAACGACGGCCAGTCACTTCTAGCTGCCCTGCCA-3´ 

5´- CAGGAAACAGCTATGACCAGGGGAGTTTGCGCGCAAAA-3´ 

35 

35 

330 

2 
Directo 

Reverso 

5´- TGTAAAACGACGGCCAGTAACCCTCCAGTTAACCTCATATCCAA-3´ 

5´- CAGGAAACAGCTATGACCCACCACCCCAATCCACTCTTCCCAC-3´ 

44 

40 

227 

3 
Directo  

Reverso 

5´-TGTAAAACGACGGCCAGTTAGGTGGGGTATTTTAAGAAAGCTGTG-3´ 

5´-CAGGAAACAGCTATGACCCACTGTTTTGGACACATAAGTCTCC-3´ 

42 

43 

296 

4 
Directo  

Reverso 

5´-TGTAAAACGACGGCCAGTGCAGAACTGTAAGCACCTTCATTTC-3´ 

5´-CAGGAAACAGCTATGACCTTCACCTCTTATGATAAGACCAACGAA-3´ 

43 

45 

180 

5 
Directo 

Reverso  

5´-TGTAAAACGACGGCCAGTAAATTTACAATCTGTGTTCCTGCTTTTT-3 

5´-CAGGAAACAGCTATGACCGATAAGAGTCACATTTAATTCGCTTCTA-3 

46 

46 

350 

6 
Directo 

Reverso 

5´- TGTAAAACGACGGCCAGTTTCTGCCGAGATACAATCTTGGTGTC-3´ 

5´-CAGGAAACAGCTATGACCGACTCCTTGGTTTCCTTATTTACAACA-3´ 

44 

45 

359 

7 
Directo 

Reverso 

5´-TGTAAAACGACGGCCAGTATAAAGATTGATCAACATGTTCGAATTTC-3 

5´-CAGGAAACAGCTATGACCGGGACTGGTGCCATGATGACCGCCC-3´ 

46 

42 

237 

8 
Directo 

Reverso 

5´-TGTAAAACGACGGCCAGTGATCTCTATAACTAACCAATTTATTGCT-3 

5´-CAGGAAACAGCTATGACCTGGGGGTCTAAAGTGAAGGAAGAAAA-3´ 

45 

43 

299 

9 
Directo 

Reverso 

5´-TGTAAAACGACGGCCAGTTTGTTCTACATGGCATCTTCACATCCA-3´ 

5´-CAGGAAACAGCTATGACCAGCTCAGGATGCCCAGTCAGCTTTA-3´ 

44 

42 

310 

1U: amplificación que incluye la zona del promotor lejano. 1D: amplificación que incluye la zona del promotor y el 

exón 1. Pb: pares de bases 

El resultado de las amplificaciones se comprobó mediante electroforesis de 96V durante 20 

min en un gel de agarosa convencional al 2% en TAE 1X y teñido con SYBR® Safe 

(Lifetechnologies). 
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5.2 Gen LMF1 

Se amplificaron el promotor, los 11 exones y las uniones exón-intrón del gen LMF1 utilizando 

como secuencia de referencia ENSG00000103227. Los exones 7 y 8 se amplificaron en un único 

fragmento. Para la amplificación se usaron diferentes programas de amplificación para cada 

exón. 

Para cada reacción de amplificación se mezcló la enzima Biotaq DNA polimerasa (Bioline), el 

tampón 10x (20mM Tris-HCl, pH 7.5, 100mM NaCl, 0.1mM EDTA, 2mM DTT, 50% glicerol), el 

MgCl2, los dNTPs (Life Technologies), los cebadores correspondientes, el DNA de interés y el 

agua destilada estéril hasta alcanzar un volumen final de 20 µl. Las cantidades y 

concentraciones finales se muestran en la tabla 3.3. 

Tabla 3.3: Cantidades y concentraciones de los reactivos utilizados en la reacción de PCR 

LMF1 

REACTIVO CANTIDAD (µL) CONCENTRACCIÓN FINAL 

dH2O 13,5  

Tampón (10x) 2 1x 

dNTPs (2mM) 2 200µM 

MgCl2 (50mM) 0,6 1,5mM 

Cebador directo (10µM) 0,4 200µM 

Cebador reverso (10µM) 0,4 200µM 

Biotaq DNA polimerasa (5U/µl) 0,12 0,03 U/µl 

DNA genómico (100µg/µl) 1 5ng/µl 

 

Los programas térmicosdifirieron según atendiendo a las necesidades de cada amplificación en 

cuanto a tamaño y temperatura de hibridación de los cebadores (Tabla 3.4): 

Exón 1 

 94ºC 2 min          94ºC 20seg       62ºC 30seg       72ºC 1min        72ºC 10min        4ºC ∞ 
  
 

     40 ciclos 

 

 

 



MATERIAL Y MÉTODOS 

34 

Exones 2 y 4 

94ºC  2min        94ºC 20seg         60ºC 20seg       72ºC 30 seg        72ºC 4 min        4ºC ∞ 
 

 

    

35 ciclos  

Exón 3 

 94ºC  2 min       94ºC 20seg       55ºC 20 seg        72ºC 30seg        72ºC 5 min        4ºC ∞ 
  
 

    

35 ciclos  

Exón 5 

 94ºC  2min        94ºC 20seg       55ºC 20seg        72ºC 30seg         72ºC 4min        4ºC  ∞ 
  
 

      

40 ciclos  

Exón 10  

94ºC  2min        94ºC 20seg       63ºC 20 seg        72ºC 30seg        72ºC 4min       4ºC ∞ 
 
 

      

35 ciclos  

Exones 6, 7-8,9 y 11 

94ºC 2min         94ºC 20seg        62ºC 20seg        72ºC 30seg        72ºC 4min         4ºC ∞ 
  
            

      

35 ciclos  
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Tabla 3.4: Cebadores para la amplificación del gen LMF1.  

  CEBADOR PRODUCTO 

Exón Nombre Secuencia Pb Tamaño  

1 
Directo 

Reverso 

5´-GTGCCTCCGGGACTGTGA-3´ 

5´- CGGAGGAGTCTCGAGGGA-3´ 

18 

18 

 

422 

2 
Directo 

Reverso 

5´- ATTCTGAGCTGCGCCCAT-3´ 

5´- CAGTGCCTGTGCTGAGTGAC -3´ 

18 

20 

 

466 

3 
Directo 

Reverso 

5´- CAAGCCAAAGTGTTAATACTCGTTTC-3´ 

5´- GAAGGCTGATGGCAGAGGCTAAGGAA-3´ 

26 

26 
170 

4 
Directo 

Reverso 

5´- GGCTGGTGTCTCTCAGTAGCA-3´ 

5´- AAGCCCTCACAGGTTAGAAGAG- 3´ 

21 

21 
345 

5 
Directo 

Reverso 

5´- CTTCGTGGATGGTTCGTCTT-3´ 

5´- TGATGCGACAGCTCACCA-3´ 

20 

18 
269 

6 
Directo 

Reverso 

5´- GGGGATCCTGTGTGCAGTAG-3´ 

5´- GGGCAGCCAGAAATAGGG-3´ 

20 

18 
354 

7 
Directo 

Reverso 

5´- GCTCCAGGAAGAGAGGCG-3´ 

5´- CCGACTTTCTCCTGCCCT-3´ 

18 

18 
308 

8 
Directo 

Reverso 

5´- AGCAGCAGCTGGGGTCTC-3´ 

5´- GCACTGTAACCCCACCTGAA-3´ 

18 

20 
320 

9 
Directo 

Reverso 

5´- ATGGACAGTCGGGGAACC-3´ 

5´- AAGAGGGTGGGGGTACAG-3´ 

18 

17 
330 

10 
Directo 

Reverso 

5´- ATGGACAGTCGGGGAACC-3´ 

5´- AAGAGGGTGGGGGTAC-3´ 

18 

17 
259 

11 
Directo 

Reverso 

5´- CAGCAGCAGGCTGAGGAG-3´ 

5´- CTCTCCTCTCCACGTCTCTCTT-3´ 

18 

22 
363 

 

El resultado de las diferentes amplificaciones se comprobó  mediante electroforesis de 96V 

durante 20 minutos en un gel de agarosa 2% en TAE 1X teñido con SYBR® Safe (Life 

Technologies).  
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5.3 Gen APOA5 

Utilizando como referencia la secuencia ENSG00000110243 del gen APOA5 se amplificaron el 

promotor, los 4 exones y las uniones exón-intrón en 4 fragmentos individuales. Debido a su 

gran tamaño, el exón 4 se dividió en dos fragmentos de amplificación: 4.1 y 4.2. Los exones 2 y 

3 se amplificaron en único fragmento.  

