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Accurate computations with Wronskian matrices

E. Mainar · J. M. Peña · B. Rubio

Received: date / Accepted: date

Abstract In this paper we provide algorithms for computing the bidiagonal decomposition
of the Wronskian matrices of the monomial basis of polynomials and of the basis of expo-
nential polynomials. It is also shown that these algorithms can be used to perform accurately
some algebraic computations with these Wronskian matrices, such as the calculation of their
inverses, their eigenvalues or their singular values and the solutions of some linear systems.
Numerical experiments illustrate the results.
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1 Introduction

The accuracy of the calculations is a desirable goal in Computational Mathematics. Let us
recall that an algorithm can be performed with high relative accuracy (HRA) if it does not
include subtractions of numbers having the same sign (except of the initial data if they are
exact), that is, if it only includes products, divisions, additions of numbers of the same sign
and subtractions of the initial data having the same sign provided that they are not affected
by errors (cf. [5]). For some structured classes of matrices such algorithms have been found
through an adequate parameterization of the matrix. In particular, this has been achieved for
some subclasses of totally positive (TP) matrices. In [11] it was shown that, given the bidi-
agonal factorization of a nonsingular TP matrix A with HRA, we can compute with HRA
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its eigenvalues and singular values, the matrix A−1 and even the solution of Ax = b for vec-
tors b with alternating signs. Among the subclasses of TP matrices for which the bidiagonal
factorization has been obtained with HRA (cf. [3], [4], [13], [14]), there are many examples
of collocation matrices (u j−1(ti))1≤i, j≤n+1 of systems (u0, . . . ,un) of functions defined on
a real subset I (t1 < t2 < · · · < tn+1 in I). However, up to now, there are no examples of
accurate computations for matrices involving derivatives of the basis functions. This paper
presents some examples of Wronskian matrices for which many algebraic computations can
be performed accurately. These Wronskian matrices come from applications in computer
aided geometric design (CAGD) and they can also arise in Hermite interpolation problems,
in particular in Taylor interpolation problems.

The paper is organized as follows. In Section 2, we provide basic concepts and tools. In
particular we recall the Neville elimination procedure and the bidiagonal factorization of a
nonsingular TP matrix. This factorization provides the adequate parameterization to derive
the accurate algorithms with these matrices. Section 3 shows that the bidiagonal factoriza-
tion of the Wronskian matrices of the monomial basis of polynomials can be performed
with HRA. In Section 4 we first prove that Wronskian matrices of the basis of exponen-
tial polynomials on positive real numbers are strictly totally positive. We also provide the
bidiagonal factorization of these matrices. The computation with HRA of this factorization
should require the evaluation with HRA of the involved exponential functions. Although
this cannot be guaranteed, numerical experiments show an accuracy similar to the obtained
for the monomial basis. Finally, Section 5 includes numerical experiments showing the ac-
curacy of the presented methods for the computation of all eigenvalues, all singular values,
the inverses and the solution of linear systems.

2 Notations and auxiliary results

As usual, given an n-times continuously differentiable function f and x in its parameter
domain, f ′(x) denotes the first derivative of f at x and, for any i ≤ n, f (i)(x) denotes the
i-th derivative of f at x. Let us recall that for a given basis (u0, . . . ,un) of a space of n-times
continuously differentiable functions, defined on a real interval I and x ∈ I, the Wronskian
matrix at x is defined by

W (u0, . . . ,un)(x) := (u(i−1)
j−1 (x))i, j=1,...,n+1.

A matrix is totally positive: TP (respectively, strictly totally positive: STP) if all its
minors are nonnegative (respectively, positive). Two recent books on these matrices are [6]
and [16], where many applications of these matrices are presented, as well as in [1].

