Departamento de
Informatica e Ingenieria
de Sistemas
Universidad Zaragoza

=3

[
'y
N

Universida

Proyecto Fin de Carrera de Ingenieria Industrial

Procesamiento de imagenes a través de métodos
variacionales y de optimizacién convexa

Francisco Javier Casanaba Benedé

Director: Lina Maria Paz

Departamento de Informética e Ingenieria de Sistemas
Centro Politécnico Superior

Septiembre de 2013

A mi familia, muy especialmente a mi hermano, quien seguro superara todas las
piedras que la ingenieria ponga en su camino.

Hay una fuerza motriz mds poderosa que el vapor, la electricidad y la energia
atomica: la voluntad.
Albert Einstein

Agradecimientos

Me gustaria que estas lineas sirvieran para expresar mi enorme gratitud a todas
aquellas personas que me han ayudado durante la realizacién de este proyecto,
con mencion especial a mi tutora Lina Maria Paz, quien con una generosidad
fuera de lo comin siempre tuvo un hueco para mi cuando lo necesité.

Sergio, mi companero de fatigas, se merece un apartado exclusivo en este
capitulo, pues su compania y conocimientos de programacién durante estos meses

han hecho mucho mas agradable mi trabajo.

Finalmente, agradecer a mi familia y amigos su comprensién y apoyo durante
una etapa en la que no he podido atenderles todo lo se merecen.

A todos ellos, de corazén, muchas gracias.

Indice

1. Introduccién
1.1. Conceptos generales
1.1.1. La transformacion de Legendre-Fenchel
1.1.2. Ladualidad
1.1.3. Funciones no siempre diferenciables
1.1.4. Funciones convexas
1.2. La funcién de energia
1.3. E1GAP

1.4. Organizacién de la memoria

2. Denoising
2.1, Motivacidono
2.2, Elmodelo TV-ROF oL
2.2.1. Calculodel GAP
2.2.2. Los pardametros del algoritmo
2.3. El modelo Huber-ROF
2.3.1. Elpardmetroa
2.4. Elmodelo TV Ly s

3. Zooming
3.1. Motivacion Lo
3.2. Elmodelo de energia

4. Image Deconvolution
4.1. Motivaciono
4.2. Modelodeenergia.

5. Image Inpainting
5.1. Motivacidn
5.2. Elalgoritmo

11
11
11
13
14
16
17
18

21
21
21

25
25
26

INDICE INDICE
6. Conclusiones 31
A. Gestion del proyecto 33
B. Deducciones matematicas 35

B.1. TV-ROF 35

B.1.1. Calculode 0,E(u,p) 35

B.1.2. Célculo de 0, E(u,p) o oo 35

B.2. HUBER-ROF 36

B.2.1. Calculode 0,E(u,p) 36

B.3. TV-L1 36

B.3.1. Célculo de 0, E(u,p) o 36

B.4. Derivacién de la energia para el problema del zooming 36
B.5. Derivacién de la funcion de energia para el problema de la decon-

volucidn 38

C. Tipos de ruido 41

C.1. El ruido Gaussiano 41

C.2. El ruido de sal y pimienta 42

D. Software 45

D.1. El CMakelist.txt 45

D.2. Archivos deinterfaz L. 47

D.3. CUDA 48

E. Programacién 51

F. Resultados 55

F.1. Resultados Denoising 55

F.1.1. Evaluacion del modelo TV-ROF 55

F.1.2. Evaluacion del modelo Huber-ROF 58

F.1.3. Evaluacién del modelo TV-L1 59

F.1.4. Comparacién de modelos 61

F.2. Resultados Zooming 64

F.3. Resultados Deconvolution 68

F.4. Resultados Image Inpainting 73

G. Manual de usuario 81

G.1. Ventana Principal L 81

G.2. Ventana Denoisingo oL 82

G.3. Ventana Zooming 85

G.4. Ventana Deconvolution 89

II

INDICE INDICE

G.5. Ventana Inpainting 92

IIT

Indice de figuras

1.1.
1.2.
1.3.

2.1.
2.2.
2.3.

4.1.

4.2.

4.3.

C.1.

F.1.
F.2.
F.3.
F.A4.
F.5.
F.6.
F.7.

F.8.
F.9.

Recta tangente a una funciéon cuadratica 3
Ejemplos de funciones convexas 5
Evolucion de los procesos de minimizacion y maximizacion para las
variables Primal y Dual respectivamente. Asi, el objetivo es alcanzar
el punto silla donde la funcién Primal es minima y la funcién Dual

€S MAXIMA. . .« v v v v e e e e e e e e e e 7
Resultados para valores extremos de A 15
Variacién del parametro o de la norma de Huber 18

[lustracién del concepto de subgradiente para la funcién valor absoluto 19

Transformacién entre el vector de velocidad del objeto y el vector
de velocidad en el plano de imagen L. 26
Calculo de una mascara de motion blurring. Los valores obtenidos
estan normalizados, de manera que la suma global de todos los
elementoses 1. 27
Representacion del proceso de convolucién sobre la imagen de en-
trada (derecha), dado un operador de motion blurring desplazado

circularmente (izquierda). Lo 27
Comparacion de la funcion gaussiana para diferentes valores de o . 41
Primer experimento del modelo TV-ROF 59
Evolucién del GAP respecto a las iteraciones 56
Imagen ruidosa c =03 56
Imagen resultado A =8,0 TV-ROF 56
Evaluacion de pardmetros Ay 7 Y

dependencia SnR respecto a A en TV-ROF para un ruido de o = 0.3. 57
Comparacion de resultados cuando se incrementa el ruido en la ima-

gen y se aplican valores diferentesde A\. 58
Resultado por el algoritmo primal dual para el modelo Huber-ROF. 58
Evolucion del GAP por iteraciéon para el modelo Huber-ROF. . . . 59

v

INDICE DE FIGURAS INDICE DE FIGURAS

F.10.Evaluacién de parametros para el modelo Huber-ROF 59
F.11.Resultado obtenido para el modelo TV-L1 60
F.12. Evolucion de la funcién de energia por iteraciéon para el modelo TV-L1. 60
F.13.Evaluacién de parametros para el modelo TV-L1. 61
F.14.Comparaciéon de modelos. Resultados obtenidos al aplicar el con-

junto de parametros 6ptimos en cada caso. 61
F.15.Resultados para los modelos evaluados ante la adiciéon de ruido de

sal y pimienta. L Lo 63
F.16.Evolucién de SnR frente a ruido de Sal y Pimienta en TV — L1 . . 63
F.17.Normas L1y L2 64
F.18.Resultado del zooming para diferentes valores de escala deseados. . 64
F.19.Resultado de zomming paras =2, A=100. 65
F.20.Evaluacion de precision respecto a la variacién del parametro A,

paras =4y s =28 66
F.21. Evaluacion de precision para el pardmetro 7, paras =4y s=8 . . 67
F.22. Evaluacion de la precision para el parametro 0, paras =4. 68
F.23.Resultado obtenido tras la deconvolucién aplicando el algoritmo pri-

mal dual. 69
F.24.Resultado de deconvolucién para una imagen degradada con d,=100 69
F.25.Evaluacion de pardmetros oL 70
F.26.Imagen con blurring y ruidode o =0.1 70
F.27.Resultado de deconvolucién para diferentes valores de A al adicionar

ruido gaussiano.o 71
F.28.Imagen con gran blurring y ruidode o =0.01 72
F.29.Resultado de deconvolucion para differentes valores de A al adicionar

ruido gaussiano. 73
F.30.Imagen danada Lo 74
F.31.Imagen arreglada A =640 74
F.32.Evolucion de FdU 74
F.33.Imagen danada Lo 75
F.34.Imagen arreglada A =640 L. 75
F.35.Evolucion de A 75
F.36.Evolucion de 7 75
F.37.Imagen danada 50% 76
F.38.Imagen resultado sélo detectando 50 % espurios 76
F.39.Imagen danada 10% con lineas 76
F.40.Imagen resultado del 10% de lineas 76
F.41.Imagen danada 50 % con lineas 7
F.42. Imagen resultado del 50% de lineas 7
F.43.Imagen danada al 5% 7