En cada reacción de amplificación se mezcló la enzima Biotaq DNA polimerasa (Bioline), el 

tampón 10x (20mM Tris-HCl, pH 7.5, 100mM NaCl, 0.1mM EDTA, 2mM DTT, 50% glicerol), el 

MgCl2, los dNTPs (Life Technologies), los cebadores correspondientes, el DNA de interés y el 

agua destilada estéril hasta alcanzar un volumen final de 20 µl. Las cantidades y 

concentraciones finales se muestran en la tabla 3.5 

Tabla 3.5: Cantidades y concentraciones de los reactivos usados en la reacción de PCR 

APOA5. 

REACTIVO CANTIDAD(µL) CONCENTRACCIÓN FINAL 

dH2O 13,5  

Tampón (10X) 2 1X 

dNTPs(2mM) 2 200µM 

MgCl2 (50mM) 0,6 1,5mM 

Cebador directo (10µM) 0,4 200µM 

Cebador reverso (10µM) 0,4 200µM 

Biotaq DNA polimerasa (5U/µl) 0,12 0,03U/ µl 

DNA genómico 1 5ng/ µl 

 

Las amplificaciones se llevaron a cabo en un termociclador Gene Amp® 9700 

(AppliedBiosystem). 

Los programas térmicos son diferentes para cada uno de los exónes de acuerdo a las 

características de los cebadores y el producto de PCR (Tabla 3.6).  

Exón 1 
94ºC  2min        94ºC  20seg        60ºC  20seg        72ºC 30 seg        72º 4min        4ºC ∞ 

      
 

40 ciclos 
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Exón 2-3 

94ºC  2min        94ºC 20seg         65ºC  20seg       72ºC 30 seg         72ºC 4min        4ºC ∞ 
   
 
 

40 ciclos  
Exon 4.1  

94ºC  2 min        94ºC  20seg         65ºC   30seg        72ºC  1min      72ºC  4min       4ºC ∞ 
 

     35 ciclos  

Exon 4.2 

94ºC  2min         94ºC  20seg       60ºC  20seg        72ºC  30seg       72ºC  10min      4ºC   ∞ 
  
      

35 ciclos  

PCR unión: 

94ºC  2min        94ºC 20seg         65ºC  20seg       72ºC 30 seg         72ºC 4min        4ºC ∞ 
 

       40 ciclos 

 

Tabla 3.6: Cebadores para la amplificación del gen APOA5.  

  CEBADOR  PRODUCTO  

Exón Nombre Secuencia Pb Tamaño (nt) 

1 
Directo  

Reverso  

5´- GTGAGTGCTGGGAGGCAGCTGAGGTCAACTT-3´ 

5´- CCACCTGCAAT//GCCCTCCCTTAGGACTGTG-3´ 

31 
184 

2-3 
Directo  

Reverso 

5´- GCATTGCAGGTGG//CGCCATGTCCCTTC-3´ 

5´- ATGGCCCAGCTGTGTCCTCCCTTCGCCTACA-3´ 

31 
408 

4.1 
Directo 

Reverso 

5´- CAGAGGATCAGTGCGCGATGACTTG-3´ 

5´- ATGGCGCGAGTGAAGGCAGCTATC-3´ 

25 

25 
834 

4.2 
Directo 

Reverso 

5´- GAGGTGCGCCAGCGACTT-3´ 

5´- GGCGTGCTCTTGCTACCTC-3´ 

18 

19 
1042 

 

Para disminuir el número de reacciones de secuenciación se llevó a cabo una PCR de unión del 

exón 1 y los exones 2-3. Para ello, el diseño del cebador reverso de la amplificación del exón 1 

incluyó una cola complementaria al cebador directo de la amplificación 2-3 que permitiría su 
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unión mediante PCR utilizando los cebadores directo del exón 1 y el reverso del exón 2-3. La 

reacción de PCR se llevó a cabo con las mismas cantidades y concentraciones descritas en la 

tabla 3.5, utilizando como DNA molde 0,5 μl del producto de PCR del exón 1 y 0,5 μl del 

producto de la PCR de los exones 2-3. 

El resultado de las diferentes amplificaciones se comprobó  mediante electroforesis de 96V 

durante 20 minutos en un gel de agarosa 2% en TAE 1x teñido con SYBR® Safe 

(Lifetechnologies). 

6. Purificación del producto de PCR mediante ExoSAP-IT® (USB) 

Para la purificación de los productos de PCR se utilizó el producto comercial ExoSAP-IT ® (USB) 

que consta de las enzimas exonucleasa I y fosfatasa alcalina de camarón (SAP), elimina los 

cebadores y nucleótidos sin hibridar sin pérdida de muestra. La enzima exonucleasa I degrada 

los cebadores residuales y cualquier DNA de cadena única, mientras que la SAP hidroliza los 

dNTPs remanentes de la mezcla de la PCR.   

Se preparó una dilución 1:10 de ExoSAP-IT® (USB) en dH2O de la que se añadieron 2 µl a 5 µl 

del producto de PCR. En un termociclador Gene Amp® 9700 (Applied Biosystem) se realizó una 

incubación a 37 °C durante 45 min, seguida de 15 min a 80 °C con objeto de inactivar la 

enzima.  

Las muestras purificadas se conservaron a -20 °C para su posterior utilización.  

7. Reacción de secuenciación 

Para la identificación de variantes comunes y raras en los genes de interés, se realizó la 

secuenciación, por electroforesis capilar, de los fragmentos amplificados utilizando el producto 

comercial BigDye® Terminator v3.1 CycleSequencing Kit (AppliedBiosystems), que contiene un 

vial de BigDye v3.1 ReactionMix que contiene una DNA polimerasa termoestable y dNTPs 

marcados con fluorocromos y un vial con el tampón de secuenciación BigDye v3.1 5X que 

aporta las condiciones idóneas para la acción enzimática. Por cada muestra, en primer lugar se 

realizó una dilución de 0,5 µl de BigDye v3.1 Reaction mix en 1,75 µl de tampón de 

secuenciación BigDye v3.1 5X y 4,75 µl de agua estéril destilada. Posteriormente, se añadieron 

7 µl de esta mezcla a 1,5 µl del producto purificado y 1,5 µl del cebador de secuenciación a 2,1 

µM. Todo el proceso se llevó a cabo en frío y protegiendo el reactivo BigDye y sus diluciones de 

la luz. Las reacciones se prepararon en un volumen final de 10 µl según indica la tabla 3.7. 
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Tabla 3.7: Cantidades de los reactivos empleadas en la reacción de secuenciación.  

