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2.2. Variación del parámetro α de la norma de Huber . . . . . . . . . . 18
2.3. Ilustración del concepto de subgradiente para la función valor absoluto 19

4.1. Transformación entre el vector de velocidad del objeto y el vector
de velocidad en el plano de imagen . . . . . . . . . . . . . . . . . . 26
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Resumen

En muchas aplicaciones de la visión por computador como por ejemplo, la recons-
trucción automática de entornos en 3D, se parte del supuesto de la adquisición
de imágenes de alta calidad para obtener soluciones de gran precisión. Adicional-
mente, una gran variedad de aplicaciones en la robótica usa sensores de visión
embebidos en plataformas móviles para llevar a cabo tareas de localización y reco-
nocimiento de lugares. Desafortunadamente, en la mayoŕıa de los casos los sensores
de visión usados para estas tareas sufren diferentes efectos que deterioran la ca-
lidad de las imágenes, por ejemplo se puede considerar el efecto del blurring en
imágenes que ocurre durante la exploración en entornos bajo condiciones de po-
ca iluminación o navegación con plataformas que llevan a cabo movimientos de
dinámicas considerables.

Entre los problemas mas interesantes a tratar dentro del procesamiento de
imágenes, se encuentran los siguientes: 1-Filtrado de ruido (denoising): es el pro-
ceso mediante el cual la imagen debe ser recuperada filtrando el ruido al que se
encuentra expuesta inicialmente. 2-Deconvolución (deconvolution): es el proceso
de corrección de una imagen generalmente mediante técnicas frecuenciales cuando
los ṕıxeles se ven afectados por un movimiento brusco creando un efecto de blu-
rring. 3-Escalado (Zooming): en varias aplicaciones, la adquisición de imágenes se
ve limitada al uso de baja resolución debido al ancho de banda de transmisión; el
escalado permite interpolar valores de intensidad de ṕıxel para obtener imágenes
de alta resolución donde los objetos se pueden apreciar de forma consistente. 4-
Restauración de imágenes (inpainting) es un proceso que permite recuperar una
parte deteriorada de la imagen o que tiene algún objeto que la oculta, con el
objetivo de mejorar su calidad.

En este proyecto se ha desarrollado una aplicación que permite tratar los di-
ferentes problemas del procesamiento de imágenes descritos en los puntos 1-4. El
algoritmo principal para la solución de los distintos problemas se basa en la formu-
lación de métodos variacionales y de optimización convexa. Son métodos complejos
que permiten usar distintas normas robustas de error (incluso no diferenciables)
tales como la norma de Huber y la variación total. El algoritmo usado en es-
te proyecto ha sido adaptado a los diferentes problemas bajo una implementación
rápida y eficiente a través del cálculo masivo paralelo usando tarjetas gráficas GPU
(graphics processing units). Estas caracteŕısticas resultan particularmente atracti-
vas para resolver problemas de la visión por computador donde las soluciones en
tiempo real juegan un papel importante.





Caṕıtulo 1

Introducción

El uso creciente de cámaras dentro del campo de la robótica aplicada en entor-
nos industriales ha incentivado el desarrollo del campo de la visión por computador.
Actualmente, es habitual encontrar sistemas de cámaras fijas para la supervisión
de productos en cadenas de montaje, aśı como robots equipados con cámaras em-
pleados en otros procesos importantes de fabricación. A diferencia de otros sensores
como el láser, las cámaras son escogidas debido a la cantidad información conte-
nida en las imágenes y su bajo costo.
Sin embargo, ¿qué pasa cuando la información contenida en las imágenes sufre un
deterioro? Si se toma una imagen en una cadena de montaje relativamente poco
iluminada, la cámara debe emplear un tiempo de exposición relativamente alto,
sufriendo el efecto comúnmente conocido como ”motion blurring”. Si tras tomar
una imagen, ésta es enviada a un computador para que extraiga su información, es
posible que se adhiera ruido a la imagen debido a defectos en el canal de transmi-
sión, a las condiciones climatológicas o defectos de la propia cámara, complicando
la tarea de cualquier algoritmo de reconocimiento al que se quiera someter la ima-
gen. En ocasiones, el ancho de banda del canal de transmisión restringe el env́ıo
de imágenes de alta resolución siendo necesaria una compresión de datos. Durante
la descompresión, las imágenes pierden información y se requieren algoritmos de
súper resolución o zooming capaces de estimar la información para minimizar la
pérdida de datos. Otro de los efectos interesantes surge debido a la obstrucción
de conjuntos vecinos de ṕıxeles o regiones completas de la imagen. Consideremos
por ejemplo la obstrucción debida a suciedad en las lentes de las cámaras o el
deterioro sufrido en las cintas antiguas de v́ıdeo. La restauración de imagen o in-
painting trata de recomponer la imagen prediciendo lo que debeŕıa haber en esa
zona obstruida.
El objetivo principal de este proyecto es aplicar algoritmos de procesamiento de
imágenes para solucionar los diferentes efectos mencionados para su posterior utili-
zación en aplicaciones industriales y de la robótica. Por simplicidad, en este proyec-
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Sección 1.1 1. Introducción

to se hará referencia a los diferentes problemas de acuerdo a los nombres recibidos
en inglés: denoising, zooming, deconvolution (motion deblurring) e inpainting.
En este proyecto se aborda el modelado de cada problema desde el punto de vista
de los modelos continuos variacionales. El porqué de esta selección se debe al gran
potencial que tienen dichos métodos para tratar la información densa de forma
robusta. Aśı mismo, las soluciones proporcionadas para dichos métodos están ba-
sadas en los avances desarrollados dentro del campo de la optimización convexa.
Desde este punto de vista, los algoritmos derivados permiten calcular soluciones
globales de forma eficiente debido al tratamiento independiente de los ṕıxeles. Co-
mo resultado, los algoritmos usados en este proyecto permiten la explotación del
cálculo masivo paralelo en GPGPU (General Purpose Graphich Processing Unit)
siendo de gran importancia en las aplicaciones de tiempo real.
En este caṕıtulo se introducen las bases teóricas de los algoritmos empleados en el
proyecto. En la sección 1.1, se expondrán los conceptos matemáticos sobre los que
se sustentan los algoritmos empleados. Aśı, se comienza definiendo la transforma-
ción de Legendre-Fenchel, cómo y por qué se aplica en la resolución del algoritmo.
Se continúa definiendo la dualidad, qué es el problema dual y cómo y por qué resol-
verlo. Para finalizar, se tratan los problemas de funciones no siempre diferenciables
y cómo poder transformarlos en una función convexa resoluble. En la sección 1.2,
se incluye la definición de la función de enerǵıa, eje principal de los modelos que se
han utilizado en este proyecto. Al tratarse de un método numérico, se debe definir
un criterio de parada, aśı surge el concepto del GAP descrito en la sección 1.3.
Finalmente, la sección 1.4 muestra la organización de la memoria del proyecto,
suponiendo el fin de este caṕıtulo de introducción.

1.1. Conceptos generales

Los modelos usados para cada problema concreto se basan en normas que son
convexas pero no diferenciables, de forma que no se pueden utilizar algoritmos
de optimización convencionales. Además, el problema general consiste en la mini-
mización de una función de enerǵıa, función que no es necesariamente convexa y
por tanto no se puede alcanzar una solución global. Con el fin de solucionar esta
situación, se aplicará la transformación de Legendre Fenchel (Apartado 1.1.1).
Esta transformación requiere dualizar una función, motivo por el que se explica el
concepto de dualización y cómo se debe aplicar. Más tarde se expone un ejemplo
de funciones no siempre diferenciables donde se dualiza con el fin de generar un
problema diferenciable en todo su rango. Para finalizar, se comenta la necesidad de
partir de una función convexa para el algoritmo de solución, pues de lo contrario
no se podŕıa obtener una solución general. [2].
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1. Introducción Sección 1.1

1.1.1. La transformación de Legendre-Fenchel

La transformada de Legrendre-Fenchel (LF en adelante) [7] de una función
continua pero no necesariamente diferenciable se define como

f ∗(p) = sup
x∈R
{px− f(x)} (1.1)

La figura 1.1 ilustra la transformación LF de una función cuadrática. Geométri-
camente se trata de la búsqueda de un punto (x, f(x)) para el cual una recta de
pendiente p produzca el máximo corte con el eje vertical. El conjunto de rectas
tangentes forma una envolvente que representa a śı misma la función.

p = f ′(x) (1.2)

Figura 1.1: Recta tangente a una función cuadrática

La representación general vectorial de la transformación LF para funciones
multivariables se define como:

f ∗(p) = sup
x∈R
{xtp− f(x)} (1.3)

1.1.2. La dualidad

La dualidad es el principio por el que observamos una misma función desde dos
diferentes perspectivas: primal y dual. Si se supone que la transformación LF es
reversible, se puede afirmar que

(x, f(x))⇐⇒ (p, f ∗(p)) (1.4)
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Sección 1.1 1. Introducción

donde p es la pendiente y f*(p) es el llamado conjugado convexo de la función
f(x). Un conjugado nos permite construir un problema dual que puede ser más
fácil de resolver que el problema primal. Observando la figura 1.1, se puede afirmar
que cada punto de la función primal se puede representar por la pendiente de la
tangente a ese punto, obteniendo el dual. De esta manera, los puntos del dual son
las pendientes del primal, y los puntos del primal son las pendientes del dual. El
conjugado de LF es siempre convexo.

1.1.3. Funciones no siempre diferenciables

Observemos la ecuación [2] definida al principio, donde p es la pendiente tan-
gente a f(x) en el punto x definida como la derivada f ′(x) ¿Qué sucede si la p no es
diferenciable en todo rango de x? La ecuación común de una recta es la siguiente:

y = px− c (1.5)

Si se modifica esta ecuación para que se refiera a un punto x∗ no diferenciable, se
puede reescribir como

f(x∗) = px∗ − c (1.6)

El problema dual de este punto no diferenciable se convierte en una función lineal
en p. A pesar de la simplicidad de este ejemplo lineal, este mismo principio puede
emplearse en el caso de funciones no diferenciables ya que el resultado es una nueva
función dual en p que puede ser diferenciable. Una de las grandes ventajas del
problema dual es que pese a que el primal puede ser no diferenciable, el problema
dual śı que lo es.

1.1.4. Funciones convexas

Los problemas de procesamiento de imágenes tratados en este proyecto se mo-
delan como un problema de minimización de una función de enerǵıa. De forma ge-
neral, el punto x̂ es el mı́nimo global de una función siempre y cuando ∇f(x̂) = 0 y
la función sea convexa. Sin embargo, existen muchas funciones que no son siempre
diferenciables o convexas, por lo que no se puede realizar el cálculo de su gradiente.
La figura 1.2 ilustra un conjunto de funciones convexas.
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Figura 1.2: Ejemplos de funciones convexas

La función cuadrática es continua y diferenciable en todo su dominio. No aśı la
función valor absoluto, que en el punto x = 0 no es diferenciable. En este último
caso, se puede demostrar que la transformada de LF es convexa. Por tanto, basta
con realizar la transformación de LF a una función para obtener una función
convexa.

1.2. La función de enerǵıa

Los métodos de procesamiento de imágenes (Image Processing en inglés) se
basan en la minimización de una función de enerǵıa. Esta función está formada
por dos términos: El primero de ellos es el llamado Regularizador. Este término
es el que cuantifica la variación dentro de una propia imagen, tratando que las
diferentes superficies tengan una textura uniforme y las esquinas y bordes queden
lo más definidas posibles. El segundo término es el denominado ”Data Term”,
que es el que cuantifica cuán distinta es la imagen solución (imagen arreglada)
de la imagen original (imagen defectuosa). Al aplicar estos métodos se parte de
la base de que la imagen defectuosa contiene aún suficiente información para ser
restaurada, aunque no en su totalidad, pero śı con un alto porcentaje de mejora
sobre su estado inicial. En general, la ecuación de la función de enerǵıa a minimizar
es la siguiente:

mı́n
x∈X

E(x) (1.7)

mı́n
x∈X

F (Kx) +G(x) (1.8)
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Sección 1.3 1. Introducción

Donde K : X → Y es un mapa lineal entre dos espacios vectoriales X e Y equipados
con un operador de producto escalar < ·, · > y una norma | · | = |·, ·|. G : X →
[0,+ ı́nf) y F ∗ : X → [0,+ ı́nf) son funciones propias convexas, semi-continuas
inferiormente [6].

El primer término de la ecuación es el regularizador, el cual usa como única
información la variable primal. El segundo cuantifica la variación de la variable
primal respecto a su estado inicial. En cada caso particular de restauración de
imágenes, la función de enerǵıa será redefinida para una variable primal que co-
rresponderá a la imagen solución definida en el dominio Ω ∈ R.

A continuación se dualiza esta función del que resulta un problema de minimi-
zación y maximización sobre las variables primal y dual respectivamente.

mı́n
x∈X

máx
y∈Y
{〈Kx, y〉 − F ∗(y) +G(x)} (1.9)

Este resultado es fundamental para derivar los algoritmos de optimización emplea-
dos en este proyecto.

1.3. El GAP

Una vez definida la función, es necesario generar un parámetro que nos muestre
de una forma clara y concisa cuánto ha sido maximizada y minimizada la función
de enerǵıa. Ese valor toma el nombre de GAP.
Para generar una función que defina el GAP se hace uso de la definición de transfor-
mada LF, ya mencionada con anterioridad. Aśı, si se observa la ecuación anterior,
se puede apreciar que

F (Kx) = máx
y∈Y
{〈Kx, y〉 − F ∗(y)} (1.10)

En esta ecuación se puede modificar el término 〈Kx, y〉 y transformarlo a 〈x,K∗y〉,
obteniendo por tanto la ecuación

mı́n
x∈X

máx
y∈Y
{〈x,K∗y〉 − F ∗(y) +G(x)} (1.11)

Si se realiza el siguiente procedimiento de la misma forma que el anterior:

máx
x∈X
{〈x,K∗y〉 −G(x)} = G∗(K∗y) (1.12)

mı́n
x∈X
{−〈x,K∗y〉+G(x)} = −G∗(K∗y)

mı́n
x∈X
{−〈x,−K∗y〉+G(x)} = −G∗(−K∗y)

mı́n
x∈X
{〈x,K∗y〉+G(x)} = −G∗(−K∗y)
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Por lo que aparecen dos optimizaciones derivadas de la función de enerǵıa:

mı́n
x∈X
{F (Kx) +G(x)} (1.13)

máx
y∈Y
{−G∗(−K∗y)− F ∗(y)}

El GAP se define como la diferencia entre ambas optimizaciones:

GAP = mı́n
x∈X
{F (Kx) +G(x)} −máx

y∈Y
{−G∗(−K∗y)− F ∗(y)} (1.14)

Es el término más preciso de optimización, pues la función de enerǵıa dualizada
debe ser minimizada respecto a una variable y maximizada respecto a otra (ver
figura 1.3). El GAP es decreciente (salvo en los instantes finales de convergencia,
donde aparece algo de ruido) y aporta una idea muy sencilla de cuánto se está op-
timizando la función. No obstante, el cálculo de GAP en ciertas aplicaciones puede
ser muy costoso o incluso imposible, ya que requiere una dualización que no siem-
pre se podrá llevar a cabo. Cuando ésto sucede, simplemente se comprueba que la
función que se minimiza efectivamente es decreciente y alcanza un mı́nimo.

