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Abstract: This work exploits Timed Continuous Petri Nets (TCPN) to design and test a novel
energy-efficient thermal-aware real-time global scheduler for a hard real-time (HRT) task set
running on a multiprocessor system. The TCPN model encompasses both the system and task
set, including thermal features. In previous work we calculated the share of each task that must
be executed per time interval by solving off-line an Integer Programming Problem Problem
(ILP). A subsequent on-line stage allocated jobs to processors. We now perform the allocation
off-line too, including an allocation controller and an execution controller in the on-line stage.
This adds robustness by ensuring that actual task allocation and execution honor the safe
schedule provided off-line. Last, the on-line controllers allow the design of an improved soft RT
aperiodic task manager. Also, ee experimentally prove that our scheduler yields fewer context
switches and migrations on the HRT task set than RUN, a reference algorithm.
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1. INTRODUCTION

Multiprocessor Systems on a Chip (MPSoCs) are increas-
ingly common in embedded real-time (RT) systems be-
cause of their potential to reduce the SWaP factor (Space,
Weight and Power). However, they pose new scheduling
challenges. Thus, a naive CPU task allocation could gener-
ate hot spots, reducing the MPSoC lifespan. Also, mobile
and IoT devices demand careful energy management to
extend battery life. Hence, new multicore RT schedulers
must consider temperature and energy besides the timing
constraints. To control task execution time and energy
consumption, a scheduler can leverage the power manage-
ment mechanisms provided by most current MPSoCs, such
as dynamic voltage and frequency scaling (DVFS).

In Desirena-Lopez et al. (2019b) we tackled the thermal-
aware RT global scheduling problem considering two
stages, one to compute the workload, the other one to
allocate tasks to CPUs. A fluid approach avoided the NP-
completeness in the computation of the task workload
per CPU, requiring a subsequent discretization algorithm.
The fluid approach improved system’s resilience to pa-
rameter variations, but led to a high number of context
switches which hampered the feasibility of the scheduler.
Authors in Thammawichai and Kerrigan (2018) propose
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an energy-efficient scheduler for two heterogeneous pro-
cessors. They formulate a general case as a non-linear
integer programming problem to obtain a schedule, which
yields algorithms with high computational complexity. In
Rubio-Anguiano et al. (2019) we proved that using a DP-
fair (Funk et al. (2011)) scheme, the task workload can
be solved in polynomial time, avoiding the discretization
stage and reducing the number of context switches. Then,
we resorted to a zero-laxity (ZL) policy (Davis and Burns
(2011)) to allocate tasks to CPUs on-line. Nevertheless,
this later approach solved the workload allocation through
an integer linear programming problem (ILP) that ignored
the relations between consecutive scheduling intervals,
thus reducing the class of problems that could be solved.

Herein, the proposed scheme consist of three main compo-
nents. The first component is an off-line scheduler similar
to the one reported in Rubio-Anguiano et al. (2019). In this
new proposal, the ILP is endowed with new constraints
enlarging the class of problems that can be solved. The
second component implements an on-line controller to add
robustness to the scheduler by rejecting disturbances such
as CPU detentions, or time drifting due to latencies or
other parameters obviated in the model. Finally, the third
component adds the capability of scheduling soft real-time
(SRT) aperiodic tasks.

2. BACKGROUND ON PETRI NETS

This section provides basic definitions and concepts on
Timed Continuous Petri Nets (TCPN ), the formal model
used in this work to represent tasks, CPUs, energy con-



sumption, temporal and thermal behavior. For a deeper
insight on Petri Nets see Silva and Recalde (2007), David
and Alla (2008), Silva et al. (2011).

Definition 2.1. A Petri Net structure (PN ) is a 4-tuple
N = (P, T,Pre,Post) where P = {p1, ..., p|P |} and T =
{t1, ..., t|T |} are finite disjoint sets of places and transitions.
Pre and Post are |P | × |T | Pre− and Post− incidence
matrices, where Pre[i, j] > 0 (resp. Post[i, j] > 0) if
there is an arc going from pi to tj (or going from tj to pi),
Pre[i, j] = 0 (or Post[i, j] = 0) otherwise.

Definition 2.2. A continuous Petri net (ContPN ) is a pair
ContPN = (N,m0) where N = (P, T,Pre,Post) is a
PN (PN ) and m0 ∈ {R+ ∪ 0}|P | is the initial marking.

