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Abstract: Among the main objectives of Natura 2000 Network sites management plans is monitoring
their conservation status under a reasonable cost and with high temporal frequency. The aim of
this study is to assess the ability of single-photon light detection and ranging (LiDAR) technology
(14 points per m2) and Sentinel-2 data to classify the conservation status of oak forests in four special
areas of conservation in Navarra Province (Spain) that comprise three habitats. To capture the
variability of conservation status within the three habitats, we first performed a random stratified
sampling based on conservation status measured in the field, canopy cover, and terrain slope and
height. Thereafter, we compared two metric selection approaches, namely Kruskal–Wallis and Dunn
tests, and two machine learning classification methods, random forest (RF) and support vector
machine (SVM), to classify the conservation statuses using LiDAR and Sentinel-2 data. The best-fit
classification model, which included only LiDAR metrics, was obtained using the random forest
method, with an overall classification accuracy after validation of 83.01%, 75.51%, and 88.25% for
Quercus robur (9160), Quercus pyrenaica (9230), and Quercus faginea (9240) habitats, respectively. The
models include three to six LiDAR metrics, with the structural diversity indices (LiDAR height
evenness index, LHEI, and LiDAR height diversity index, LHDI) and canopy cover (FCC) being the
most relevant ones. The inclusion of the NDVI index from the Sentinel-2 image did not improve
the classification accuracy significantly. This approach demonstrates its value for classifying and
subsequently mapping conservation statuses in oak groves and other Natura 2000 Network habitat
sites at a regional scale, which could serve for more effective monitoring and management of high
biodiversity habitats.

Keywords: conservation status; European ecological networks; LiDAR; Sentinel -2; machine learning

1. Introduction

For several decades, there has been a growing interest in mapping the distribution
and conservation status of ecosystems as an effective tool for the conservation of natural
resources [1,2]. One of the main reactions to the biodiversity crisis was the development
of conservation areas, primarily designed to maximize the performance of investments in
conservation and minimize conflicts with human activities [3]. For example, the Habitats
Directive, adopted in 1992, launched the EU-wide Natura 2000 ecological network of
protected sites to safeguard the natural habitats of wild fauna and flora against potentially
damaging developments. The directive states that each European member state should
monitor the conservation status of special areas of conservation (SACs) recognized in its
territory, which in the Spanish case refers to 14.2% of its territory. SAC monitoring is
generally carried out through the general matrix of conservation status assessment [4],
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which contains the reference thresholds to assess the conservation status of these sites based
on their area, range, structures and functions, and future prospects for the survival of the
habitat. For each of these parameters, three possible values must be established: favorable,
unfavorable-inappropriate, or unfavorable-bad. Traditionally, SAC monitoring has been
carried out through photo interpretation techniques and field work performed by botanical
experts [5]. However, these traditional methods are not effective in developing information
bases on the vegetation cover and structure at a large-spatial scale, due to its high economic
and human cost for long-term monitoring under a limited budget [6]. In this sense, it is
urgent to find reliable, accurate, and inexpensive monitoring systems for natural habitats
and terrestrial ecosystems [6].

Alternatively, available techniques, such as remote sensing, could offer advances in
mapping and managing ecosystem conservation, constituting a practical and economic
alternative. In this sense, essential biodiversity variables (EBV-s) represent spatially explicit
and scalable proxies of individual biophysical parameters relevant to biodiversity [7,8].
The development of EBV-s was raised with satellite remote sensing-based monitoring at a
global scale in mind, but biodiversity monitoring at finer scales is currently a demand for
biodiversity conservation. Forest structure is a relevant indicator of biodiversity evaluation
and conservation status in forest ecosystems, since greater structural diversity correlates
with the presence of more ecological niches and faunal habitats [9–12]. Structural diversity
patterns are an essential source of information for the management of Natura 2000 Network
sites [13]. Even though the forest structure and its three-dimensional organization are
among the most problematic components to quantify in natural ecosystems [14], light
detection and ranging (LIDAR) has been applied to analyze the structure of forests with
success [13,15,16], enabling the prediction of species richness [17,18]. Specifically, positive
correlations have been found between the diversity of heights in forests and the richness of
bird species [19,20], as well as with some other mammals, such as the endangered Delmarva
fox squirrel [21] or the red vole (Arborimus longicaudus) [22], among others. Furthermore,
Guo et al. [23] developed an inventory of the vegetation structure in Alberta (Canada) that
efficiently synthesizes the vertical variation of forests into different categorical classes for
their use in conservation and management activities.