Figura 1.3: Evolución de los procesos de minimización y maximización para las
variables Primal y Dual respectivamente. Aśı, el objetivo es alcanzar el punto silla
donde la función Primal es mı́nima y la función Dual es máxima.

1.4. Organización de la memoria

La memoria de este proyecto se estructurará de forma que, tras un primer
caṕıtulo de introducción, se expondrán los diferentes problemas a tratar con sus
diferentes secciones. De esta forma:
Denoising: Se comienza explicando la motivación por la que se desea resolver el
problema, dando ejemplos prácticos donde podŕıa ser necesaria. Denoising puede
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ser resuelto de diferentes formas posibles, dependiendo de la función de enerǵıa
utilizada. Aśı, los métodos toman un nombre asociado a su resolución. El regulari-
zador se denomina Total Variation cuando se resuelve según la norma 2. En caso de
que se resuelva mediante la norma de Huber, se denominará ”Huber”. El término
G(x) se denomina L1 si se resuelve según la norma 1 o ROF si se resuelve según la
norma cuadrática. Aśı, los tres posibles métodos de resolución que se manejarán
son TV-ROF, HUBER-ROF y TV-L1. En los casos en los que sea posible, se cal-
culará el GAP. Una vez explicados los tres métodos, se finaliza haciendo referencia
a los resultados situados en el Apéndice F.
Zooming: Se comienza con una motivación explicativa ofreciendo los motivos por
los que se plantea la resolución del problema. Después se da una breve introducción
al método numérico de Jacobi, necesario para la resolución del algoritmo. Una vez
explicado, se deduce, explica y resuelve el algoritmo, incidiendo en las diferencias
respecto al caso anterior.
Image Deconvolution: Nuevamente, se introduce el problema mediante un apar-
tado de motivación explicando por qué se produce este fenómeno y por qué es
importante solucionarlo. El siguiente apartado explica cómo obtener la máscara
que genera el blurring en la imagen. Es muy importante el cálculo de esta máscara
porque será necesaria en la resolución del algoritmo. A continuación se resuelve
dicho algoritmo.
Inpainting: Es el último de los problemas a tratar. La estructura seguida es si-
milar a la de los casos anteriores. Se comienza con una explicación en la que se
comenta porqué puede surgir y por qué solucionarlo. A continuación, se deduce y
resuelve el algoritmo.
Anexos: Donde se encuentran tanto explicaciones acerca de la programación, de
matemáticas que no se introducen en la memoria por su complejidad pero que
son necesarias para la resolución del algoritmo, resultados de los diferentes algo-
ritmos y un manual de usuario final, que es la conclusión definitiva del trabajo.
En este proyecto se ha trabajado en la solución de distintos problemas, obteniendo
importantes datos en su resolución tales como el gap, el tiempo de ejecución, las
iteraciones que tarda en converger o cómo de fiable es el resultado final respecto
a imagen original, la que no sufre modificación. Estos resultados dependen del
algoritmo obviamente, pero también de diferentes parámetros que pueden estar
acotados por la convergencia del método, pero que poseen cierta holgura y pueden
variar lo óptimo del método. Aśı, se ha generado una aplicación donde se permite
al usuario escoger entre los cuatro problemas citados y proceder a su resolución.
Cada uno de ellos tiene dos posibles modos de resolución. El primero de ellos,
llamado Programa Principal permite al usuario introducir la imagen, dañarla en
los casos que sea necesario y arreglarla con los parámetros que se requieran. Como
resultado se obtiene la imagen resultado y una gráfica de evolución de GAP o

8



1. Introducción Sección 1.4

función de enerǵıa respecto a iteraciones según el caso. La segunda pestaña es la
de Evaluación de Parámetros que es capaz de calcular el parámetro óptimo para
una imagen concreta.
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Caṕıtulo 2

Denoising

2.1. Motivación

Denoising se refiere al proceso de filtrado del ruido de una imagen. En la indus-
tria es muy probable encontrar imágenes que deban someterse a un tratamiento de
este tipo. Por ejemplo, en una cadena de manufactura de muebles hay gran can-
tidad de virutas esparcidas por el aire, que pueden perturbar la imagen. También
en el env́ıo de datos se puede añadir ruido que la perturbe. Mediante un algorit-
mo primal-dual somos capaces de recuperar razonablemente la imagen original,
pudiendo someterla aśı a cualquier algoritmo de reconocimiento, de medición o
de control de calidad. A continuación se va a tratar el problema utilizando tres
modelos diferentes que permiten analizar el impacto al cambiar la norma tanto en
el regularizador como en el data term: modelo ROF, el huber ROF y el TVL1.

2.2. El modelo TV-ROF

El modelo ROF se define como el problema variacional

mı́n
u

∫
Ω

|Du|+ λ

2
‖ u− g ‖2

2 (2.1)

Donde u es la imagen resultado, g la imagen original (la que tiene ruido) y λ es
un parámetro utilizado para definir la acomodación entre los dos términos de la
ecuación. Esta ecuación es continua, como una imagen se divide en ṕıxeles y éstos
son discretos, se reescribe de la siguiente forma

mı́n
u∈U
‖ ∇u ‖1 +

λ

2
‖ u− g ‖2

2 (2.2)
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Sección 2.2 2. Denoising

El conjugado convexo de una norma L1 es una función indicadora definida en la
ecuacion 2.3

δ(p)

{
δ(p) = 0 si ‖ p ‖≤ 1
δ(p) =∞ en cualquier otro caso

(2.3)

Al aplicar la transformación de LF sobre el término de regularización representado
por la norma ‖ . ‖1 se obtiene:

‖ ∇u ‖1= máx
p∈P

(〈p,∇u〉 − δp(p)) (2.4)

Se puede expresar este problema de la forma primal-dual de la siguiente manera:

mı́n
u∈U

máx
p∈P
〈p,∇u〉+

λ

2
‖ u− g ‖2

2 −δp(p) (2.5)

Esta función es la función de enerǵıa sobre la que se va a trabajar. Para calcular
su mı́nimo respecto al primal y su máximo respecto al dual, se debe derivar par-
cialmente respecto a esas variables. La derivada de la enerǵıa respecto a la variable
dual se establece como:

∂pE(u, p) = ∂p(〈p,∇u〉+
λ

2
‖ u− g ‖2

2 −δp(p)) (2.6)

Por tanto se puede demostrar el siguiente resultado:

∂pE(u, p) = ∇u (2.7)

Se realiza el mismo procedimiento para la variable primal:

∂uE(u, p) = ∂u(〈p,∇u〉+
λ

2
‖ u− g ‖2

2 −δp(p)) (2.8)

De la misma manera, se obtiene que:

∂uE(u, p) = −divp+ λ(u− g) (2.9)

El Apéndice B incluye un desarrollo completo de estas derivadas. Las ecuaciones 2.7
y 2.9 son necesarias para derivar los algoritmos iterativos de gradiente descendente
y ascendente para actualizar las variables primal y dual respectivamente. En el
problema de maximización de la variable dual se requiere la aproximación del
gradiente de manera que siempre se avance en la dirección ascendente, ésto significa
ir en la dirección del gradiente, por tanto, el paso de actualización se deriva como:

∂pE(u, p) = ∇u =
pn+1 − pn

σ
(2.10)
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2. Denoising Sección 2.2

El denominador de esta última ecuación es es el resultado de la proyección sobre
una bola [7] de la variable dual de manera que se cumple con la restricción impuesta
por la función indicadora δp definida en la ecuación 2.3. Con un procedimiento
similar, se aproxima la derivada de la función respecto a la variable primal. Dado
que se trata de un problema de minimización, la derivada se aproxima como un
paso de gradiente descendente, obteniéndose el siguiente resultado:

∂uE(u, p) = −(−divp+ λ(un+1 − g)) =
un+1 − un

τ
(2.11)

Donde el signo negativo que se le asigna a ∂uE(u, p) se debe a que en cada paso
se busca la dirección en el sentido contrario del gradiente.

Para agilizar el proceso y lograr una rápida convergencia, se puede introducir un
paso de relajación. A continuación se muestra la estructura general del algoritmo
primal-dual: 

pn+1 = pn+σ∇u
máx(1,|pn+σ∇u|)

un+1 = un+τdivpn+1+τλg
1+τλ

θn = 1√
1+2γτ

, τn+1 = θnτn, σn+1 = σn
θn
σn

ûn+1 = un+1 + θn(xn+1 − xn)

(2.12)

Donde en cada iteración se actualizan las variables primal y el dual aśı como
una variable auxiliar û la cual introduce el paso de relajación. Los parámetros τ y
σ definen la escala del paso dado en la dirección positiva o negativa del gradiente
en cada caso [6]. Más adelante se hablará de dichos parámetros.

2.2.1. Cálculo del GAP

Se parte de la ecuación 1.14 definida en el caṕıtulo 1, la cual se trae aqúı por
conveniencia:

GAP = mı́n
x∈X
{F (Kx) +G(x)} −máx

y∈Y
{−G∗(−K∗y)− F ∗(y)} (2.13)

La minimización es relativamente sencilla, pues corresponde con la función de
enerǵıa ya aportada. Es el la maximización del dual donde se debe operar. Se
comienza con la simplificación de que F ∗(y) = 0. la función G(u) en el modelo
TV-ROF se define como:

G(u) =
λ

2
‖ u− g ‖2

2 (2.14)

La dualización de dicha función corresponde a:

G∗(p) = sup
u

(uTp− λ

2
‖ u− g ‖2

2) (2.15)
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Sección 2.2 2. Denoising

Para calcular el supremo, se deriva respecto a la variable u y se iguala a 0. Se
sustituye el valor de u que hace máxima la función y se obtiene el valor de G∗(p):

∂u(u
Tp− λ

2
‖ u− g ‖2

2) = p− λ(u− g) = 0 (2.16)

G∗(p) =
‖ p ‖2

2λ
+ gTp

Se sustituye el valor p dual por la variable dual que exige la formulación anterior
p = −k∗y

G∗(−k∗y) =
‖ −k∗y ‖2

2λ
+ gT − k∗y (2.17)

Donde el valor de k∗y es la divergencia de la variable dual del algoritmo. Al final,
para calcular el GAP en cada iteración, la ecuación a aplicar es la siguiente:

GAP = |∇u|+ λ

2
‖ u− g ‖ −‖ divp ‖

2

2λ
− gTdivp (2.18)

2.2.2. Los parámetros del algoritmo

En el algoritmo calculado en los apartados anteriores aparecen una serie de
parámetros con un significado f́ısico que requiere una explicación para comprender
mejor el significado de las ecuaciones:

El parámetro L

La L es el ĺımite superior de la norma del operador ∇. Se acota su valor a
√

8
para asegurar la convergencia del método [3]. Se supone constante a lo largo de
todo el algoritmo debido a que el operador de gradiente no cambia.

El parámetro λ

λ es un parámetro que pondera el peso del término de datos respecto al término
de regularización en la función de enerǵıa. De esta forma, un valor pequeño de λ
tendrá como consecuencia en el algoritmo una mayor minimización en el término
del regularizador que en el término de comparación con la imagen defectuosa.
Adelantando lo que se expondrá en la sección de análisis de resultados, en la
figura 2.1 se muestra un ejemplo de denoising para un valor de λ elevado y valor
λ pequeño:
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2. Denoising Sección 2.2

(a) Imagen con ruido
σ = 0, 1

(b) Imagen resultado
λ = 1

(c) Imagen resultado
λ = 1000

Figura 2.1: Resultados para valores extremos de λ

λ tan sólo vaŕıa el resultado final y no tiene un efecto directo sobre la conver-
gencia del algoritmo. Para cuantificar la influencia del parámetro λ respecto a la
precisión, se calcula la potencia de la razón Señal/Ruido (SnR), definida como:

PSnR = 10 log10(

∑N,M
i,j Io(i, j)

2∑N,M
i,j (ui, j − Io(i, j))2

) (2.19)

Este valor compara cómo de fiel es el resultado final respecto a la imagen verdadera,
es decir, la imagen antes de ser degradada. Por este motivo, el cálculo del SnR sólo
se puede realizar para obtener una idea cualitativa de qué rango de parámetros
son correctos para determinados algoritmos. La señal se define como la suma del
valor de todos los ṕıxeles de la imagen verdadera Io al cuadrado. El ruido se define
como la diferencia entre la imagen solución u y la imagen original Io, también al
cuadrado. Si se lograse obtener la imagen perfectamente arreglada, el valor de SnR
seŕıa infinito, por lo que el valor óptimo de λ será aquel que tenga el mayor valor
de SnR.

El parámetro τ

τ actualiza la variable primal u dentro de cada iteración del algoritmo de op-
timizaciones. Es uno de los llamados ”parámetros de convergencia”, ya que su
valor aumenta o disminuye las iteraciones que necesita el método para converger.
τ suele estar acotado para asegurar que el método converge, y su valor siempre se
encuentra en el intervalo [0 1].

Para poder calcular qué valor de τ es el óptimo, se ha propuesto un análisis
de error ejecutando el algoritmo primal dual para un número de iteraciones muy
elevado tal que se asegure su convergencia. Se define un error máximo admisible y
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en cada iteración del algoritmo se comprueba si el error entre la imagen obtenida
en cada iteración un+1 y la imagen solución u∗ guardada previamente es menor
que el error impuesto. El error se calcula según el siguiente algoritmo:

e =

N,M∑
i,j

un+1
ij − u∗ij (2.20)

El parámetro θ

θ es un parámetro de relajación y aceleración de convergencia. Se utiliza siempre
para calcular el valor de û, que es el empleado en la actualización del dual. Si el
valor de θ es muy elevado, û vaŕıa mucho respecto a la imagen resultado de la
iteración, si es pequeño serán muy similares.

Su evaluación es similar a la del parámetro τ , de nuevo requiriendo una sobreite-
ración del algoritmo hasta convergencia. Tras comparar los diferentes algoritmos se
puede observar que las iteraciones requeridas para obtener la solución final (cuando
la enerǵıa alcanza su valor óptimo) vaŕıan mucho más con τ que con θ.