REACTIVO CANTIDADES (µl) 

Producto de PCR purificado 1,5 

Mix BigDye 7 

Primer de secuenciación (2,1 µM) 1,5 

 

Siendo el programa térmico utilizado el siguiente:  

 96ºC  1min    96ºC  10 seg          55ºC  5 seg         60ºC  4 min        4ºC ∞ 
   
      

25 ciclos 

El resultado de las reacciones de secuenciación se purificó por precipitación alcohólica con el 

fin de eliminar los terminadores sobrantes. Para ello se añadió 4 µl de EDTA 62,5mM a los 10µl 

de la reacción de secuenciación. A continuación se preparó una mezcla de 2,6 µl de NaAc 3M 

pH 5,2, 7,8 µl de agua destilada y 67,71 µl de etanol al 96% (v/v) de la que se añadieron 60 µl a 

la muestra, se agitó por inversión y se centrifugó durante 1 min a 2.090 xg en una centrífuga 3-

16K (Sigma). Seguidamente, la muestra se incubó protegida de la luz durante 15 min  

Transcurrido este tiempo, las muestras se centrifugaron a 4 °C durante 30 min a 2.090 xg. Para 

eliminar el sobrenadante se realizó una centrifugación con las muestras invertidas durante 1 

min a 180 xg. A continuación, se añadieron 70 µl de etanol al 70% y se centrifugaron las 

muestras durante 15 min a 4 °C a 2.090 xg. De nuevo se eliminó el sobrenadante centrifugando 

las muestras invertidas durante 1 min a 180 xg. Tras este paso, el pellet obtenido se guardó a -

20 °C para su posterior utilización.  

Previamente a realizar la electroforesis capilar, se resuspendió el pellet en 20 µl de formamida 

(LifeTechonologies) y para la desnaturalización de las muestras se realizó una incubación en un 

termociclador Gen Amp® 9700 (AppliedBiosystems) de 2 min a 94 °C. La electroforesis capilar 

se llevó a cabo en el secuenciador automático ABI 3500XL (AppliedBiosystems). El 

alineamiento y la lectura de las secuencias obtenidas se llevó a cabo mediante el programa 

informático VariantReporter™ (AppliedBiosystems). 
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8. Análisis  bioinformático 

Para evaluar la patogenicidad de las variantes génicas identificadas, se usaron los siguientes  

programas informáticos y bases de datos, cuando el cambio era no –sinónimo: PolyPhen-266, 

SIFT67 y MutationT@ster68. 

Polyphen-2 clasificó las variantes en benignas, posiblemente dañinas y probablemente 

dañinas, de acuerdo a la conservación de la secuencia y la estructura de la proteína. SIFT 

clasificó las variantes en función de la homología de secuencia, como tolerante o intolerante. 

Mutation Taster se utilizó también para variantes que incluían codones de parada y 

alteraciones intrónica o complejas, clasificándolas como posiblemente causal de la 

enfermedad o posiblemente polimorfismos.  

El efecto de las variantes en sitios potenciales de ayuste se estudió mediante NetGene269 y 

NNSplice70, analizando la estructura de los sitios donador y aceptor.  

9. Extracción del RNA 

Para el estudio de las mutaciones identificadas por primera vez en este trabajo y cuyo efecto 

puede alterar el patrón de ayuste se recogió una muestra de sangre, de los pacientes 

portadores de dichas variantes, en un tubo PAXgene (PreAnalytiX) que contiene un 

estabilizador que evita la degradación del RNA. La muestra sanguínea se obtuvo por medio de 

una punción venosa tras un ayuno de 10-12 horas y tras la extracción de 2ml de sangre en un 

tubo con EDTA para evitar la contaminación. Los tubos PAXgene con la muestra sanguínea se 

almacenaron a -80 °C hasta su posterior utilización.  

Para la extracción de RNA, en campana de flujo vertical y con material específico para RNA, se 

llevó a cabo el siguiente protocolo utilizando TRI Reagent (Sigma): 

Se centrifugó el tubo PAXgene durante 10 min a 4.000 xg a temperatura ambiente en una 

centrífuga Eppendorf 5415  Se descartó el sobrenadante y se añadió 1 ml de agua DEPC (agua 

ultrapura) para resuspender el pellet que se transfirió a un tubo de 2 ml. La muestra fue 

centrifugada durante 10 min a 4000xg en una centífuga Eppendorf 5415 Se eliminó el 

sobrenadante y se añadió 1 ml del TRI Regent™ (Sigma) para producir la lisis celular. Se 

resuspendió el pellet y se incubó la muestra durante 5 min a temperatura ambiente. A 

continuación, se adicionaron 200 µl de cloroformo (Carlo Erba Reagenti) y se agitó 

vigorosamente durante 15 segundos. La muestra fue incubada durante 7 min a temperatura 

ambiente hasta observarse claramente 2 fases. Posteriormente, se centrifugó el tubo a 12.000 
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xg durante 15 min a 6 °C. Tras la centrifugación se observaron tres fases: una fase orgánica (en 

la que se encontraban las proteínas), una interfase (donde se localizaba el DNA) y una fase 

acuosa superior (donde se encontraba el RNA). Se recogió esta fase acuosa y se traspasó a un 

nuevo tubo donde se añadieron 500 µl de isopropanol (AnalarNormapur ®). La mezcla se 

incubó durante 7 minutos a temperatura ambiente y, a continuación, se centrifugó durante 10 

min a 12.000 xg a 6 °C, resultando en la precipitación del RNA precipitó y formándose un pellet 

visible.  

Para lavar el RNA obtenido se eliminó el sobrenadante, se adicionó 1 ml de etanol 75%, se 

agitó con vortex hasta la disolución del pellet de RNA y se centrifugó a 7500 xg durante 5 min a 

6 °C. Para eliminar los alcoholes,  se llevó a cabo el secado del RNA dejando el tubo abierto en 

posición horizontal.  

Finalmente se eluyó el RNA en 50 µl de agua libre de RNAsas previamente calentada a 55 °C y 

se llevó a cabo la cuantificación con NanoDrop 1000 (Thermo Scientific) tal y como se describe 

en el apartado 4.  

Tras la cuantificación del RNA, se llevó a cabo una electroforesis, en un gel de agarosa 1% 

durante 45 minutos a 90V, de la muestra para estudiar su viabilidad.  

10. Obtención del cDNA 

Para la obtención del DNA complementario (cDNA) al RNA obtenido en el apartado 8 se utilizó 

la enzima Retrotranscriptasa inversa  en una reacción RT-PCR. Para ello se preparó una mezcla 

de 0.8 μl de RandomPrimers (300 ng/μl) (Lifetechnologies), 1 μl de dNTPs, 1210 ng de RNA y 

1,2 μl de agua destilada estéril que se incubó durante 5 min a 65 °C en un termociclador Gen 

Amp® 9700 (AppliedBiosystems) y un minuto en hielo. Posteriormente, se adicionaron 4 μl de 

Tampón 5X (Lifetechnologies), 1 μl de DTT 1M (Ditiotreitol), 1 μl del inhibidor de RNAsas 

RNAse OUT™ (Lifetechnologies)  y un 200 U de enzima SuperScript™ III RT (Lifetechnologies). A 

continuación se realizó una incubación en un termociclador GenAmp 9700® (Applied 

Biosystems) durante 5 minutos a 25 °C, 60 min a 50 °C y 15 min a 20 °C.  
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Tabla 3.8: Cantidades y concentraciones para la reacción de cDNA 

REACTIVOS CANTIDADES (µL) CONCENTRACCIÓN FINAL 

dH2O 1,2  

Randomprimers (300 ng/µl) 0,8 240 ng 

dNTP´s (10 mM) 1 500 µM 

RNA (120 ngr/µl) 10 1,2 µg/µl 

Tampón 5x 4 µl 1 X 

DTT 0.1 M 1 µl 5 µM 

RNAse OUT (40 unidades/µl) 1 µl 2 U/µl 

SuperScrit III RT (200 unidades/µl) 1 µl 10 U/µl 

 

11. Diseño de cebadores para la amplificación del cDNA 

Para el análisis del efecto de las mutación c.1018+2G>A, que se localiza en el intrón 6, se 

obtuvo la secuencia genómica de LPL (ENSG 00000175445) de la base de datos Ensembl 

(www.ensembl.org). 