Despite the trend of studies using LiDAR data to determine a habitat’s specific richness,
which is gradually increasing, not many address the conservation status of different habitats
of interest. Zlinszky et al. [24] used the random forest (RF) classification technique to create
conservation status fuzzy maps based on information obtained from leaf-on and leaf-off
point clouds (10 pt/m2) collected in an alkali grassland area. They concluded that very
few (if any) remote sensing-derived variables correlate closely with biodiversity indicators,
regardless of the local habitat. Simonson et al. [25] tested the combination of airborne
multispectral and laser scanning (LiDAR) for habitat mapping and a robust indication of
conservation status in Quercus suber forests in southern Portugal. By using relationships
between forest vegetation structure, species diversity, and LiDAR height metrics, these
authors predicted and mapped areas of high, medium, and low conditions, defined as
the spatial distribution and structure of habitat patches. Although the combination of
multispectral and LiDAR data improved the accuracy of habitat mapping [24] and other
forest structural variables, such as fuel types [26], few examples have tested the combination
of multiple sensors for conservation status estimation, and, to the best of our knowledge,
none of them combined single-photon LiDAR and Sentinel-2 data. The combination of both
types of remote sensing data can be essential, since LiDAR can provide information directly
related to the structural diversity of the forest and multispectral data can be directly related
to species richness and vegetative state.

In the last few years, new LiDAR metrics describing canopy height distributions
have been developed to quantify the complexity of the canopy and classify the structure
of the forest according to ecological functions [27]. These are accurate and easily inter-
pretable [16], so they are frequently included as explanatory variables in habitat models for
forest wildlife [28,29]. The L moments [30], for example, have recently started to appear
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in the ecology and forest management LiDAR applications literature [27,31]. To study the
occupation patterns of red tree voles, Johnston and Moskal [22] have generated complex
variables derived from LiDAR, such as the diversity of foliage height, canopy connectivity,
or border density, to determine whether they are highly correlated with direct measures
of canopy height. Listopad et al. [15] developed the adaptation of the Shannon (LiDAR
height diversity index, LHD) and Pielou (LiDAR height evenness index, LHEI) biodiversity
indices, calculated from the three-dimensional data provided by LiDAR technology. The
first one arises from a mathematical model [32] that seeks to measure the diversity of
species in a determined area. This index must be combined with the second one, since
the equitability of species richness is also needed to conduct a correct study of structural
biodiversity [33]. However, the utility of many of these metrics has not been explored in
wildlife and forest habitat models of conservation status.

The main objective of this research is to evaluate the potential of single photon LiDAR
and Sentinel-2 data for the classification of conservation status in four special areas of
conservation in Navarra Province (Spain) that comprise three habitats: Quercus faginea
(official code 9240), Quercus pyrenaica (official code 9230), and Quercus robur (official code
9160) included in Annex I of the Habitats Directive. The secondary aims are: 1) to test
the performance of structural biodiversity-related LiDAR metrics to classify oak grove
conservation statuses, 2) to test the performance of classification with the combination of
Sentinel-2 and simple photon LiDAR data, and 3) to test the performance of two different
machine-learning methods: random forest (RF) and support vector machine (SVM).

2. Study Area

The oak groves under study are located in Navarra Province, which has one of the
highest levels of biodiversity in the EU due to the confluence of the Alpine, Atlantic, and
Mediterranean biogeographic regions [34]. A total of four study zones have been selected,
where three habitats were studied: Quercus faginea (9240), Quercus pyrenaica (9230), and
Quercus robur (9160) (Figure 1).

Zone A includes 135 ha of Galician-Portuguese forest dominated by Quercus robur
(9160) and Quercus pyrenaica (9230). It is located within the SAC “Belate” (ES2200018),
characterized by the uniqueness and diversity of habitats, flora, and fauna, which have
been recognized through its protection in the Habitats Directive. According to the Digital
Climatic Atlas of the Iberian Peninsula (DCAIP) [35], the average annual temperature in
this area is 13 ◦C, and the annual precipitation ranges from 1000 to 1300 mm. Forests
extend from the limits of Quinto Real to Usategieta in Leitza. Pyrenean oaks comprise
relatively poor and open forests, with a distinctive acidophilic flora (Acer sp., Sorbus sp.,
Ilex aquifolium, Crataegus monogyna, i.e.,). Habitat Quercus pyrenaica (9230) is found on acidic
substrates with elevations ranging between 400 and 1600 m above sea level (a.s.l.) and
slopes ranging from 20% to more than 40% [36].

Zone B covers 314 ha of sub-Atlantic and Central European oak-hornbeam forests
(Quercus robur habitat, 9160). The oak grove forests are managed by the Ultzama and
Basaburua valley plans (ES2200043) and have been recognized through their protection
as a Natura 2000 special area of conservation. Forests are characterized by deep and
hydromorphic soils. Silty or clay-silty rocks dominate the lithology, whose limited extension
prevents the existence of a specific fauna, such as Rana dalmatina or the middle-spotted
woodpecker (Dendrocopos medius) [37], though the habitat serves as a refuge for other
species, typical of deciduous forests or nearby habitats. The elevation ranges from 500 to
700 m a.s.l., and the slope steepness ranges from 2–3% to 0.4–0.5%. The lithology is mainly
composed of washed brown earth acids [38].

In this area, the annual mean precipitation reaches approximately 1347 mm, and the
average annual temperature is 13 ◦C. Forests are characterized by a smooth topography,
with elevations below 400 m.