A transition ti is enabled at m if ∀ pj ∈• ti,m[pj ] >
0; and its enabling degree is defined as enab(ti,m) =

min
pj∈•ti

m[pj ]
Pre[pj ,ti]

. Firing ti in a certain amount α ≤

enab(ti,m) yields a new marking m′ = m + αC[P, ti],
where C = Post− Pre.

If m is reachable from m0 by firing the finite sequence
σ of enabled transitions, then m = m0 + C−→σ is named
the fundamental equation where −→σ ∈ {R+ ∪ 0}|T | is the
firing count vector, i.e −→σ [j] is the cumulative amount of
firings of tj in the sequence σ.

Definition 2.3. A timed continuous PN (TCPN ) is a
time-driven continuous-state system described by the tu-
ple (N,λ,m0) where (N,m0) is a continuous PN and the
vector λ ∈ {R+ ∪ 0}|T | represents the transitions rates
determining the temporal evolution of the system. Under
infinite server semantics, the flow through a transition t
(or t firing speed, denoted as f(m)) is the product of the
rate, λi, and enab(ti,m), the instantaneous enabling of
the transition, i.e., fi(m) = λi enab(ti,m).

The firing rate matrix is defined by Λ = diag(λ1, ..., λ|T |).
For the flow to be well defined, every continuous transition
must have at least one input place, so we assume ∀t ∈
T, |•t| ≥ 1. The “min” in the above definition leads to the
concept of configuration. A configuration of a TCPN at
m is a set of (p, t) arcs describing the effective flow of each
transition, and say that pi constrains tj for each arc (pi, tj)
in the configuration. A configuration matrix is defined for
each configuration as follows:

Πj,i(m) =

{ 1

Pre[i, j]
if pi is constraining tj

0 otherwise
(1)

f(m) = ΛΠ(m)m is the vectorial form of the flow of a
transition. The following fundamental equation describes
the dynamic behaviour of a TCPN system:

ṁ = Cf(m) = CΛΠ(m)m (2)

A control action can be applied to (2) by adding a term
u to every transition ti such that 0 ≤ ui ≤ fi, indicating
that its flow can be reduced. Thus, the controlled flow of
transition ti becomes wi = fi − ui and the forced state
equation is: ṁ = C[f − u] = Cw.

3. PROBLEM DEFINITION

Definition 3.1. Let T = {τ1, ..., τn} be a set of n inde-
pendent periodic tasks under hard real-time (HRT) con-
straints. Each task is identified by the 3 − tuple τi =

(cci, di, ωi), where cci is the worst-case execution time
in processor cycles (WCET) that takes to complete any
instance of the task (job), ωi is the period and di is the
relative implicit deadline (di = ωi) (Baruah et al. (2015)).
Let P = {P1, . . . , Pm} be a set of m identical processors
with an homogeneous clock frequency F ∈ [F1, Fmax].

We assume that all task parameters, including task period
and processor cycles are integers and that any task can
be preempted at any time. The hyper-period is defined
as the period equal to the least common multiple of
periods H = lcm(ω1, ω2, . . . , ωn) of the n periodic tasks.
A task τi executed on a processor Pi at its maximum
frequency Fmax, requires ci = cci

Fmax
processor time at

every ωi interval. Thus, the system utilization is defined
as U =

∑n
i=1

ci
ωi

, i.e. the fraction of time during which the
processors are busy running the task, which should be less
or equal to the number of processors (U ≤ m) (Baruah
et al. (1996)). As in deadline partitioning approaches
(Funk et al. (2011)), we consider the ordered set of all task
deadlines to define scheduling intervals. In this context we
define the workload as the amount of processor cycles that
a task τ must execute during a given time interval. We
also consider the arrival of asynchronous aperiodic tasks
that need to be executed on the system.

Definition 3.2. Let Ta = {τa1 , ..., τap } be a set of p indepen-
dent aperiodic tasks. Each task is identified by the 3−tuple
τai = (ccai , d

a
i , r

a
i ), in which ccai (WCET) and dai (deadline)

are known, but the arrival time rai is unknown.