Se amplificó una región del cDNA de LPL desde la posición c.1149 a la c.2283, que contiene 

parte del exón 5, los exones 6, 7, 8 y 9, y parte de la región 3’UTR. Mediante el programa 

informático Oligo v.6.0 (MBI) se diseñaron los cebadores para el amplificar el fragmento de 

interés, de manera que se obtuvo un producto de amplificación de 1150 pb.  

En la tabla 3.9 se muestran las secuencias de los cebadores utilizados, el tamaño del producto 

amplificado  y la temperatura de unión de los cebadores (Tm). 

Tabla 3.9: Secuencia y características de los cebadores empleados para la amplificación del 

fragmento que contiene la mutación c.1018+2G>A.  

PRIMERS SECUENCIA T. PRIMER Tm %GC T. PRODUCTO  

DIRECTO, F 5´GTT GGG CAT GTT GAC ATT-3´ 18nt 63,6 °C 44.4 
1150pb 

REVERSO,R 5´- GGC CTC AGT CCG AAA G-3´ 16 nt 63,5 °C 62.5 

    

http://www.ensembl.org/
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12. Amplificación del cDNA 

La reacción de amplificación del cDNA obtenido se preparó en un volumen de 20 µl con las 

condiciones de la tabla 3. 10  

Tabla 3.10: Cantidades y concentraciones de los reactivos de la PCR para la amplificación de 

cDNA 

REACTIVO CANTIDAD (µl) CONCENTRACCIÓN FINAL 

dH2O estéril 13,5  

Tampón 10 X 2 1 X 

dNTP´s (2 mM) 2 200 µM 

MgCl2 (50 mM) 0,6 1,5mM 

Cebador directo (10 µM) 0,4 200 µM 

Cebador reverso (10 µM) 0,4 200 µM 

BioTaq DNA polimerasa (5 U/µl) 0,12 0,03 U/µl 

cDNA (1,2 ng/ µl) 1 0,06 ng/µl 

 

La reacción de PCR se llevó a cabo en un termociclador Gene Amp ® 9700 (AppliedBiosystems) 

con el programa de temperaturas:  

94ºC 2 min  94ºC 20 seg  54ºC 30 seg  72ºC 1 min 30 seg 72ºC 4 min  4ºC infinito  

 

    35 ciclos  

El producto de amplificación se comprobó mediante una electroforesis de un gel de agarosa 

2% con SyBrsafe (Life Technologies) durante 40 min a 96 V, utilizando como referencia el 

marcador DNA ladder 100 bp (Life Technologies). 

13. Análisis estadístico  

El análisis estadístico se llevó a cabo con el programa informático SPSS 15.0 (SPSS Inc) 

tomando como nivel significativo estadístico valores de p menor a 0,05.  

Para conocer si una variable sigue la distribución normal se realizó un análisis de Kolmogorov-

Smirnov. Los rasgos cuantitativos que siguieron una distribución normal se expresaron como 

media ± desviación estándar y se analizaron con la prueba T-Student, mientras que aquellos 
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que no siguieron esta distribución se expresaron como mediana y rango intercuartílico y se 

analizaron con el test Mann-Whitney U. Las variables cualitativas, incluyendo la comparación 

de frecuencias alélicas y genotípicas, se expresaron en porcentaje y se analizaron mediante 

Chi-cuadrado. 
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RESULTADOS 

1. Características de la población de estudio 

El estudio de  las variantes genéticas fue llevada a cabo por el grupo de investigación 

Dislipemias Primarias del Hospital universitario Miguel Servet dirigido por el Dr. Fernando 

Civeira según el protocolo descrito en el apartado 1 del capítulo Material y Métodos. 

El grupo de individuos seleccionados estuvo finalmente compuesto por 112 sujetos: 87 

varones y 25 mujeres. En la tabla 4.1 se muestran las características clínicas y bioquímicas de 

los sujetos. Todos los sujetos presentaron una hipertrigliceridemia grave con una mediana de 

670 mg/dl consecuencia de los criterios de inclusión. El 22.3% de los sujetos fueron mujeres y, 

en comparación con los varones, eran mayores, con niveles más elevados de CT, c-HDL, Apo A-I 

y Apo B (p <0.05) y menor concentración de TG (p <0.05).  

2. Identificación de las variantes en el gen LPL 

Para la identificación de las variantes comunes y la detección  de mutaciones nuevas y 

previamente descritas en el gen LPL asociadas con HTG, se realizó la secuenciación automática 

del promotor, los exones y los nexos de unión-intrón del gen LPL, tal y como se describe en el 

apartado 7 del capítulo Material y Métodos. En la población afecta de HTG estudiada se 

identificaron las variantes raras que se muestran en la tabla 4.2, considerando como tales, 

aquellas que no han sido registradas en el proyecto de los 1000 Genomas. 

2.1 Variantes no comunes en el gen LPL 

Dos sujetos presentaron sendas variantes raras en el promotor (c.-16A>G y c.-241G>C) que 

habían sido identificadas como causales de HTG en trabajos anteriores de De Castro-Orós et al. 

y Yang et al62,71. Cuatro sujetos presentaron mutaciones previamente descritas como causales 

de la enfermedad: p.Gln16Xfs39 (exón 1), p.Gln133X (exón 3) y p.Gly215Glu. Además, se 

identificaron dos variantes en la región intrónica que pueden afectar al ayuste, la variante 

c.250-8A>G, descrita aquí por primera vez y c.1018+2G>A, identificada recientemente por De 

Castro-Orós et al71.   
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Tabla 4.1: Características de la población de estudio. 

 VARONES MUJERES TOTAL P 

N 87 (77,7%) 25 (22,3%) 112  

Edad, años 45,91 ± 10,58 54,28 ± 12,12 47,83 ± 11,436 0,001 

IMC, Kg/m2 27,15 ± 2,845 26,88 ± 2,67 27,09 ± 2,8 0,678 

Cintura, cm 96 (92-102) 89 (87-95) 93,73 ± 12,6 0,049 

CT, mg/dl 289 ± 73,6 333 ± 86,4 299 ± 78,4 0,015 

TG, mg/dl 717 (554-1026) 576 (535-727) 670 (549-998) 0,023 

c-HDL, mg/dl 34 ± 8,6 40 ± 13,0 36 ± 10,0 0,010 

Lp(a), mg/dl 7,1 (3,4-21,9) 7,7 (3,6-42,8) 7,1 (3,6-22,9) 0,959 

Apo A1, mg/dl 131 ± 25,3 144 ± 27,2 134 ± 23,1 0,046 

Apo B, mg/dl 128 ± 30,8 155 ± 33,2 134 ± 33,0 0,001 

Glucosa, mg/dl 96 (83-107) 94 (84-112) 95 (84-110) 0,802 

HbA1c (%) 5,4 (5,1-5,8) 5,5 (5,3-6,3) 5,4 (5,1-5,9) 0,288 

Diabetes (%) 14,1 8 12,7 0,642 

HTA (%) 24,7 % 36 % 27,3 % 0,390 

ECV (%) 9,4 8 9,1 0,857 

Tabaco (%)    0,114 

No fumador 22,1 58,3 30  

Fumador 46,5 29,2 42,7  

Exfumador 31,4 12,5 27,3  

Los datos de variables cuantitativas se expresan como media ± Desviación estándar, excepto para las variables que no siguen la 
distribución normal (mediana, rango intercuartiles). Las variables cualitativas se expresan como %. IMC: Índice de masa corporal; 
CT: colesterol total, TG: triglicéridos, cHDL: colesterol HDL, Lp(a): Lipoproteína (a), ApoA1: Apolipoproteína A 1. Apo B: 
Apolipoproteína B, ECV: enfermedad cardiovascular, HTA: hipertensión arterial. El valor p fue calculado por las pruebas t-Student  
o Mann-Whitney U según fuera conveniente 
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Tabla 4.2: Frecuencia de las variantes raras en el gen LPL encontradas en los sujetos del 

estudio. 