INDICE DE FIGURAS INDICE DE FIGURAS

F.44 . Tmagen arreglada tras 200 iteraciones 78
F.45.Imagen arreglada tras 20000 iteraciones 78
F.46.Imagen danada al 20% L. 78
F.47.Imagen arreglada tras 10000 iteraciones 79
F.48.Imagen arreglada tras 200000 iteraciones 79
F.49.Imagen danada en el hombro. 79
F.50.Imagen con el hombro arreglado 79
G.1. Ventana Principal 81
G.2. Interfaz denoising al inicio de ejecuciéon 82
G.3. Interfaz denoising tras simulacion 83
G.4. Interfaz denoising parametros al inicio de ejecuciéon 84
G.5. Interfaz denoising parametros al final de ejecucion 85
G.6. Interfaz zooming al inicio de la ejecucién 85
G.7. Interfaz zooming al final de la ejecucion, s =2 86
G.8. Interfaz zooming al final de la ejecucion, s =10 87
G.9. Interfaz zooming pardametros al inicio de la ejecucién 87
G.10.Interfaz zooming parametros al final de la ejecucién que converge . 88
G.11.Interfaz zooming parametros al final de la ejecucién que no converge 88
G.12.Interfaz deconvolution al inicio de la ejecucién 89
G.13.Interfaz deconvolution al final de la ejecucién 90
G.14.Interfaz deconvolution parametros al inicio de la ejecucion 90
G.15.Interfaz deconvolution pardmetros al final de la ejecucién 91
G.16.Interfaz inpainting al inicio de la ejecucion 92
G.17 Interfaz inpainting al final de la ejecucién 93
G.18.Interfaz inpainting parametros al inicio de la ejecuciéon 93
G.19.Interfaz inpainting parametros al final de la ejecucion 94

VI

Resumen

En muchas aplicaciones de la vision por computador como por ejemplo, la recons-
truccion automatica de entornos en 3D, se parte del supuesto de la adquisicion
de imagenes de alta calidad para obtener soluciones de gran precision. Adicional-
mente, una gran variedad de aplicaciones en la robdtica usa sensores de vision
embebidos en plataformas moviles para llevar a cabo tareas de localizacion y reco-
nocimiento de lugares. Desafortunadamente, en la mayoria de los casos los sensores
de visién usados para estas tareas sufren diferentes efectos que deterioran la ca-
lidad de las imagenes, por ejemplo se puede considerar el efecto del blurring en
iméagenes que ocurre durante la exploracion en entornos bajo condiciones de po-
ca iluminacion o navegacién con plataformas que llevan a cabo movimientos de
dindmicas considerables.

Entre los problemas mas interesantes a tratar dentro del procesamiento de
imégenes, se encuentran los siguientes: 1-Filtrado de ruido (denoising): es el pro-
ceso mediante el cual la imagen debe ser recuperada filtrando el ruido al que se
encuentra expuesta inicialmente. 2-Deconvolucién (deconvolution): es el proceso
de correccion de una imagen generalmente mediante técnicas frecuenciales cuando
los pixeles se ven afectados por un movimiento brusco creando un efecto de blu-
rring. 3-Escalado (Zooming): en varias aplicaciones, la adquisicién de imagenes se
ve limitada al uso de baja resolucién debido al ancho de banda de transmision; el
escalado permite interpolar valores de intensidad de pixel para obtener imagenes
de alta resolucién donde los objetos se pueden apreciar de forma consistente. 4-
Restauracion de imégenes (inpainting) es un proceso que permite recuperar una
parte deteriorada de la imagen o que tiene algin objeto que la oculta, con el
objetivo de mejorar su calidad.

En este proyecto se ha desarrollado una aplicaciéon que permite tratar los di-
ferentes problemas del procesamiento de imagenes descritos en los puntos 1-4. El
algoritmo principal para la solucién de los distintos problemas se basa en la formu-
lacién de métodos variacionales y de optimizacion convexa. Son métodos complejos
que permiten usar distintas normas robustas de error (incluso no diferenciables)
tales como la norma de Huber y la variacion total. El algoritmo usado en es-
te proyecto ha sido adaptado a los diferentes problemas bajo una implementaciéon
rapida y eficiente a través del calculo masivo paralelo usando tarjetas graficas GPU
(graphics processing units). Estas caracteristicas resultan particularmente atracti-
vas para resolver problemas de la visién por computador donde las soluciones en
tiempo real juegan un papel importante.

Capitulo 1

Introduccion

El uso creciente de camaras dentro del campo de la robética aplicada en entor-
nos industriales ha incentivado el desarrollo del campo de la visién por computador.
Actualmente, es habitual encontrar sistemas de camaras fijas para la supervision
de productos en cadenas de montaje, asi como robots equipados con camaras em-
pleados en otros procesos importantes de fabricacién. A diferencia de otros sensores
como el laser, las caAmaras son escogidas debido a la cantidad informacion conte-
nida en las iméagenes y su bajo costo.

Sin embargo, ;qué pasa cuando la informacién contenida en las imagenes sufre un
deterioro? Si se toma una imagen en una cadena de montaje relativamente poco
iluminada, la camara debe emplear un tiempo de exposicién relativamente alto,
sufriendo el efecto cominmente conocido como "motion blurring”. Si tras tomar
una imagen, ésta es enviada a un computador para que extraiga su informacion, es
posible que se adhiera ruido a la imagen debido a defectos en el canal de transmi-
sion, a las condiciones climatolédgicas o defectos de la propia camara, complicando
la tarea de cualquier algoritmo de reconocimiento al que se quiera someter la ima-
gen. En ocasiones, el ancho de banda del canal de transmision restringe el envio
de imagenes de alta resolucién siendo necesaria una compresion de datos. Durante
la descompresion, las imagenes pierden informacion y se requieren algoritmos de
stuper resolucién o zooming capaces de estimar la informacion para minimizar la
pérdida de datos. Otro de los efectos interesantes surge debido a la obstruccion
de conjuntos vecinos de pixeles o regiones completas de la imagen. Consideremos
por ejemplo la obstruccién debida a suciedad en las lentes de las camaras o el
deterioro sufrido en las cintas antiguas de video. La restauracion de imagen o in-
painting trata de recomponer la imagen prediciendo lo que deberia haber en esa
zona obstruida.

El objetivo principal de este proyecto es aplicar algoritmos de procesamiento de
iméagenes para solucionar los diferentes efectos mencionados para su posterior utili-
zacion en aplicaciones industriales y de la robotica. Por simplicidad, en este proyec-

Seccién 1.1 1. Introduccién

to se hara referencia a los diferentes problemas de acuerdo a los nombres recibidos
en inglés: denoising, zooming, deconvolution (motion deblurring) e inpainting,.
En este proyecto se aborda el modelado de cada problema desde el punto de vista
de los modelos continuos variacionales. El porqué de esta seleccién se debe al gran
potencial que tienen dichos métodos para tratar la informacién densa de forma
robusta. Asi mismo, las soluciones proporcionadas para dichos métodos estan ba-
sadas en los avances desarrollados dentro del campo de la optimizacion convexa.
Desde este punto de vista, los algoritmos derivados permiten calcular soluciones
globales de forma eficiente debido al tratamiento independiente de los pixeles. Co-
mo resultado, los algoritmos usados en este proyecto permiten la explotacion del
célculo masivo paralelo en GPGPU (General Purpose Graphich Processing Unit)
siendo de gran importancia en las aplicaciones de tiempo real.

En este capitulo se introducen las bases teodricas de los algoritmos empleados en el
proyecto. En la seccion 1.1, se expondran los conceptos matematicos sobre los que
se sustentan los algoritmos empleados. Asi, se comienza definiendo la transforma-
cion de Legendre-Fenchel, como y por qué se aplica en la resolucién del algoritmo.
Se continta definiendo la dualidad, qué es el problema dual y cémo y por qué resol-
verlo. Para finalizar, se tratan los problemas de funciones no siempre diferenciables
y cémo poder transformarlos en una funciéon convexa resoluble. En la seccién 1.2,
se incluye la definicién de la funcion de energia, eje principal de los modelos que se
han utilizado en este proyecto. Al tratarse de un método numeérico, se debe definir
un criterio de parada, asi surge el concepto del GAP descrito en la seccién 1.3.
Finalmente, la seccién 1.4 muestra la organizacion de la memoria del proyecto,
suponiendo el fin de este capitulo de introduccion.

1.1. Conceptos generales

Los modelos usados para cada problema concreto se basan en normas que son
convexas pero no diferenciables, de forma que no se pueden utilizar algoritmos
de optimizacion convencionales. Ademas, el problema general consiste en la mini-
mizacion de una funcién de energia, funcién que no es necesariamente convexa y
por tanto no se puede alcanzar una solucién global. Con el fin de solucionar esta
situacién, se aplicard la transformacién de Legendre Fenchel (Apartado 1.1.1).
Esta transformacién requiere dualizar una funcién, motivo por el que se explica el
concepto de dualizacién y como se debe aplicar. Mas tarde se expone un ejemplo
de funciones no siempre diferenciables donde se dualiza con el fin de generar un
problema diferenciable en todo su rango. Para finalizar, se comenta la necesidad de
partir de una funcién convexa para el algoritmo de solucién, pues de lo contrario
no se podria obtener una solucién general. [2].