Neville elimination is an alternative procedure to Gaussian elimination and has been
used to characterize TP and STP matrices. Given a nonsingular matrix A = (ai, j)1≤i, j≤n+1,
Neville elimination computes a matrix sequence

A(1) := A → A(2) → · · ·→ A(n+1) =U,

such that, for 1 ≤ k ≤ n, A(k+1) = (a(k+1)
i, j )1≤i, j≤n+1 has zeros below its main diagonal in the

first k columns and is computed from A(k) = (a(k)i, j )1≤i, j≤n+1 by:

a(k+1)
i, j :=

!
"""#

"""$

a(k)i, j , if 1 ≤ i ≤ k,

a(k)i, j −
a(k)i,k

a(k)i−1,k

a(k)i−1, j, if k+1 ≤ i, j ≤ n+1 and a(k)i−1,k ∕= 0,

a(k)i, j , if k+1 ≤ i ≤ n+1 and a(k)i−1,k = 0.
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The element pi, j := a( j)
i, j , 1 ≤ j ≤ i ≤ n+1, is called the (i, j) pivot and, in particular, pi,i

is a diagonal pivot of the Neville elimination of A. If all the pivots are nonzero then Neville
elimination can be carried out without row exchanges. In this case, by Lemma 2.6 of [7],

pi,1 = ai,1, 1 ≤ i ≤ n+1,

pi, j =
detA[i− j+1, . . . , i|1, . . . , j]

detA[i− j+1, . . . , i−1|1, . . . , j−1]
, 1 < j ≤ i ≤ n+1, (1)

where, given increasing sequences of integers α and β , A[α|β ] denotes the submatrix of A
containing rows of places α and columns of places β . Moreover,

mi, j :=

%
a( j)

i, j /a( j)
i−1, j = pi, j/pi−1, j, if a( j)

i−1, j ∕= 0,

0, if a( j)
i−1, j = 0,

, 1 ≤ j < i ≤ n+1, (2)

is called the (i, j) multiplier of the Neville elimination of A.
By Theorem 4.2 and the arguments of p.116 of [9], a nonsingular TP matrix A =

(ai, j)1≤i, j≤n+1 admits a factorization of the form

A = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn, (3)

where Fi and Gi are the TP, lower and upper triangular bidiagonal matrices given by

Fi =

!

"""""""""""""#

1
0 1

. . .
. . .

0 1
mi+1,1 1

mi+2,2 1
. . .

. . .
mn+1,n+1−i 1

$

%%%%%%%%%%%%%&

, GT
i =

!

"""""""""""""#

1
0 1

. . .
. . .

0 1
m̃i+1,1 1

m̃i+2,2 1
. . .

. . .
m̃n+1,n+1−i 1

$

%%%%%%%%%%%%%&

, (4)

and D = diag(p1,1, p2,2, . . . , pn+1,n+1) has positive diagonal entries. If, in addition, the en-
tries mi j, &mi j satisfy

mi j = 0 ⇒ mh j = 0 ∀h > i

and
&mi j = 0 ⇒ &mik = 0 ∀k > j,

then the decomposition (3) is unique. The diagonal entries pi,i of D are the diagonal pivots of
the Neville elimination of A and the elements mi, j and m̃i, j are the multipliers of the Neville
elimination of A and AT , respectively. We shall denote the bidiagonal decomposition (3) of
a TP matrix A by BD(A) (see [10]). Given BD(A), using the results in [7–9], a bidiagonal
decomposition of A−1 can be computed as

A−1 = G̃1G̃2 · · · G̃nD−1F̃n · · · F̃2F̃1, (5)

where F̃i and G̃i, i = 1, . . . ,n, are the lower and upper triangular bidiagonal matrices of the
form of Fi and Gi, respectively, but replacing the off-diagonal entries {mi+1,1, . . . ,mn+1,n+1−i}
and {m̃i+1,1, . . . , m̃n+1,n+1−i} by {−mi+1,i, . . . ,−mn+1,i} and {−m̃i+1,i, . . . ,−m̃n+1,i} respec-
tively. From Theorem 4.1 of [7] and p. 116 of [9], a given matrix A = (ai, j)1≤i, j≤n+1 is STP
if and only if the Neville elimination of A and AT can be performed without row exchanges,
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all the multipliers of the Neville elimination of A and AT are positive and all the diagonal
pivots of the Neville elimination of A are positive.