Formally, the problem addressed in this work is stated as:

Problem 3.1. Control RT Scheduler (CRTS). Given the
system defined in Def.3.1, the CRTS problem consists in
designing a control law that tracks a set of references that
successfully allocate the tasks in T to the m identical
processors within the hyperperiod H, such that: the dead-
lines for T are always satisfied, the temperatures of the
processors are kept below a bound Tmax and the consumed
energy is minimum. Additionally, the controller should
execute or reject aperiodic tasks from Def.3.2 upon arrival,
subject to the temporal and thermal constraints from the
HRT tasks.

3.1 System model

This subsection summarizes the TCPN model that cap-
tures under a single formalism the behaviour of proces-
sors, arrival of tasks, their thermal activity and the power
consumption. Leveraging a TCPN allows the use of differ-
ential equations as an aid for control design. The complete
description of the model appears in Desirena-Lopez et al.
(2019b). Fig. 1a details a section of the model correspond-
ing to a system with n tasks (τi) and one processor (Pj).

The dynamic behavior of the global model (Fig. 1) is
provided by the following equations:

ṁT = CT ΛTΠT (m)mT + Calloc
T walloc (3a)

ṁP = CPΛPΠP(m)mP + Calloc
P walloc (3b)

ṁexec = Cexec
P fexec (3c)

ṁT = CT ΛT ΠT (m)mT + CaΛaΠa(m)ma

+ Cexec
P fexec (3d)

ṁa = 0 (3e)
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Fig. 1. TCPN model integrating task 1○, processor 2○ and
thermal modeling 3○. (a) details the case for a single
processor, and (b) zooms out and extends the model
for a collocation.

where Cx, Λx, and Πx(m) are the incidence matrix,
the firing rate transitions and the configuration matrix
(x = {T, T ,P} ) of the thermal, tasks, and processors
subnet respectively. Each equation from system (3) stands
for a module from the TCPN representation on Fig. 1.
Eq. (3a) describes the periodic arrival of each task at a
rate of 1/ωi, which is defined by the TCPN module 1○.
The allocation of these tasks is controlled by the flow
walloc through boundary transitions talloci,j . The processor
behaviour is expressed on Eq. (3b), where the state vector
mP stands for the allocation and execution of each task
on every processor, specifically on places pbusyi,j and pexeci,j ,
respectively. The current accumulated execution of each
task is given by Eq. (3c).

Eq. (3d) represents the evolution of system temperature.
At the bottom of Fig.1a (TCPN Thermal Model) we
show a dotted box 3○, that corresponds to a prismatic
element modeling the conduction, convection and heat
generation of a specific chip area. Eq. (3e) indicates
that the environmental temperature keeps constant during
observation time (its derivative is neglected).

4. CONTROL DESIGN

This section describes AlECS (Allocation and Execution
Control Scheduler) as a solution to the CRTS problem.
AlECS consists of three components. The first one yields,
entirely off-line, a correct schedule for a HRT task set that
minimizes energy and ensures a processor temperature
below a thermal bound Tmax.

To comply with the thermal bound Tmax, we study the
thermal behaviour of the system through a steady state
analysis of Eq.(3) as in Rubio-Anguiano et al. (2019),
where −SA−1F 3Bwalloc ≤ Tmax + SA−1B′ma pro-
vides the thermal constraints that the allocation of tasks
to the processors (walloc) must fulfill. S represents an
output matrix, such that YT = SmT corresponds to
the CPUs temperature,A = CT ΛT ΠT (m),B = C

′exec
P

and B′ = CaΛaΠa(m). This constraint is used to find a
set of operating frequencies [F ∗, F+] such that frequency
F ∗ minimizes power consumption, honoring temporal and
thermal constraints, while the frequency can be throttled
up to F+ without violating the thermal restriction. Then,
it starts by using a DP-fair approach (Funk et al. (2011))
to compute the workload assignment, i.e. the share of
each task τi that must be executed per scheduling in-
terval. Afterward, it applies a ZL policy and heuristics
to schedule the workload onto the processors. The ZL
policy determines when a task must start its execution,
and the heuristic reduces context switching. Finally, an
execution path generator yields a series of task execution
paths (target functions) representing the fluid execution of
tasks (a fluid schedule).