1. Introduccién Seccién 1.1

1.1.1. La transformacion de Legendre-Fenchel

La transformada de Legrendre-Fenchel (LF en adelante) [7] de una funcién
continua pero no necesariamente diferenciable se define como

f(p) = i‘ég{px — f(@)} (1.1)

La figura 1.1 ilustra la transformacién LF de una funcién cuadratica. Geométri-
camente se trata de la busqueda de un punto (z, f(x)) para el cual una recta de
pendiente p produzca el maximo corte con el eje vertical. El conjunto de rectas
tangentes forma una envolvente que representa a si misma la funcion.

p=[f'(z) (1.2)

y= flx)

y= flro)a — f*

xr

(0. —F%)

Figura 1.1: Recta tangente a una funcién cuadratica

La representacion general vectorial de la transformacion LF para funciones
multivariables se define como:

[(p) = itelg{xtp - f(x)} (1.3)

1.1.2. La dualidad

La dualidad es el principio por el que observamos una misma funcién desde dos
diferentes perspectivas: primal y dual. Si se supone que la transformacién LF es
reversible, se puede afirmar que

(z, f(z)) <= (p, [*(p) (1.4)

Seccién 1.1 1. Introduccién

donde p es la pendiente y f*(p) es el llamado conjugado convexo de la funcién
f(z). Un conjugado nos permite construir un problema dual que puede ser més
facil de resolver que el problema primal. Observando la figura 1.1, se puede afirmar
que cada punto de la funcion primal se puede representar por la pendiente de la
tangente a ese punto, obteniendo el dual. De esta manera, los puntos del dual son
las pendientes del primal, y los puntos del primal son las pendientes del dual. El
conjugado de LF es siempre convexo.

1.1.3. Funciones no siempre diferenciables

Observemos la ecuacién [2] definida al principio, donde p es la pendiente tan-
gente a f(x) en el punto x definida como la derivada f’(z) ;Qué sucede si la p no es
diferenciable en todo rango de z? La ecuacién comun de una recta es la siguiente:

y=pr—-c (1.5)

Si se modifica esta ecuacion para que se refiera a un punto xz* no diferenciable, se
puede reescribir como

flz*) =px* —c (1.6)

El problema dual de este punto no diferenciable se convierte en una funciéon lineal
en p. A pesar de la simplicidad de este ejemplo lineal, este mismo principio puede
emplearse en el caso de funciones no diferenciables ya que el resultado es una nueva
funcion dual en p que puede ser diferenciable. Una de las grandes ventajas del
problema dual es que pese a que el primal puede ser no diferenciable, el problema
dual si que lo es.

1.1.4. Funciones convexas

Los problemas de procesamiento de imégenes tratados en este proyecto se mo-
delan como un problema de minimizacién de una funciéon de energia. De forma ge-
neral, el punto Z es el minimo global de una funcién siempre y cuando Vf(z) =0y
la funcién sea convexa. Sin embargo, existen muchas funciones que no son siempre
diferenciables o convexas, por lo que no se puede realizar el cédlculo de su gradiente.
La figura 1.2 ilustra un conjunto de funciones convexas.

1. Introduccién Seccién 1.2

Cuadratica

2,51

|

1.5¢

0.5F

Figura 1.2: Ejemplos de funciones convexas

La funcion cuadratica es continua y diferenciable en todo su dominio. No asf la
funcion valor absoluto, que en el punto z = 0 no es diferenciable. En este tltimo
caso, se puede demostrar que la transformada de LF es convexa. Por tanto, basta
con realizar la transformacion de LF a una funcién para obtener una funcién
convexa.

1.2. La funcién de energia

Los métodos de procesamiento de imédgenes (Image Processing en inglés) se
basan en la minimizaciéon de una funcién de energia. Esta funcion esta formada
por dos términos: El primero de ellos es el llamado Regularizador. Este término
es el que cuantifica la variacién dentro de una propia imagen, tratando que las
diferentes superficies tengan una textura uniforme y las esquinas y bordes queden
lo méas definidas posibles. El segundo término es el denominado ”Data Term”,
que es el que cuantifica cudn distinta es la imagen solucién (imagen arreglada)
de la imagen original (imagen defectuosa). Al aplicar estos métodos se parte de
la base de que la imagen defectuosa contiene atin suficiente informacién para ser
restaurada, aunque no en su totalidad, pero si con un alto porcentaje de mejora
sobre su estado inicial. En general, la ecuacién de la funcién de energia a minimizar
es la siguiente:

gclél)r(l E(x) (1.7)
min F(Kz) + G(x) (1.8)

zeX

Seccién 1.3 1. Introduccién

Donde K : X — Y es un mapa lineal entre dos espacios vectoriales X e Y equipados
con un operador de producto escalar < -,- > y una norma |- | = |-,-]. G : X —
[0,+inf) y F* : X — [0,+1inf) son funciones propias convexas, semi-continuas
inferiormente [6].

El primer término de la ecuacion es el regularizador, el cual usa como unica
informacion la variable primal. El segundo cuantifica la variacién de la variable
primal respecto a su estado inicial. En cada caso particular de restauracién de
imagenes, la funcién de energia serd redefinida para una variable primal que co-
rresponderd a la imagen solucion definida en el dominio 2 € R.

A continuacién se dualiza esta funcién del que resulta un problema de minimi-
zacion y maximizacién sobre las variables primal y dual respectivamente.

min max{(Kz,y) — F*(y) + G(x)} (1.9)
rzeX yey
Este resultado es fundamental para derivar los algoritmos de optimizacién emplea-
dos en este proyecto.

1.3. El GAP

Una vez definida la funcién, es necesario generar un parametro que nos muestre
de una forma clara y concisa cuanto ha sido maximizada y minimizada la funciéon
de energia. Ese valor toma el nombre de GAP.

Para generar una funcion que defina el GAP se hace uso de la definicién de transfor-
mada LF, ya mencionada con anterioridad. Asi, si se observa la ecuacién anterior,
se puede apreciar que
P(Kx) = mix{(Kr.) — F*(y)) (1.10)
ye
En esta ecuacién se puede modificar el término (Kx,y) y transformarlo a (x, K*y),
obteniendo por tanto la ecuacion

min méx{ (e, K°g) — F(y) + G(a)} (1.11)

Si se realiza el siguiente procedimiento de la misma forma que el anterior:

mix{ (z, K°y) - Glx)} = G (K"y) (1.12)
min{~(r, K*y) + G2)} = ~G*(K"y)
min{~{z, ~K'y) + G(2)} = ~G"(~K"y)
min{ (z, K*y) + G(r)} = ~G"(~K"y)

1. Introduccién Seccién 1.4

Por lo que aparecen dos optimizaciones derivadas de la funcién de energia:

gél)r(l{F(Kx) + G(x)} (1.13)
méx{—G"(—K"y) — F"(y)}

yey

El GAP se define como la diferencia entre ambas optimizaciones:

GAP = min{F(Kx) + G(x)} - mix{~G" (=K"y) = F" (1)} (1.14)

Es el término mas preciso de optimizacion, pues la funcién de energia dualizada
debe ser minimizada respecto a una variable y maximizada respecto a otra (ver
figura 1.3). El GAP es decreciente (salvo en los instantes finales de convergencia,
donde aparece algo de ruido) y aporta una idea muy sencilla de cuanto se esta op-
timizando la funcién. No obstante, el calculo de GAP en ciertas aplicaciones puede
ser muy costoso o incluso imposible, ya que requiere una dualizacién que no siem-
pre se podra llevar a cabo. Cuando ésto sucede, simplemente se comprueba que la
funcién que se minimiza efectivamente es decreciente y alcanza un minimo.

Dual p

Figura 1.3: Evolucién de los procesos de minimizacién y maximizaciéon para las
variables Primal y Dual respectivamente. Asi, el objetivo es alcanzar el punto silla
donde la funcién Primal es minima y la funcion Dual es maxima.

1.4. Organizacién de la memoria

La memoria de este proyecto se estructurard de forma que, tras un primer
capitulo de introduccién, se expondran los diferentes problemas a tratar con sus
diferentes secciones. De esta forma:

Denoising: Se comienza explicando la motivacién por la que se desea resolver el
problema, dando ejemplos practicos donde podria ser necesaria. Denoising puede

Seccién 1.4 1. Introduccién

ser resuelto de diferentes formas posibles, dependiendo de la funcién de energia
utilizada. Asi, los métodos toman un nombre asociado a su resolucion. El regulari-
zador se denomina Total Variation cuando se resuelve segin la norma 2. En caso de
que se resuelva mediante la norma de Huber, se denominara ”Huber”. El término
G(z) se denomina L1 si se resuelve segin la norma 1 o ROF si se resuelve segun la
norma cuadratica. Asi, los tres posibles métodos de resolucion que se manejaran
son TV-ROF, HUBER-ROF y TV-L1. En los casos en los que sea posible, se cal-
culara el GAP. Una vez explicados los tres métodos, se finaliza haciendo referencia
a los resultados situados en el Apéndice F.