2.3. El modelo Huber-ROF

En el caso anterior, el regularizador se basaba en el uso de la norma L1. Ahora
se sustituye esta norma por la llamada ”norma de Huber”. El proceso es similar
al anterior. Se parte del siguiente modelo de enerǵıa

mı́n
u∈U
‖ ∇u ‖hα +

λ

2
‖ u− g ‖2

2 (2.21)

La norma de Huber se define como

‖ x ‖α=

{ |x|2
2α

si |x| ≤ α
‖ x ‖= |x| − α

2
si |x| > α

(2.22)

Al aplicar la definición de dualización a través de la transformada LF, se obtiene
el siguiente resultado para el convexo conjugado de 2.22:

f ∗(p) =

{ |x|2
2

si |x| ≤ α
∞ en cualquier otro caso

(2.23)

Por tanto, el problema primal dual se define como:

mı́n
u∈U

máx
p∈P

(〈p,∇u〉 − δp(p)−
α

2
‖ p ‖2 +

λ

2
‖ u− g ‖2

2) (2.24)
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Tal como se ha realizado anteriormente, se debe minimizar el primal y maxi-
mizar el dual. Para ello hay que derivar la función término a término y calcular el
resultado final.

En el Apéndice B se deducen los cálculos de las derivadas respecto a las variables
u y p. A partir de estos resultados, se calculan las actualizaciones en el primal y
en el dual. Nótese que el resultado obtenido para la variable primal es el mismo
que en el TV-ROF ya que el nuevo término añadido no depende de u.

∂pE(u, p) = ∇u− αpn+1 =
pn+1 − pn

σ
(2.25)

∂uE(u, p) = −(−divp+ λ(un+1 − g)) =
un+1 − un

τ
(2.26)

Observando detenidamente las ecuaciones, se puede apreciar que el primal se
actualiza de la misma forma que en el anterior modelo. En el caso concreto de α = 0
la variable dual se actualiza como en el modelo ROF. Como la norma de Huber es
convexa, es posible emplear el siguiente algoritmo de convergencia acelerada [3]:


pn+1 =

pn+σ∇ûn
1+σα

máx(1,| pn+σ∇ûn
1+σα

|)

un+1 = un+τdivpn+1+τλg
1+τλ

ûn+1 = un+1 + θ(un+1 − un)

(2.27)

El cálculo del GAP es muy similar al caso anterior. Esta vez el valor de F ∗(y)
no es nulo y por tanto se debe añadir al resultado del caso anterior:

GAP = |∇u|h +
λ

2
‖ u− g ‖ −‖ divp ‖

2

2λ
− gTdivp− α

2
‖ p ‖2 (2.28)

2.3.1. El parámetro α

Sólo tiene sentido hablar de α en el algoritmo de Huber. En este algoritmo, el
término regularizador contiene la norma de Huber. Esta norma es diferente a la
norma L1, que es un valor absoluto, y a la norma ROF, que es la norma cuadrática.
Huber interactúa entre estas dos normas, siendo equivalente a la primera cuando
α=0 y siendo equivalente a la segunda cuando α=1.
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Sección 2.4 2. Denoising

(a) α=0.1 (b) α=0.5 (b) α=1

Figura 2.2: Variación del parámetro α de la norma de Huber

α es un parámetro que optimiza el resultado, no la convergencia. Por este mo-
tivo, al igual que λ, se debe evaluar el SnR para determinar su valor óptimo.

2.4. El modelo TV L1

Al igual que en el modelo ROF, se usa la variación total para el término de
regularización pero esta vez se introduce la norma L1 para el término de datos.

mı́n
u∈U
‖ ∇u ‖1 + ‖ λ(u− g) ‖1 (2.29)

Se dualiza de nuevo el regulador, obteniendo las mismas expresiones que en el
caso del modelo ROF. El problema que surge ahora es que la norma L1 del término
de comparación con la imagen original implica una nueva dualización.

‖ λ(u− g) ‖1= máx
q∈Q

(〈q, λ(u− g)〉 − δQ(q)) (2.30)

Se tendrá que definir un nuevo convexo conjugado, realizar una ∂q de la función
y además añadir nuevos términos. La derivación es un poco más complicada y
requiere del uso del concepto de subgradiente para derivar el término de datos
respecto a la variable dual.

La norma L1 puede ser definida como una función a trozos, donde:

∂u|f(u)|


f ′(u) si u > 0
−f ′(u) si u < 0
[-f’(u), f’(u)] si u = 0

(2.31)
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2. Denoising Sección 2.4

(a) Función valor absoluto (b) Función derivada del valor
absoluto

Figura 2.3: Ilustración del concepto de subgradiente para la función valor absoluto

Para el punto x = 0, puede haber un número infinito de rectas tangentes a la
función en el intervalo p ∈ [−f ′(x), f ′(x)]. Por este motivo aunque la función es
convexa, no es diferenciable. En nuestro caso concreto, se puede escribir lo siguiente

∂uτλ|u− g|1


τλ si u− g > τλ
−τλ si u− g < −τλ
indef si |u− g| ≤ τλ

(2.32)

Este resultado se utiliza para resolver el algoritmo a partir del cálculo de las
derivadas sobre la siguiente función de enerǵıa dualizada:

mı́n
u∈U

máx
p∈P

(〈p,∇u〉 − δp(p) + λ ‖ u− g ‖1) (2.33)

Donde:

∂pE(u, p) = ∇u− αpn+1 =
pn+1 − pn

σ
(2.34)

∂uE(u, p) = −(−divp+ ∂uλ ‖ u− g ‖1=
un+1 − un

τ
) (2.35)

Tras este desarrollo matemático, se obtiene el valor de un+1. Gracias a la ecua-
ción 2.35, la actualización del primal se ejecuta de la siguiente manera:

un+1


un + τdivpn+1 − τλ si u− g > τλ
un + τdivpn+1 + τλ si u− g < −τλ
g si |u− g| ≤ τλ

(2.36)
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Sección 2.4 2. Denoising

El algoritmo empleado es el mismo que en el caso del ROF.
Los resultados y conclusiones de los diferentes métodos del algoritmo se encuen-

tran en el Apéndice F.1
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Caṕıtulo 3

Zooming

3.1. Motivación

Cuántas veces al reducir una fotograf́ıa y volver a ampliarla ha aparecido pixela-
da. Habitualmente, al expandir una fotograf́ıa cada ṕıxel se repite por un factor de
ampliación, lo que al final resulta una imagen muy poco realista, donde se aprecia
con demasiada claridad que ha sido ampliada y no es una imagen original.

La solución más habitual consiste en la aplicación de una simple interpola-
ción lineal. Si se ampĺıa cuatro veces una imagen (el doble de alto y el doble de
ancho), los ṕıxeles generados no tienen el valor constante de su predecesor, sino
una interpolación de sus vecinos. Aśı se consigue una sensación más homogénea
en la imagen. Sin embargo, una interpolación lineal podŕıa producir un efecto de
difuminación de la imagen, eliminando los detalles.

La aplicación de un algoritmo primal dual para la minimización de una función
de enerǵıa puede ser una solución al problema. Este apartado trata de su desarrollo
matemático, implementación y conclusiones.

3.2. El modelo de enerǵıa

La ecuación 3.1 define el problema zooming como la minimización de una
enerǵıa.

mı́n
u∈U
‖ ∇u ‖1 +

λ

2
‖ (Au− g) ‖2

2 (3.1)

Una diferencia básica respecto al problema de denoising es el uso del operador
lineal representado por la matriz A. En el caso general del denoising esta matriz
puede considerarse como la matriz identidad. Sin embargo, en el problema del
zooming es de vital importancia, pues la matriz A influye directamente en término
de datos de la enerǵıa para transformar las dimensiones de la imagen ampliada u
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Sección 3.2 3. Zooming

en las dimensiones de la imagen de partida g. Consideremos el siguiente ejemplo,
en el que la imagen de entrada es:

g =

(
1 3
2 4

)
Y, con un factor de ampliación de 2 (2 de ancho y 2 de alto), la salida es de la

forma:

u =


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16


Donde los valores interiores de la matriz hacen referencia a la posición de sus

términos en un vector de la matriz organizado por columnas.
La matriz A que transforma dimensiones de u es por tanto de la siguiente forma:

A =


X X 0 0 X X 0 0 0 0 0 0 0 0 0 0
0 0 X X 0 0 X X 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 X X 0 0 X X 0 0
0 0 0 0 0 0 0 0 0 0 X X 0 0 X X


La primera fila hace referencia al primer término del vector g, donde las posi-

ciones 1, 2, 5 y 6 apuntan a la matriz u. F́ısicamente se puede interpretar como
que el ṕıxel 1 de la matriz g se expande hacia los ṕıxeles 1, 2, 5 y 6 de la matriz u.
Lo siguiente a analizar es cuánto vale la X. Hay tantas X en una fila como factor
de ampliación elevado al cuadrado. Si cada X valiese 1, el producto de Au seŕıa
de aproximadamente, factor al cuadrado veces el valor de g. El término de datos
valora la variación entre la imagen de salida y la de entrada, por lo que para que
sean del mismo orden se requiere que X = 1

s2
, donde s es el factor de ampliación.

mı́n
u∈U

máx
p∈P
〈p,∇u〉+

λ

2
‖ Au− g ‖2

2 −δp(p) (3.2)

El problema dual será similar al de denoising ROF, pues el único cambio respec-
to a ese problema está en un término que no depende de p. El procedimiento para
derivar el paso de actualización de la variable primal se describe en el Apendice
B.4

un+1 = (I + τλATA)−1(un + τdivpn+1 + τλATg) (3.3)

La expresión 3.3 requiere de la solución de un sistema lineal de ecuaciones de la
forma Mx = b que en muchos casos puede llevar al desarrollo de un algoritmo muy
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3. Zooming Sección 3.2

lento con dificultad en su paralelización mediante GPU. Para evitar este problema
se utiliza el método de solución de ecuaciones de Jacobi. [1]. Si se sustituye µ = 1

τ
,

se obtiene el siguiente resultado:

un+1(τI + λATA) = µun + divpn+1 + λATg (3.4)

Para solucionar el sistema de ecuaciones se toma M = µI + λATA y b = µun +
divpn+1 + λATg. La matriz M de Jacobi se debe descomponer en D y R:

D = (µ+ λ
s4

)I, ya que los elementos de A están divididos por s2 y los valores de
la diagonal de AA estarán divididos por s4. Nótese que D es un valor constante.
R = λATA− λ

s4
I

b = µun + divpn+1 + λATg

Por tanto, el resultado de la actualización primal es el siguiente:

un+1 =
{λATA− λ

s4
I}un + µun + divpn+1 + λATg

µ+ λ
s4

(3.5)

Es importante decir que el método de Jacobi es iterativo, por lo que esta actua-
lización debeŕıa realizarse varias veces en cada actualización del primal. Es decir,
que el orden de las iteraciones se elevaŕıa al cuadrado. Dada la rápida convergencia
del algoritmo primal dual, tan sólo se realizará una iteración de Jacobi.

Se puede observar que la matriz ATA promedia los ṕıxeles de la imagen grande
que hacen referencia a la imagen pequeña mediante el factor 1

s4
. Ese valor medio

es el mismo para todos los ṕıxeles de la imagen grande que tienen en común un
mismo ṕıxel de la pequeña. Este resultado permite la implementación sencilla del
algoritmo.

Los resultados se encuentran en el Apéndice F.2.
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Caṕıtulo 4

Image Deconvolution

4.1. Motivación

La calidad de las imágenes capturadas mediante cámaras digitales dependen
del tiempo de exposición del sensor. Si aparecen objetos móviles en la escena o
la cámara se encuentra en movimiento, un tiempo de exposición excesivo puede
afectar las imágenes ya que en cada instante de tiempo el sensor recibe y promedia
diferente información de intensidad. Este fenómeno es también conocido como
motion blurring o convolución de movimiento.

A partir de una imagen que ha sufrido un proceso de convolución se puede
recuperar la imagen original en unas condiciones muy aceptables. Sólo se necesitan
otros dos parámetros además de la imagen: la longitud en ṕıxeles que se ha movido
la imagen y la dirección en que ésto ha sucedido. La ecuación que relaciona la
velocidad del objeto respecto a la cámara y la velocidad expresada en ṕıxeles, se
define como

e =
vT

d
(4.1)

Donde v es la velocidad en el plano de la imagen, fácil de obtener a partir de la
velocidad real del objeto y la distancia al mismo, T es el tiempo de exposición y
d el tamaño de un ṕıxel. La velocidad en el plano de la imagen se puede obtener
gracias a una sencilla relación trigonométrica representada en la figura 4.1.
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Sección 4.2 4. Image Deconvolution

Figura 4.1: Transformación entre el vector de velocidad del objeto y el vector de
velocidad en el plano de imagen

Suponiendo la velocidad como un vector, hay que calcular el vector proporcional
en el plano imagen. Denotando v como la velocidad en el plano imagen, V como
la velocidad real, d como la distancia focal y D como la distancia desde la lente
hasta el objeto en movimiento, se deduce que:

v = d
V

D + d
(4.2)

Colocando una cámara de bajas prestaciones en una ĺınea de manufactura, sabien-
do a la velocidad y dirección en que se mueve, y la distancia de la cámara a la ĺınea,
se puede predecir la convolución que sufrirá la imagen obtenida y se podrá arreglar
con gran exactitud.

4.2. Modelo de enerǵıa

El caso de la deconvolución es análogo al del zooming, con la salvedad de que
la matriz A representa el movimiento en ṕıxeles aplicado a la imagen. Esta matriz
se puede modelar mediante un kernel local o matriz de convolución que representa
el movimiento lineal de los ṕıxeles. Dicha matriz es fácil de calcular requiriendo
sólo como parámetros la longitud en ṕıxeles y su ángulo de inclinación de la recta.
La figura 4.2 muestra un ejemplo de una máscara calculada para una longitud de
7 ṕıxeles y un ángulo de 45o de inclinación.

26



4. Image Deconvolution Sección 4.2

A =



0 0 0 0 0 0,0144942 0
0 0 0 0 0,0375741 0,128286 0,0144944
0 0 0 0,0375741 0,128286 0,0375742 0
0 0 0,0375741 0,128286 0,0375741 0 0
0 0,0375742 0,128286 0,0375741 0 0 0

0,0144944 0,128286 0,0375741 0 0 0 0
0 0,0144942 0 0 0 0 0



Figura 4.2: Cálculo de una máscara de motion blurring. Los valores obtenidos están
normalizados, de manera que la suma global de todos los elementos es 1.

Figura 4.3: Representación del proceso de convolución sobre la imagen de entrada
(derecha), dado un operador de motion blurring desplazado circularmente (izquier-
da).

Para modelar el problema de la deconvolución, se parte de la ecuación 4.3 que
describe el modelo de minimización de enerǵıa:

mı́n
u∈U
‖ ∇u ‖1 +

λ

2
‖ (Au− g) ‖2

2 (4.3)

El paso más importante es la derivación de la actualización de la variable pri-
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Sección 4.2 4. Image Deconvolution

mal u. Con el fin de evitar el uso de método de Jacobi para resolver el sistema
lineal planteado en el problema del zooming, es posible describir las operaciones
a partir de la definición de convolución en el dominio frecuencial. Ésto implica el
uso del concepto de transformada de Fourier [5]. En nuestra aplicación, la matriz
A se sustituye por k, el cual representa el kernel espacial de convolución. Una vez
calculada la máscara lineal de movimiento se puede definir el operador lineal k que
actuará sobre la imagen, donde el patrón lineal de movimiento aparece desplazado
circularmente para realizar una convolución centrada. Al aplicar la transformada
de Fourier sobre el kernel y la imagen degradada, la convolución se convierte en un
producto de espectros. La figura 4.3 ilustra el patrón de la matriz k y el proceso
de convolución sobre la imagen sin degradar en el dominio espacial.