Let us recall that a real value x is obtained with high relative accuracy (HRA) if the
relative error of the computed value x̃ satisfies

‖x− x̃‖
‖x‖ < Ku,

where K is a positive constant independent of the arithmetic precision and u is the unit round-
off. HRA implies that the relative errors of the computations are of the order of the machine
precision. So, performing an algorithm with HRA is a very desirable goal. An algorithm can
be computed with HRA when it only uses products, quotients, sums of numbers of the same
sign or subtraction of initial data (cf. [5], [10]).

In [11] it was shown that if BD(A), the bidiagonal factorization (3) of a nonsingular TP
matrix A, is computed with HRA then we can also compute with HRA its eigenvalues and
singular values, the matrix A−1 and even the solution of Ax = b for vectors b with alternating
signs.

In the following sections we shall obtain the bidiagonal factorization (3) of Wronskian
matrices associated with some bases with applications in CAGD, analyzing whether it can
be computed with HRA.

3 Wronskian matrices of monomial bases

The monomial basis of the space Pn of polynomials of degree less than or equal to n is
(m0, . . . ,mn) with

mi(x) := xi, i = 0, . . . ,n. (6)

Given x0 ∈ R, we can define a Taylor basis (n0, . . . ,nn) of Pn by

ni(x) :=
(x− x0)

i

i!
, i = 0, . . . ,n. (7)

It can be checked that
(m0, . . . ,mn) = (n0, . . . ,nn)W,

where W :=W (m0, . . . ,mn)(x0). Equivalently, we can also write

(n0, . . . ,nn) = (m0, . . . ,mn)W−1.

In this section we are going to obtain the bidiagonal factorization (3) of W and W−1 and see
that they can be computed with HRA. First let us prove the following auxiliary result.

Lemma 1 Given i, j ∈ N, then

1
i!

m(i)
j (x) =

1
(i−1)!

m(i−1)
j−1 (x)+

x
i!

m(i)
j−1(x), x ∈ R. (8)

Proof Let us prove the result by induction on i. For i = 1 and j ∈N, taking into account that
m′

j(x) = (xm j−1(x))′, we have

m′
j(x) = m j−1(x)+ xm′

j−1(x), x ∈ R,
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and so formula (8) holds. Let us now suppose that (8) holds for i > 1 and j ∈ N. Then we
have

1
i!

m(i+1)
j (x) =

'
1

(i−1)!
m(i−1)

j−1 (x)+
x
i!

m(i)
j−1(x)

(′

=
i+1

i!
m(i)

j−1(x)+
x
i!

m(i+1)
j−1 (x), x ∈ R,

and we can deduce that, for j ∈ N,

1
(i+1)!

m(i+1)
j (x) =

1
i!

m(i)
j−1(x)+

x
(i+1)!

m(i+1)
j−1 (x), x ∈ R.

⊓⊔

For a given x ∈ R, k,n ∈ N with k ≤ n, let Uk,n = (ui, j)1≤i, j≤n+1 be the upper triangular
bidiagonal matrix with unit diagonal entries and such that

ui,i+1 := 0, i = 1, . . . ,k−1, ui,i+1 := x, i = k, . . . ,n. (9)

In the following result we obtain an explicit expression of the entries of the product
matrix U1,n · · ·Un,n.

Proposition 1 For a given x ∈ R and n ∈ N, let

Un :=U1,n · · ·Un,n,

where Uk,n, k = 1, . . . ,n, is the upper triangular bidiagonal matrix with unit diagonal entries
satisfying (9). Then Un = (ui, j)1≤i, j≤n+1 is an upper triangular matrix and

ui, j =
1

(i−1)!
m(i−1)

j−1 (x), 1 ≤ i, j ≤ n+1. (10)

Proof Clearly, Un is an upper triangular matrix since it is the product of upper triangular
bidiagonal matrices. Let us now prove (10) by induction on n. For n = 1,