Zones C and D include 533 ha of Iberian oak forests of Quercus faginea and Q. canariensis.
These zones are located within the “Montes de Valdorba” (ES2200322) and “Sierra de Lokiz”
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(ES2200022) SACs, which have a management plan for monitoring the conservation status
of Quercus faginea habitat. Forests are dominated by Quercus faginea, which lives on neutral
substrates between 500 and 1500 m a.s.l. In “Sierra de Lokiz”, the annual precipitation
ranges from 800 to 1200 mm, and the average annual temperature varies from 10 ◦C to
12 ◦C [39]. However, in “Montes de Valdorba” the average annual temperature is 12.5 ◦C,
and precipitation ranges from 600 to 900 mm.
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Figure 1. Distribution of Zones A, B, C, and D in the Navarra region. The backdrop corresponds to a
high spatial resolution orthophotography. Source: PNOA Spatial Data Infrastructure (SDI).

3. Materials and Methods

A four-step methodology was conducted to classify and map the conservation status
of oak grove habitats, Quercus robur, Quercus pyrenaica, and Quercus faginea (codes 9160,
9230, and 9240, respectively) (Figure 2). Initially, Sentinel-2 and LiDAR data were gathered
and processed to develop radiometric indices and LiDAR metrics related to biodiversity.
Furthermore, to cover the variability of the study sites, a representative random sample was
created. In a third step, the Kruskal–Wallis and Dunn statistical tests were used to compare
conservation status. Finally, the most suitable variables with an ecological significance
were selected to classify and map the conservation status.

3.1. Conservation Status Reference Data

Navarra’s provincial community carried out its own habitat inventory (2004) of the
areas included in the Natura 2000 Network. It was executed taking as a reference the
enclosures of Crop and Exploitation Map (MCA) at a 1/25,000 scale. The data derived from
the qualitative evaluation of conservation status carried out between 2004 and 2010 [36,40]
were used for the analysis. The conservation status was classified into three categories:
1. unfavorable-bad (UB); 2. unfavorable-inappropriate (UI); and 3. favorable (F).

Habitats in the favorable status category are mature forests with a balanced distribu-
tion of tree ages and size classes. The forests may have open gaps due to the fall of old trees,
favoring natural regeneration. The stands present little sign of human activity, raising their
ecological value and microhabitat presence. There is also a high presence of dead wood on
the ground or standing in various states of decomposition.
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Unfavorable-inappropriate status integrates forests with a closed canopy, but older
trees have not reached mature age yet. Dense regrowth of young trees in high competition
for light could be found below the main canopy. The presence of standing dead wood of a
small diameter is mainly due to young trees’ mortality.

The unfavorable-bad status category is characterized by a predominance of young
trees originated from seed that form a forest in an initial state of succession, although stump
or root sprouts are also frequent. Habitats resemble young forests, generally with lower
canopy density and a lower amount of dead wood, generated by encroachment or large
forest clearings.

3.2. ALS and Sentinel-2 Data Description

In this section, we describe the ALS and Sentinel-2 datasets used in this work. The
ALS data were captured in 2017 by the Spanish National Plan for Aerial Orthophotography
(PNOA) using a Single Photon LiDAR (SPL100). The SPL100 operates at a wavelength of
532 nm and collects up to 6 million points per second, with an average pulse repetition
frequency of 60 KHz and a flying altitude between 3,500 and 6,000 m above the ground.
Its maximum scanning angle is 25◦ and RMSE obtained in Z values was 6–10 cm. Point
clouds, with a density of 14 points per m2, were provided in 1 × 1 km tiles in LAS format
in European Terrestrial Reference System (ETRS) 1989 Universal Transverse Mercator
(UTM) and orthometric heights [41]. A total of 80 LAS files, publicly available at the CNIG
Download Centre and at the Spatial Data Infrastructure of Navarra (IDENA), were selected
to cover the extension of the Zones A, B, C, and D.

The cloud-free image from the Sentinel-2A/B MSI sensor, of medium-high spatial
resolution, and captured on 26th September 2019, was obtained from the European Space
Agency’s (ESA) Sentinel Scientific Data Hub (https://scihub.copernicus.eu/) with a pro-
cessing Level-2A that refers to the bottom of the atmosphere (BOA), being atmospherically
and topographically corrected.