Zooming: Se comienza con una motivaciéon explicativa ofreciendo los motivos por
los que se plantea la resolucion del problema. Después se da una breve introduccion
al método numérico de Jacobi, necesario para la resolucién del algoritmo. Una vez
explicado, se deduce, explica y resuelve el algoritmo, incidiendo en las diferencias
respecto al caso anterior.

Image Deconvolution: Nuevamente, se introduce el problema mediante un apar-
tado de motivacion explicando por qué se produce este fenémeno y por qué es
importante solucionarlo. El siguiente apartado explica como obtener la méascara
que genera el blurring en la imagen. Es muy importante el calculo de esta mascara
porque serd necesaria en la resolucion del algoritmo. A continuacién se resuelve
dicho algoritmo.

Inpainting: Es el iltimo de los problemas a tratar. La estructura seguida es si-
milar a la de los casos anteriores. Se comienza con una explicacion en la que se
comenta porqué puede surgir y por qué solucionarlo. A continuacion, se deduce y
resuelve el algoritmo.

Anexos: Donde se encuentran tanto explicaciones acerca de la programacién, de
matematicas que no se introducen en la memoria por su complejidad pero que
son necesarias para la resolucion del algoritmo, resultados de los diferentes algo-
ritmos y un manual de usuario final, que es la conclusion definitiva del trabajo.
En este proyecto se ha trabajado en la solucion de distintos problemas, obteniendo
importantes datos en su resolucién tales como el gap, el tiempo de ejecucién, las
iteraciones que tarda en converger o cémo de fiable es el resultado final respecto
a imagen original, la que no sufre modificacion. Estos resultados dependen del
algoritmo obviamente, pero también de diferentes parametros que pueden estar
acotados por la convergencia del método, pero que poseen cierta holgura y pueden
variar lo 6ptimo del método. Asi, se ha generado una aplicaciéon donde se permite
al usuario escoger entre los cuatro problemas citados y proceder a su resolucion.
Cada uno de ellos tiene dos posibles modos de resolucion. El primero de ellos,
llamado Programa Principal permite al usuario introducir la imagen, danarla en
los casos que sea necesario y arreglarla con los parametros que se requieran. Como
resultado se obtiene la imagen resultado y una grafica de evolucién de GAP o

1. Introduccién Seccién 1.4

funcién de energia respecto a iteraciones segun el caso. La segunda pestana es la
de Evaluacion de Parametros que es capaz de calcular el parametro éptimo para
una imagen concreta.

Capitulo 2

Denoising

2.1. Motivacion

Denoising se refiere al proceso de filtrado del ruido de una imagen. En la indus-
tria es muy probable encontrar imagenes que deban someterse a un tratamiento de
este tipo. Por ejemplo, en una cadena de manufactura de muebles hay gran can-
tidad de virutas esparcidas por el aire, que pueden perturbar la imagen. También
en el envio de datos se puede anadir ruido que la perturbe. Mediante un algorit-
mo primal-dual somos capaces de recuperar razonablemente la imagen original,
pudiendo someterla asi a cualquier algoritmo de reconocimiento, de medicion o
de control de calidad. A continuacién se va a tratar el problema utilizando tres
modelos diferentes que permiten analizar el impacto al cambiar la norma tanto en
el regularizador como en el data term: modelo ROF, el huber ROF y el TVLI1.

2.2. El modelo TV-ROF
El modelo ROF se define como el problema variacional
) A 2
min [[Dul +5 | u—g |3 (21)
v oJa

Donde u es la imagen resultado, ¢ la imagen original (la que tiene ruido) y A es
un parametro utilizado para definir la acomodacion entre los dos términos de la
ecuacion. Esta ecuacion es continua, como una imagen se divide en pixeles y éstos
son discretos, se reescribe de la siguiente forma

, A
min | Vu [+3 [u =g I3 (2:2)

11

Seccion 2.2 2. Denoising

El conjugado convexo de una norma L, es una funcién indicadora definida en la
ecuacion 2.3

o(p) =0 st||pll<1
o(p) { d(p) = oo en cualquier otro caso (2.3)

Al aplicar la transformacién de LF sobre el término de regularizacién representado
por la norma || . ||; se obtiene:

IV = méax({p, Vu) — 0,(p)) (2.4)

Se puede expresar este problema de la forma primal-dual de la siguiente manera:

o A 2
min max(p, Vu) + 5 [l v =g |l; ~0,(p) (2:5)

Esta funcion es la funcién de energia sobre la que se va a trabajar. Para calcular
su minimo respecto al primal y su maximo respecto al dual, se debe derivar par-
cialmente respecto a esas variables. La derivada de la energia respecto a la variable
dual se establece como:

A
0B (u,p) = 0p((p, Vu) + 5 [= g [I5 =0,(p)) (2.6)
Por tanto se puede demostrar el siguiente resultado:
OpE(u,p) = Vu (2.7)

Se realiza el mismo procedimiento para la variable primal:

A
0uE(u,p) = 0u((p, V) + 5 || u = g I3 =0,(p)) (2.8)
De la misma manera, se obtiene que:
OuE(u,p) = —divp + AMu — g) (2.9)

El Apéndice B incluye un desarrollo completo de estas derivadas. Las ecuaciones 2.7
y 2.9 son necesarias para derivar los algoritmos iterativos de gradiente descendente
y ascendente para actualizar las variables primal y dual respectivamente. En el
problema de maximizacion de la variable dual se requiere la aproximacion del
gradiente de manera que siempre se avance en la direccién ascendente, ésto significa
ir en la direccion del gradiente, por tanto, el paso de actualizacion se deriva como:
n+l _ .n
OpE(u,p) = Vu = — (2.10)

o

12

2. Denoising Seccion 2.2

El denominador de esta ultima ecuacién es es el resultado de la proyeccion sobre
una bola [7] de la variable dual de manera que se cumple con la restriccién impuesta
por la funcién indicadora ¢, definida en la ecuacién 2.3. Con un procedimiento
similar, se aproxima la derivada de la funcién respecto a la variable primal. Dado
que se trata de un problema de minimizacién, la derivada se aproxima como un
paso de gradiente descendente, obteniéndose el siguiente resultado:

OuE(u,p) = —(—divp + A(u"t* — g)) = - (2.11)

Donde el signo negativo que se le asigna a 0,F(u,p) se debe a que en cada paso
se busca la direccion en el sentido contrario del gradiente.

Para agilizar el proceso y lograr una rapida convergencia, se puede introducir un
paso de relajacion. A continuacion se muestra la estructura general del algoritmo
primal-dual:

il __ piioVu
p "~ maéx(1,|p"+oVul)
un+1 _ urdivp™ 4T)Ag
I4+7A (2.12)

_ 1 _ __ o
en — \/TW’ Tn+l = enTna On+1 = ﬁan
ﬁanrl — unJrl + en(In+l _ xn)

Donde en cada iteracion se actualizan las variables primal y el dual asi como
una variable auxiliar 4 la cual introduce el paso de relajacion. Los pardametros 7y
o definen la escala del paso dado en la direccién positiva o negativa del gradiente
en cada caso [6]. Mds adelante se hablard de dichos pardmetros.

2.2.1. Calculo del GAP

Se parte de la ecuacion 1.14 definida en el capitulo 1, la cual se trae aqui por
conveniencia:

GAP = min{F(Kz) + G(z)} - méx{~G"(~K"y) - F*(y)} (2.13)

La minimizacién es relativamente sencilla, pues corresponde con la funcién de
energia ya aportada. Es el la maximizacién del dual donde se debe operar. Se

comienza con la simplificacién de que F*(y) = 0. la funciéon G(u) en el modelo
TV-ROF se define como:

Gy =3 lu—g 3 (214)

La dualizacion de dicha funcién corresponde a:

. A
G*(p) = sup(u’p — 5 lu—g 13) (2.15)

13

Seccion 2.2 2. Denoising

Para calcular el supremo, se deriva respecto a la variable u y se iguala a 0. Se
sustituye el valor de u que hace méxima la funcién y se obtiene el valor de G*(p):

A
du(u'p—5 lu=gll3) =p—Au—g)=0 (2.16)

2
% p
G*(p) = _||2)\H +9"p

Se sustituye el valor p dual por la variable dual que exige la formulacion anterior
p=—ky

—k* 2
G*(—k"y) = I=Fy 7 + 9" — k*y (2.17)
2\
Donde el valor de k*y es la divergencia de la variable dual del algoritmo. Al final,
para calcular el GAP en cada iteracion, la ecuacion a aplicar es la siguiente:

| divp ||

A
AP = 2lu—gll -
G Vul+ 5 u=gl o

— g divp (2.18)

2.2.2. Los parametros del algoritmo

En el algoritmo calculado en los apartados anteriores aparecen una serie de
parametros con un significado fisico que requiere una explicacion para comprender
mejor el significado de las ecuaciones:

El parametro L

La L es el limite superior de la norma del operador V. Se acota su valor a /8
para asegurar la convergencia del método [3]. Se supone constante a lo largo de
todo el algoritmo debido a que el operador de gradiente no cambia.