Variante Localización N Frecuencia (%) Descrita por 

c.-16A>G Promotor 1 0.89 De Castro-Orós et al.71 

c.-241G>C 
Promotor 1 0.89 Yang et al.

62 

p.Gln16GlufsX39 Exón 1 2 1.78 Wang et al. 73 

c.250-8A>G Intrón 2 1 0.89 Nueva 

p.Gln133X Exón 3 1 0,89 Yang et al.62 

p.Gly215Glu Exón 6 1 0.89 Emi et al.74 

c.1018+2G>A 
Intrón 6 2 1.78 De Castro-Orós et al.

71 

N: número individuos.   
 

2.2 Estudio de las frecuencias genotípicas y alélicas de las variantes comunes del gen 

LPL. 

Se registraron todas las variantes comunes que presentaron los 112 sujetos con HTG en el gen 

LPL, calculándose las frecuencias alélicas y genotípicas, que se muestran en la Tabla 4.3. 

El análisis de las frecuencias genotípicas mostró que todos los polimorfismos a excepción del 

p.Glu145Glu se encontraban en equilibrio Hardy-Weinberg, siendo su frecuencia la esperada 

en la población general. 

Se realizó la comparación de las frecuencias alélicas de estas variantes comunes o 

polimorfismos en nuestra población de estudio frente a la población Europea del estudio de 

los 1000 Genomas (www.1000Genomes.org). Los SNPs c.-281T>G, p.Asp36Asn, p.Val135Val, 

c.430-6C>T, p.Pro234Leu y p.Thr379Ile mostraron una frecuencia significativamente mayor en 

los sujetos con HTG (p <0.05), mientras que el SNP p.Ser474X mostró una frecuencia 3 veces 

menor. 

 

 

 

 

 

 

http://www.1000genomes.org/
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Tabla 4.3: Frecuencias genotípicas de las variantes comunes del gen LPL encontradas en los 

sujetos con HTG del estudio.  

Variante  GENOTIPOS N FRECUENCIA 

c.-281T>G rs1800590 

GG 101 0.902 

GT 11 0.098 

TT 0 0 

p.Asp36Asn rs1801177 

GG 103 0.919 

GA 9 0.08 

AA 0 0 

p.Val135Val rs1121923 

GG 109 0.973 

GA 3 0.026 

AA 0 0 

p.Glu145Glu rs248 

GG 102 0.91 

GA 8 0.071 

AA 2 0.018 

c.430-6C>T rs11570897 

CC 101 0.902 

CT 11 0.098 

TT 0 0 

p.Pro234Leu rs118204060 

CC 110 0.982 

CT 2 0.018 

TT 0 0 

p.Asn318Ser rs268 

CC 110 0.982 

CT 2 0.018 

TT 0 0 

p.Thr379Ile rs76708715 

GG 111 0.991 

GA 1 0.009 

AA 0 0 

p.Thr388Thr Rs316 

CC 93 0.83 

CA 18 0.16 

AA 1 0.009 

p.Ser474X Rs328 

CC 103 0.919 

CG 9 0.08 

GG 0 0 
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Tabla 4.4. Frecuencias alélicas de los SNPs identificados en el gen LPL en la población con 

HTG y los 1000 Genomas de la población europea. 

 

 2.3 Análisis bioinformático de las variantes en el gen LPL 

Todas las variantes que supusieron un cambio no sinónimo fueron analizadas con los 

programas informáticos PolyPhen-266, SIFT67 y MutationTaster68, las mutaciones que se 

encontraban en promotores o dieron lugar a un codón de parada sólo pudieron ser analizadas 

por MutationTaster. El resultado de este análisis bionformático de las variantes del gen LPL se 

muestra en la tabla 4.5.  

El análisis mediante PolyPhen-2 mostró que las variantes raras p.Pro234Leu y p.Gly215Glu 

eran probablemente dañinas y por tanto causales para la enfermedad, tal y como también se 

obtuvo mediante MutationTaster. De igual manera, para estas dos variantes se obtuvo una 

puntuación de 0 con el análisis de SIFT, lo que implica que son perjudiciales para la proteína. El 

resto de variantes no pudieron ser analizadas por PolyPhen-2 y SIFT o resultaron benignas. El 

análisis mediante MutationTaster, mostró que además de las mutaciones nombradas con 

anterioridad, los cambios c.1018+2G>A, p.Gln16GlufsX11, p.Asp36Asn, p.Gln133X, c.430-6C>T 

y p.Asn318Ser eran posibles causas para la HTG. 

 

 

 

 

 

 

Variante Alelo 

menor 

Frecuencia alélica 

HTG 

Frecuencia alélica 

1000 Genomas 

P 

c. 281T>G rs1800590 G 0,049 0,013 0,001 

p.Asp36Asn rs1801177 A 0,040 0,013 0,002 

p.Val135Val rs1121923 A 0,125 0,041 0,047 

p.Glu145Glu rs248 A 0,054 0,063 0,579 

c.430-6C>T rs11570897 T 0,049 0,002 <0,001 

p.Pro234Leu rs118204060 T 0,009 0,000 <0,001 

p.Asn318Ser rs268 T 0,090 0,016 0,444 

p.Thr379Ile rs76708715 A 0,040 0,000 0,002 

p.Thr388Thr rs316 A 0,089 0,120 0,201 

p.Ser474X rs328 G 0,040 0,123 <0,001 
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Tabla 4.5. Análisis bioinformático de las variantes encontradas en el gen LPL. 

 Análisis in silico 

Variante PolyPhen-2 SIFT MutationTaster 

c.-16A>G 
NA NA 0.999 Polimorfismo 

c.-241G>C 
NA NA 1 Causal de enfermedad 

c.-281T>G 
NA NA 0Polimorfismo 

c.1018+2G>A 
NA NA 1 Causal de enfermedad 

p.Gln16GlufsX39 
NA NA 0,986 Causal de enfermedad 

p.Asp36Asn 
Benigna 0,14 0,416 Causal de enfermedad 

c.250-8A>G   0,999 Polimorfismo 

p.Gln133X 
NA NA 1 Causal de enfermedad 

p.Val135Val NA NA 0 Polimorfismo 

p.Glu145Glu NA NA 0 Polimorfismo 

p.Pro234Leu 
Probablemente dañina 0 0,999 Causal de enfermedad 

p.Gly215Glu 
Probablemente dañina 0 0,999 Causal de enfermedad 

c.430-6C>T 
NA NA 0,999 Causal de enfermedad 

p.Asn318Ser 
Benigna 0,22 0,989 Causal de enfermedad 

p.Thr379Ile 
Benigna 0,25 0,998 Polimorfismo 

p.Thr388Thr 
NA NA 0 Polimorfismo 

p.Ser474X NA NA 0 Polimorfismo 

NA: no analizado. 

 

 

En el caso de las variantes c.250-8A>G y c.1018+2G>A se analizó específicamente el efecto 

sobre el ayuste de LPL tal y como se describe en el apartado 8 de Material y Métodos. El 

análisis del cambio c.250-8G>A no predijo ninguna alteración en el ayuste. Sin embargo, el 
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análisis de la mutación c.1018+2G>A mostró la eliminación del sitio donador natural en el 

intrón 6 (Fig 4.1). Se observa que, en la región del intrón 6 existen tres potenciales sitios 

donadores, con unas puntuaciones de 1, 0,66 y 0,71, respectivamente (siendo 1 el valor de 

mayor probabilidad de ayuste). Además, este análisis no mostraba el sitio natural aceptor de 

ayuste del intrón 5, lo que implica que es un aceptor débil, pero sí que se observó un posible 

aceptor de ayuste en el intrón 6, en una posición más 5’ que el donador potencial con 

puntuación 1. Se observaron 3 posibles resultados: 

- Ayuste usando el aceptor natural del intrón 5 y el donador con puntación 1 del intrón 

6, o, con menor probabilidad, los otros dos donadores, el cDNA observado sería de 

mayor longitud que el esperado (Fig 4.1A  y B). 