The second component is an on-line stage that add robust-
ness by means of two controllers. A first controller acts
upon the flow of trasnsition talloci,j in the TCPN model,
to ensure the correct allocation of tasks to processors
according to the task execution paths calculated off-line.
A second controller modifies the flow of transition texeci,j
to ensure the timed execution of the task execution paths
by adjusting the CPU frequency. This controller warrants
that the off-line fluid schedule is met despite errors on the
modeling section or unexpected (but bounded) overheads
at run time.

Finally, the third component provides the ability of man-
aging SRT aperiodic tasks by means of the Online Aperi-
odic Manager (OnAM). The following sections extend on
each component of AlECS.

4.1 Off-line Zero Laxity schedule

This section details the off-line scheduler, describing the
workload assignment of tasks per time interval, and the
allocation of this workload to the processors.

Workload Assignment

To solve the workload assignment for the HRT task set
T , we formulate a linear programming problem (LPP),
where each constraint captures a desired behaviour of our
schedule. The solution to the LPP is a set X of xki s that
represents the share of every task in T that should be
executed per scheduling interval IkSD, k = 1, .., α. We take
a DP-fair approach to define these scheduling intervals,
considering the ordered set of all job deadlines SD =
{sd0, ..., sdα}, where sd0 = 0 and α is the last deadline.
We define the scheduling interval as the time between
deadlines IkSD = [sdk−1, sdk) and |IkSD| = sdk − sdk−1
represents the duration of the scheduling interval.

We define the laxity of τi in cycles as cc∗i = (ωiF
∗) −

cci, i.e the cycles that task τi can remain idle without
compromising completion. The total processor cycles at
time sdk can be computed as (sdkF

∗) = qi(ωiF
∗) + ri,

where 0 ≤ ri < (ωiF
∗) and qi ∈ Z, such that ri represents

the amount of cycles that task τi has been active since its
last deadline and time sdk. If ri = 0, then sdk is a deadline
of τi.

The LPP is formulated in Eq. (4). Each constraint is
defined per scheduling interval and per task, until the
hyperperiod. The Maximum utilization constraint ensures
that the system utilization per IkSD is 100%. The Execution



constraint forces the individual task workloads to complete
cci at its deadline. If τi has not reached its deadline, the
Laxity constraint guarantees that the sum of the workloads
from its last deadline to the current IkSD should be greater
that ri − cc∗i , such that τi is not idle for more than its
laxity.

max

n∑
i=1

α∑
k=1

xki

s.t

∀k
n∑
i=1

xki = m× |IkSD| × F
∗ Max. utilization constraint

if ri = 0

k∑
j=γ

xji = cci Execution constraint

if ri 6= 0

k∑
j=γ

xji ≥ max{0, ri − cc
∗
i } Laxity constraint

where γ is 1 or the last deadline interval

∀i xki ≤ |I
k
SD| × F

∗ Sequential constraint
(4)

Proposition 4.1. 1 Given a task set T as in Def. 3.1, where
task utilization at F ∗ is equal to the number of processors,
the solution to the LPP (4) is always integer and if each
task τi is executed for exactly xki cycles during the k-th
interval, then an optimal schedule is obtained.

Zero Laxity policy

The clock frequencies F ∗, F+ and the workload X previ-
ously computed determine that task τi must be allocated
xki cycles at frequency F ∗ during the interval IkSD to satisfy
the HRT and thermal constraints. This implies that the
frequency can be throttled up to F+ without violating the
thermal restriction. However, the actual allocation of tasks
to processors requires a scheduling algorithm. In this work,
we leverage a ZL policy as posed in Algorithm 1, following
the results from Prop. 1.

Algorithm 1 ZLH policy

1: Input IkSD – Scheduling intervals;Xk – CPU cycles per interval
of each task; exki – Current execution P cycles in interval t0 –
Initial time tf– Final time

2: Output A feasible schedule;
k = 0,

3: for t = t0 to tf do
4: Compute the laxity of every active task
5: if reach Ik+1

SD then
6: k=k+1;
7: Compute task priorities as: Jobs with Zero laxity get higher

priority, followed by jobs that are being executed
8: Execute the m tasks with higher priority
9: else if reach a zero laxity then

10: Compute task priorities
11: Execute the m tasks with higher priority
12: end if
13: end for

Example 1. Suppose a task system T = {(3, 5), (6, 10),
(9, 15), (6, 10), (3, 5)} to be executed on m = 3 processors
at F ∗ = 1. The system utilization is U = 3. H = 30
and the set of deadlines is SD = {0, 5, 10, 15, 20, 25, 30}.
Applying the ZL policy (Alg.1) up to the hyperperiod, we
find the target schedule in Fig. 2a.