3.3. ALS Data Processing and Metrics Computation

The return heights of the point clouds were normalized using FUSION LDV 4.0 open-
source software [42] by subtracting the elevation data from a digital elevation model (DEM)
with 2 m grid resolution, provided by IDENA.

https://scihub.copernicus.eu/
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A complete set of statistical metrics, related to vertical and horizontal structure met-
rics commonly used within forestry, were generated using FUSION LDV 4.0 at a spatial
resolution of 20 m, due to the regional scale of the analysis and to better match the spatial
resolution of Sentinel-2 data. Following Domingo et al. [26], a threshold value of 0.2 m
height was applied to remove understory and ground returns, considering also the RMSE in
Z values of ALS-PNOA data. Metrics related to vegetation height include different intervals
of return distribution percentiles (P01, P05, P10, P20, P30, P40, P50, P60, P70, P75, P80, P90,
P95, and P99), the minimum, maximum, median, and mode of height distribution (Elev.min,
Elev.max, Elev.mean, and Elev.mode), quadratic and cubic elevation (Elev. SQRT mean SQ,
Elev. CUR mean CUBE), and several L moments (Elev. L1, Elev. L2, Elev. L3). L moments
are canopy height metrics computed using linear functions of ordered data that suffer less
from sample variability and are more robust to outliers in the data [30]. The computed
metrics related to vegetation height variability correspond to skewness (Elev.skewness),
kurtosis (Elev.kurtosis), coefficient of variation (Elev.CV), variance (Elev.variance), standard
deviation (Elev. SD), and interquartile distance (Elev.IQ). Metrics related to canopy cover
include the percentage of first or all returns above a threshold, the canopy relief ratio (CRR),
the mean or the mode (e.g., % first ret. above 0.20), the percentage of all returns with a
range of 0.5 m (e.g., % all ret. between 1 and 1.5 m), and the ratio of all returns with respect
to the number of total returns (e.g., (all ret. above 0.20)/(total first ret.) by 100)).

Furthermore, the return proportion at every 0.5 m was computed as a measure of
strata density. The strata metrics were used to subsequently compute two structural
diversity indexes. The LHEI (LiDAR height evenness index), which is an adaptation
of the Pielou’s index, and the LHDI (LiDAR height diversity index), which resembles
the Shannon-Weiner diversity index. According to Listopad et al. [15], these structural
diversity indices constitute valuable surrogates for structural and species biodiversity,
allowing the development of ecosystem-specific parameters as quantifiable targets for
ecosystem conservation. The two structural diversity indexes were computed by applying
the formulas proposed by Listopad et al. [15] in R software (see Equations (1) and (2)).

LHDI = −∑[(ph)· ln (ph)] (1)

LHEI = LHDI/ln(ph) (2)

where p is the proportion of returns every 0.5 m (h).

3.4. Sentinel-2 Data Processing and NDVI Derivation

The normalized differential vegetation index (NDVI) has been derived from Sentinel-
2A images that have been atmospherically corrected (level 2A) using SNAP software
(Sentinel toolboxes: https://step.esa.int/main/download/snap-download/). According
to Equation (3), the red band related to chlorophyll absorption (Band 4) and the relatively
high reflectance in the near infrared (NIR) (Band 8) of vegetation are used to calculate
the NDVI.

NVDI = (B8 − B4)/(B8 + B4) (3)

3.5. Sample Selection

A sample of the data was selected in order to reduce computational effort, avoid
overfitting the model, and have better control over the results. The variability of the forest
was considered using a representative sample stratified using four variables: (1) canopy
cover (using the FCC metric), (2) terrain slope, (3) canopy height (using the P95 metric), and
(4) conservation status of the habitats, obtained through stratified random sampling [43].

Four classes have been established with respect to canopy cover (FCC), ranging from
open or treeless spaces to high forest stand densities (see Table 1). Considering that there is
no standard categorization for all habitats and that FCC varies according to local ecological
characteristics within each biogeographic region [6], we defined four FCC ranges.

https://step.esa.int/main/download/snap-download/
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Table 1. Ranges established for the variables FCC (%) and slope (%). Additionally, 9160 is Quercus
robur habitat, 9230 is Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Variables Habitats 9160, 9230 and 9240

FCC (%) 0–20 20–40 40–70 >70

Class 1000 2000 3000 4000

Slope (%) 0–5 5–15 >15

Class 10 20 30

The slope of the terrain was obtained from the DEMs available in the spatial data
infrastructure of Navarra (IDENA), used in the normalization of the point cloud. For this
variable, three categories commonly used in its cartographic expression were established
(see Table 1), differentiating between gentle, medium, and steep slopes.

P95 is related to a standard forest’s dominant height and, in turn, provides information
about the age and condition of the stand. As can be seen in Table 2, P95 was categorized
into four classes, referring to the age and condition of the forest stands in the three habitats
to be analyzed. The P95 thresholds vary according to the habitat by considering the
morphological characteristics of the forest stands.

Table 2. Ranges established for the variable P95 (m). Additionally, 9160 is Quercus robur habitat,
9230 is Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Variables Habitat 9160 Habitats 9230 and 9240

P95 (m) 0–8 8–12 12–20 >20 0–3 3–6 6–10 >10

Class 100 200 300 400 100 200 300 400

The categorization created by GAN-NIK [36] in three classes in relation to the con-
servation status of the different habitats was used: from number 1 for the most poorly
conserved habitats to number 3 for those in an optimal conservation status.

The mapping of the LiDAR-derived variables was generated from the LiDAR-PNOA
data building raster layers with a 20-m resolution. All the variables were reclassified in a
geographical information system (GIS), using ArcGIS software (https://www.esri.com/en-
us/home), and overlapped to generate one layer. A total of 1000 random points in habitats
Quercus robur (9160) and Quercus faginea (9240), and 450 in habitat Quercus pyrenaica (9230)
were created, considering a minimum distance of 20 m between random points.