El parametro \

A es un parametro que pondera el peso del término de datos respecto al término
de regularizacion en la funciéon de energia. De esta forma, un valor pequeno de A
tendra como consecuencia en el algoritmo una mayor minimizacién en el término
del regularizador que en el término de comparaciéon con la imagen defectuosa.
Adelantando lo que se expondra en la seccién de andlisis de resultados, en la
figura 2.1 se muestra un ejemplo de denoising para un valor de A elevado y valor
A pequeno:

14

2. Denoising Seccion 2.2

(a) Imagen con ruido (b) Imagen resultado

c¢) Imagen resultado
c=0,1 A=1 A = 1000

..

Figura 2.1: Resultados para valores extremos de A

A tan solo varia el resultado final y no tiene un efecto directo sobre la conver-
gencia del algoritmo. Para cuantificar la influencia del parametro A respecto a la
precisién, se calcula la potencia de la razén Senal/Ruido (SnR), definida como:

S M L (i,)
SooM (i, j — (i, §)

Este valor compara cémo de fiel es el resultado final respecto a la imagen verdadera,
es decir, la imagen antes de ser degradada. Por este motivo, el calculo del SnR sélo
se puede realizar para obtener una idea cualitativa de qué rango de pardmetros
son correctos para determinados algoritmos. La senal se define como la suma del
valor de todos los pixeles de la imagen verdadera I, al cuadrado. El ruido se define
como la diferencia entre la imagen solucién u y la imagen original I,, también al
cuadrado. Si se lograse obtener la imagen perfectamente arreglada, el valor de SnR

serfa infinito, por lo que el valor 6ptimo de A sera aquel que tenga el mayor valor
de SnR.

Psur = 101log; 2) (2.19)

El parametro 7

7 actualiza la variable primal u dentro de cada iteracion del algoritmo de op-
timizaciones. Es uno de los llamados ”pardametros de convergencia”, ya que su
valor aumenta o disminuye las iteraciones que necesita el método para converger.
7 suele estar acotado para asegurar que el método converge, y su valor siempre se
encuentra en el intervalo [0 1].

Para poder calcular qué valor de 7 es el 6ptimo, se ha propuesto un analisis
de error ejecutando el algoritmo primal dual para un nimero de iteraciones muy
elevado tal que se asegure su convergencia. Se define un error maximo admisible y

15

Seccién 2.3 2. Denoising

en cada iteracion del algoritmo se comprueba si el error entre la imagen obtenida
en cada iteracién u"*! y la imagen solucién u* guardada previamente es menor
que el error impuesto. El error se calcula segtn el siguiente algoritmo:

N.M
e= Z u?jﬂ —uj; (2.20)
1,J

El parametro 6

0 es un parametro de relajacion y aceleracion de convergencia. Se utiliza siempre
para calcular el valor de 4, que es el empleado en la actualizacién del dual. Si el
valor de 6 es muy elevado, 4 varia mucho respecto a la imagen resultado de la
iteracion, si es pequeno seran muy similares.

Su evaluacion es similar a la del parametro 7, de nuevo requiriendo una sobreite-
raciéon del algoritmo hasta convergencia. Tras comparar los diferentes algoritmos se
puede observar que las iteraciones requeridas para obtener la solucién final (cuando
la energfa alcanza su valor 6ptimo) varfan mucho més con 7 que con 6.

2.3. El modelo Huber-ROF

En el caso anterior, el regularizador se basaba en el uso de la norma L;. Ahora
se sustituye esta norma por la llamada "norma de Huber”. El proceso es similar
al anterior. Se parte del siguiente modelo de energia

) A
min | Vo |t +5 | u—g |3 (221)
La norma de Huber se define como
5 L Ja] <
|z fla=1 2o ST = (2.22)
zll=lzl -2 si |z| >«
|z [|=|z| - § ||

Al aplicar la definicion de dualizacion a través de la transformada LF, se obtiene
el siguiente resultado para el convexo conjugado de 2.22:

|| :
sy si |z <a 993
() { oo en cualquier otro caso (2.23)
Por tanto, el problema primal dual se define como:
i mix({p. V) ~ 3,p) — & | p | 45 [u—g [) (22
uelU peP " P 2 2 2 '

16

2. Denoising Seccion 2.3

Tal como se ha realizado anteriormente, se debe minimizar el primal y maxi-
mizar el dual. Para ello hay que derivar la funcién término a término y calcular el
resultado final.

En el Apéndice B se deducen los célculos de las derivadas respecto a las variables
u'y p. A partir de estos resultados, se calculan las actualizaciones en el primal y
en el dual. Nétese que el resultado obtenido para la variable primal es el mismo
que en el TV-ROF ya que el nuevo término anadido no depende de wu.

O,E(u,p) = Vu — ap"tt = L— (2.25)

0 E(u, p) = —(—divp + \u"*! — g)) = ——— (2.26)

Observando detenidamente las ecuaciones, se puede apreciar que el primal se
actualiza de la misma forma que en el anterior modelo. En el caso concreto de aw = 0
la variable dual se actualiza como en el modelo ROF. Como la norma de Huber es
convexa, es posible emplear el siguiente algoritmo de convergencia acelerada [3]:

p+ova
pTL+1 — l14+oa _
max(1,| ESEE YL)
n+l u+rdivp” Tl 471)g (227)
U =
1+7)A
unJrl — unJrl + e(un+1 . un)

El cdlculo del GAP es muy similar al caso anterior. Esta vez el valor de F*(y)
no es nulo y por tanto se debe anadir al resultado del caso anterior:

| divp |°

A , Q@
AP =(ul + 3 u—g | EPE gy - S ppr (229)

2.3.1. El parametro «

Sélo tiene sentido hablar de « en el algoritmo de Huber. En este algoritmo, el
término regularizador contiene la norma de Huber. Esta norma es diferente a la
norma L1, que es un valor absoluto, y a la norma ROF, que es la norma cuadratica.
Huber interactia entre estas dos normas, siendo equivalente a la primera cuando
a=0 y siendo equivalente a la segunda cuando a=1.

17

Seccién 2.4 2. Denoising

-

0.8 0.5
0.7
0.8
0.5

< 0.4

=
)
=

.

horma huber
=
m

horma huber

=
.

2
50.3
0.2
0.1

f=
T
=

i

=
o
o

1
N

-0.0 Q 05 1 -1 -0.5 0 0.9 1 -1 -0.5 0 0.9
% b b

(a) a=0.1 (b) @=0.5 (b) a=1

Figura 2.2: Variacion del pardmetro o de la norma de Huber

« es un parametro que optimiza el resultado, no la convergencia. Por este mo-
tivo, al igual que A, se debe evaluar el SnR para determinar su valor éptimo.

2.4. El modelo TV I,

Al igual que en el modelo ROF, se usa la variacién total para el término de
regularizacion pero esta vez se introduce la norma L, para el término de datos.

min || Vu [[y + [[A(u = g) [h (2.29)

Se dualiza de nuevo el regulador, obteniendo las mismas expresiones que en el
caso del modelo ROF. El problema que surge ahora es que la norma L; del término
de comparacién con la imagen original implica una nueva dualizacion.

I ACu = g) lli=méx({g, M(u — 9)) — 9q(q)) (2.30)

Se tendrd que definir un nuevo convexo conjugado, realizar una J, de la funcién
y ademas anadir nuevos términos. La derivacién es un poco mas complicada y
requiere del uso del concepto de subgradiente para derivar el término de datos
respecto a la variable dual.

La norma L; puede ser definida como una funcién a trozos, donde:

f'(u) st u>0
Ol f(w)] & —f'(u) st u<0 (2.31)
H’(w), f'(u)] si u=

18

2. Denoising Seccion 2.4

2.5} w=lx S 2.5} tp
2| 1 2t
1.5} 1 1.5}
1} 1 it
0.5} 1 0.5}

p=-1 p=1
0 0 * #*

-0,5 1 . . -0.,5
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(a) Funcién valor absoluto (b) Funcién derivada del valor
absoluto

Figura 2.3: Ilustracién del concepto de subgradiente para la funcién valor absoluto

Para el punto x = 0, puede haber un ntimero infinito de rectas tangentes a la
funcién en el intervalo p € [—f'(z), f'(x)]. Por este motivo aunque la funcién es
convexa, no es diferenciable. En nuestro caso concreto, se puede escribir lo siguiente

TA st u—g>TA
OuTAu —gli —TA s u—g<—TA (2.32)
indef si |u—g|l <7\
Este resultado se utiliza para resolver el algoritmo a partir del calculo de las
derivadas sobre la siguiente funcién de energia dualizada:

min méx((p, Vu) — &,(p) + A | v =g 1) (2.33)
Donde:
n+l _ n
9,E(u,p) = Vu — ap™™ = b . b (2.34)
. un—i—l —ut
OWE(u,p) = —(—divp + O\ || u — g |1= 7) (2.35)

Tras este desarrollo matematico, se obtiene el valor de ©u"*!. Gracias a la ecua-
cién 2.35, la actualizacion del primal se ejecuta de la siguiente manera:

u + rdivp"™t — TN si u—g>TA
w8 unt + rdivptt TN st u—g < —TA (2.36)
g si Ju—g|l <7

19

Seccién 2.4 2. Denoising

El algoritmo empleado es el mismo que en el caso del ROF.
Los resultados y conclusiones de los diferentes métodos del algoritmo se encuen-
tran en el Apéndice F.1

20

Capitulo 3

Zooming

3.1. Motivacion

Cuantas veces al reducir una fotografia y volver a ampliarla ha aparecido pixela-
da. Habitualmente, al expandir una fotografia cada pixel se repite por un factor de
ampliacion, lo que al final resulta una imagen muy poco realista, donde se aprecia
con demasiada claridad que ha sido ampliada y no es una imagen original.