U1 =U1,1 =

'
1 x
0 1

(

and (10) clearly holds. Let us now suppose that (10) holds for n ≥ 1. Then

Un+1 :=U1,n+1 · · ·Un+1,n+1 =U1,n+1Ũn+1,

where Ũn+1 :=U2,n+1 · · ·Un+1,n+1 satisfies Ũn+1 = (ũi, j)1≤i, j≤n+2 with ũi,1 = ũ1,i = δ1,i, that
is, δ1,1 = 1 and δ1,i = 0 for i = 2, . . . ,n+2, and Ũn+1[2, . . . ,n+2|2, . . . ,n+2] =U1,n · · ·Un,n.
Then we have that

ũi, j =
1

(i−2)!
m(i−2)

j−2 (x), 2 ≤ i, j ≤ n+2.

Now taking into account that

Un+1 =U1,n+1Ũn+1 =

)

***+

1 x
. . .

. . .
1 x

1

,

---.
Ũn+1,
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and using Lemma 1, we deduce that Un+1 = (ui, j)1≤i, j≤n+2 satisfies

ui, j = ũi, j + xũi+1, j =
1

(i−2)!
m(i−2)

j−2 (x)+
x

(i−1)!
m(i−1)

j−2 (x)

=
1

(i−1)!
m(i−1)

j−1 (x), 1 ≤ i, j ≤ n+2.

⊓⊔

Let us observe that for x > 0 the matrices Uk,n, k = 1, . . . ,n, are TP. Then, as a direct
consequence of the previous result and taking into account that, by Theorem 3.1 of [1],
the product of TP matrices is TP, we can derive the following result providing a bidiagonal
factorization of the Wronskian matrix of the monomial basis (6).

Corollary 1 Let n ∈ N and (m0, . . . ,mn) be the monomial basis given in (6). Then for any
x ∈ R,

W :=W (m0, . . . ,mn)(x) :=

)

***+

0!
1!

. . .
n!

,

---.
U1,nU2,n · · ·Un,n, (11)

where Uk,n, k = 1, . . . ,n, is the upper triangular bidiagonal matrix with unit diagonal entries
satisfying (9). Moreover, if x > 0 then W (m0, . . . ,mn)(x) is TP.

Let us observe that (11) is the bidiagonal factorization (3) of the upper triangular, non-
singular and TP Wronskian matrix W =W (m0, . . . ,mn)(x), x> 0, where Fi and Gi are the TP,
lower and upper triangular bidiagonal matrices in (4). Clearly BD(W ) can be computed with
HRA and, consequently, using the bidiagonal factorization (5), W−1 can also be computed
with HRA as stated in the following result.

Proposition 2 Let W be the Wronskian matrix at x0 of the monomial basis of the space of
polynomials Pn. Then W−1 can be computed with HRA.

Furthermore, Section 5 will show accurate results obtained when computing the eigen-
values, singular values, the inverse and the solutions of some linear systems associated with
the Wronskian matrices of monomial bases, using the bidiagonal factorization (11) and the
algorithms presented in [11] and [12].

Finally, in the following example, we illustrate the bidiagonal factorization (11) of the
Wronskian matrix of a basis of monomials.

Example 1 For the particular case n = 3, the bidiagonal factorization of the Wronskian ma-
trix of the basis (m0,m1,m2,m3) at x ∈ R is

W (m0,m1,m2,m3)(x) =

)

**+

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 6

,

--.

)

**+

1 x 0 0
0 1 x 0
0 0 1 x
0 0 0 1

,

--.

)

**+

1 0 0 0
0 1 x 0
0 0 1 x
0 0 0 1

,

--.

)

**+

1 0 0 0
0 1 0 0
0 0 1 x
0 0 0 1

,

--. .
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4 Bidiagonal factorization of the Wronskian matrix of a basis of exponential
polynomials

Given λ0, . . . ,λn and x ∈R, let us consider the basis (u0, . . . ,un) of exponential polynomials
defined on R by

ui(x) := eλix, i = 0, . . . ,n. (12)

The following result proves that, if 0 < λ0 < λ1 < · · · < λn, the Wronskian matrix of the
basis (12),

W (u0, . . . ,un)(x) = (λ i−1
j−1eλ j−1x)i, j=1,...,n+1, (13)

is STP for any x ∈ R.