Finally, after the first statistical analysis, some of the sample points considered outliers,
potentially linked to changes or data mismatches, were visited in the field in August 2020 in
order to check the conservation status class assigned. A total of 150 points were distributed
among the three sites that were visited. The agreement between the classification of the
conservation status reference data and the field was approximately 50%. The misclassified
points were reclassified for subsequent analyses.

3.6. Assessment of the Suitability of ALS Metrics for Conservation Status Discrimination

Preliminary analysis determined the absence of normality in the data. The transforma-
tion of the data to a logarithmic decimal scale was accomplished as a feasible alternative
for normalizing the data. However, the Shapiro–Wilk test performed in an R environment
revealed that a normal distribution was not reached (p-value < 0.05). Accordingly, the
nonparametric Kruskal–Wallis test was computed in R [44,45] to select the LiDAR variables
that were subsequently included in the classification process. The final selection of variables
was created based on the presence of significant differences in the medians of the subgroups
(p-value < 0.01) and their ecological significance, according to previous literature. Finally,
the Dunn’s test of multiple comparisons was performed in R to pinpoint existing differences
in each selected variable between the different categories of conservation.

https://www.esri.com/en-us/home
https://www.esri.com/en-us/home
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3.7. Digital Classification of Conservation Status

The performance of two frequently used nonparametric machine-learning classifica-
tion methods was tested to classify conservation status: SVM and RF. SVM was computed
using radial (SVMr) and linear (SVMl) kernels. The SVM cost parameter was parametrized
within an interval of 1–1000 and gamma within 0.01–1. The RF classifier was parametrized
by applying between 1 and 3,000 trees to growth (ntrees) and between 1 and 3 metrics in
each node (mtry), in accordance with Rodrigues et al. [46], and bias was corrected. The
models were computed in an R environment using “e1071”, “randomForest” [47] and
“caret” [48] for SVM and RF, respectively.

The classification was carried out using training and testing datasets based on a
random sample of pixels (see the sample data section). Models were validated using the
testing dataset, computed by applying a stratified random sampling of 30% to include
the different conservation status. To increase robustness in the results, the validation
was executed 100 times, and average performance values were computed [49]. In order
to compare and, subsequently, determine the best classification model, the classification
confusion matrices, user’s and producer’s accuracy, and overall accuracy were assessed [50].
The analysis of the results using LiDAR metrics on their own and in combination with the
NDVI index was also performed.

4. Results
4.1. Suitability of the ALS Metrics for Conservation State Discrimination

Table 3 shows a selection of ALS metrics with the highest chi-square values after
performing the nonparametric Kruskal–Wallis test. The FCC, LHEI, and LHDI biodiversity
indices present the highest significant differences between conservation status in habitats
Quercus robur (9160) and Quercus pyrenaica (9230). However, the total percentage of returns
above mean (%RM), the height coefficient of variation (CV), 95th (P95), and 99th (P99)
percentiles of height were significantly different between conservation status in habitats
Quercus robur (9160) and Quercus faginea (9240), but not in habitat Quercus pyrenaica (9230).
Furthermore, significant differences were observed in the elevation variance, the minimum,
maximum and average elevation, and the mean absolute height deviation for all habitats.

Concerning the ecological significance of all these variables, FCC is often used as a
conservation status indicator of a forest habitat [36]. A value of 70% is considered a good,
conserved forest; 40–70% means the conservation status is inadequate-unfavorable; and
20–40% is typical of a forest in a bad state of conservation. Following the criteria applied
by GAN-NIK [36], below 20%, the formation cannot be considered a “forest”.

When age structure is applied to the dominant tree species and measured through
parameters such as basal diameter, growth rings, or height, it provides information on
diversity [51], the community structure, the population structure, and the successional
status. To make an approximation of the structure and the age of the analyzed forest masses,
P95 and the coefficient of variation of height were selected. With respect to the P95, it
reflects the dominant height better than the average height, showing a 3-m error in past
studies once validated in the field [52]. On the other hand, the coefficient of variation shows
a dispersion degree in the elevation of the returns. This provides information about the
variability of heights that exists in a determined patch, reflecting the variety of ages within
the forest mass. It is possible that the old monospecific plantations provide similar values
of average height to those of the well-preserved forests, although these plantations do not
occur in this study.

LiDAR can approximate the quantification of old trees by estimating the percentage of
early returns (or all returns) that are above the average height. In this study, the percentage
was used instead of the total number of returns since several returns can correspond to the
same tree and the density of points in the cloud is not homogeneous.