El proceso para la definición de problema primal dual es similar al desarrollado
en el caso del zooming. Una vez derivada la función de enerǵıa dualizada respecto
a la variable primal u, se obtiene el siguiente resultado para su actualización

u = F−1

(
F(û) + τλF(k)∗F(g)

(1 + τλF(k)2)

)
(4.4)

Donde ∗ es el operador de convolución y F representa la transformada de Fourier
o espectro de una señal y F−1 la respectiva transformada inversa. Para realizar
los cálculos ṕıxel a ṕıxel, es necesario que k del tamaño de la imagen para poder
realizar la transformada de Fourier y que su producto tenga sentido. Aśı mismo,
se debe hacer uso del algoritmo de Transformada de Fourier Rápida (FFT o Fast
Furier Transform). De esta manera, siguiendo el algoritmo de actualización primal
dual habitual, se puede realizar la deconvolución eficientemente.

Los resultados obtenidos se encuentran en el Apéndice F.3.

28



Caṕıtulo 5

Image Inpainting

5.1. Motivación

Durante el proceso de captura de fotograf́ıas, es inevitable que en ocasiones
aparezcan cuerpos extraños o defectos de la cámara que provoquen que provoquen
la pérdida de información. Gracias a métodos de restauración es posible localizar
los ṕıxeles defectuosos, a partir de los ṕıxeles correctos, permitiendo la recuperación
casi total de la información en la imagen.

Se debe puntualizar que, pese a que este algoritmo que se expone en este caṕıtulo
obtiene unos resultados satisfactorios, su implementación requiere del previo co-
nocimiento de la región deteriorada en la imagen. No obstante, es posible emplear
algoritmos de detección de regiones como paso previo a la restauración. El resul-
tado dependerá en gran medida de la precisión de dicho algoritmo. Esta sección
únicamente se centra en el algoritmo de restauración o Inpainting, a partir de in-
formación previa de la región deteriorada para la recuperación de imágenes con
alto porcentaje de pérdida de información.

5.2. El algoritmo

La formulación del problema general es la siguiente:

mı́n
u∈U
‖ Φu ‖1 +

λ

2
‖ (u− g) ‖2

2 (5.1)

Observando detenidamente la ecuación, se aprecian dos cambios fundamentalmente
respecto a los dos casos anteriores:

La sustitución de ∇ por Φ. En casos espećıficos el regularizador no tiene por
qué afectar a toda la imagen. Más tarde se comentará cuál es su función.
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Sección 5.2 5. Image Inpainting

El segundo término de la ecuación debe ser también modificado, pues mide
la variación respecto a la imagen original, y cuando los ṕıxeles deteriorados
toman un valor correcto, su variación incrementa.

La ecuación 5.2 puede redefinirse de la siguiente manera:

mı́n
u∈U
‖ Φu ‖1 +

λ

2

∑
i,j∈D\I

(ui,j − gi,j)2 (5.2)

Donde la I se refiere tan sólo al conjunto de ṕıxeles afectados. Por tanto, el
sumatorio de la variación se aplica tan sólo a los ṕıxeles no afectados, obviando
aśı la variación en los afectados.

Dualizando el problema de la misma forma que se ha hecho hasta ahora se
obtiene el siguiente resultado:

mı́n
u∈U

máx
c∈C
〈Φu, c〉+

λ

2

∑
i,j∈D\I

(ui,j − gi,j)2 − δc(c) (5.3)

Para simplificar el problema dual, se asume Φ = ∇ y por tanto tiene la misma
forma que en apartados anteriores. En el problema primal se debe diferenciar
entre los ṕıxeles afectados y los ṕıxeles correctos, de manera que la variable dual
se actualiza como:

un+1
i,j

{
un + τdivc si(i, j) ∈ I
un+τdivc+τλgi,j

1+τλ
en cualquier otro caso

(5.4)

Aśı, el primer caso corresponde a el arreglo de los ṕıxeles corruptos y el segundo
término corresponde al desarrollo del término como ya se ha hecho en anteriores
apartados. Los resultados obtenidos en el algoritmo se encuentran en el Apéndice
F.4
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Caṕıtulo 6

Conclusiones

En este proyecto se aborda el problema del procesamiento de imágenes dentro
del contexto de la visión por computador para aplicaciones reales. Los problemas
de adición de ruido (denoising), de ampliación (zooming), deconvolución o restau-
ración (inpainting) son muy habituales en el trabajo diario con imágenes, especial-
mente en entornos de fabricación donde las cámaras son usadas como sensores de
supervisión.

Debido al tratamiento de información densa de las imágenes, se requiere la
formulación de métodos eficientes capaces de contrarrestar en poco tiempo los
efectos mencionados. Los métodos continuos variacionales representan una alter-
nativa atractiva no sólo para el modelado de los distintos problemas sino también
por la facilidad y robustez que traen consigo en relación a los algoritmos diseñados
para encontrar soluciones de alta precisión. El uso de métodos variacionales no
sólo cubre el campo del procesamiento de imágenes. Su aplicación también se ha
extendido a campos de gran interés como la reconstrucción de entornos en 3D.

A partir de una imagen deteriorada, estos algoritmos contabilizan la variación
de cada solución parcial obtenida durante la iteración. En la mayoŕıa de los casos,
no se requiere del uso de información previa para la recuperación de la imagen.
En este sentido, los algoritmos denoising y zooming trabajan únicamente sobre la
imagen dañada, sin necesitar ningún otro dato. No obstante, el modelo empleado
puede llegar a ser sensible respecto al parámetro de ruido.

Si bien denoising y zooming no requieren información previa, no sucede lo mis-
mo con los algoritmos de deconvolución y de inpainting los cuales requieren mas
información y tratamiento previo. En el caso de la deconvolución se necesita la
máscara con la que la imagen ha sido convolucionada. El cálculo de máscaras de
convolución conllevan a un camino de investigación interesante para complementar
la aplicabilidad de los algoritmos en entornos reales.

Por otro lado, el algoritmo de inpainting recibe como información concretamente
el conjunto de ṕıxeles afectados. Esta información sólo se puede aportar en el
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6. Conclusiones

laboratorio, a partir de detectores de regiones no siempre disponibles o aplicables
en la realidad. Se necesita un algoritmo que reconozca puntos espurios con total
precisión para que funcione y, pese a que en los últimos años, se ha avanzado
mucho en esta materia, se considera un tema aún en investigación.

A pesar de que es posible mejorar los algoritmos propuestos, se considera un
campo de interés el mejorar la forma de obtener los datos que se requieren para
que dichos algoritmos puedan funcionar con total autonomı́a.

Como valoración personal, este proyecto ha representado un enorme reto desde
el punto de vista teórico y de desarrollo. El proyecto comprende la programación
y desarrollo en lenguajes interpretados como Matlab usado principalmente como
herramienta de prototipado y visualización (por ejemplo, para poder obtener las
diferentes gráficas y comprender en un inicio el algoritmo); C++, un lenguaje
mucho más cercano a la máquina que Pascal o Ada que se utilizaba en la especia-
lidad de Automática y Robótica. Adicionalmente, se trabajó en programación en
lenguajes orientados al cálculo masivo paralelo como CUDA. Este último punto
requiere la comprensión de las capacidades del hardware diferenciando claramente
el trabajo en CPU, GPU y su comunicación a nivel de manejo de memoria.

La dificultad del proyecto también ha residido en la utilización de un sistema
operativo de libre distribución, en este caso Ubuntu, menos familiar dentro del
ámbito de desarrollo y aplicación de la titulación de Ingenieŕıa Industrial. Aśı mis-
mo, la memoria se ha escrito en lenguaje Latex, poco habitual dentro de los editores
de texto utilizados hasta la fecha.

Este proyecto ha permitido afianzar conceptos de informática dentro del con-
texto de la especialidad de Automática. De la misma manera, los conceptos ma-
temáticos de análisis numérico y transformadas de Fourier han sido reforzados
gracias a su aplicabilidad en el campo del procesamiento de imágenes.
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Apéndice A

Gestión del proyecto

La realización del proyecto se ha divido en varias etapas claramente diferencia-
das entre śı. Al tratarse de algoritmos cuya implementación es bastante compleja,
se comenzó trabajando en el software matemático Matlab, donde se implementó el
primer algoritmo: TV-ROF. Se hizo aśı para asentar los conceptos de Primal y
de Dual, cuándo hay que actualizarlos, qué significan los parámetros... Matlab re-
sulta muy cómodo ya que las ecuaciones de este algoritmo contienen una matriz
A que multiplica al vector imagen, obteniendo los resultados. Una vez calculada
esa matriz, la implementación del algoritmo era relativamente sencilla. El proble-
ma surge cuando A está compuesta de una gran cantidad de valores nulos en su
interior. Estos valores multiplican también a la imagen obteniendo un valor nulo,
como era de esperar. Toda esta cantidad de productos consumen mucho tiempo y
no producen nada. Para la fotograf́ıa Lena.jpg, que contiene 512x512 ṕıxeles, su
ejecución duraba en torno a 45 minutos, para optimizar una sola fotograf́ıa. El
objetivo es disminuir los tiempos hasta el rango de los milisegundos, se descarta
la opción de generar una matriz A y realizar el producto.

Por este motivo, ese mismo algoritmo fue implementado en C++, evitando
la generación de la matriz y tratando operar tan sólo con aquellos valores que
efectivamente aportan información. Se instaló el sistema operativo Ubuntu (Linux),
con los programas Texmaker (para la realización de la memoria), qtcreator (el
entorno de programación utilizado) y otros útiles tales como LibreOffice o Matlab.

QtCreator es un entorno de programación que utiliza las bibliotecas Qt. Estas
bibliotecas han sido ideadas con el fin de generar interfaces gráficas de usuario.
Para trabajar con Qt lo primero que se realiza es un CMakelist.txt, un fichero
donde se encuentra la información necesaria para ejecutar una futura compilación
evitando la adición de libreŕıas en todos los ficheros o los linkados manualmente.

Aśı, para solucionar el problema se ejecutaba un bucle ”for”que recorŕıa toda
la imagen y realizaba las operaciones pertinentes. Se logró reducir aśı el tiempo
de ejecución hasta aproximadamente 10 segundos. De aqúı surge la necesidad de
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implementar el algoritmo en la tarjeta gráfica. Como cada thread de la tarjeta es
capaz de realizar una operación sencilla, se puede sustituir ese bucle ”for”por una
paralelización completa, y aśı optimizar el tiempo.

La solución es programar en CUDA, un conjunto de herramientas desarrollado
por nVidia para codificar algoritmos en GPU nVidia. Como no se dispońıa de un
ordenador personal con GPU nVidia, se solicitó una cuenta en el servidor ”Her-
mes”de unizar donde se ejecutaŕıan los algoritmos. Aśı, se procedió a la realización
de los diferentes algoritmos en Hermes. Se implementaron TV-ROF, Huber-ROF,
TV-L1 y Zooming. Una vez que se queŕıa realizar el algoritmo de Image deconvo-
lution, era necesaria una libreŕıa que calculase la FFT (Fast Fourier Transform).
Al no encontrarse instalada en el servidor y, sabiendo que éste iba a estar apagado
durante el mes de Agosto, se generó una cuenta en el ordenador de la universidad
de mi tutora, Lina Maŕıa Paz, con el fin de que pudiese seguir trabajando ah́ı.

Cuando se implantaron los diferentes algoritmos, surgió la duda de cuáles eran
los parámetros óptimos que se deb́ıan colocar en cada uno de dichos algoritmos.
Una vez entendido el significado de cada parámetro y qué optimiza, la manera
de actuar era relativamente sencilla: recorrer un rango de valores con un paso
relativamente pequeño y mostrar por pantalla el resultado de cada caso (ratio de
señal/ruido o iteraciones hasta convergencia). Este hecho provocaba la necesidad
de realizar un nuevo programa, de forma que para ordenar todos los algoritmos, se
decidió realizar una interfaz de usuario donde se pod́ıa seleccionar el tratamiento
al que se queŕıa someter a la imagen y poder observar la imagen modificada, la
arreglada, cómo evoluciona el GAP o la función de enerǵıa y los la evolución de
los diferentes parámetros.
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Deducciones matemáticas

B.1. TV-ROF

B.1.1. Cálculo de ∂pE(u, p)

∂pE(u, p) = ∂p(〈p,∇u〉+
λ

2
‖ u− g ‖2

2 −δp(p)) (B.1)

Se simplifica término a término:
∂p(〈p,5u〉) = 5u, ya que se trata de un producto escalar.
∂p(

λ
2
‖ u− g ‖2

2) = 0, ya que no depende de p.
∂p(δp(p)) = 0, Se coloca como 0 para permitir su cálculo. Sin embargo, este

término impone la restricción de que la variable dual en el resultado final no sea
mayor que 1.

Por tanto se concluye que:

∂pE(u, p) = ∇u (B.2)

B.1.2. Cálculo de ∂uE(u, p)

∂uE(u, p) = ∂u(〈p,∇u〉+
λ

2
‖ u− g ‖2

2 −δp(p)) (B.3)

Se simplifica término a término
∂u(〈p,5u〉) = ∂u(−〈u, divp〉) = −divp. En el primer paso se convoluciona el

producto de vector por gradiente en un producto negado de vector por divergencia.
Se trata de una propiedad matemática aplicable al operador ∇. Una vez que es un
producto derivable, se obtiene el resultado.

∂u(
λ
2
‖ u− g ‖2

2) = λ(u− g), al ser una norma cuadrática simple.
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∂u(δp(p)) = 0, ya que no depende de u.
Por tanto se concluye que

∂uE(u, p) = −divp+ λ(u− g) (B.4)

B.2. HUBER-ROF

B.2.1. Cálculo de ∂pE(u, p)

∂pE(u, p) = ∂p(〈p,∇u〉 − δp(p)−
α

2
‖ p ‖2 +

λ

2
‖ u− g ‖2

2) (B.5)

∂p(〈p,∇u〉) = ∇u, ya que se trata de un producto escalar.
∂p(δp(p)) = 0, Es el mismo caso que el anterior. Se coloca como 0 pero su efecto

se añadirá al final del desarrollo.
∂p(

α
2
‖ p ‖2) = αp Una derivada común de un valor al cuadrado.