- El ayuste usando los sitios aceptor y donador con puntuación 0.95 y 1 del intrón 6 (Fig 

4.1C) daría lugar a la eliminación completa del exón 6, generándose a la vez un falso 

exón 6 con una región del intrón 6 de 259 bp.  

Figura 4.1: Esquema del ayuste de LPL 

 

 

 2.4 Análisis funcional de la mutación c.1018+2G>A del gen LPL 

La mutación c.1018+2G>A ha sido descrita simultáneamente a este trabajo por nuestro 

grupo71. Para el análisis funcional se realizó la extracción de RNA y su posterior transformación 

a cDNA para, posteriormente, llevar a cabo una PCR de elongación, que nos permitió dar una 

explicación plausible del efecto de dicha mutación.  

             2.4.1    Extracción del RNA 

A partir de 2 tubos de sangre PAXgene (PreAnalytiX) correspondientes al paciente y a un 

control sano se extrajo el RNA mediante el método del TRI Regent™ (Sigma), tal y como se 

detalla en el apartado 9 del capítulo Material y Métodos. Posteriormente se llevó a cabo la 

cuantificación con NanoDrop 1000 (Thermo Scientific), como se detallan en apartado 4 del 

capítulo Material y Métodos. Sus concentraciones se detallan a continuación, en la tabla 4.4.  
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Tabla 4.6: Características del RNA obtenido 

RNA CONCENTRACCIÓN (ngr/µl) A260/280 A260/230 

Control 180.6 ng/µl 1.80 0.92 

Paciente problema 242 ng/µl 1.80 0.92 

 

Posteriormente para estudiar la viabilidad de la muestra obtenida se llevó a cabo una 

electroforesis del RNA extraído, descartando así que este se pueda haber degradado.  

2.4.2 Obtención del cDNA 

Tras la extracción del RNA, este se convierte en cDNA mediante una PCR Retrotranscriptasa 

Inversa tal y como se describe en el apartado 10  del capítulo Material y Métodos, se llevó a 

cabo una PCR de prueba para poder comprobar que la retrotranscripción se ha llevado a cabo 

con éxito.  

Para confirmar la predicción resultado del análisis bioinformático se amplificó, mediante PCR, 

una región de 1150 bp del cDNA comprendiendo los exónes 5-9 y parte de la zona 3’UTR del 

gen LPL, tal y como se describe en los apartados 11 y 12 del capítulo Material y Métodos. Los 

resultados de dicha PCR se muestran en la figura 4.2.  

Figura 4.2: Visualización del gel del producto de PCR del fragmento exón 5-3’UTR del cDNA 

del gen LPL. 

                           M            B       C             P            

 

 

M: Marcador DNA Lapper 100 bp. B: Blanco. C: muestra control sano. P: Paciente problema, portador de la 
mutación c.1018+2A>G. 
 
 

En la figura 4.2 se observa una banda a la altura de 1.150 bp tanto en el carril correspondiente 

al control como en el paciente correspondiente al cDNA imagen del chequeo de la PCR se 

puede observar la doble banda del paciente, que contiene la mutación en heterocigosidad, a 
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diferencia de la única banda que aparece en el sujeto control.  Esta doble banda podría ser la 

respuesta a la patología del paciente. 

2.5 Estudio de la segregación  familiar de las mutaciones en LPL 
 

En el caso de dos sujetos portadores de las mutaciones c.1018+2G>A y p.Gln133X, 

respectivamente, se recogieron muestras de familiares directos, para llevar a cabo un estudio 

de la segregación familiar de las variantes. Se obtuvo una muestra sanguínea de los familiares 

y se llevó a cabo el protocolo tal y como se describe en el apartado 5.1 de Material y Métodos 

pero exclusivamente para los fragmentos específicos. En la figura 4.3 se muestra la 

segregación familiar de la mutación c.1018+2G>A y la figura 4.4 muestra la segregación 

familiar de la mutación p.Gln133X.  

  Figura 4.3: Segregación familiar de la mutación c.1018+2G>A 

  

 

 

    TG 346   TG 562 
                1018 +2 A>G 
 

   TG 150  

Figura 4.4: Segregación familiar de la mutación p.Gln133X 
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3. Identificación de las variantes en el gen LMF1 

El gen LMF1 es un gen que codifica para el factor 1 de maduración de la lipasa, dicha proteína 

es requerida para la maduración post-traduccional de LpL, LH y lipasa endotelial. La pérdida de 

función de LMF1 produce HTG. 

Para la identificación de las variantes comunes y la detección  de mutaciones nuevas y 

previamente descritas en el gen LMF1 asociadas con HTG, se realizó la secuenciación 

automática del promotor, los exones y los nexos de unión-intrón del gen LMF1, tal y como se 

describe en el apartado 7.X del capítulo Material y Métodos. En la población afecta de HTG 

estudiada se identificaron las variantes raras que se muestran en la tabla 4.7, considerando 

como tales, aquellas que no han sido registradas en el proyecto de los 1000 Genomas.  

Tabla 4.7 Frecuencia de las variantes raras en el gen LMF1 encontradas en los sujetos del 

estudio. 

Variante Localización N Frecuencia (%) 

p.Arg451Trp Exón 8 1 0,89 

p.Pro562Arg Exón 11 2 1,778 

N: número de individuos 

Se registraron todas las variantes comunes que presentaron los 112 sujetos con HTG en el gen 

LMF1, calculándose las frecuencias alélicas y genotípicas, que se muestran en la Tabla 4.8. 

El análisis de las frecuencias genotípicas mostró que todos los polimorfismos a excepción del 

c.194-28T>C se encontraban en equilibrio Hardy-Weinberg, siendo su frecuencia la esperada 

en la población general. 

Se realizó la comparación (Tabla 4.4) de las frecuencias alélicas de estas variantes comunes o 

polimorfismos en nuestra población de estudio frente a la población Europea del estudio de 

los 1000 Genomas (www.1000Genomes.org). Los SNPs c.194-28T>C y c.729+18C>G mostraron 

una frecuencia significativamente menor en los sujetos con HTG (p <0.05). 

 

 

 

 

 

http://www.1000genomes.org/
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Tabla 4.8: Frecuencias genotípicas las variantes comunes del gen LMF1. 

SNP  FRECUENCIAS GENÓMICAS 

  GENOTIPOS N FRECUENCIA 

p.Leu85Leu Rs12448005 

TT 96 0.857 

CT 16 0.143 

CC 0 0 

p.Thr102Thr Rs371667 

GG 63 0.5625 

GA 45 0.4018 

AA 4 0.0357 

c.194-28T>C Rs3751666 

TT 65 0.58 

CT 31 0.277 

CC 16 0.143 

p.Tyr180Tyr Rs2277892 

GG 84 0.75 

GA 27 0.241 

AA 1 0.009 

p.Glu181Glu Rs2277893 

GG 67 0.598 

GA 40 0.357 

AA 5 0.044 

c.664-58G>C Rs4984706 

GG 67 0.598 

GC 40 0.357 

CC 5 0.044 

c.664-35T>C rs4984705 

TT 71 0.634 

CT 35 0.3125 

CC 6 0.0535 

c.729+18C>G Rs11864203 

CC 83 0.741 

CG 29 0.2589 

GG 0 0 

p.Ala252Ala Rs2076425 

GG 95 0.847 

GA 16 0.143 

AA 1 0.009 

c.897+28G>A rs18431133 

GG 111 0.991 

GA 1 0.009 

AA 0 0 

c.897+27C>T rs76200860 

CC 111 0.991 

CT 1 0.009 

TT 0 0 

p.Arg351Gln Rs192520307 

GG 111 0.991 

GA 1 0.009 

AA 0 0 

p.Arg354Trp rs138461953 

CC 107 0.955 

CT 5 0.0446 

TT 0 0 

p.Arg364Gln Rs351683 

GG 106 0.946 

GA 6 0.535 

AA 0 0 
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Tabla 4.9. Frecuencias alélicas de los SNPs identificados en el gen LMF1 en la población con 

HTG y los 1000 Genomas de la población europea. 