Remote Sens. 2023, 15, 710 9 of 17

Table 3. Results of the Kruskal–Wallis test for habitats 9160, 9240, and 9230. *: p-value < 0.05;
**: p-value < 0.01; ***: p-value < 0.001; NS: non-significant. Additionally, 9160 is Quercus robur habitat,
9230 is Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Variables
Habitat 9160 Habitat 9240 Habitat 9230

Chi Square p-Value Chi Square p-Value Chi Square p-Value

FCC 202.81 *** 94.12 *** 25.49 ***

LHEI 110.89 *** 57.27 *** 32.01 ***

LDHI 95.28 *** 63.77 *** 116.27 ***

Total percentage of
returns above mean 80.38 *** 116.47 *** 1.22 NS

Height coefficient of
elevation 13.91 *** 45.54 *** 1.92 NS

95th percentile of
height (P95) 48.40 *** 88.64 *** 0.04 NS

99th percentile of
height (P99) 54.18 *** 36.83 *** 0.27 NS

Elevation variance 100.23 *** 12.78 ** 13.90 ***

Minimum elevation 19.16 *** 37.17 *** 16.39 ***

Maximum elevation 63.84 *** 27.90 *** 7.93 *

Average elevation 26.89 *** 64.32 *** 7.52 *

Mean absolute height
deviation 82.76 *** 10.29 ** 12.06 **

The kurtosis provides information about the community and the population structure,
in addition to the successional state, and can be measured directly by LiDAR data.

After analyzing the ecological significance of all these variables, the following were
selected for the subsequent classification process: 1) LHEI, LHDI, P95, FCC, CV, and
percentage of returns above the mean (%RM) variables in habitats Quercus robur (9160) and
Quercus faginea (9240); 2) LHEI, LHDI, and FCC variables in habitat 9230. Table 4 shows the
results of Dunn’s test of multiple comparisons to pinpoint significant differences for each
selected variable between conservation statuses.

Table 4. Dunn’s test results for habitats 9160, 9240, and 9230. *: p-value < 0.05; **: p-value < 0.01;
***: p-value < 0.001; NS: non-significant. Additionally, 9160 is Quercus robur habitat, 9230 is Quercus
pyrenaica habitat, and 9240 is Quercus faginea habitat.

Variables
Habitat 9160 Habitat 9240 Habitat 9230

2-1 3-1 3-2 2-1 3-1 3-2 2-1 3-1 3-2

FCC 2.1E−03 *** 8.1E−23 *** 6.8E−51 *** 2.1E−03 ** 2.1E−15 *** 3.2E−09 *** 2.8E−04 *** 8.9E−03 ** 5.4E−01 (NS)
LHEI 1.8E−04 *** 9.8E−19 *** 1.3E−28 *** 5.0E−04 *** 3.5E−12 *** 3.7E−03 ** 2.4E−02 * 1.1E−06 *** 1.1E−04 ***
LHDI 6.5E−13 *** 4.2E−20 *** 5.5E−04 *** 1.4E−05 *** 3.6E−14 *** 1.8E−02 * 3.1E−15 *** 2.4E−26 *** 3.7E−06 ***

P95 3.0E−02 ** 2.3E−06 *** 3.5E−07 *** 2.4E−02 * 1.3E−14 *** 1.1E−08 *** 1 (NS) 1 (NS) 1 (NS)
CV 2.4E−03 ** 7.8E−06 *** 1.6E−02 * 1.9E−03 ** 3.9E−17 *** 6.4E−08 *** 1 (NS) 0.63 (NS) 0.96 (NS)

% RM 6.7E−03 *** 6.9E−05 *** 4.9E−02 * 8.4E−05 *** 2.1E−21 *** 2.4E−08 *** 1 (NS) 0.59 (NS) 0.76 (NS)

In habitats Quercus robur (9160) and Quercus faginea (9240), the differences in the
ecological variables were statistically significant in all conservation status classes with
a confidence interval of 95%. However, Dunn’s test reflects the similarity of FCC data
between the unfavorable-inappropriate and favorable categories (3–2) in habitat 9230,
which determines no significant differences between these categories. On the other hand, in
the case of the variables LHEI and LHDI, the differences between classes have a reliability
above 95%. No significant changes were reported for the variables P95, CV, and %RM
between the different categories in habitat 9230. The differences between conservation
status classes for three significant variables have been represented graphically for each
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of the habitats using box plots (Figures 3 and 4). These graphs show the distribution of
the values of these variables within the three habitats for the different conservation status
classes, while fluctuating points represent individual observations.
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conservation status for habitats 9160, 9240, and 9230. The dashed blue line denotes the median, and
the dotted red line is the average mean. 1: unfavorable-bad status (red); 2: unfavorable-inappropriate
status (yellow); 3: favorable status (green). Additionally, 9160 is Quercus robur habitat, 9230 is Quercus
pyrenaica habitat, and 9240 is Quercus faginea habitat.