∂p(
λ
2
‖ u− g ‖2

2) = 0, ya que no depende de p.
Por tanto, obtenemos como resultado

∂pE(u, p) = 5u− αp (B.6)

B.3. TV-L1

B.3.1. Cálculo de ∂uE(u, p)

∂uE(u, p) = ∂u(〈p,∇u〉 − δp(p) + λ ‖ u− g ‖1) (B.7)

∂u(〈p,∇u〉) = ∂u(−〈u, divp〉) = −divp,
∂u(δp(p)) = 0
∂u(

λ
2
‖ u− g ‖2

2) = λ(u− g)

∂uE(u, p) = −divp+ ∂uλ ‖ u− g ‖1 (B.8)

B.4. Derivación de la enerǵıa para el problema

del zooming

Partiendo del modelo de enerǵıa, se desea calcular su derivada respecto a la
variable primal:
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∂uE(u, p) = ∂u(〈p,∇u〉+
λ

2
‖ Au− g ‖2

2 −δp(p)) (B.9)

En primera instancia, se obtiene que:
∂u(〈p,∇u〉) = ∂u(−〈u, divp〉) = −divp
∂u(δp(p)) = 0
∂u(

λ
2
‖ Au− g ‖2

2)), requiere un desarrollo más amplio:

∂u ‖ Au− g ‖2
2= ∂u(Au− g)T (Au− g)

(Au− g)T (Au− g) = ((Au)T − gT (Au− g))

((Au)T − gT (Au− g)) = (uTAT − gT )(Au− g)

(uTAT − gT )(Au− g) = uTATAu− uTATg − gTAu+ gTg

se realiza el cambio B = ATA y se calcula aśı el primer término:

∂u(u
TATAu) = ∂uu

TBu

∂u(u
TBu) = (B +BT )u

Se invierte el cambio:

∂u(u
TATAu) = (ATA+ (ATA)Tu

∂u(u
TATAu) = (ATA+ ATA)u

∂u(u
TATAu) = 2ATAu

Se calcula el resto de términos:

∂u(−uTATg − gTAu) = ∂u(−V Tg − gTV ) = ∂u(−2gTV )

∂u(−2gTV ) = ∂u(−2gTAu) = 2ATg

gTg = 0

Al final por tanto:
λ

2
‖ Au− g ‖2

2) = λ(ATAu− ATg)

∂uE(u, p) = −divp+ λ(ATAu− ATg) (B.10)

Se sustituye la derivada por su definición:

un − un+1

τ
= −divp+ λ(ATAun+1 − ATg) (B.11)

(un − un+1) = −τdivpn+1 + τλ(ATAun+1 − ATg) (B.12)

Finalmente, la actualización puede derivarse de la siguiente expresión:

un+1(I + τλATA) = un + τdivpn+1 + τλATg (B.13)

37



Sección B.5 B. Deducciones matemáticas

B.5. Derivación de la función de enerǵıa para el

problema de la deconvolución

Partiendo de la definición de función de enerǵıa, y considerando que la
∂uE(u, p) = 0, se obtiene que:

∂uE(u, p) = ∂u(−〈p,∇u〉+
λ

2
‖ Au− g ‖2

2 −δp(p)) (B.14)

Sustituyendo términos por su valor:

∂uE(u, p) = divp+ λAT (Au− g) (B.15)

Si se coloca û = u− τdivp en el algoritmo, se puede escribir que divp = u−û
τ

∂uE(u, p) =
u− û
τ

+ λAT (Au− g) = 0 (B.16)

Se realiza el cambio de la matriz A que como ya se ha comentado es muy
complicada de implementar y se sustituye por k∗, que es la convolución. Tiene el
significado f́ısico de pasar la máscara por la imagen.

u− û
τ

+ λk∗ ∗ (k ∗ u− g) = 0 (B.17)

Donde k∗ es la convolución y k∗∗ es el conjugado que convoluciona, es la equi-
valencia a la AT anterior. En este momento se aplica la Transformada de Fourier
a la izquierda y derecha de la ecuación.

F(u)−F(û)

τ
+ λF(k)∗(F(k)F(u)−F(g)) = F(0) (B.18)

Al aplicar Fourier, las convoluciones se convierten en productos. Se sigue ope-
rando hasta dejar a un lado de la ecuación F(u):

F(u)−F(û) + τλF(k)2F(u)− τλF(k)∗F(g)) = 0 (B.19)

F(u)(1 + τλF(k)2) = F(û) + τλF(k)∗F(g) (B.20)

F(u) =
F(û) + τλF(k)∗F(g)

(1 + τλF(k)2)
(B.21)

Se realiza la transformada inversa y aśı se obtiene la sución final:

u = F−1

(
F(û) + τλF(k)∗F(g)

(1 + τλF(k)2)

)
(B.22)
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Es necesaria una k del tamaño de la imagen para poder realizar la transformada
de Fourier y que su producto tenga sentido. De esta manera, siguiendo el algoritmo
de actualización primal dual habitual, y mediante el cálculo de la FFT en CUDA,
se puede realizar la deconvolución de una forma muy rápida.
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Apéndice C

Tipos de ruido

C.1. El ruido Gaussiano

El ruido Gaussiano asigna a cada ṕıxel de la imagen una función gaussiana
centrada en el valor de dicho ṕıxel.

Figura C.1: Comparación de la función gaussiana para diferentes valores de σ

De esta forma, para valores de σ pequeños, el valor del ṕıxel cambiará muy
poco el la mayoŕıa de los casos. Para valores de σ grandes, los ṕıxeles cambiarán
mucho su valor en media. El código que crea el ruido gaussiano es el siguiente:

1 Mat addNoise (Mat &I , f l o a t mean , f l o a t std )
{

3 Mat Ino i s y ;

5 Mat I n o i s e ( I . rows , I . co l s , CV 32FC1) ;
randn ( Ino i s e , mean , std ) ;

7
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I no i s y = I+Ino i s e ;
9 cv : : max( Ino i sy , 0 . 0 , I no i s y ) ;

cv : : min ( Ino i sy , 1 . 0 , I no i s y ) ;
11

13 re turn Ino i s y ;
}

La función randn genera un valor aleatorio de media mean y de σ std. Se
impone mean igual a cero, de forma que la matriz Inoise creada es una función
centrada en cero y de la desviación estándar asignada. Luego se suma Inoise a la
matriz original para crear el ruido, acotando los valores máximos y mı́nimos que
pueda tener.

C.2. El ruido de sal y pimienta

Recibe este nombre por su similitud a la sal y la pimienta al colocar los ṕıxeles de
color blanco y negro. Es una forma de generar espurios y comprobar lo robusto del
algoritmo ante su aparición. El parámetro que recibe como entrada es el porcentaje
relativo de ṕıxeles espurios que se desea aparezcan en la imagen. Se supone misma
cantidad de ṕıxeles generados blancos que negros. El código para generarlo es el
siguiente:

Mat Add sa l y p imienta (Mat o r i g i n a l , f l o a t po rc enta j e )
2 {

i n t c o l s = o r i g i n a l . c o l s ;
4 i n t rows = o r i g i n a l . rows ;

bool r o t a r = f a l s e ;
6 cv : : Mat I = o r i g i n a l ;

f o r ( i n t i = 0 ; i<c o l s ; i++)
8 f o r ( i n t j =0; j<rows ; j++)

{
10 i n t va l o r = rand ( ) %100;

i f ( ( f l o a t ) va l o r <= porcenta j e )
12 {

i f ( r o t a r == f a l s e )
14 {

I . at<f l o a t >( i , j ) = 0 ;
16 r o t a r = true ;

}
18 e l s e

{
20 I . at<f l o a t >( i , j ) = 1 ;

r o t a r = f a l s e ;
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22 }
}

24 }
re turn I ;

26 }

Para cada ṕıxel se genera un valor aleatorio que al hacer %100 se calcula el
resto de ese valor con 100. Aśı, el número resultante es un valor entre 00 y 99. Si el
número aleatorio generado es inferior al porcentaje, significa que ese ṕıxel va a ser
un espurio. La variable booleana rotar es quien se encarga de decidir si el espurio
será blanco o negro, cambiando su valor para el siguiente espurio.
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Apéndice D

Software

Hay varios apartados interesantes dentro del entorno Qtcreator que deben ser
explicados.

D.1. El CMakelist.txt

Como ya se ha mencionado, el CMakelist.txt es un archivo donde se coloca
información previa a la compilación con el fin de simplificar los archivos de código,
evitando la inclusión de rutas de libreŕıas o procedimientos de linkado en dichos
archivos.

Se comienza colocando la versión del CMake, que es quien compila el programa
de Qtcreator. También se coloca el t́ıtulo del proyecto.

CMAKEMINIMUMREQUIRED( VERSION 2 . 8 . 0 )
2

PROJECT( v i s u a l i z a t i o n )

A continuación se deben colocar las distintas fuentes del programa. Los
archivos .cpp contienen funciones que se ejecutan en CPU. Los archivos .h
contienen la cabecera de esas funciones. Los archivos .cu contienen funciones
ejecutadas en GPU y las funciones que, ejecutándose en CPU, llaman las que
se ejecutan en GPU. Como en el caso anterior, los archivos .cuh contienen las
declaraciones de dichas funciones. Finalmente, los archivos .ui son aquellos que
contienen la información de la interfaz. Estos archivos los genera automáticamente
Qtcreator a través de un entorno gráfico muy sencillo de utilizar donde el usuario
puede colocar botones, widgets y otras útiles con mucha facilidad. En el CMake-
list.txt se añade de la siguiente forma (ejemplo de interfaz individual de denoising):
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1 SET(SOURCES main . cpp deno i s i ng . cu deno i s i ng . cpp viewerwidget . cpp )
SET(HEADERS deno i s i ng . h deno i s i ng . cuh viewerwidget . h )

3 SET(FORMS deno i s i ng . u i )

Siempre debe haber un archivo llamado main.cpp, que es el principal. Él es
quien se encarga de llamar al resto de archivos. A continuación se deben añadir
los paquetes necesarios en la aplicación. En caso de que no se encuentren esos
paquetes, se debe añadir su ruta manualmente.

1 FIND PACKAGE( CUDA REQUIRED )
FIND PACKAGE( Qt4 REQUIRED )

3 FIND PACKAGE(GLEW REQUIRED)
FIND PACKAGE( OpenGL REQUIRED )

5 FIND PACKAGE( OpenCV REQUIRED )

Para hacer una precompilación, se añade el siguiente código, donde se generan
los .moc y .ui, no ejecutables con un editor de texto y que permiten la generación
de la interfaz. Las dos últimas ĺıneas especifican dónde se colocará el ejecutable.

1 QT4WRAP CPP(HEADERSMOC ${HEADERS})
QT4 WRAP UI(FORMSHEADERS ${FORMS})

3 QT4 ADD RESOURCES(RESOURCES RCC ${RESRC})

5 INCLUDE DIRECTORIES( ${CMAKE CURRENT BINARY DIR})
INCLUDE DIRECTORIES( ${CMAKE CURRENT SOURCE DIR})

Finalmente, se añade la información de compilación. El apartado ADD
DEFINITIONS es el que se encarga de escribir la orden de compilación, aquella
que el usuario debeŕıa escribir por consola en caso de hacerlo manualmente. Las
últimas dos ĺıneas generan el ejecutable a partir de los archivos fuente y las
libreŕıas necesarias.

ADD DEFINITIONS( −O2 −march=core2 −msse3 −Wall )
2

CUDAADDEXECUTABLE( ${CMAKEPROJECTNAME} ${SOURCES} ${HEADERSMOC} $
{FORMSHEADERS} ${RESOURCES RCC})

4 TARGET LINK LIBRARIES( ${CMAKEPROJECTNAME} ${SDK LIBS} ${OpenCV LIBS
} ${OPENGL LIBRARIES} ${GLEW LIBRARIES} ${QT LIBRARIES} ${QWT LIBS
})
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D.2. Archivos de interfaz

Una interfaz tiene siempre asignados tres archivos, siguiendo con el ejemplo
anterior, seŕıan: denoising.cpp, denoising.h y denoising.ui. El archivo .ui tiene poco
interés porque contiene el diseño gráfico. Se comienza por la explicación del archivo
.h.

Dentro del archivo .h se debe comenzar por definir una clase, que contendrá to-
das las funciones y variables de esa interfaz. La definición de la clase tiene la
siguiente estructura:

namespace Ui {
2 c l a s s Denois ing ;
}

4

c l a s s Denois ing : pub l i c QMainWindow
6 {

Q OBJECT
8

pub l i c :
10 e x p l i c i t Denois ing (QWidget ∗parent = 0) ;

˜Denois ing ( ) ;
12

pr i va t e s l o t s :
14 . . .

16 pr i va t e :
. . .

18

} ;

Los slots son las funciones que tienen que ver con la interfaz, como podŕıan
ser botón pulsado o editado de variable finalizado. En el apartado de private slots
es en el que se declaran. En el apartado private, se incluyen todas las variables y
funciones privadas que no son slots, como podŕıa ser la función que genera ruido.
En el archivo .cpp es donde se implementan todos los slots.
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D.3. CUDA

CUDA [4] trabaja en GPU, ejecutando los algoritmos más rápido al poder para-
lelizarlos. Sin embargo, la información que está en CPU hay que enviársela a GPU
y ésta a su vez devolverla a GPU, algo que cuesta tiempo. Si este procedimien-
to se realizase en cada iteración para cada variable, el ahorro en tiempo no seŕıa
muy grande. Por este motivo surgen las texturas. Las variables en GPU pueden
ser asignadas a texturas donde son guardadas y no deben ser enviadas de CPU
para ser actualizadas, acelerando el proceso. Al principio del programa se deben
declarar las texturas y luego asignarles las variables que se introducirán en ellas.

1 texture<f l o a t , 2> tex u ;
texture<f l o a t , 2> t ex g ;

3 texture<f l o a t , 2> t ex u hat ;
texture<f l o a t 2 , 2> tex p ;

5 texture<f l o a t , 2> tex u comp ;

7 . . .

9 cudaBindTexture2D ( NULL, tex u , u dev , chd f l oa t , co l s , rows ,
BYTES PER ROW) ;

cudaBindTexture2D ( NULL, tex g , g dev , chd f l oa t , co l s , rows ,
BYTES PER ROW) ;

11 cudaBindTexture2D ( NULL, t ex u hat , u hat dev , chd f l oa t ,
co l s , rows , BYTES PER ROW) ;

cudaBindTexture2D ( NULL, tex p , p dev , chd f l oa t2 , co l s , rows ,
BYTES PER ROW2) ;

13

( en e l . cuh : )
15

s t a t i c const cudaChannelFormatDesc c hd f l o a t = cudaCreateChannelDesc<
f l o a t >() ;

17 s t a t i c const cudaChannelFormatDesc chd f l o a t 2 = cudaCreateChannelDesc
<f l o a t 2 >() ;

En toda declaración y asignación de textura debe especificarse el tipo de dato
que se va a guardar en ella y la dimensión, en este caso dos: ancho y alto de la
imagen.

A toda función que se ejecuta en GPU deben aportársele dos parámetros
concretos: la cantidad de bloques y la cantidad de threads por bloque. Los threads
son los pequeños componentes de la tarjeta gráfica que ejecutan las operaciones
sencillas que se les env́ıan con CUDA. Los bloques son una agrupación ficticia
realiza el programador para tratar de optimizar el código. Ambos valores deben
ser enteros, por lo que una vez definidos los threads por bloque, la cantidad de
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bloques se calcula dividiendo filas y columnas por los threads por bloque. Para ase-
gurar que se recorre toda la imagen, se hace una división redondeando hacia arriba.

