000121878 001__ 121878
000121878 005__ 20240319081028.0
000121878 0247_ $$2doi$$a10.3389/fphys.2022.1048738
000121878 0248_ $$2sideral$$a132175
000121878 037__ $$aART-2022-132175
000121878 041__ $$aeng
000121878 100__ $$0(orcid)0000-0003-4970-2460$$aLacueva-Aparicio, Alodia
000121878 245__ $$aRole of extracellular matrix components and structure in new renal models in vitro
000121878 260__ $$c2022
000121878 5060_ $$aAccess copy available to the general public$$fUnrestricted
000121878 5203_ $$aThe extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM’s role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
000121878 536__ $$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-0099946- B-100
000121878 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000121878 590__ $$a4.0$$b2022
000121878 592__ $$a1.028$$b2022
000121878 591__ $$aPHYSIOLOGY$$b21 / 79 = 0.266$$c2022$$dQ2$$eT1
000121878 593__ $$aPhysiology (medical)$$c2022$$dQ1
000121878 593__ $$aPhysiology$$c2022$$dQ2
000121878 594__ $$a6.1$$b2022
000121878 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000121878 700__ $$aLindoso, Rafael Soares
000121878 700__ $$aMihaila, Silvia M.
000121878 700__ $$0(orcid)0000-0002-6043-4869$$aGiménez, Ignacio$$uUniversidad de Zaragoza
000121878 7102_ $$11012$$2410$$aUniversidad de Zaragoza$$bDpto. Farmac.Fisiol.y Med.L.F.$$cÁrea Fisiología
000121878 773__ $$g13 (2022), [14 pp.]$$pFront. physiol.$$tFrontiers in physiology$$x1664-042X
000121878 8564_ $$s1150775$$uhttps://zaguan.unizar.es/record/121878/files/texto_completo.pdf$$yVersión publicada
000121878 8564_ $$s1943682$$uhttps://zaguan.unizar.es/record/121878/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000121878 909CO $$ooai:zaguan.unizar.es:121878$$particulos$$pdriver
000121878 951__ $$a2024-03-18-16:57:18
000121878 980__ $$aARTICLE