1 Please visit URL for the complete proof.

So far, we have found an off-line schedule that can be im-
plemented on a real system, in the absence of disturbances.
The following two control laws ensures the accomplishment
of the schedule under CPU detentions, system time drift-
ing and similar events.

4.2 Execution path generator

The target schedule computed in the previous section is
the reference to calculate the task execution paths for the
control laws to track them, in order to add robustness to
the scheduler. Fig. 2b shows the τ1 task execution paths
on each processor for Example 1. The vertical solid lines
link the scheduling points in the schedule a) and in the
task execution paths in b).
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Fig. 2. a) Schedule of system T = {(3, 5), (6, 10), (9, 15),
(6, 10), (3, 5)} on 3 processors. b) Execution paths for
τ1 on each processor.

The execution path per task and processor is defined as:

jṘi(t) = Fn[jWi(t)] (5)

where Fn is the operating frequency, i = 1, 2, ..., |T |, j =

1, 2, ..., |P| and

jWi(t) =

{
1 if τi is executed on Pj
0 otherwise

(6)

Note that jWi remains constant in the interval of execution
[t0, tf ) of τi. Thus, function 2W1 in Fig. 2b remains
constant during [0, 3), as 1W1 does in [6, 9). Hence, we
define the executing interval as the time interval where
τi is being executed. The function jRi(t) will be used as
a set-point for the control stage, to allocate and execute
tasks.

4.3 Control law

The allocation and execution of the HRT tasks is modeled
in Eq.(3a)-(3c). Specifically, it is determined by the flow of
transitions talloci,j and texeci,j , respectively. Accordingly, the

marking at mexec
i,j and malloc

i,j , represents which tasks are
being allocated and executed, respectively. The controllers
for allocation and execution read these measures either
from the TCPN equations, when simulating a TCPN
model of the system, or from actual counters, when run-
ning in a real system.

Allocation control

To allocate jobs to processors according to the task execu-
tion paths, we will define an allocation error per executing



interval [t0, tf ), where the desired allocation cycles are
obtained by solving Eq. (5) at tf

jRi(tf ) = jRi(t0) + Fn[jWi(t0)](tf − t0) (7)

Let define the vector allocation error Ealloc(t) = [Ealloc1,1 , ...,

Eallocn,1 , ..., Eallocn,m ]T , where each Ealloci,j (t) is computed as:

Ealloci,j (t) = mexec
i,j (t) +mbusy

i,j (t)− jRi(tf ) (8)

where t0 ≤ t < tf . Taking the time derivative of Eq. 8, the
dynamics of the error is given by:

Ėalloci,j (t) = ṁexec
i,j + ṁbusy

i,j = falloci,j − ualloci,j = walloci,j (9)

where walloci,j is the controlled flow through transition talloci,j

and falloci,j is

falloci,j =
λalloci,j

η
midle
i,j . (10)

Proposition 4.2. 2 Let ualloci,j be an ON/OFF control for
system (9), such that

ualloci,j =


λalloci,j

η
midle
i,j if Ealloci,j (t) ≥ 0

0 if Ealloci,j (t) < 0

(11)

Then system (9) is stable and each Ealloci,j remains bounded
for all t0 ≤ t < tf .

Execution control

The allocation control is in charge of assigning tasks to
processors, whereas the execution control is only concerned
with the rate of execution, i.e, the frequency at which the
processor should operate to comply with the task execu-
tion paths. The frequency is a parameter on the execution
module of the TCPN model in Sec. 3.1, specifically on the
firing rate λexeci,j = ηF+ of transitions texeci,j (the rate at
which the processor can consume cycles). In accordance
with the off-line calculations, the operating frequency can
vary on the interval [F ∗, F+]. Our controller acts on the
flow trough texeci,j according to the operating frequency.