1 #de f i n e NTHREADSBLOCK 16

3 dim3 nThreads (NTHREADSBLOCK, NTHREADSBLOCK) ;
dim3 nBlocks ( divUp ( co l s , nThreads . x ) , divUp ( rows , nThreads . y ) ) ;

Para mejorar la organización y claridad del código, a todas las funciones ejecu-
tadas en GPU se les nombra con el prefijo kernel de forma que aśı es más sencillo
entender qué se está ejecutando y dónde. Un ejemplo de algoritmo primal-dual es
el siguiente:

f o r ( i n t i t e r = 0 ; i t e r < maxIter ; ++i t e r )
2 {

kernel update dual TV ROF<<<nBlocks , nThreads>>>(p dev ,
u hat dev , co l s , rows , sigma , gx dev , gy dev ) ;

4 cudaThreadSynchronize ( ) ;
theta = 1 .0 f / s q r t f ( 1 . 0 f+2∗gamma∗ tau ) ;

6 kernel update Primal TV ROF<<<nBlocks , nThreads>>>(u dev ,
u hat dev , g dev , p dev , tau , lambda , theta , co l s , rows , d iv p dev
) ;

cudaThreadSynchronize ( ) ;
8

tau = theta ∗ tau ;
10 sigma = sigma/ theta ;

}

Las variables con el sufijo dev son todas aquellas que están en la GPU y las
host son aquellas que reciben los datos de dev en la CPU. Aśı, se recorre un bucle
”for”durante las iteraciones que se desee, actualizando los valores u dev (primal)
y p dev (dual) en cada una de las iteraciones.
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Apéndice E

Programación

La estructura básica de el archivo donde se ejecutan los algoritmos matemáticos
deducidos en los apartados 2,3,4 y 5 sigue una secuencia como la expuesta en el
apartado anterior. En este apartado se explica cómo se realizan las actualizaciones
del Primal y del Dual. Se comienza con un ejemplo:

1 g l o b a l void ke rne l update dua l ( f l o a t 2 ∗p dev , f l o a t ∗u hat dev ,
i n t co l s , i n t rows , f l o a t sigma )

{
3 i n t x = blockDim . x∗ blockIdx . x + threadIdx . x ;

i n t y = blockDim . y∗ blockIdx . y + threadIdx . y ;
5

i f ( x < c o l s && y < rows )
7 {

f l o a t tx = x + 0 .5 f ;
9 f l o a t ty = y + 0 .5 f ;

i n t o f f s e t = y∗ c o l s+x ;
11

f l o a t gx = tex2D ( tex u hat , tx+1, ty )−tex2D ( tex u hat , tx , ty ) ;
13 f l o a t gy = tex2D ( tex u hat , tx , ty+1)−tex2D ( tex u hat , tx , ty ) ;

15 i f ( x == ( co l s −1) )
{

17 gx = 0 .0 f ;
}

19

i f ( y == ( rows−1) )
21 {

gy = 0 .0 f ;
23 }

25 f l o a t 2 p = tex2D ( tex p , tx , ty ) ;
p . x = p . x + sigma∗gx ;
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27 p . y = p . y + sigma∗gy ;

29 f l o a t norma = s q r t f (p . x∗p . x+p . y∗p . y ) ;
f l o a t den = fmaxf ( 1 . 0 f , norma) ;

31 p . x = p . x/den ;
p . y = p . y/den ;

33 p dev [ o f f s e t ] = p ;

35 }
}

El primer paso es la definición de los valores x e y en función del bloque y el
Thread concreto de ese bloque en el que se vaya a ejecutar el código. Esta función
actualiza el dual, quien, según el algoritmo expuesto, requiere del gradiente de û,
que ha sido guardado en textura. Como la textura hab́ıa sido definida previamente
con dos dimensiones, es muy sencillo tomar los valores del gradiente ya que se
hace como se haŕıa en una matriz de ṕıxeles: El ṕıxel de la derecha menos el ṕıxel
en el que se ejecuta la función es el gradiente en x y el ṕıxel de abajo menos el
ṕıxel actual es el gradiente en y. p también se encuentra en textura, lo que hace
más rápido el algoritmo de actualización. Una vez calculada la norma, la p.x y
la p.y, se debe enviar mediante la instrucción pdev[offset] = p; a la variable pdev,
para que su nuevo valor se almacene en textura y en la siguiente iteración se
pueda proceder de la misma manera.

g l o b a l void kerne l update Pr ima l ( f l o a t ∗u dev , f l o a t ∗u hat dev ,
f l o a t ∗g dev , f l o a t 2 ∗p dev , f l o a t tau , f l o a t lambda , f l o a t theta ,
i n t co l s , i n t rows )

2

{
4

i n t x = blockDim . x∗ blockIdx . x + threadIdx . x ;
6 i n t y = blockDim . y∗ blockIdx . y + threadIdx . y ;

8 f l o a t uhat ;
f l o a t u ;

10

i f ( x < c o l s && y < rows )
12 {

f l o a t tx = x + 0 .5 f ;
14 f l o a t ty = y + 0 .5 f ;

i n t o f f s e t = y∗ c o l s+x ;
16

f l o a t k i j x = 0 , k i j y = 0 , k i 1 j x = 0 , k i j 1 y = 0 ;
18 f l o a t 2 p y i j 1 = tex2D ( tex p , tx , ty−1) ;
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f l o a t 2 p i j = tex2D ( tex p , tx , ty ) ;
20 f l o a t 2 p x i 1 j = tex2D ( tex p , tx−1, ty ) ;

22 i f ( y > 0)
{

24 k i j 1 y = py i j 1 . y ;
}

26

i f ( y < rows−1)
28 {

k i j y = p i j . y ;
30 }

32 i f ( x > 0)
{

34 k i 1 j x = px i 1 j . x ;
}

36

i f ( x < co l s −1)
38 {

k i j x = p i j . x ;
40 }

42 f l o a t u o ld = tex2D ( tex u , tx , ty ) ;
f l o a t g = tex2D ( tex g , tx , ty ) ;

44 f l o a t dip = ki jx−k i 1 j x+ki jy−k i j 1 y ;
uhat = u o ld +tau∗dip ;

46 u = ( uhat+tau∗ lambda∗g ) /(1+tau∗ lambda ) ;
uhat = u+theta ∗(u−u o ld ) ;

48 u dev [ o f f s e t ] = u ;
u hat dev [ o f f s e t ] = uhat ;

50 }
}

La manera de actualizar el Primal cambia sustancialmente en función del méto-
do. Este ejemplo corresponde al TV-ROF. El primer paso común a todos los méto-
dos es la realización de la divergencia de p. Para ello se definen las variables kijx,
kijy , ki1jx y kij1y, que se refieren al valor de p en el ṕıxel actual en p.x y en
p.y, al ṕıxel de la derecha en el caso de p.x y al ṕıxel de abajo en el caso de p.y.
La divergencia se calcula como se muestra en el código. A continuación se debe
guardar el valor de uold para la futura actualización de û. A partir de ah́ı, se debe
seguir el algoritmo. Finalmente, tanto û como u deben enviarse a la variable que
está en textura para que la actualización sea efectiva.
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Apéndice F

Resultados

Se exponen a continuación los resultados y conclusiones obtenidas a partir de
los diferentes algoritmos.

F.1. Resultados Denoising

F.1.1. Evaluación del modelo TV-ROF

El primer experimento se realiza sobre una imagen a la que se le ha adicionado
ruido gaussiano con desviación estándar σr. El resultado de la figura F.1 se ha
obtenido al ejecutar el algoritmo TV-ROF.

(a) Imagen original (b) Imagen ruidosa
σr = 0,1

(c) Imagen resultado
λ = 8,0 TV-ROF

Figura F.1: Primer experimento del modelo TV-ROF

Como es de esperar, el uso de la norma del gradiente no penaliza las discon-
tinuidades en la imagen pudiéndose mantener los bordes. Aśı mismo, las regiones
con intensidades cercanas se suavizan. Durante la ejecución del algoritmo se ha
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llevado a cabo un análisis de verificación del GAP definido para cada modelo. La
figura F.2 muestra el resultado para un numero fijo de iteraciones. Se puede notar
que el GAP tiende a cero con apenas 30 iteraciones.

Figura F.2: Evolución del GAP respecto a las iteraciones

Figura F.3: Imagen ruidosa σ = 0,3 Figura F.4: Imagen resultado λ = 8,0
TV-ROF

Se puede observar que al aumentar drásticamente el porcentaje de ruido en la
imagen el algoritmo no puede recuperar totalmente la imagen original. No obstante,
ésto ocurrirá para cualquier algoritmo de filtrado. Los parámetros óptimos del
método se pueden obtener mediante una simulación. Aśı, se obtienen las gráficas:
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(a)
Dependencia SnR respecto a λ en

TV-ROF

(b)
Dependencia iteraciones hasta
convergencia respecto a τ en

TV-ROF

Figura F.5: Evaluación de parámetros λ y τ

De acuerdo a los resultados, el valor óptimo para λ seŕıa de 12 tal como se
observa en F.5 a) y un valor óptimo de τ seŕıa de 0.25, de acuerdo a la gráfica F.5
b).

Los valores óptimos también dependerán de la cantidad de ruido introducido,
siendo λ especialmente sensible a esta variación. La figura F.4 se ha calculado para
σr = 0.3. Si se realiza la evaluación de SnR de los parámetros para este ruido, el
valor de λ vaŕıa como se muestra en la figura .

Figura F.6: dependencia SnR respecto a λ en TV-ROF para un ruido de σ = 0.3.

El óptimo de λ ha variado a 4.2. Con ese nuevo valor se obtiene una resultado
distinto. La figura F.7 muestra una comparación entre el resultado previamente
obtenido con λ = 8 y el valor óptimo:
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(a)
Imagen resultado λ = 8,0 TV-ROF

(b)
Imagen resultado λ = 4,2 TV-ROF

Figura F.7: Comparación de resultados cuando se incrementa el ruido en la imagen
y se aplican valores diferentes de λ.

Cuanto menor es el error, mayor es la fiabilidad de la imagen sobre la que el
algoritmo actúa, por lo que el resultado será muy similar a dicha imagen de forma
que λ será muy elevada. Cuanto mayor es el error, más importante será el término
de gradiente, aśı que el λ óptimo deberá ser menor.

F.1.2. Evaluación del modelo Huber-ROF

En el caso del modelo de Huber-ROF, observar que el algoritmo primal dual
converge mucho más rápido a la solución en comparación con el modelo TV-ROF.
La figura F.8 ilustra el resultado obtenido. Las figuras F.9 y F.10 representan
cómo vaŕıa el GAP y la relación SnR respecto a un parámetro. Se puede concluir
por tanto que este parámetro siempre converge en las mismas iteraciones. El valor
óptimo de λ es de 7.5 y el de α es de 0.025.

(a)
Imagen ruidosa σr = 0,1

(b)
Imagen resultado λ = 5,0

Huber-ROF

Figura F.8: Resultado por el algoritmo primal dual para el modelo Huber-ROF.
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Figura F.9: Evolución del GAP por iteración para el modelo Huber-ROF.

(a)
Dependencia SnR respecto a λ

(b)
Dependencia SnR respecto a α

Figura F.10: Evaluación de parámetros para el modelo Huber-ROF

F.1.3. Evaluación del modelo TV-L1

El algoritmo TV-L1 contiene una diferencia esencial respecto a los dos ante-
riores: La dificultad del cálculo del GAP. A diferencia de los otros modelos, se ha
calculado el valor de la función de enerǵıa. Dicha función de enerǵıa debe alcan-
zar un valor mı́nimo una vez el algoritmo haya convergido a la solución óptima.
La figura F.11 muestra la imagen de resultado obtenida mientras la figura F.12
muestra la evolución de la enerǵıa para el modelo TV-L1.
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(a)
Imagen ruidosa σr = 0,1

(b)
Imagen resultado λ = 1,5 TV-L1

Figura F.11: Resultado obtenido para el modelo TV-L1

Se comprueba que efectivamente su función de enerǵıa disminuye hasta alcanzar
un mı́nimo.

Figura F.12: Evolución de la función de enerǵıa por iteración para el modelo TV-
L1.

El método TV-L1 es el que más grados de libertad tiene de los tres implemen-
tados. Por tanto, se realizará un análisis de λ, τ y θ representados gráficamente en
la figura F.13.
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(a) Dependencia SnR
respecto a λ

(b) Dependencia
iteraciones hasta

convergencia respecto a
τ .

(c) Dependencia
iteraciones hasta

convergencia respecto a
θ.

Figura F.13: Evaluación de parámetros para el modelo TV-L1.

Observando los resultados se puede concluir que el valor óptimo de λ es de 1,25
aproximadamente y el de τ es de 0.025. θ afecta en menor medida que los otros
parámetros pudiéndose asignar un valor de 0.5.

F.1.4. Comparación de modelos

La figura F.14 muestra los resultados visuales para los tres modelos. Aśı mismo,
la tabla F.1 muestra el tiempo total de ejecución para cada solución.

(a) TV-ROF (b) Huber (b) TV-L1

Figura F.14: Comparación de modelos. Resultados obtenidos al aplicar el conjunto
de parámetros óptimos en cada caso.

Para una misma cantidad de ruido (σ = 0,1), el resultado es muy similar. A
simple vista, se observa que la imagen resultado del TV-L1 elimina algo peor el
ruido en comparación a los modelos TV-ROF y HUBER-ROF. Entre el modelo
TV-ROF y el HUBER-ROF se encuentran pocas diferencias apreciables.
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Modelo Tiempo 200 iteraciones Tiempo hasta convergencia
TV-ROF 30 ms 5ms
HUBER-ROF 37 ms 1ms
TV-L1 28 ms 5ms

Tabla F.1: Tiempos de ejecución para los modelos evaluados

En todos los métodos se han aplicado 200 iteraciones para asegurar convergen-
cia. Sin embargo, no todos los métodos convergen con las mismas. En el mejor de
los casos, bastan 40 repeticiones de TV-ROF, 10 iteraciones de HUBER-ROF y 60
de TV-L1 para alcanzar el valor de convergencia. Los resultados de tiempos de eje-
cución se observan en la segunda columna de la tabla. De acuerdo a los resultados,
el método óptimo seŕıa el HUBER-ROF, ya que permite su aplicación en tiempo
real y buena precisión. También podŕıan ser aplicados los métodos TV-ROF y
TV-L1, ya que 5 ms es muy poco tiempo. Aśı, lo más importante es la calidad
de la imagen obtenida. La de mayor calidad es la de TV-ROF, de forma que se
escogerá TV-ROF si se prima la calidad y HUBER-ROF si se prima el tiempo de
ejecución.