Theorem 1 Let 0 < λ0 < · · · < λn and the basis (12) of exponential polynomials. For any
x ∈ R, the corresponding Wronskian matrix (13) is STP and

detW (u0, . . . ,un)(x) =
n

∏
k=0

eλkx ∏
0≤k<ℓ≤n

(λℓ−λk). (14)

Proof The matrix D := diag
/
eλ0x, . . . ,eλnx

0
is nonsingular and TP since eλkx > 0, for all

k = 0, . . . ,n. It can be easily checked that

W (u0, . . . ,un)(x) =Vn,λ0,...,λn D,

where Vn,λ0,...,λn :=
1

λ i−1
j−1

2

1≤i, j≤n+1
is the (n+ 1)× (n+ 1) Vandermonde matrix corre-

sponding to the values λi, i= 0, . . . ,n. Using that 0< λ0 < · · ·< λn, we deduce that Vn,x0,...,xn

is STP (see [2]). Taking into account that, by Theorem 3.1 of [1], the product of a STP ma-
trix by a nonsingular, TP matrix is a STP matrix, we conclude that W (u0, . . . ,un)(x) is STP.
Since detW (u0, . . . ,un)(x) = detVn,λ0,...,λn detD we can write

detVn,λ0,...,λn = ∏
0≤k<ℓ≤n

(λℓ−λk), (15)

and deduce (14). ⊓⊔

In the following result we present the bidiagonal decomposition (3) of the Wronskian
matrices (13) and their inverses.

Theorem 2 Let 0 < λ0 < · · ·< λn and the corresponding basis (12) of exponential polyno-
mials. For a given x ∈ R, W :=W (u0, . . . ,un)(x) admits a factorization of the form

W = FnFn−1 · · ·F1DG1 · · ·Gn−1Gn, (16)

where Fi and Gi, 1 ≤ i ≤ n, are the lower and upper triangular bidiagonal matrices given
by (4) and D = diag(p1,1, p2,2, . . . , pn+1,n+1). The entries mi, j, m̃i, j and pi,i are given by

mi, j = λ j−1, m̃i, j = e(λi−1−λi−2)x
j

∏
k=2

(λi−1 −λi−k)

(λi−2 −λi−k−1)
, 1 ≤ j < i ≤ n+1,

pi,i = eλi−1x
i−2

∏
k=0

(λi−1 −λk), 1 ≤ i ≤ n+1.
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Proof By Theorem 1, the matrix W is STP and then the Neville elimination of W and W T

can be performed without row exchanges, leading to a factorization of type (3). The compu-
tation of the minors of W with initial consecutive columns and consecutive rows will allow
us to determine the corresponding pivots pi, j and multipliers mi, j.

Let 1 ≤ j ≤ i ≤ n+1. The k-th column of M[i− j+1, . . . , i|1, . . . , j] has common factor
λ i− j

k−1eλk−1x and then

W [i− j+1, . . . , i|1, . . . , j] =V T
n,λ0,...,λ j−1

D,

where D := diag
1

λ i− j
0 eλ0x, . . . ,λ i− j

j−1eλ j−1x
2

and Vn,λ0,...,λ j−1 is the j× j Vandermonde matrix
corresponding to parameters λ0, . . . ,λ j−1. Using properties of determinants and (15), we can
write

detW [i− j+1, . . . , i|1, . . . , j] = ∏
0≤k<ℓ≤ j−1

(λℓ−λk)
j−1

∏
k=0

λ i− j
k eλkx. (17)

By (1) and (17), the pivot pi, j of the Neville elimination of W satisfies

pi, j =
detW [i− j+1, . . . , i|1, . . . , j]

detW [i− j+1, . . . , i−1|1, . . . , j−1]
= λ i− j

j−1eλ j−1x
j−2

∏
k=0

(λ j−1 −λk), (18)

and, for the particular case i = j,

pi,i = eλi−1x
i−2

∏
k=0

(λi−1 −λk), 1 ≤ i ≤ n+1. (19)