The purpose of this controller is to keep the execution error
Eexeci,j (t) equal to zero. We define the vector execution error

Eexec(t) = [Eexec1,1 , ..., Eexecn,1 , ..., Eexecn,m ]T , where each Eexeci,j (t)
is computed as:

Eexeci,j (t) = mexec
i,j − jRi(t). (12)

Then the dynamic system of the execution error is:

Ėexeci,j (t) = wexeci,j − jṘi(t) (13)

where wexeci,j is the controlled flow through transition texeci,j :

wexeci,j = fexeci,j − uexec

such that fexeci,j = λexecmbusy
i,j and λexec = ηF+.

Proposition 4.3. 2 Let uexec be a control law for sys-
tem (13), such that

uexec =

0 if φ ≥ ηF+mbusyE

η(F+ − F ∗)mbusyE if φ ≤ ηF ∗mbusyE

ηF+mbusyE − ṘE + αE otherwise

(14)

φ = ṘE − αE
where α is a positive constant, E is the element Eexeci,j

such that |Eexeci,j | = ||Eexec||∞, and mbusy
E , ṘE are the

2 Please visit URL for the complete proof.

elements mbusy
i,j and jṘi respectively associated to E.

Then the execution error is locally exponentially stable

and the controlled flow is bounded ηF ∗mbusy
E ≤ wexecE ≤

ηF+mbusy
E for all t0 ≤ t < tf .

To prove the effectiveness of the control law, suppose there
is an overhead in the system at time [15, 16], and none
of the tasks where executed on that interval. Then, the
system must increase the frequency to compensate for the
delay. Fig. 3a shows the target functions and Fig. 3b shows
the output of the system and how the execution accelerates
to reach the execution paths.
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Fig. 3. a) Task execution paths and b) System output
recovering from a system overhead in the interval
[15, 16]

4.4 Online Aperiodic Manager

Now, we endow our scheduler with a third component,
the Online Aperiodic Manager (OnAM), which is able
to manage SRT aperiodic tasks. Upon arrival of a SRT
aperiodic task, the OnAM will determine if such task can
be executed without compromising the constraints of the
HRT periodic task set. If so, it will re-compute the task
execution paths jRi so that they include the execution of
τai , rejecting the aperiodic task otherwise.

First, the OnAM determines the scheduling intervals

where τai will be active (IrSD to IfSD). Second, it com-
putes the processor cycles Cu to satisfy the rest of the
active tasks until the deadline of τai . Third, With this
information, the algorithm computes a frequency such that
there is enough time left for executing the new task: Fn =

max
{
Cu+cc

a
i

m×da
i
,
ccai
da
i

}
Last, if Fn ≤ F+, the OnAM accepts

the task into the system and assigns the workload xaki
(per IkSD) for τai proportionally to the scheduling interval

duration: xaki =
|IkSD|
da
i
ccai If the arrival or deadline (rai +dai )

of the aperiodic task does not match any current deadline,
the current interval duration is different from IkSD, thus
xaki is slightly modified. If the mismatch occurred at arrival
time, instead of |IkSD|, we use sdk − rai . However, if it
occurred at the deadline, then we use (rai +dai )−sdk−1. The
frequency Fn along with the new workload that accounts
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for τai serves as input for Alg. 1, which now computes on-
line jWi and jRi for the interval [ra, sdf ), as in Eq. (5) and
Eq. (6). When task τai reaches its deadline, the execution
paths are computed for the rest of active tasks under the
previous frequency. Algorithm 2 details the workflow of
the OnAM.

Algorithm 2 OnAM

1: Input IkSD – Scheduling intervals; Xk – tasks CPU cycles per
interval; exri – current execution P cycles in interval ccai , d

a
i –

Aperiodic tasks parameters;
2: Output jRi
3: if periodic task arrives then
4: Determine intervals IrSD to IfSD , where τai is active
5: Compute required CPU cycles for active tasks
6: if Fn ≤ F+ then
7: Accept task τai
8: Assign workload xaki from IrSD to IfSD
9: Execute Alg.1 from [ra, sdf )

10: Compute task execution paths jRi
11: else
12: Reject task
13: end if
14: end if
15: if aperiodic task deadline then
16: Execute Alg.1 from [sdf , H)
17: Compute task execution paths jRi
18: end if

Example 2. Recall Example 1 and now suppose there
is an aperiodic task τa1 = (10, 6, 3). The interval of
admissible frequencies is F = [1, 3]. Fig. 4 shows the target
schedule. Fig. 5 shows the new execution paths computed
to accommodate the aperiodic task. On CPU 1, 1Rap
shows a ramp until t = 9 whereas 2Ras and 3Ras are flat
for the whole interval in CPU 2 and 3, meaning that the
incoming aperiodic task can be entirely accommodated in
CPU 1 without disturbing the correct execution of tasks
2 and 3 now scheduled on CPU 2 and 3.