La solucién mas habitual consiste en la aplicaciéon de una simple interpola-
ci6n lineal. Si se amplia cuatro veces una imagen (el doble de alto y el doble de
ancho), los pixeles generados no tienen el valor constante de su predecesor, sino
una interpolaciéon de sus vecinos. Asi se consigue una sensacion mas homogénea
en la imagen. Sin embargo, una interpolacién lineal podria producir un efecto de
difuminacién de la imagen, eliminando los detalles.

La aplicacién de un algoritmo primal dual para la minimizacién de una funcién
de energia puede ser una solucion al problema. Este apartado trata de su desarrollo
matematico, implementacion y conclusiones.

3.2. El modelo de energia

La ecuacién 3.1 define el problema zooming como la minimizacién de una
energia.

, A 2
min || Vu [l +5 || (Au—g) [l2 (3.1)

Una diferencia basica respecto al problema de denoising es el uso del operador
lineal representado por la matriz A. En el caso general del denoising esta matriz
puede considerarse como la matriz identidad. Sin embargo, en el problema del
zooming es de vital importancia, pues la matriz A influye directamente en término
de datos de la energia para transformar las dimensiones de la imagen ampliada u

21

Seccion 3.2 3. Zooming

en las dimensiones de la imagen de partida g. Consideremos el siguiente ejemplo,
en el que la imagen de entrada es:

=(21)

Y, con un factor de ampliacién de 2 (2 de ancho y 2 de alto), la salida es de la
forma:

15 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Donde los valores interiores de la matriz hacen referencia a la posicién de sus
términos en un vector de la matriz organizado por columnas.
La matriz A que transforma dimensiones de u es por tanto de la siguiente forma:

oo o =
[
oo o
o oo
o oo X
o oo X
o o= o
o o o

0 0
0 0
0 O
X X

o oo
o< oo

0 0
0 0
0 O
X X

o < oo
o < oo

La primera fila hace referencia al primer término del vector g, donde las posi-
ciones 1, 2, 5 y 6 apuntan a la matriz u. Fisicamente se puede interpretar como
que el pixel 1 de la matriz g se expande hacia los pixeles 1, 2, 5 y 6 de la matriz u.
Lo siguiente a analizar es cuanto vale la X. Hay tantas X en una fila como factor
de ampliacién elevado al cuadrado. Si cada X valiese 1, el producto de Au seria
de aproximadamente, factor al cuadrado veces el valor de g. El término de datos
valora la variacion entre la imagen de salida y la de entrada, por lo que para que
sean del mismo orden se requiere que X = S%, donde s es el factor de ampliacion.

A
n ma ZAu—gl? - 2
minméix(p, Vu) + o || Au—g [[; ~6,(p) (3:2)
El problema dual serd similar al de denoising ROF, pues el iinico cambio respec-
to a ese problema esta en un término que no depende de p. El procedimiento para
derivar el paso de actualizacion de la variable primal se describe en el Apendice
B4
" = (I 4+ 7AATA) " " + rdivp™™ + 7AATg) (3.3)

La expresion 3.3 requiere de la solucion de un sistema lineal de ecuaciones de la
forma Mx = b que en muchos casos puede llevar al desarrollo de un algoritmo muy

22

3. Zooming Seccion 3.2

lento con dificultad en su paralelizaciéon mediante GPU. Para evitar este problema
se utiliza el método de solucién de ecuaciones de Jacobi. [1]. Si se sustituye p = %,
se obtiene el siguiente resultado:

(T + ANATA) = pu + divp™™ + AATg (3-4)

Para solucionar el sistema de ecuaciones se toma M = ul + MATA y b = pu™ +
divp™*t + XATg. La matriz M de Jacobi se debe descomponer en D y R:

D= (u+ S%)I , ya que los elementos de A estdn divididos por s? y los valores de
la diagonal de A4 estardn divididos por s*. Nétese que D es un valor constante.
R=)ATA — s%[
b= pu™ + divp™tt + \ATg

Por tanto, el resultado de la actualizacion primal es el siguiente:

{AATA = AT + pu™ + divp™™ + AATg
Pt

Es importante decir que el método de Jacobi es iterativo, por lo que esta actua-
lizacién deberia realizarse varias veces en cada actualizacién del primal. Es decir,
que el orden de las iteraciones se elevaria al cuadrado. Dada la rapida convergencia
del algoritmo primal dual, tan sélo se realizara una iteracion de Jacobi.

Se puede observar que la matriz AT A promedia los pixeles de la imagen grande
que hacen referencia a la imagen pequena mediante el factor S% Ese valor medio
es el mismo para todos los pixeles de la imagen grande que tienen en comun un
mismo pixel de la pequena. Este resultado permite la implementacién sencilla del
algoritmo.

Los resultados se encuentran en el Apéndice F.2.

unJrl

(3.5)

23

Capitulo 4

Image Deconvolution

4.1. Motivacion

La calidad de las imagenes capturadas mediante camaras digitales dependen
del tiempo de exposicién del sensor. Si aparecen objetos méviles en la escena o
la camara se encuentra en movimiento, un tiempo de exposicion excesivo puede
afectar las imagenes ya que en cada instante de tiempo el sensor recibe y promedia
diferente informacién de intensidad. Este fenémeno es también conocido como
motion blurring o convolucién de movimiento.

A partir de una imagen que ha sufrido un proceso de convolucién se puede
recuperar la imagen original en unas condiciones muy aceptables. Sélo se necesitan
otros dos parametros ademas de la imagen: la longitud en pixeles que se ha movido
la imagen y la direcciéon en que ésto ha sucedido. La ecuacién que relaciona la
velocidad del objeto respecto a la cdmara y la velocidad expresada en pixeles, se
define como

e=— (4.1)

Donde v es la velocidad en el plano de la imagen, facil de obtener a partir de la
velocidad real del objeto y la distancia al mismo, T es el tiempo de exposicion y
d el tamano de un pixel. La velocidad en el plano de la imagen se puede obtener
gracias a una sencilla relacion trigonométrica representada en la figura 4.1.

25

Seccién 4.2 4. Image Deconvolution

T Velocidad
plano
2gen
Centro | Lists ﬁcal

optico

Figura 4.1: Transformacion entre el vector de velocidad del objeto y el vector de
velocidad en el plano de imagen

Suponiendo la velocidad como un vector, hay que calcular el vector proporcional
en el plano imagen. Denotando v como la velocidad en el plano imagen, V' como
la velocidad real, d como la distancia focal y D como la distancia desde la lente
hasta el objeto en movimiento, se deduce que:

v = dL (4.2)

Colocando una camara de bajas prestaciones en una linea de manufactura, sabien-
do a la velocidad y direccion en que se mueve, y la distancia de la cAmara a la linea,
se puede predecir la convolucién que sufrira la imagen obtenida y se podra arreglar
con gran exactitud.

4.2. Modelo de energia

El caso de la deconvolucién es analogo al del zooming, con la salvedad de que
la matriz A representa el movimiento en pixeles aplicado a la imagen. Esta matriz
se puede modelar mediante un kernel local o matriz de convolucién que representa
el movimiento lineal de los pixeles. Dicha matriz es facil de calcular requiriendo
solo como pardmetros la longitud en pixeles y su angulo de inclinacion de la recta.
La figura 4.2 muestra un ejemplo de una mascara calculada para una longitud de
7 pixeles y un angulo de 45° de inclinacién.

26

4. Image Deconvolution Seccion 4.2

)
dp
o _
L .
0 0 0 0 0 0,0144942 0
0 0 0 0 0,0375741 0,128286 0,0144944
0 0 0 0,0375741 0,128286 0,0375742 0
A= 0 0 0,0375741 0,128286 0,0375741 0 0
0 0,0375742 0,128286 0,0375741 0 0 0
0,0144944 0,128286 0,0375741 0 0 0 0
0 0,0144942 0 0 0 0 0

Figura 4.2: Calculo de una mascara de motion blurring. Los valores obtenidos estan
normalizados, de manera que la suma global de todos los elementos es 1.