Finally, using (2) and (18), the multipliers mi, j can be obtained by

mi, j =
pi, j

pi−1, j
= λ j−1, 1 ≤ j < i ≤ n+1. (20)

Now let us observe that each entry of the k-th row of W T has common factor eλi− j+k−1x. Then
we have that

W T [i− j+1, . . . , i|1, . . . , j] = D1Vn,λi− j ,...,λi−1 ,

where D1 := diag
1

eλi− jx, . . . ,eλi−1x
2

and Vn,λi− j ,...,λi−1 is the j× j Vandermonde matrix cor-
responding to parameters λi− j, . . . ,λi−1. Using properties of determinants and (15), we can
write

detW T [i− j+1, . . . , i|1, . . . , j] =
i−1

∏
k=i− j

eλkx ∏
i− j≤k<ℓ≤i−1

(λℓ−λk). (21)

By (1) and (21), we deduce that

p̃i, j =
detW T [i− j+1, . . . , i|1, . . . , j]

detW T [i− j+1, . . . , i−1|1, . . . , j−1]
= eλi−1x

i−2

∏
k=i− j

(λi−1 −λk). (22)

Finally, using (2) and (22), we have

m̃i, j =
p̃i, j

p̃i−1, j
= e(λi−1−λi−2)x

∏i−2
k=i− j(λi−1 −λk)

∏i−3
k=i− j−1(λi−2 −λk)

= e(λi−1−λi−2)x
j

∏
k=2

(λi−1 −λi−k)

(λi−2 −λi−k−1)
,

(23)
for 1 ≤ j < i ≤ n+1. ⊓⊔
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Let us observe that the computation with HRA of the bidiagonal decomposition (16)
should require the evaluation with HRA of the involved exponential function. Although this
cannot be guaranteed, Section 5 will show accurate results obtained when computing their
eigenvalues, singular values, inverses or the solutions of some linear systems associated with
these Wronskian matrices of non-polynomial bases.

We finish this section illustrating the bidiagonal factorization (16) of the Wronskian
matrix of a basis of exponential polynomials.

Example 2 For the particular case n = 2, the bidiagonal factorization of the Wronskian ma-
trix of the basis (eλ0x,eλ1x,eλ2x) at x ∈ R is

W (eλ0x,eλ1x,eλ2x) =
!

#
1 0 0
0 1 0
0 λ0 1

$

&

!

#
1 0 0
λ0 1 0
0 λ1 1

$

&

!

#
p1,1 0 0
0 p2,2 0
0 0 p3,3

$

&

!

"#
1 e(λ1−λ0)x 0
0 1 e(λ2−λ1)x λ2−λ1

λ1−λ0
0 0 1

$

%&

!

#
1 0 0
0 1 e(λ2−λ1)x

0 0 1

$

& ,

where p1,1 = eλ0x, p2,2 = eλ1x(λ1 −λ0) and p3,3 = eλ2x(λ2 −λ0)(λ2 −λ1).

5 Numerical experiments

When the bidiagonal factorization of a nonsingular totally positive matrix is obtained with
HRA, using the Matlab libraries TNInverseExpand, TNEigenvalues, TNSingularValues
and TNSolve, available in [12], the computation of its inverse matrix, its eigenvalues and
singular values or the solutions of some linear systems can be also performed with HRA.

We have implemented the Matlab functions TNBDWM and TNBDWE providing the bidiago-
nal decomposition (3) of the Wronkian matrix at x of the (n+1)-dimensional monomial and
exponential basis. Now we include some numerical experiments illustrating the high accu-
racy obtained when using these functions and the previous libraries. Due to the ill condition-
ing of these matrices, traditional methods do not achieve accurate solutions when solving
the mentioned algebraic problems. The numerical experiments show this fact and confirm
the accuracy of the obtained results even though for some cases we cannot guarantee that the
bidiagonal factorization (3) can be computed with HRA. The software with the numerical
experiments will be provided by the authors upon request.