5. CONTEXT SWITCHING AND MIGRATION:
COMPARISON WITH RUN

We perform a comparison of context switch and migration
overhead with the off-line schedule obtained from Sec. 4.1
and RUN (Regnier et al. (2011)) using Tertimuss, an in-
house simulation framework publicly available (Desirena
et al. (2019a)). Tertimuss allows the parameterization
of processors and task sets, automatically generates the
TCPN model and state equations, solves the systems, and
eases the simulation workflow. It includes a number of
schedulers available out-of-the-box. RUN does not support
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Fig. 5. Task execution paths computed to satisfy the
aperiodic task

DVFS, nor thermal or disturbance management. There-
fore, for the comparison to be fair, the frequency of every
core is fixed, we obviate power consumption and thermal
behavior, and we assume no disturbances. We consider
two processor cores with cache memories and speculative
mechanisms non-existent or turned off. We produced task
sets with 10 tasks per set and deadlines of 2, 5 and 10 s
with a utilization randomly generated under a uniform
distribution by using UUnifast (Bini and Buttazzo (2005)),
integrated in Tertimuss.
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Fig. 6. (a) Breakdown of context switches generated by
our proposal vs RUN along the ten task sets. The
bottom black bars stand for the MCS and the upper
stacked bars represent the CCS of the proposal (grey)
and RUN (dark grey). (b) Number of job migrations
produced by our proposal (grey) vs. RUN (dark grey)

We measured separately the number of Mandatory Context
Switches (MCS) and Coerced Context Switches (CCS).
MCS are given by job activation and termination, and
therefore are independent from the scheduler, unlike CCS.
Fig. 6 (a) displays two stacked bars per experimental



task set, the bottom black bar of which represents the
MCS, amounting to the same value in both schedulers
as expected. RUN triggers between 6% (set 7) and up
to 80% (set 6) more CCS than our proposal, averaging
44%. Fig. 6 (b) shows that our proposal cuts by almost
a quarter the number of job migrations yielded by RUN,
which reaches zero migrations against the two produced
by our proposal in set 9 nonetheless.

6. CONCLUSIONS

With this contribution we show the power of Timed Con-
tinuous Petri Nets (TCPN) to model a RT multiprocessor
system and to ease the design and test of the complex RT
multiprocessor schedulers demanded by today’s MPSoCs.
We present a scheduling scheme which provides entirely
off-line a schedule that meets the HRT, thermal and power
constraints of a periodic task set. We reformulate the ILP
solved in Rubio-Anguiano et al. (2019) to calculate the
share of each task job per time interval. We greatly im-
prove the schedulability of the former approach by posing
and solving the ILP taking into account the whole hyper-
period. Besides, we apply a ZL task policy off-line to allo-
cate jobs to processors, in contrast with Rubio-Anguiano
et al. (2019) where the allocation is performed on-line.
We lower the context switches and migrations yielded by
Rubio-Anguiano et al. (2019), outperforming RUN, which
can be considered a reference in this point, in a preliminary
comparison. We add robustness to the system by designing
a second on-line component where an allocation controller
and an execution controller respectively compare actual or
simulated allocation and execution data with the values
(execution paths) provided by the previous off-line stage,
taking action to bring the error to zero. As a bonus, the
execution controller allows the design of an aperiodic task
manager (onAM) simpler and lighter than the one pre-
sented in Rubio-Anguiano et al. (2019).Immediate future
work include controlling possible thermal disturbances in
a real environment. Next, we aim to adapt our model to
an heterogeneous architecture, leveraging our underlying
TCPN model.
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Silva, M., Júlvez, J., Mahulea, C., and Vázquez, C.R.
(2011). On fluidization of discrete event models: ob-
servation and control of continuous Petri nets. Discrete
Event Dynamic Systems, 21(4)(3), 427–497.

Silva, M. and Recalde, L. (2007). Redes de Petri con-
tinuas: Expresividad, análisis y control de una clase de
sistemas lineales conmutados. Revista Iberoamericana
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