4.2. Conservation Status Classification

Table 5 shows the comparison between classification methods, using the selected
LiDAR metrics from the previous step. The models for habitat Quercus robur (9160) and
Quercus faginea (9240) included seven ALS metrics: P95, CV, FCC, the percentage of all
returns above mean, LHDI, and LHEI. The models for habitat 9230 included three ALS
metrics: FCC, LHDI, and LHEI. The best classification method was RF, with an overall
classification accuracy after validation of 83.01, 75.51, and 88.25 for habitats Quercus robur
(9160), Quercus pyrenaica (9230), and Quercus faginea (9240), respectively (Table 5). The
model was tuned with 500 trees and two metrics in each node. Lower accuracies were
obtained with SVM with radial and linear kernels, which showed similar results between
them, except for habitat 9230, where the radial kernel method obtained better results in
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comparison to the linear one. SVM was parametrized with a cost value of 100 and a gamma
value of 0.15.
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Figure 4. Box plot diagrams of the variables (A) CV (m), (B) P95 (m), and (C) % of all returns above
the mean between the different conservation statuses for habitats 9160, 9240, and 9230. The dashed
blue line denotes the median, and the dotted red line is the average mean. 1: unfavorable-bad status
(red); 2: unfavorable-inappropriate status (yellow); 3: favorable status (green). Additionally, 9160 is
Quercus robur habitat, 9230 is Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Table 6 shows the comparison between classification methods using the selected
LiDAR metrics and the NDVI from Sentinel-2. The results are similar, with almost unappre-
ciable differences, being slightly better in habitat Quercus faginea (9230) and slightly worse in
habitats Quercus robur (9160) and Quercus faginea (9240). The results denote that NDVI from
Sentinel-2 does not have a high explanatory power for conservation status classification.

According to the results shown in Tables 7–9, derived from the validation sample, the
major confusion is observed between conservation status 2 and conservation status 3 for
the habitats Quercus robur (9160) and Quercus pyrenaica (9230), while, for Quercus faginea
(9240) habitat, higher confusion is found between conservation status 1 and conservation
status 2.
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Table 5. Comparison between classification methods using LiDAR metrics. The results refer to the
overall accuracy of the three habitats. Additionally, 9160 is Quercus robur habitat, 9230 is Quercus
pyrenaica habitat, and 9240 is Quercus faginea habitat.

Habitat Metrics Method Fitting Phase Validation

9160 P95 + CV + FCC + % all ret.
above mean + LHDI + LHEI

SVMr 89.89 81.51
SVMl 80.33 80.07

RF 99.00 83.01

9230 LHDI + LHEI
SVMr 67.86 64.99
SVMl 52.36 51.88

RF 99.75 75.51

9240 P95 + CV + FCC + % all ret.
above mean + LHDI + LHEI

SVMr 94.37 84.99
SVMl 84.00 84.06

RF 99.00 88.25

Table 6. Comparison between classification methods using LiDAR and Sentinel metrics. The results
refer to the overall accuracy of the three habitats. Additionally, 9160 is Quercus robur habitat, 9230 is
Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Habitat Metrics Method Fitting Phase Validation

9160 P95 + CV + FCC + % all ret. above
mean + LHDI + LHEI + NDVI

SVMr 92.73 81.66
SVMl 80.34 80.08

RF 99.00 83.46

9230 LHDI + LHEI + NDVI
SVMr 71.81 64.86
SVMl 52.71 51.65

RF 99.00 75.41

9240 P95 + CV + FCC + % all ret. above
mean + LHDI + LHEI + NDVI

SVMr 96.72 84.46
SVMl 85.31 85.28

RF 99.00 88.46

Table 7. Confusion matrix for the most accurate classification model using ALS data after validation
for habitats 9160. Values are shown in %. CS stands for conservation status. Additionally, 9160 is
Quercus robur habitat, 9230 is Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Habitat 9160 CS 1 CS 2 CS 3 User’s
Accuracy

Producer’s
Accuracy

CS 1 66.67 16.67 16.67 66.67 100.00
CS 2 0.00 65.52 34.48 65.52 67.91
CS 3 0.00 14.29 85.71 85.71 62.63

Table 8. Confusion matrix for the most accurate classification model using ALS data after validation
for habitats 9230. Values are shown in %. CS stands for conservation status. Additionally, 9160 is
Quercus robur habitat, 9230 is Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Habitat 9230 CS 1 CS 2 CS 3 User’s
Accuracy

Producer’s
Accuracy

CS 1 43.75 43.75 12.50 43.75 78.81
CS 2 5.88 80.88 13.24 80.88 57.64
CS 3 5.88 15.69 78.43 78.43 75.29
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Table 9. Confusion matrix for the most accurate classification model using ALS data after validation
for habitat 9240. Values are shown in %. CS stands for conservation status. Additionally, 9160 is
Quercus robur habitat, 9230 is Quercus pyrenaica habitat, and 9240 is Quercus faginea habitat.

Habitat 9240 CS 1 CS 2 CS 3 User’s
Accuracy

Producer’s
Accuracy

CS 1 84.21 0.00 15.79 84.21 98.67
CS 2 0.00 62.50 37.50 62.50 87.81
CS 3 1.13 8.68 90.19 90.19 62.86

5. Discussion

Monitoring conservation status in special areas of conservation (SACs) is compulsory
for all European member states, which was traditionally performed by using photo interpre-
tation techniques and fieldwork. These practices present high economic and human costs,
requiring the development of efficient alternatives on a larger spatial scale. The results
reveal the suitability of single-photon LiDAR data for classifying conservation status in
Quercus faginea (9240), Quercus pyrenaica (9230), and Quercus robur (9160) habitats under the
Habitats Directive.