 

 

3.1  Análisis bioinformático de las variantes en el gen LMF1 

Todas las variantes que supusieron un cambio no sinónimo fueron analizadas con los 

programas informáticos PolyPhen-266, SIFT67 y MutationTaster68, las mutaciones que se 

encontraban en promotores o dieron lugar a un codón de parada sólo pudieron ser analizadas 

por Mutation Taster. El resultado de este análisis bionformático de las variantes del gen LMF1 

se muestra en la tabla 4.10.  

 

 

Variante 
Alelo 

menor 

Frecuencia 

alélica HTG 

Frecuencia alélica 

1000 Genomas 
P 

p.Leu85Leu Rs12448005 C 0,071 0,065 0,690 

p.Thr102Thr Rs371667 A 0,237 0,206 0,322 

c.194-28T>C Rs3751666 C 0,281 0,385 0,004 

p.Tyr180Tyr Rs2277892 A 0,129 0,096 0,153 

p.Glu181Glu Rs2277893 A 0,223 0,177 0,118 

c.664-58G>C 

 
Rs4984706 C 0,223 0,263 0,235 

c.194-28T>C Rs3751666 T 0.090 0.016 0.444 

c.729+18C>G Rs11864203 G 0,129 0,273 <0,001 

p.Ala252Ala 

 
Rs2076425 A 0,080 0,104 0,293 

c.897+28G>A rs18431133 A 0,040 0,000 0,066 

c.897+27C>T rs76200860 T 0,040 0,000 0,066 

p.Arg351Gln Rs192520307 A 0,040 0,010 0,359 

p.Arg354Trp rs138461953 T 0,022 0,025 0,815 

p.Arg364Gln Rs351683 A 0,027 0,033 0,641 
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Tabla 4.10: Análisis bioinformático de las variantes encontradas en el gen LMF1 

 Análisis in Silico 

Variante Polyphen SIFT MutationTaster 

p.Arg351Gln 

rs19520307 
Benigno 0,63 Polimorfismo 0,999 

p.Arg354Trp 

rs138461953 
Benigno 0,78 Polimorfismo 0,999 

p.Arg364Gln 

rs35168378 
Probablemente dañino 0,07 

Causal de enfermedad 

0,999 

p.Arg451Trp 

COSM417215 
Probablemente dañino 0,04 Polimorfismo 0,999 

p.Pro562Arg 

rs4984948 
Posiblemente dañino 0,23 

Causal de enfermedad 

0,999 

p.Leu85Leu 

rs12448005 
NA NA 

Causal enfermedad 

1,00 

p.Thr102Thr 

rs3751667 
NA NA Polimorfismo 0,999 

c.194-28T>C 

rs3751666 
NA NA Polimorfismo 0,999 

p.Tyr180Tyr 

rs2277892 
NA NA Polimorfismo 0,999 

p.Glu181Glu 

rs2277893 
NA NA Polimorfismo 0,00 

c.664-58G>C 

rs4984706 
NA NA Polimorfismo 0,999 

c.664-35T>C 

rs4989705 
NA NA Polimorfismo 0,999 

c.729+18C>G 

rs11864203 
NA NA Polimorfismo 0,999 

p. Ala252Ala 

rs2076425 
NA NA Polimorfismo 0,00 

c.897+28G>A 

rs18431133 
NA NA Polimorfismo 0,999 

c.897+27C>T 

rs76200860 
NA NA Polimorfismo 0,999 

 

El análisis mediante PolyPhen-2 mostró que las variantes raras p.Arg364Gln, p.Arg451Trp y 

p.Pro562Arg eran probablemente dañinas y por tanto causales para la enfermedad, tal y como 

también se obtuvo mediante Mutation Taster. De igual manera, para estas tres variantes se 

obtuvieron puntuaciones cercanas de 0 con el análisis de SIFT, lo que implica que son 

perjudiciales para la proteína. El resto de variantes no pudieron ser analizadas por PolyPhen-2 

y SIFT o resultaron benignas. El análisis mediante Mutation Taster, mostró que además de las 
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mutaciones nombradas con anterioridad, el cambio p.Leu85Leu es una posible causa para la 

HTG. 

 

4. Identificación de las variantes en el gen APOA5 

El gen APOA5 fue el último miembro descubierto de la agrupación génica APOA1/C3/A4, 

consta de 4 exones, 369 aminoácidos y está fundamentalmente expresado en el hígado.  

Para la identificación de las variantes comunes y la detección  de mutaciones nuevas y 

previamente descritas en el gen APOA5 asociadas con HTG, se realizó la secuenciación 

automática del promotor, los exones y los nexos de unión-intrón del gen APOA5, tal y como se 

describe en el apartado 7 del capítulo Material y Métodos. En la población afecta de HTG 

estudiada sólo se identificó la mutación p.Pro253Leu en 2 sujetos. 

El análisis de las frecuencias genotípicas mostró que todos los polimorfismos a excepción del 

c.162-43A>G se encontraban en equilibrio Hardy-Weinberg, siendo su frecuencia la esperada 

en la población general. 

Se realizó la comparación (Tabla 4.12) de las frecuencias alélicas de estas variantes comunes o 

polimorfismos en nuestra población de estudio frente a la población Europea del estudio de 

los 1000 Genomas (www.1000Genomes.org). Los SNPs c.-3A>G, p.Ser19Trp, p.Asp37Glu, 

c.162-43A>G y c.*76C>T mostraron una frecuencia significativamente mayor en los sujetos con 

HTG (p <0.05) 

4.1 Análisis bioinformático de las variantes del gen APOA5 

Todas las variantes que supusieron un cambio no sinónimo fueron analizadas con los 

programas informáticos PolyPhen-266, SIFT67 y MutationTaster68, las mutaciones que se 

encontraban en promotores o dieron lugar a un codón de parada sólo pudieron ser analizadas 

por MutationTaster.El resultado de este análisis bionformático de las variantes del gen APO5 

se muestra en la tabla 4.13. 

 

 

 

 

 

 

http://www.1000genomes.org/
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Tabla 4.11: Frecuencias genotípicas de los SNPs del gen APOA5 encontrados en los sujetos 

del estudio. 

SNP  FRECUENCIAS GENOTÍPICAS 

  GENOTIPOS N FRECUENCIA 

c.162-43A>G rs2072560 

GG 75 0.6696 

GA 16 0.143 

AA 8 0.071 

c.*31C>T Rs619054 

CC 75 0.669 

CT 29 0.259 

TT 3 0.0267 

c.*76C>T Rs3489864 

CC 104 0.928 

CT 3 0.0267 

TT 0 0 

c.*158T>C Rs22667788 

TT 69 0.616 

CT 32 0.285 

CC 6 0.0535 

c.-3G>A Rs651821 

AA 70 0.667 

AG 23 0.219 

GG 12 0.114 

p.Ser19Trp Rs3135506 

CC 57 0.543 

CG 44 0.419 

GG 4 0.038 

p.Aps37Glu Rs34282181 

CC 103 0,981 

CA 2 0,019 

AA 0 0 

N: número individuos; p: grado de significación estadística según la prueba Chi- cuadrado; EHV: Equilibrio Hardy- 
Weinberg.  
 