El análisis previo se ha considerado ruido gaussiano, donde cada ṕıxel ha modi-
ficado su valor según el parámetro σr. Otra forma de considerar el efecto del ruido
es a partir de la contabilización de los datos espurios. Si a una imagen se le aplica
ruido de sal y pimienta, que coloca un porcentaje de los ṕıxeles de color blanco y
negro, se puede observar cómo reaccionan los diferentes métodos (ver figura F.15).

(a) Imagen ruido Sal Pimienta, 20 % (b) Resultado TV-ROF
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(c) Resultado Huber-ROF (d) Resultado TV-L1

Figura F.15: Resultados para los modelos evaluados ante la adición de ruido de sal
y pimienta.

Si bien ante un ruido Gaussiano, el algoritmo TV-L1 no era considerado como
el más efectivo, ante un ruido de espurios resulta ser el más adecuado. El motivo
es que la norma cuadrática L2 suaviza los ṕıxeles de variaciones pequeñas pero le
da mucho peso a las variaciones grandes. Aśı, la norma cuadrática es mejor ante
variaciones pequeñas mientras la norma L1 es mejor ante variaciones grandes o
espurios. La figura F.17 muestra la comparación entre normas L2 y L1. La figura
F.16 muestra la SnR del algoritmo TV-L1 ante ruido de Sal y Pimienta.

Figura F.16: Evolución de SnR frente a ruido de Sal y Pimienta en TV − L1
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Figura F.17: Normas L1 y L2

Por este motivo, para ser capaces de tomar una decisión acerca del algoritmo a
aplicar, se debe saber de antemano qué ruido va a aparecer en la imagen. De esta
manera, si el ruido es Gaussiano, se aplicará un algoritmo TV-ROF o HUBER-
ROF. En caso de que el ruido esté compuesto por espurios, se deberá aplicar el
algoritmo TV-L1.

F.2. Resultados Zooming

La figura F.18 muestra cómo vaŕıa la imagen resultado en función del factor de
ampliación s.

(a) s = 2, λ = 300 (b) s = 10, λ = 300

Figura F.18: Resultado del zooming para diferentes valores de escala deseados.

A diferencia de los otros problemas tratados en este proyecto, el parámetro
λ puede dar lugar a la divergencia del algoritmo. Este problema se debe que el
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método de Jacobi impone su propia restricción para asegurar la convergencia. Es
posible probar que el algoritmo converge siempre y cuando λ < µs4/(s2 − 2).

Es lógico pensar por tanto que el parámetro λ óptimo para cada factor de
ampliación vaya a variar. Aśı, para un mismo λ, con un factor de ampliación de 2,
la imagen aparece mucho más pixelada que en el caso de factor de ampliación de
10. Si se quiere un resultado similar, habŕıa que reducir el parámetro λ en el caso
de factor 2 o ampliarlo en el caso de factor 10. Reduciéndolo en el caso de factor
2, se obtiene un resultado muy similar (ver figura F.19, izquierda). La evolución
de la enerǵıa se muestra en la figura F.19, derecha.

(a)
Resultado óptimo (b) SnR

Figura F.19: Resultado de zomming para s = 2, λ = 100

El método converge muy rápidamente y la función de enerǵıa decrementa mucho
su valor, más que en los anteriores casos. El motivo es que anteriores apartados,
la imagen resultado era inicializada al valor de la imagen dañada y en este caso
la imagen resultado es inicializada con todos sus ṕıxeles negros. El valor de λ en
la optimización de parámetros sólo tendrá sentido para un factor de ampliación
constante. Si se vaŕıa éste, λ variará en consecuencia. Para calcular el valor óptimo
de λ hay que calcular se calcula la razón SnR. Ese parámetro requiere la imagen
original sin dañar. La imagen original se puede interpretar como el resultado ideal
al que convergeŕıa el método si toda la información pudiese recuperarse. Para
simular este fenómeno, se toma una imagen, se reduce externamente al programa,
y se aplica el algoritmo zooming con el mismo parámetro de reducción a la imagen
reducida. De esta forma, se obtiene un resultado que es comparable a la imagen
ideal. La figura F.20 ilustra los resultados obtenidos de evaluación de precisión.
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(a) SnR, s = 4 (b) SnR, s = 8

Figura F.20: Evaluación de precisión respecto a la variación del parametro λ, para
s = 4 y s = 8.

En el experimento se ha tomado µ = 100. Aplicando la ecuación anterior, se
deduce que el valor máximo de λ que asegura convergencia es de 1828.57. En
el experimento se ha superado ese valor y el método ha convergido, pero más
lentamente. Observado la gráfica, el valor que se escogeŕıa es el óptimo más lejano
de la no convergencia, es decir, λ = 800. En el caso de factor igual a 8, el valor
máximo de λ es de 6606.45, por lo que el experimento se acota al valor 6000. Se
encuentra el valor 1800 como óptimo teórico en este caso. En este algoritmo λ
decrece muy lentamente una vez alcanzado el óptimo, sin embargo conviene no
tomar λ muy alto, pues el método podŕıa no converger.

A continuación, se comprueba el valor óptimo de τ . De nuevo se va realizar el
mismo experimento para dos escalados diferentes y se interpretarán los resultados
obtenidos:
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(a) SnR, s = 4 (b) SnR, s = 8

Figura F.21: Evaluación de precisión para el parámetro τ , para s = 4 y s= 8

En el primer caso, el valor óptimo de τ está en torno a 0.025, donde el método
converge en unas 800 iteraciones. Ésto se debe al error mı́nimo establecido para
alcanzar la convergencia. Si es error admisible se aumenta, el método es muy rápido
pues disminuye el numero de iteraciones. En el segundo caso, el valor óptimo de
τ es similar, de 0.02, sin embargo las iteraciones hasta la convergencia aumentan
considerablemente. Al tener un factor mayor, las iteraciones se multiplican.

θ es el último parámetro a analizar de acuerdo a su influencia en la aceleración
de la convergencia. En la figura F.22 se comprueba cómo evoluciona su valor para
s = 4.
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Factor de ampliación Escala Tiempo mı́nimo de convergencia
4 100x100 243ms
4 50x50 90ms
8 50x50 1589ms

Tabla F.2: Tiempo de ejecución para el algoritmo de zooming

(a)
Resultado óptimo (b) SnR

Figura F.22: Evaluación de la precisión para el parámetro θ, para s = 4.

Se observa que θ debe ser lo más pequeña posible para que disminuya las itera-
ciones. El mı́nimo para asegurar la convergencia es de 0.5, por lo que se mantiene
ese valor como óptimo. Adicionalmente se han realizado tres experimentos para
obtener un valor aproximado del tiempo de cómputo del algoritmo. La tabla F.2
resume los resultados para diferentes valores de escala. Se puede por tanto com-
probar que el tiempo de cómputo aumenta sustancialmente con el tamaño de la
imagen, pero es más sensible ante variaciones en el factor de ampliación.

F.3. Resultados Deconvolution

Dada una imagen, se aplica una máscara de motion blurring de 10 ṕıxeles de
longitud de movimiento y 45o de inclinación. La figura F.23 expone la imagen
original, la imagen degradada con blurring y la imagen de resultado obtenida
después de la deconvolución.
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(a) Imagen original (b) Imagen con
blurring, dp = 10, α =

45o

(c) Imagen resultado
λ = 1000

Figura F.23: Resultado obtenido tras la deconvolución aplicando el algoritmo pri-
mal dual.

Para evaluar la eficacia del algoritmo de deconvolución, se ha incrementado
el efecto de blurring. La figura muestra el resultado para una máscara lineal de
dp=100

(a) Imagen original (b) dp = 100, α = 45o (c) λ = 1000

Figura F.24: Resultado de deconvolución para una imagen degradada con dp=100

Una primera conclusión que se puede obtener tras observar la evolución de la
función de enerǵıa (ver figura F.25) es que ésta disminuye muy poco debido a la
utilización de la transformada de Fourier que transforma el resultado del dominio
espacial al de la frecuencia.
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(a) Evolución de FdU,
dp = 100

(b) Evolución de λ (c) Evolución de τ

Figura F.25: Evaluación de parámetros

Si se observan las gráficas del parámetro λ se deduce que lo más correcto es
tomar una λ infinita, pues ésta no deja de aumentar. Sin embargo, ¿qué sucede en
el caso de que una imagen se vea afectada al mismo tiempo por blurring y ruido?
Imaginemos un 5 % de la imagen con ṕıxeles blancos y negros. Al transformar la
imagen al dominio frecuencial y optimizar ah́ı el algoritmo, se intentará mantener a
toda costa la cantidad de ṕıxeles ruidosos. Además, al aplicar la máscara de forma
inversa en la resolución del algoritmo, el ruido se expande. Como conclusión, se
utilizará λ = 1000 como parámetro óptimo.

En cuanto al parámetro τ , se observa que para un valor de 0.012 es óptimo.
El parámetro θ no se incluye pues no provoca variación en las iteraciones hasta
convergencia en su rango de aplicación.

Para poder mostrar cómo evoluciona el algoritmo en caso de que haya ruido
en la imagen, se ha habilitado la posibilidad de generarlo en la interfaz. De esta
forma, se realiza un blurring sobre la imagen y además se añade un ruido gaussiano
de σ = 0.1. La imagen dañada es la siguiente:

Figura F.26: Imagen con blurring y ruido de σ = 0.1
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El óptimo teórico de la deconvolución es λ =∞, se asigna λ = 10000. El óptimo
teórico para solucionar el ruido está en torno a 10. De esta forma, para comprender
mejor el algoritmo, se hacen cuatro experimentos: λ = 10, λ = 100, λ = 1000 y λ
= 10000.

(a) λ = 10 (b) λ =
100

(c) λ =
1000

(d) λ =
10000

Figura F.27: Resultado de deconvolución para diferentes valores de λ al adicionar
ruido gaussiano.

Si se observa la imagen F.27 a), no ha reparado su blurring. Sin embargo, ya
no aparece nada de ruido y las superficies han sido homogeneizadas. En la imagen
F.27 b) se ha removido la mayor parte del ruido y la degradación por movimiento
ha sido casi reparada. La imagen F.27 c) muestra lo que sucede si λ toma un valor
demasiado alto, el ruido no sólo no desaparece, sino que es deconvolucionado con
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el método y se ha expandido. La imagen F.27 d) muestra el resultado para un λ
= 10000 para el cual el blurring ha sido eliminado, pero el ruido persiste.

El problema que se trata de resolver en este apartado es el del blurring, no el
ruido, por lo que una σ = 0.1 es muy grande para este punto. Se añade un ruido
de σ = 0.01, inapreciable para el ser humano y se realiza el mismo experimento.
Simulando una situación real, se empieza con una λ = 1000 que hab́ıa sido sugerida
en el análisis de parámetros, ya que no se sabe que existe ruido.

Figura F.28: Imagen con gran blurring y ruido de σ = 0.01

(a) λ =
1000

(b) λ =
10000
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(c) λ =
100000

(d) λ =
1000000

Figura F.29: Resultado de deconvolución para differentes valores de λ al adicionar
ruido gaussiano.

Como el resultado de λ = 1000 no repara el blurring completamente, se piensa
en aumentar el valor de λ. Conforme se aumenta en un factor de 10, el resultado
cada vez es peor. Este último análisis demuestra que pese a que un análisis teórico
muestre que el λ óptimo es∞, conviene no aumentarlo por encima de cierto valor,
ya que puede haber algo de ruido inapreciable que puede empeorar drásticamente
el resultado.

En cuanto a la eficiencia del método, se ha evaluado también el tiempo de
ejecución. Nótese que los tiempos no vaŕıan demasiado en función de la longitud
de movimiento en ṕıxeles (Ver tabla F.3).

Longitud de movimiento Tiempo mı́nimo de convergencia
10 17 ms
100 55 ms

Tabla F.3: Tiempo de ejecución para el método de convolución.

F.4. Resultados Image Inpainting

La imagen utilizada en este apartado vuelve a ser Lena.jpg, la misma que se
utilizó en el apartado de denoising. Como primera simulación, se daña el 50 % de
la imagen y se recupera según el algoritmo de inpainting.
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Figura F.30: Imagen dañada Figura F.31: Imagen arreglada λ =
640

Figura F.32: Evolución de FdU

El algoritmo es muy potente, ya que es capaz de recuperar la imagen prácti-
camente en su totalidad. Hay que decir que en la realidad no se encontraŕıa un
resultado tan fiel a la realidad, puesto que en la función que repara la imagen se
debe introducir qué ṕıxeles son espurios. En esta aplicación se maneja la informa-
ción perfecta de qué ṕıxeles son defectuosos, lo que en la realidad no es posible.
Para que este algoritmo tenga una aplicación más realista, se debe crear un algo-
ritmo que sea capaz de calcular puntos espurios con precisión. Como ejemplo de
la potencia del algoritmo si maneja información perfecta, se introduce una imagen
dañada al 85 %.
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Figura F.33: Imagen dañada Figura F.34: Imagen arreglada λ =
640

Una vez se han mostrado los resultados del algoritmo, se expone la optimización
de parámetros:

Figura F.35: Evolución de λ Figura F.36: Evolución de τ

Al igual que en el caso anterior, vuelve a aparecer una λ infinita como óptima.
De nuevo, hay que tomar este resultado con precaución, porque en esta aplicación
se maneja información perfecta. Si no se detectan todos los ṕıxeles espurios. Para
demostrarlo, se presenta a continuación una imagen dañada al 50 %, donde tan
sólo se ha detectado la mitad de dañados y se aplica una λ muy elevada:
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Figura F.37: Imagen dañada 50 % Figura F.38: Imagen resultado sólo
detectando 50 % espurios

Por tanto, una λ muy elevada sólo es útil ante información perfecta, de modo
que es mejor no tomarla demasiado elevada. De esta manera, el valor de λ óptimo
se estima en 640 y el valor óptimo de τ se estima en 0.025.

Inpainting no sólo es capaz de recuperar una imagen dañada por ṕıxeles. Es
posible que algunas filas o columnas enteras sean dañadas en algún instante del
tratamiento de imagen. El algoritmo inpainting es capaz de recuperar la imagen
original razonablemente bien:

Figura F.39: Imagen dañada 10 %
con ĺıneas

Figura F.40: Imagen resultado del
10 % de ĺıneas

76



F. Resultados Sección F.4

Figura F.41: Imagen dañada 50 %
con ĺıneas

Figura F.42: Imagen resultado del
50 % de ĺıneas

El el caso del 10 % no se aprecia diferencia entre la imagen obtenida y la imagen
real. En el caso del 50 % hay zonas de la imagen dañada donde hay hasta 10 ĺıneas
seguidas dañadas. Este hecho provoca en el algoritmo zonas en las que no es del
todo preciso, pero el resultado sigue siendo muy satisfactorio.