LHEI, LHDI, P95, FCC, CV, and percentage of returns above the mean (PRAM) were
the most suitable LiDAR metrics to pinpoint the differences between conservation statuses
in Quercus robur (9160) and Quercus faginea (9240) habitats. Though LHEI, LHDI, and FCC
LiDAR metrics were the most relevant in the Quercus pyrenaica 9230 habitat, these results
are in accordance with Zlinszky et al. [24], who determined that the selected variables
depend on the habitat type. The selected variables provide direct or indirect information
on FCC, age, presence of old trees, diversity, structural complexity, and strata development.
This seems to indicate that LiDAR metrics and structural diversity indices provide suitable
information about conservation status and ecological characteristics [15]. Our results are
in accordance with Gelabert et al. [12], who concluded that structural diversity indexes,
such as LHDI and canopy height variability metrics, were suitable for depicting structural
differences in Mediterranean Pinus halepensis forests affected by fires occurring on different
dates. On the contrary, unlike the good results obtained by Valbuena et al. [27] in the use
of the L-moments to quantify the complexity of the canopy and classify the structure of
the boreal forest according to its ecological function, in our case, no significant differences
were found with respect to the conservation status estimation.

The classification results show the feasibility of single-photon LiDAR to discriminate
conservation status in oak grove forests with an accuracy after validation of 83.01%, 75.51%,
and 88.25% for Quercus robur (9160), Quercus pyrenaica (9230), and Quercus faginea (9240)
habitats, respectively. Our model results have comparable accuracies to previous studies
that classified the conservation status in grasslands [53,54], steppes [24], or heatlands [55]
using LiDAR or hyperspectral data or their combinations, which range roughly from 70%
to 89%. Though this comparison should be interpreted with caution as the habitat type
was different, the lower penetrability of the SPL data appears to be complemented by the
high density of points in the data source. The use of LiDAR data was in accordance with
Simonson et al. [25], who showed the applicability of three-dimensional data sources to
predict conservation status indicators in Quercus suber habitats in Portugal. A potential
handicap of our approach could have been the discrepancy in dates between the ALS data
(2017) and the conservation status categorization (2004–2010). However, the conservation
status does not vary rapidly over time, and there was good agreement in classification
status in the plots visited in the field in 2020, which potentially were affected by structural
changes, supporting the usefulness of the selected approach and associated accuracies
for conservation status classification. The best classification method for all the habitats,
independent of the sample size and the number of variables included in the classification,
was RF, in agreement with Marcinkowska-Ochtyra et al. [54]. Furthermore, our results also
suggest that radial kernels work better than linear kernels in the SVM classifier, agreeing
with Domingo et al. [26] and Gelabert et al. [12].
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Concerning the combination of passive and active sensors, several authors have suc-
cessfully integrated hyperspectral and LiDAR for grassland habitat mapping. Furthermore,
multispectral and LiDAR data have also been combined for forest structural variable char-
acterization. For example, Alonso-Benito et al. [56] reported an improvement of 10% in the
overall accuracy of fuel type mapping when combining World View-2 and LiDAR data,
and Mutlu et al. [57] pointed out an improvement of 14% when combining QuickBird and
LiDAR data. However, our results showed that the inclusion of the NDVI index from a
Sentinel-2A image did not significantly improve the classification accuracy, in accordance
with Domingo et al. [26], who concluded that ALS-derived metrics have more impor-
tance in fuel model classification than multispectral Sentinel-2 data, which added a minor
improvement in fuel type classification accuracy.

Future research should focus on testing the performance of further structural diversity
indices, such as rumple, which were successfully used to characterize structural complex-
ity [58] and generate parsimonious models in fuel type mapping [26]. In addition, further
analysis should consider other habitat types, including grasslands and shrublands, to better
provide regional-scale approaches for conservation status monitoring.

6. Conclusions

The three-dimensional structure of natural habitats is essential for monitoring the
conservation status of the Natura 2000 Network. The results of the present research verify
the usefulness of single-photon LiDAR together with machine learning algorithms to
classify three conservation status categories in oak grove habitats. Five LiDAR-derived
metrics (LHEI, LHDI, P95, FCC, CV, and PRAM) were the most suitable variables for
pinpointing the differences between conservation status, while Sentinel-2-derived NDVI
did not significantly improve model accuracy. The RF method produced the most accurate
classifications of conservation status, with values after validation of 83.01%, 75.51%, and
88.25% for Quercus robur (9160), Quercus pyrenaica (9230), and Quercus faginea (9240) habitats,
respectively. The characterization of conservation status as an essential biodiversity variable
at a regional scale is paramount for continuous protected area monitoring, constituting a
relevant input to define sustainable conservation actions by forest managers.
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