Tabla 4.12: Frecuencias alélicas de los SNPs identificados en el gen APOA5 en la población 

con HTG y los 1000 Genomas de la población europea. 

 

 

Variante  
Alelo 

menor 

Frecuencia 

alélica HTG 

Frecuencia alélica 

1000 Genomas 
P 

c.-3A>G Rs651821 G 0,224 0,080 <0,001 

p.Ser19Trp Rs3135506 G 0,233 0,057 <0,001 

p.Asp37Glu Rs34282181 T 0,010 0,000 0,002 

c.162-43A>G rs2072560 G 0,162 0,080 <0,001 

c.*31C>T Rs619054 T 0,164 0,223 0,059 

c.*76C>T Rs3489864 T 0,014 0,026 0,293 

c.*158T>C Rs22667788 C 0,206 0,091 <0,001 
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Tabla 4.13: Análisis bioinformático de las variantes encontradas en el gen APOA5 

VARIANTE Polyphen SIFT MutationTaster 

c.-3A>G 

rs651821 
NA NA Polimorfismo 0,999 

p.Ser19Trp 

rs3135506 

Probablemente 

dañino 
0 Polimorfismo 0,999 

p.Asp37Glu 

rs34282181 
Benigno 0,6 Polimorfismo 0,999 

c.162-43A>G 

rs2072560 
NA NA Polimorfismo 0,999 

p.Leu253Pro 

c.758T>C 

Probablemente 

dañina 1,000 
0 

Causal de 

enfermedad 0,999 

c.*31C>T 

rs619054 
NA NA Polimorfismo 0,999 

c.*76C>T 

rs34089864 
NA NA Polimorfismo 0,999 

c.*158T>C 

rs2266788 
NA NA Polimorfismo 0,999 

 

El análisis mediante PolyPhen-2 y SIFT mostró que la variante raras p.L253P y el SNP 

p.Ser19Trp, clásicamente asociado con HTG, son probablemente dañinas y por tanto 

probablemente causales para la enfermedad, tal y como también se obtuvo mediante 

Mutation Taster. De igual manera, para esta variante se obtuvieron puntuaciones cercanas de 

0 con el análisis de SIFT, lo que implica que son perjudiciales para la proteína. El resto de 

variantes no pudieron ser analizadas por PolyPhen-2 y SIFT o resultaron benignas en el análisis 

de Mutation Taster.  
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DISCUSIÓN 

En este trabajo hemos realizado el análisis genómico de los genes asociados a 

hiperquilomicronemia en 112 sujetos con HTG primaria, encontrando que 13 pacientes 

(11,6%) son portadores de 11 variantes raras asociadas a HTG en genes candidatos que 

participan en la función de la LpL (LPL, LMF1 y APOA5), de las cuales 1 de ellas es descrita por 

primera vez este trabajo. Además, hemos identificado variantes comunes o polimorfismos que 

se asocian con la HTG ya que se encuentran en una frecuencia alélica diferente de la que se 

observa en población general: C.281T>G, p.Asn36Asn, p.Val135Val, c.430-6C>T, p.Pro234Leu, 

p.Thr379Ile y p.Ser474X en LPL; c.194-28 T>G y c.729+18C>G en LMF1; y c.-3A >G, p.Ser19Trp, 

p.Asp37Glu, c.162-43A >G y c.*158 T>C en APOA5. Nuestros resultados confirman que la HTG 

primaria es altamente heterogénea en su etiología y se asocia con la acumulación de variantes 

comunes y raras en los genes involucrados en el metabolismo de los TG.  

Los pacientes de este estudio presentaron una concentración media de TG de 670 mg/dl, lo 

que explica la menor frecuencia de defectos raros en nuestro estudio comparadas con el 

trabajo publicado por Surendran et al74, que encontró 46 mutaciones en 86 pacientes 

seleccionados por sufrir hiperquilomicronemia y por tanto, con niveles más altos de TG. 

Los SNPsp.Asp36Asn de LPL y el p.Ser19Trp  de APOA5  están fuertemente asociados con la 

HTG71, 72 resultados confirmados en este estudio.  

De los 112 pacientes incluidos en el estudio, 9 heterocigotos para mutaciones en LPL, las 

variantes p.Gln16Glufs39X, p. Gln133X y p.Gly215Glu y p.Pro234Leu habían sido previamente 

descritas como causales de HTG. Las variantes c.-16A>G y c. -241A>G  afectan a la 

funcionalidad del promotor de LPL tal y como se ha descrito recientemente72, 62, 74y 75. Mediante 

un análisis bionformático y un estudio del RNA, se demostró que mutación c. 1018+2 G>A 

produce la eliminación del exón 6, generando una nueva región codificante que da lugar a una 

proteína LPL aberrante. Sin embargo, la mutación  descrita “de novo” en este trabajo, c.250-

A>G, no parece producir efecto, aunque se requiere un análisis a mayor profundidad.  

La segregación de la mutación c. 1018+2G>A no se ha podido demostrar, ya que ninguno de los 

familiares analizados presentan la mutación ni fenotipo HTG.  Sin embargo, la mutación 

p.GLn133X, pese a observarse en todos los familiares analizados, solo se asoció con una HTG 

muy grave en el caso índice, quien era portadora del genotipo E3/E2, que asocia con HTG, y del 

polimorfismo p.Ser19Trp. 

LMF1 se ha asociado recientemente con niveles elevados de TG cuando hay mutaciones en 

homocigosidad en el dominio C- terminal de la proteína9,58. Las variantes raras de LMF1 
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P.Arg451Trp y p.Pro562Arg son dañinas de acuerdo con el análisis bioinformático y se 

encuentran localizadas cercanas a la región crítica para la dimeración de LpL56. Para determinar 

si los polimorfismo c. 194-28T>G y c. 729+18C>G son causales hacen falta más estudios.  

Hemos identificados dos sujetos heterocigotos para la mutación p.Leu256Pro75 de APOA5, 

recientemente se ha identificado que esta mutación provoca una unión defectuosa de Apo A- 

V con la sortilina y SorLA/LR11, fallando en la activación de LpL76.  

En conclusión, nuestros resultados sugieren que la HTG primaria del adulto con TG alrededor 

de 500-1000mg/dl presenta mayor cantidad de variantes genéticas respecto a la población 

general, con una combinación de mutaciones de efecto entre moderado y agresivo, y 

polimorfismos clásicamente asociados con la enfermedad.  
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CONCLUSIONES 

1. Hemos identificado 7 mutaciones en LPL, 2 en LMF1 y 1en APOA5 en 13 de 112 

sujetos, con HTG primaria grave.  

2. Los polimorfismos c.281T>G, p.Asn36Asn, p.Val135Val, c.430-6C>T, p.Pro234Leu, 

p.Thr379Ile y p.Ser474X en LPL; c.194-28 T>G y c.729+18C>G en LMF1; y c.-3A>G, 

p.Ser19Trp, p.Asp37Glu, c.162-43A>G y c.*158T>C en APOA5 presentaron una 

distribución de la frecuencia alélica diferente a la población general (p<0,05).  

3. Las variantes c.-241G>C, c. 1018+2G>A, p.Gln16GlufsX39, p.Asp36Asn, p.Gln133X, 

p.Pro234Leu, p.Gly215Glu, c.430-6C>T y p.Asn318Ser de LPL, p.Arg364Gln, 

p.Arg451Trp, p.Pro562Arg y p.Leu85Leu de LMF1, p.Pro253Leu y p.Ser19Trp de 

APOA5, se consideran como potencialmente dañinas, de acuerdo con el análisis 

bioinformático.  

4. Análisis de la de la mutación c.1018+2G>A, demuestra la eliminación del exón 6, 

generando una nueva región codificante, que da a lugar a una proteína LpL aberrante.  

5. La segregación familiar de la mutación c. 1018+2 G>A no se ha podido determinar, por 

no encontrarse en ninguno de los familiares contactados. 
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