5.1 Linear systems

Let U be an (n+1)-dimensional space of n-times continuously differentiable functions de-
fined on a real interval I ⊆ R and x0 ∈ I. Given real values d0,d1, . . . ,dn, the corresponding
Taylor interpolant in U is the function u ∈ U such that u(k)(x0) = dk, k = 0, . . . ,n. Given a
basis u = (u0, . . . ,un) of U , the Taylor interpolant can be expressed as u(x) = ∑n

i=0 ciui(x),
x ∈ I, where c = (c0, . . . ,cn)

T is the solution of the linear system

Wc = d, (24)

with W = W (u0, . . . ,un)(x0) and d = (d0, . . . ,dn)
T . Then we have u(x) = u(x)T c where

c =W−1d.
We have solved some linear systems (24) by considering the bases of the previuos sec-

tions. We have obtained the solution of these systems using Mathematica with a precision of
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100 digits and considered this solution exact. We have also computed with Matlab two ap-
proximations of this solution, the first one using TNSolve with the bidiagonal factorization
proposed in this paper and the second one using the Matlab command \.

First, we have considered x0 = 50 and the corresponding Wronskian matrices Wn of
the monomial basis (1,x, . . . ,xn). Table 1 (left) illustrates the 2-norm condition number of
these matrices using the Mathematica command Norm[A,2]·Norm[Inverse[A],2]. We have
taken a vector dn = ((−1)i+1di)1≤i≤n+1 where di is a random integer value. As we have
mentioned in Section 3, the parameters of the bidiagonal decomposition (11) of Wn can be
obtained with HRA and so, the solution of Wncn = dn can be performed with HRA. The
numerical experiments confirm this fact and the greater accuracy of using the bidiagonal
decomposition (11) (see Table 1).

Table 1 Condition number of Wronskian matrices of monomial bases at x0 = 50 (left) and relative errors
when solving Wncn = dn with these matrices (middle and right).

n+1 κ2(Wn) Wn \dn TNsolve

10 1.1×1025 3.8102×10−14 8.8082×10−17

15 4.8×1036 6.6581×10−12 1.7749×10−16

20 3.7×1047 5.0996×10−9 1.1459×10−16

25 8.2×1057 2.7182×10−7 2.8366×10−16

Now, for x0 = 1/2, we have also considered Wronskian matrices Wn of exponential
polynomial bases with λi = i/(n+ 2), i = 1, . . . ,n+ 1. Table 2 (left) illustrates the 2-norm
condition number of these matrices using the Mathematica command Norm[A,2]·Norm[Inverse[A],2].
We have also taken dn = ((−1)i+1di)1≤i≤n+1, where di is a random integer value. The com-
putation with HRA of the parameters of the bidiagonal factorization of Wn cannot be guar-
anteed. However, these numerical experiments show again the high accuracy in the compu-
tations when using TNSolve with the bidiagonal factorization (16) (see Table 2).

Table 2 Condition number of Wronskian matrices of exponential bases at x0 = 1/2 and λi = i/(n + 2),
i = 1, . . . ,n+1, (left) and relative errors when solving Wncn = dn with these matrices (middle and right).

n+1 κ2(Wn) Wn \dn TNsolve

10 9.6×107 4.0424×10−11 5.4201×10−16

15 2.8×1012 2.7929×10−7 9.3188×10−17

20 8.2×1016 4.7662×10−3 3.8596×10−16

25 2.5×1021 1.4272 2.5409×10−15

5.2 Inverse matrix

In Section 4 of [15] the authors present the algorithm TNInverseExpand, which is an ac-
curate and fast algorithm for computing the inverse of a nonsingular totally positive matrix
A starting from BD(A) and it has been included by P. Koev in his package TNTool [12].

We have used the Matlab function TNInverseExpand with the factorization proposed
in this paper in order to compute the inverse of Wronskian matrices of the bases considered
in the paper. We have also computed their approximations with the Matlab function inv.
In order to determine the accuracy of the approximations, we have calculated the inverse
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of these Wronskian matrices by using Mathematica with a precision of 100 digits and com-
puted the relative errors corresponding to the approximations, considering the inverse matrix
provided by Mathematica as exact.