[2]z]
[2]4]

12
2|3
Figura 4.3: Representacién del proceso de convolucién sobre la imagen de entrada

(derecha), dado un operador de motion blurring desplazado circularmente (izquier-
da).

Para modelar el problema de la deconvolucién, se parte de la ecuacion 4.3 que
describe el modelo de minimizacién de energia:

) A >
min [| Vu [l +3 || (Au—g) 13 (4.3)

El paso mas importante es la derivacién de la actualizacién de la variable pri-

27

Seccion 4.2 4. Image Deconvolution

mal u. Con el fin de evitar el uso de método de Jacobi para resolver el sistema
lineal planteado en el problema del zooming, es posible describir las operaciones
a partir de la definicién de convolucién en el dominio frecuencial. Esto implica el
uso del concepto de transformada de Fourier [5]. En nuestra aplicacién, la matriz
A se sustituye por k, el cual representa el kernel espacial de convoluciéon. Una vez
calculada la méascara lineal de movimiento se puede definir el operador lineal & que
actuara sobre la imagen, donde el patrén lineal de movimiento aparece desplazado
circularmente para realizar una convolucién centrada. Al aplicar la transformada
de Fourier sobre el kernel y la imagen degradada, la convolucion se convierte en un
producto de espectros. La figura 4.3 ilustra el patron de la matriz k£ y el proceso
de convolucion sobre la imagen sin degradar en el dominio espacial.

El proceso para la definicién de problema primal dual es similar al desarrollado
en el caso del zooming. Una vez derivada la funcion de energia dualizada respecto
a la variable primal u, se obtiene el siguiente resultado para su actualizacion

R F(u) + TAF(k)*F(g)
v=r (T+ AF R >

(4.4)

Donde * es el operador de convolucion y F representa la transformada de Fourier
o espectro de una sefial y F~! la respectiva transformada inversa. Para realizar
los calculos pixel a pixel, es necesario que k del tamano de la imagen para poder
realizar la transformada de Fourier y que su producto tenga sentido. Asi mismo,
se debe hacer uso del algoritmo de Transformada de Fourier Répida (FFT o Fast
Furier Transform). De esta manera, siguiendo el algoritmo de actualizacién primal
dual habitual, se puede realizar la deconvolucion eficientemente.
Los resultados obtenidos se encuentran en el Apéndice F.3.

28

Capitulo 5

Image Inpainting

5.1. Motivacion

Durante el proceso de captura de fotografias, es inevitable que en ocasiones
aparezcan cuerpos extranos o defectos de la cdmara que provoquen que provoquen
la pérdida de informacién. Gracias a métodos de restauracién es posible localizar
los pixeles defectuosos, a partir de los pixeles correctos, permitiendo la recuperacion
casi total de la informacién en la imagen.

Se debe puntualizar que, pese a que este algoritmo que se expone en este capitulo
obtiene unos resultados satisfactorios, su implementacion requiere del previo co-
nocimiento de la regién deteriorada en la imagen. No obstante, es posible emplear
algoritmos de deteccion de regiones como paso previo a la restauracion. El resul-
tado dependera en gran medida de la precisiéon de dicho algoritmo. Esta secciéon
Unicamente se centra en el algoritmo de restauracion o Inpainting, a partir de in-
formacion previa de la region deteriorada para la recuperacién de imagenes con
alto porcentaje de pérdida de informacion.

5.2. El algoritmo

La formulacién del problema general es la siguiente:
| B 5 (=) I3 (5.1
min || Qu [l +5 |l (w—9) 2 .

Observando detenidamente la ecuacion, se aprecian dos cambios fundamentalmente
respecto a los dos casos anteriores:

= La sustitucién de V por ®. En casos especificos el regularizador no tiene por
qué afectar a toda la imagen. Més tarde se comentara cuél es su funcion.

29

Seccion 5.2 5. Image Inpainting

s El segundo término de la ecuacién debe ser también modificado, pues mide
la variacion respecto a la imagen original, y cuando los pixeles deteriorados
toman un valor correcto, su variacion incrementa.

La ecuacién 5.2 puede redefinirse de la siguiente manera:

min | Bl +5 3 (o~ 00,)? (5:2)
i,jED\I
Donde la I se refiere tan sélo al conjunto de pixeles afectados. Por tanto, el
sumatorio de la variacién se aplica tan sélo a los pixeles no afectados, obviando
asi la variacion en los afectados.
Dualizando el problema de la misma forma que se ha hecho hasta ahora se
obtiene el siguiente resultado:

min méx(®Pu, c) + % Z (i = 9ig)* = de(c) (5.3)

uelU ceC
i,j€ED\I

Para simplificar el problema dual, se asume ® = V y por tanto tiene la misma
forma que en apartados anteriores. En el problema primal se debe diferenciar
entre los pixeles afectados y los pixeles correctos, de manera que la variable dual
se actualiza como:

ni1 | U+ Tdive si(iyj) el £ 4
uz'j u"+rdive+TAg; 5 . (.)
’ ——— 2 en cualquier otro caso
147X

Asi, el primer caso corresponde a el arreglo de los pixeles corruptos y el segundo
término corresponde al desarrollo del término como ya se ha hecho en anteriores
apartados. Los resultados obtenidos en el algoritmo se encuentran en el Apéndice
F4

30

Capitulo 6

Conclusiones

En este proyecto se aborda el problema del procesamiento de imégenes dentro
del contexto de la visién por computador para aplicaciones reales. Los problemas
de adicién de ruido (denoising), de ampliacién (zooming), deconvolucién o restau-
racién (inpainting) son muy habituales en el trabajo diario con imagenes, especial-
mente en entornos de fabricaciéon donde las cdmaras son usadas como sensores de
supervision.

Debido al tratamiento de informacion densa de las imédgenes, se requiere la
formulacién de métodos eficientes capaces de contrarrestar en poco tiempo los
efectos mencionados. Los métodos continuos variacionales representan una alter-
nativa atractiva no sélo para el modelado de los distintos problemas sino también
por la facilidad y robustez que traen consigo en relacion a los algoritmos disenados
para encontrar soluciones de alta precision. El uso de métodos variacionales no
solo cubre el campo del procesamiento de imagenes. Su aplicacién también se ha
extendido a campos de gran interés como la reconstruccién de entornos en 3D.

A partir de una imagen deteriorada, estos algoritmos contabilizan la variacion
de cada solucion parcial obtenida durante la iteracién. En la mayoria de los casos,
no se requiere del uso de informaciéon previa para la recuperacion de la imagen.
En este sentido, los algoritmos denoising y zooming trabajan uinicamente sobre la
imagen danada, sin necesitar ningtin otro dato. No obstante, el modelo empleado
puede llegar a ser sensible respecto al parametro de ruido.

Si bien denoising y zooming no requieren informacién previa, no sucede lo mis-
mo con los algoritmos de deconvolucién y de inpainting los cuales requieren mas
informacion y tratamiento previo. En el caso de la deconvolucién se necesita la
mascara con la que la imagen ha sido convolucionada. El célculo de méscaras de
convolucién conllevan a un camino de investigacion interesante para complementar
la aplicabilidad de los algoritmos en entornos reales.

Por otro lado, el algoritmo de inpainting recibe como informacién concretamente
el conjunto de pixeles afectados. Esta informacion solo se puede aportar en el

31

6. Conclusiones

laboratorio, a partir de detectores de regiones no siempre disponibles o aplicables
en la realidad. Se necesita un algoritmo que reconozca puntos espurios con total
precision para que funcione y, pese a que en los ultimos anos, se ha avanzado
mucho en esta materia, se considera un tema aun en investigacion.

A pesar de que es posible mejorar los algoritmos propuestos, se considera un
campo de interés el mejorar la forma de obtener los datos que se requieren para
que dichos algoritmos puedan funcionar con total autonomia.

Como valoracion personal, este proyecto ha representado un enorme reto desde
el punto de vista tedrico y de desarrollo. El proyecto comprende la programacién
y desarrollo en lenguajes interpretados como Matlab usado principalmente como
herramienta de prototipado y visualizacién (por ejemplo, para poder obtener las
diferentes graficas y comprender en un inicio el algoritmo); C++, un lenguaje
mucho mas cercano a la maquina que Pascal o Ada que se utilizaba en la especia-
lidad de Automatica y Robotica. Adicionalmente, se trabajé en programacion en
lenguajes orientados al calculo masivo paralelo como CUDA. Este tltimo punto
requiere la comprension de las capacidades del hardware diferenciando claramente
el trabajo en CPU, GPU y su comunicacién a nivel de manejo de memoria.