No sólo es capaz de recuperar la imagen en caso de que haya ĺıneas o ṕıxeles
dañados, también se puede recuperar una zona relativamente grande que ha sido
perdida, de esta manera:

Figura F.43: Imagen dañada al 5 %
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Figura F.44: Imagen arreglada tras
200 iteraciones

Figura F.45: Imagen arreglada tras
20000 iteraciones

El algoritmo Image Inpainting repara la zona dañada, pero cuanto mayores son
las áreas a reparar, más costoso es el método. Aśı, con 200 iteraciones bastaba para
reparar el punteado completamente, aunque éste fuera del 50 % de la imagen, ya
que se tiene mucha información alrededor de cada espurio para que en pocas re-
peticiones se alcance el resultado óptimo. En las ĺıneas el problema es algo mayor,
aunque también se soluciona con relativamente pocas iteraciones. Sin embargo,
cuando son superficies compactas las que hay que reparar, se requiere un número
muy elevado de repeticiones. Aśı, con 200, el resultado es insatisfactorio. Sin em-
bargo, aumentando a 20000 repeticiones, se obtiene un resultado que incluso trata
de adoptar los colores del sombrero en la zona más clara y en la zona más oscura.

Figura F.46: Imagen dañada al 20 %
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Figura F.47: Imagen arreglada tras
10000 iteraciones

Figura F.48: Imagen arreglada tras
200000 iteraciones

Cuanto mayor es la superficie, mayor es la cantidad de ṕıxeles a estimar. De esta
manera, si se daña la imagen con un cuadrado que ocupa el 20 % de la imagen, el
resultado tras 10000 iteraciones sigue siendo insatisfactorio, ya que el algoritmo ha
rellenado el área dañada con la tonalidad del fondo de la imagen. Si se aumenta la
cantidad de iteraciones hasta 200000 se observa que el algoritmo ya ha convergido,
no aportará solución mejor que la obtenida, de modo que está acotado.

Figura F.49: Imagen dañada en el
hombro

Figura F.50: Imagen con el hombro
arreglado

En la figura F.50 se puede comprender cómo evoluciona el algoritmo inpainting.
Las esquinas del cuadrado dañado toman los valores próximos a ellas de forma que
se prediga el interior desconociendo la profundidad de las tonalidades.

En cuanto a los tiempos, el algoritmo se comporta de la siguiente manera:
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Tipo de dañado % de daño Tiempo mı́nimo de convergencia
ṕıxeles 50 % 20 ms
ṕıxeles 20 % 14 ms
ĺıneas 50 % 63 ms
ĺıneas 20 % 31 ms
área 20 % 169 ms

De esta forma, se puede observar que la variación de tiempo en función de la
cantidad del % de ṕıxeles dañados es ı́nfima. No es aśı sin embargo la variación del
tiempo respecto al tipo de dañado, siendo el dañado por ṕıxeles el más rápido, el
dañado por ĺıneas el medio y el dañado por área el más lento.
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Apéndice G

Manual de usuario

G.1. Ventana Principal

Una vez ejecutado el programa, aparece la siguiente interfaz:

Figura G.1: Ventana Principal

Donde se puede escoger entre los cuatro programas realizados, habilitando la
posible implementación futura de la Estimation y Segmentation. Una vez se pulsan
los botenes correspondientes, aparecen las nuevas interfaces descritas a continua-
ción:
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G.2. Ventana Denoising

Cuando se escoge la opción Denoising se abre la siguiente interfaz de usuario:

Figura G.2: Interfaz denoising al inicio de ejecución

Punto 1. El botón lleva asignada la elección de una imagen. Al pulsarlo, se abre
una ventana que permite navegar por las carpetas del sistema y escoger la imagen
deseada. Automáticamente esta imagen se guarda en la memoria del programa y
se muestra en el hueco habilitado para Imagen original. Siempre que se introduce
una imagen, se daña o se arregla, cuando se muestra en su lugar de la interfaz, se
modifica su tamaño para que se ajuste al hueco que le corresponde.

Punto 2. En el desplegable inferior al botón Adicionar ruido se escoge el tipo
de ruido que se desea: un ruido gaussiano de valor σ el que se introduce en el
espacio habilitado para ello, o el ruido de sal y pimienta, al que se le introduce
como parámetro el porcentaje de imagen dañada que se desea. Este porcentaje se
introduce en el hueco donde ahora se ve la palabra sigma. Al cambiar el tipo de
ruido, se cambia el nombre sigma por % para hacerlo más intuitivo para el usuario.
La imagen dañada se guarda en memoria y se muestra en el widget Imagen ruidosa.

Punto 3. La ejecución del programa depende del algoritmo utilizado. El des-
plegable que se encuentra en esta zona permite elegir entre TV-ROF, Huber-ROF
y TV-L1. Una vez que se escoge un método se habilitan espacios para introducir
los parámetros en función del método (por ejemplo, en TV-ROF, θ depende de
τ y λ, por lo que sólo se habilitan estos dos últimos) con unos parámetros que
convergen cargados por defecto. Una vez se pulsa el botón, se ejecuta el algoritmo
en la tarjeta gráfica y muestra por pantalla la imagen resultado.
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Punto 4. La gráfica muestra en escala logaŕıtmica o decimal en función del des-
plegable la evolución del GAP o función de enerǵıa según el caso de los algoritmos.
Aśı, se puede observar que en cada iteración el GAP decrece hasta 0, valor que
toma cuando el método ha convergido. Por su parte, la función de enerǵıa nunca
valdrá 0, alcanzará un mı́nimo en el que se mantendrá cuando haya convergido.

Punto 5. Tras la ejecución del algoritmo se muestra por pantalla la imagen
resultado, la evolución del GAP o función de enerǵıa y el tiempo de cómputo. Este
tiempo de cómputo es el que invierte el algoritmo en realizar los cálculos propios
del algoritmo, descontando el tiempo invertido en calcular el GAP, ya que éste es
más de cien veces mayor y es absurdo calcular el GAP en cada iteración para saber
si el método ha convergido. Si no se sabe con exactitud las iteraciones necesarias
para converger, es computacionalmente más barato aumentar en uno el orden de
las iteraciones previstas y no calcular el GAP, que es muy costoso.

Punto 6. Las pestañas de la intefaz. Aqúı se puede cambiar entre las diferentes
opciones.

A continuación se muestra la interfaz una vez se ha reparado una imagen. El
ruido generado es de sal y pimienta y se soluciona mediante el único algoritmo
que lo soluciona: El TV-L1. Se puede observar cómo σ se ha cambiado por % al
cambiar el tipo de ruido y el resultado en logaŕıtmico. En TV-L1 se calcula la
función de enerǵıa y no el GAP aśı que también ha cambiado en los ejes de la
gráfica. El TV-L1 es un método muy rápido y con tan sólo 100 iteraciones y ante
tan poco ruido, tarda muy poco tiempo en finalizar la ejecución.

Figura G.3: Interfaz denoising tras simulación

Se muestra ahora la pestaña de Evaluación de Parámetros vaćıa, para explicar
su funcionamiento.
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Figura G.4: Interfaz denoising parámetros al inicio de ejecución

Punto 1. De nuevo se puede escoger el método que se desee. Además, se debe
elegir qué parámetro se va a evaluar colocando un tick donde se desee. Una vez
se elige el parámetro, se asignan unos parámetros por defecto en śı mismo y los
demás. En el escogido se habilitan tanto el mı́n, máx y el paso. En los demás, sólo
se habilita el mı́n, donde se coloca el valor asignado al otro parámetro. Se evalúa
el algoritmo para el valor de cada parámetro seleccionado entre el mı́n y el máx,
iterando según el paso. La cantidad de veces que se ejecuta el algoritmo es por tanto
pmax−pmin

ppaso
siempre redondeando hacia arriba para asegurar que se evalúan los dos

extremos. Aśı, conforme mayor sea la diferencia entre el min y el max y menor sea
el paso, más tiempo tardará en ejecutarse la evaluación de parámetros. También se
debe considerar que en algunos algoritmos hay ĺımites de convergencia en algunos
de ellos. Si los ĺımites son demasiado amplios podŕıan originarse problemas de no
convergencia en algún método.

Punto 2. Tras la evaluación, aparecerá el ratio Señal-Ruido si se escoge λ o α
y las iteraciones hasta convergencia para τ y θ. La gráfica representará el valor
evaluado en el rango del parámetro.

Se muestra un ejemplo solucionado. Se trata de la evaluación de α en el algo-
ritmo de Huber ante un ruido gaussiano.
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Figura G.5: Interfaz denoising parámetros al final de ejecución

G.3. Ventana Zooming

Una vez pulsada la opción de Zooming en la ventana principal, aparece la
siguiente interfaz de usuario.

Figura G.6: Interfaz zooming al inicio de la ejecución

Punto 1. La organización de la interfaz ha cambiado un poco. En este caso,
aparece un hueco grande donde aparecerá la imagen ampliada. Al ser negro en
el inicio no se puede ver la zona donde aparecerá la imagen pequeña, que es la
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esquina superior izquierda de la zona negra. Zooming consiste en una ampliación
de la imagen de partida. Si esta imagen es de 100x100 y se amplia con un factor de
5, la imagen resultante es de 500x500. En una interfaz compacta es imposible de
modelar, pues la imagen resultante se podŕıa solapar con la gráfica o los paráme-
tros si hubiera un factor de escalado muy grande. La decisión que se tomó para
representar de una forma gráfica la ampliación es fijar el tamaño de la grande en la
interfaz, variando en tamaño de la pequeña. El algoritmo trabaja con los tamaños
reales pero a la hora de mostrar por pantalla se ajusta a lo dicho anteriormente.
Aśı se puede apreciar cómo vaŕıa la relación de tamaños. Se debe introducir un
factor de ampliación lo suficientemente grande respecto a la imagen original para
que supere el tamaño de 400x400 que tiene el hueco para la imagen grande. Si
es más pequeña el algoritmo funciona igual y la imagen queda representada de la
misma manera, pero para ajustarse al tamaño se realiza una interpolación lineal
que provocará que el resultado final sea una mezcla del primal dual (lo que se rea-
liza en el algoritmo) y una interpolación lineal (lo que se trata de evitar al realizar
el primal dual).

Punto 2. El factor de escalado introducido por defecto es 2. Una vez que se
edita, el tamaño asignado a la imagen pequeña vaŕıa, aunque si no se ha ejecutado
el programa no se aprecia al ser la zona de color negro. Se expone a continuación
la interfaz resultado con dos diferentes escalados: 2 y 10.

Figura G.7: Interfaz zooming al final de la ejecución, s = 2
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Figura G.8: Interfaz zooming al final de la ejecución, s = 10

Con los ejemplos se entiende algo mejor cómo se debe interpretar la interfaz.
Para distintos escalados, se observa la diferencia existente entre la imagen original
y la imagen ampliada. Además, se pueden hacer pruebas con el parámetro λ,
observando que aunque en la imagen de escalado 2 parece óptimo, en la imagen
de escala 10 el resultado está más difuminado. También a igual valor de τ y θ,
se puede observar en la gráfica y tiempo de cómputo la diferencia en iteraciones
hasta convergencia y en tiempo de cómputo existente en función del escalado.

Se muestra a continuación la interfaz de la evaluación de parámetros antes y
después de la ejecución:

Figura G.9: Interfaz zooming parámetros al inicio de la ejecución

Punto 1. De nuevo se puede escoger qué parámetros evaluar. En este caso el
resultado no depende de α de forma que el parámetro ha desaparecido. Los dife-
rentes valores del resto son inicializados con parámetros que convergen y, al igual
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que en la interfaz denoising, pueden variar como desee el usuario. Es cŕıtico tener
cuidado con la introducción del parámetro λ, que mediante una dependencia con
τ y s puede provocar la no convergencia del método y podŕıa dar como resulta-
do una imagen completamente blanca. Es habitual en evaluación de parámetros
colocar ĺımites de evaluación muy separados con un paso muy pequeño con el fin
de obtener una gráfica precisa. Estos ĺımites deben introducirse con cuidado o la
gráfica de SnR podŕıa carecer de sentido. Si se observa en dicha gráfica algo ilógico
tan como una cáıda o una subida muy brusca en el valor de SnR, probablemente
sea porque el método no ha convergido y se puede saber a partir de qué valor
de λ sucede este fenómeno. Se muestra a continuación el resultado del método
convergiendo y no convergiendo:

Figura G.10: Interfaz zooming parámetros al final de la ejecución que converge

Figura G.11: Interfaz zooming parámetros al final de la ejecución que no converge

Se observa para este segundo caso que el método a partir de λ = 3200 no
converge. Según la ecuación:
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λ < µs4/(s2 − 2) (G.1)

Sabiendo que µ = 1
τ
, que τ = 0.01 y que s = 4, sólo se asegura convergencia

para valores de λ menores a 1828,57. Este valor es aproximadamente el punto en
el que en el primer experimento la SnR empieza a decrecer. Se debe calcular este
valor antes de lanzar ninguna simulación, porque sino podŕıa aparecer un resultado
como el de la figura G.11.

G.4. Ventana Deconvolution

Una vez pulsada la opción de Deconvolution en la ventana principal, aparece
la siguiente interfaz de usuario.

Figura G.12: Interfaz deconvolution al inicio de la ejecución

La interfaz es calcada a la de denoising. La diferencia reside en que donde antes
se generaba ruido, ahora se genera movimiento. El valor de la longitud en ṕıxeles
de movimiento está acotado, ya que la imagen tiene una dimensión y en caso de
exigir un movimiento demasiado grande, el algoritmo toma ṕıxeles exteriores a
la imagen, volviéndola completamente negra. Se sugiere no introducir un valor
superior a 300. El ángulo no tiene limitaciones.
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Una vez ejecutado el programa se obtiene lo siguiente:

Figura G.13: Interfaz deconvolution al final de la ejecución

La pestaña de los parámetros sin ejecución toma la siguiente forma:

Figura G.14: Interfaz deconvolution parámetros al inicio de la ejecución

Esta interfaz no introduce novedad, de nuevo no se deben introducir valores
elevados de longitud. Si se ejecuta el algoritmo aparece un resultado de la siguiente
manera:
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Figura G.15: Interfaz deconvolution parámetros al final de la ejecución
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G.5. Ventana Inpainting

Una vez pulsada la opción de Inpainting en la ventana principal, aparece la
siguiente interfaz de usuario.

Figura G.16: Interfaz inpainting al inicio de la ejecución

Punto 1. La única diferencia que aparece en esta interfaz respecto a las anterio-
res es el dañado de la imagen. Se escoge el porcentaje de imagen dañada y el tipo
de daño que se quiere aplicar. Se puede escoger entre dañado por ṕıxeles, ĺıneas o
área. Este dañado es aleatorio de forma que no se escogen los ṕıxeles, ĺıneas o área
dañada, tan sólo su magnitud.

Se presenta el resultado ante ĺıneas:
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Figura G.17: Interfaz inpainting al final de la ejecución

La pestaña de parámetros toma la siguiente forma:

Figura G.18: Interfaz inpainting parámetros al inicio de la ejecución

Es muy similar a las anteriores, si se lanza el programa se obtiene lo siguiente:
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Figura G.19: Interfaz inpainting parámetros al final de la ejecución
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