000121853 001__ 121853
000121853 005__ 20241125101125.0
000121853 0247_ $$2doi$$a10.3390/foods12030570
000121853 0248_ $$2sideral$$a132247
000121853 037__ $$aART-2023-132247
000121853 041__ $$aeng
000121853 100__ $$aLenaerts, Lowieze
000121853 245__ $$aHurdle Technology Approach to Control Listeria monocytogenes Using Rhamnolipid Biosurfactant
000121853 260__ $$c2023
000121853 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121853 5203_ $$aThis study evaluates the combination of mild heat with a natural surfactant for the inactivation of L. monocytogenes Scott A in low-water-activity (aw) model systems. Glycerol or NaCl was used to reduce the aw to 0.92, and different concentrations of rhamnolipid (RL) biosurfactant were added before heat treatment (60 °C, 5 min). Using glycerol, RL treatment (50–250 µg/mL) reduced bacterial population by less than 0.2 log and heat treatment up to 1.5 log, while the combination of both hurdles reached around 5.0 log reduction. In the NaCl medium, RL treatment displayed higher inactivation than in the glycerol medium at the same aw level and a larger synergistic lethal effect when combined with heat, achieving ≥ 6.0 log reduction at 10–250 µg/mL RL concentrations. The growth inhibition activity of RL was enhanced by the presence of the monovalent salts NaCl and KCl, reducing MIC values from >2500 µg/mL (without salt) to 39 µg/mL (with 7.5% salt). The enhanced antimicrobial activity of RL promoted by the presence of salts was shown to be pH-dependent and more effective under neutral conditions. Overall, results demonstrate that RL can be exploited to design novel strategies based on hurdle approaches aiming to control L. monocytogenes.
000121853 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121853 590__ $$a4.7$$b2023
000121853 592__ $$a0.87$$b2023
000121853 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b38 / 173 = 0.22$$c2023$$dQ1$$eT1
000121853 593__ $$aFood Science$$c2023$$dQ1
000121853 593__ $$aHealth (social science)$$c2023$$dQ1
000121853 593__ $$aPlant Science$$c2023$$dQ1
000121853 593__ $$aHealth Professions (miscellaneous)$$c2023$$dQ1
000121853 593__ $$aMicrobiology$$c2023$$dQ2
000121853 594__ $$a7.4$$b2023
000121853 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121853 700__ $$aPassos, Tathiane Ferroni
000121853 700__ $$0(orcid)0000-0002-5895-2157$$aGayán, Elisa$$uUniversidad de Zaragoza
000121853 700__ $$aMichiels, Chris W.
000121853 700__ $$aNitschke, Marcia
000121853 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000121853 773__ $$g12, 3 (2023), 570 [14 pp.]$$pFoods$$tFoods$$x2304-8158
000121853 8564_ $$s2555709$$uhttps://zaguan.unizar.es/record/121853/files/texto_completo.pdf$$yVersión publicada
000121853 8564_ $$s2753531$$uhttps://zaguan.unizar.es/record/121853/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121853 909CO $$ooai:zaguan.unizar.es:121853$$particulos$$pdriver
000121853 951__ $$a2024-11-22-11:57:33
000121853 980__ $$aARTICLE