The approximation of the inverse of the Wronskian matrices obtained by means of
TNInverseExpand is very accurate for all considered n, providing much more accurate
results than those obtained by Matlab using the command inv. Tables 3 and 4 show the
relative errors of the approximations to the inverse of the Wronskian matrices obtained with
both methods.

Table 3 Relative errors when computing the inverses of Wronskian matrices of monomial bases at x0 = 50.

n+1 inv TNInverseExpand

10 5.5583×10−14 8.8081×10−17

15 2.8550×10−11 1.7749×10−16

20 1.0218×10−9 1.1497×10−16

25 8.3974×10−7 1.1944×10−16

Table 4 Relative errors when computing the inverses of Wronskian matrices of exponential bases at x0 = 1/2
and λi = i/(n+2), i = 1, . . . ,n+1.

n+1 inv TNInverseExpand

10 4.0206×10−11 4.0436×10−16

15 2.8247×10−7 3.5637×10−16

20 4.8134×10−3 4.0018×10−16

25 1.4611 2.6557×10−15

5.3 Eigenvalues and singular values

We have also used the bidiagonal decomposition proposed in this paper with the Matlab
functions TNEigenValues and TNSingularValues, to compute the eigenvalues and the
singular values, respectively, of the previous Wronskian matrices. We have also computed
their approximations with the Matlab functions eig and svd, respectively. In order to deter-
mine the accuracy of the approximations, we have calculated the eigenvalues and singular
values of previous Wronskian matrices by using Mathematica with a precision of 100 dig-
its and computed the relative errors corresponding to the approximations, considering the
eigenvalues and singular values provided by Mathematica as exact.

Let us consider the Wronskian matrices at x = 0.3 of monomial bases. Table 5 (left)
illustrates the 2-norm condition number of these matrices using the Mathematica command
Norm[A,2]·Norm[Inverse[A],2]. Since these Wronskian matrices are all STP, by Theorem
6.2 of [1], all their eigenvalues are positive and distinct. Let us observe that the eigenvalues
of these Wronskian matrices are 0!, . . . ,n!, so in this case the relative errors are 0 with both
methods. On the other hand, the approximations of the singular values obtained by means
of TNSingularValues are very accurate for all considered n, whereas the approximations
of the singular values obtained with the Matlab command svd are not very accurate when
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n increases. Table 5 shows the relative errors of the approximations to the lowest singular
value obtained with both methods.

Table 5 Condition number of Wronskian matrices of monomial bases at x0 = 0.3 (left) and relative errors
when computing the lowest singular value of these matrices (middle and right).

n+1 κ2(Wn) svd TNSingularValues

10 4.5×105 1.5898×10−12 3.9691×10−16

15 1.1×1011 7.2111×10−8 2.6461×10−16

20 1.5×1017 2.4313×10−1 6.6151×10−16

25 7.7×1023 7.4909×10−1 2.6461×10−16

Let us also consider Wronskian matrices of the exponential polynomial bases at x = 1/2
with λi = i/(n+ 2), i = 1, . . . ,n+ 1. The approximations of the eigenvalues and singular
values obtained by means of the proposed factorization are very accurate for all considered
n, whereas the approximations of the eigenvalues and singular values obtained with the
Matlab commands eig and svd are not very accurate when n increases. Table 6 shows the
relative errors of the approximations to the lowest eigenvalue and singular value obtained
with both methods.

Table 6 Relative errors when computing the lowest eigenvalue (left) and the lowest singular value (right) of
Wronskian matrices of exponential bases at x0 = 1/2 and λi = i/(n+2), i = 1, . . . ,n+1.

n+1 eig TNEigenValues svd TNSingularValues

10 1.8449×10−11 3.1595×10−16 1.7818×10−10 1.5487×10−16

15 1.8701×10−6 7.9152×10−16 3.0235×10−6 1.1653×10−15

20 1.1279×10−2 1.1208×10−15 7.0058×10−1 8.6431×10−16

25 1.4512×103 1.6727×10−15 1.0646×102 2.4382×10−15
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