La dificultad del proyecto también ha residido en la utilizacién de un sistema
operativo de libre distribucién, en este caso Ubuntu, menos familiar dentro del
ambito de desarrollo y aplicacién de la titulacién de Ingenieria Industrial. Asi mis-
mo, la memoria se ha escrito en lenguaje Latex, poco habitual dentro de los editores
de texto utilizados hasta la fecha.

Este proyecto ha permitido afianzar conceptos de informatica dentro del con-
texto de la especialidad de Automatica. De la misma manera, los conceptos ma-
tematicos de andlisis numérico y transformadas de Fourier han sido reforzados
gracias a su aplicabilidad en el campo del procesamiento de imagenes.

32

Apéndice A
Gestion del proyecto

La realizacién del proyecto se ha divido en varias etapas claramente diferencia-
das entre si. Al tratarse de algoritmos cuya implementacién es bastante compleja,
se comenzo trabajando en el software matematico Matlab, donde se implementé el
primer algoritmo: TV-ROF. Se hizo asi para asentar los conceptos de Primal y
de Dual, cuando hay que actualizarlos, qué significan los parametros... Matlab re-
sulta muy cémodo ya que las ecuaciones de este algoritmo contienen una matriz
A que multiplica al vector imagen, obteniendo los resultados. Una vez calculada
esa matriz, la implementacion del algoritmo era relativamente sencilla. El proble-
ma surge cuando A estd compuesta de una gran cantidad de valores nulos en su
interior. Estos valores multiplican también a la imagen obteniendo un valor nulo,
como era de esperar. Toda esta cantidad de productos consumen mucho tiempo y
no producen nada. Para la fotografia Lena.jpg, que contiene 512x512 pixeles, su
ejecucion duraba en torno a 45 minutos, para optimizar una sola fotografia. El
objetivo es disminuir los tiempos hasta el rango de los milisegundos, se descarta
la opcién de generar una matriz A y realizar el producto.

Por este motivo, ese mismo algoritmo fue implementado en C++4, evitando
la generacion de la matriz y tratando operar tan sélo con aquellos valores que
efectivamente aportan informacién. Se instalé el sistema operativo Ubuntu (Linux),
con los programas Texmaker (para la realizacién de la memoria), qtcreator (el
entorno de programacion utilizado) y otros utiles tales como LibreOffice o Matlab.

QtCreator es un entorno de programacion que utiliza las bibliotecas Qt. Estas
bibliotecas han sido ideadas con el fin de generar interfaces graficas de usuario.
Para trabajar con Qt lo primero que se realiza es un CMakelist.txt, un fichero
donde se encuentra la informacién necesaria para ejecutar una futura compilaciéon
evitando la adicion de librerias en todos los ficheros o los linkados manualmente.

Asi, para solucionar el problema se ejecutaba un bucle ”for” que recorria toda
la imagen y realizaba las operaciones pertinentes. Se logré reducir asi el tiempo
de ejecucién hasta aproximadamente 10 segundos. De aqui surge la necesidad de

33

A. Gestion del proyecto

implementar el algoritmo en la tarjeta grafica. Como cada thread de la tarjeta es
capaz de realizar una operacion sencilla, se puede sustituir ese bucle ”for” por una
paralelizacion completa, y asi optimizar el tiempo.

La solucion es programar en CUDA, un conjunto de herramientas desarrollado
por nVidia para codificar algoritmos en GPU nVidia. Como no se disponia de un
ordenador personal con GPU nVidia, se solicité una cuenta en el servidor ”Her-
mes” de unizar donde se ejecutarian los algoritmos. Asi, se procedi6 a la realizacion
de los diferentes algoritmos en Hermes. Se implementaron TV-ROF, Huber-ROF,
TV-L1 y Zooming. Una vez que se queria realizar el algoritmo de Image deconvo-
lution, era necesaria una libreria que calculase la FFT (Fast Fourier Transform).
Al no encontrarse instalada en el servidor y, sabiendo que éste iba a estar apagado
durante el mes de Agosto, se generé una cuenta en el ordenador de la universidad
de mi tutora, Lina Maria Paz, con el fin de que pudiese seguir trabajando ahi.

Cuando se implantaron los diferentes algoritmos, surgi6 la duda de cudles eran
los parametros 6ptimos que se debian colocar en cada uno de dichos algoritmos.
Una vez entendido el significado de cada pardmetro y qué optimiza, la manera
de actuar era relativamente sencilla: recorrer un rango de valores con un paso
relativamente pequenio y mostrar por pantalla el resultado de cada caso (ratio de
senal/ruido o iteraciones hasta convergencia). Este hecho provocaba la necesidad
de realizar un nuevo programa, de forma que para ordenar todos los algoritmos, se
decidi6 realizar una interfaz de usuario donde se podia seleccionar el tratamiento
al que se queria someter a la imagen y poder observar la imagen modificada, la
arreglada, cémo evoluciona el GAP o la funcién de energia y los la evolucion de
los diferentes parametros.

34

Apéndice B

Deducciones matematicas

B.1. TV-ROF

B.1.1. Cadlculo de 0,E(u,p)

0,2(u.p) = By{(p, V) + 2 | u— 013 ~5,(»)) (B.1)

Se simplifica término a término:

0,({p, vu)) = wu, ya que se trata de un producto escalar.

dp(3 || u—g |3) =0, ya que no depende de p.

0,(0,(p)) = 0, Se coloca como 0 para permitir su célculo. Sin embargo, este
término impone la restriccién de que la variable dual en el resultado final no sea
mayor que 1.

Por tanto se concluye que:

O, E(u,p) = Vu (B.2)

B.1.2. Célculo de 0,E(u,p)

0,5 (u,p) = 0u((p. Vu) + 5 |~ g [~0,(p) (B3

Se simplifica término a término

Ou((p,vu)) = 0y(—(u,divp)) = —divp. En el primer paso se convoluciona el
producto de vector por gradiente en un producto negado de vector por divergencia.
Se trata de una propiedad matematica aplicable al operador V. Una vez que es un
producto derivable, se obtiene el resultado.

Ou(3 |l u—g]13) = AMu — g), al ser una norma cuadrética simple.

35

Seccion B.2 B. Deducciones matematicas

0u(6,(p)) = 0, ya que no depende de u.
Por tanto se concluye que

OuE(u,p) = —divp + XNu — g) (B.4)

B.2. HUBER-ROF

B.2.1. Cilculo de 0,E(u,p)

0,5 (u,p) = 0y({p. V)~ 5,(p) — 2 I p P 43 lu=g) (B3

0,({p, Vu)) = Vu, ya que se trata de un producto escalar.

0,(9,(p)) = 0, Es el mismo caso que el anterior. Se coloca como 0 pero su efecto
se anadira al final del desarrollo.

9p(% || p II?) = ap Una derivada comin de un valor al cuadrado.

dp(5 || u—g 3) =0, ya que no depende de p.

Por tanto, obtenemos como resultado

OpE(u,p) = yu —ap (B.6)

B.3. TV-L1

B.3.1. Caélculo de 0,E(u,p)

uE(u,p) = 0u({p, Vu) = 0p(p) + A [u—g [[1) (B.7)
au(<p7 VU>) - 8u(_<u7d“]p>) = —divp,
9u(6p(p)) =0
Bu(3 lu=gl3) =Au—g)

OuE(u,p) = —divp + O\ | u—g |ls (B.8)

B.4. Derivacién de la energia para el problema
del zooming

Partiendo del modelo de energia, se desea calcular su derivada respecto a la
variable primal:

36

B. Deducciones matematicas Seccién B.4

0.5(u,p) = D{p. V) + 5 || Au— g |3 ~5,(0) (B
En primera instancia, se obtiene que:
Ou((p, Vu)) = 9u(—(u, divp)) = —divp
0u(dp(p)) =0
du(3 || Au— g |13)), requiere un desarrollo més amplio:
Ou || Au = g [l3= 0u(Au = g)" (Au — g)
(Au—g)" (Au — g) = ((Au)" — g" (Au — g))
((Au)" = g" (Au— g)) = (u" A" — g")(Au — g)
(u" AT — g")(Au — g) = u ATAu — v ATg — g" Au+ gTg
se realiza el cambio B = AT A y se calcula asi el primer término:
Ou(u” AT Au) = 0,u” Bu
Ou(u' Bu) = (B + B")u
Se invierte el cambio:
Oy (Ut AT Au) = (ATA + (AT A)Tu
Oy (uT AT Au) = (ATA + AT A)u
Ou(ul AT Au) = 2AT Au
Se calcula el resto de términos:
Ou(—u"ATg — g" Au) = 0,(=VT g — ¢" V) = 0,(—24"V)
0u(—29"V) = 0,(—29" Au) = 247 g
g'g=0
Al final por tanto:
20 Au— g 1) = AT Au— A7)

0uF(u,p) = —divp + M(AT Au — AT g) (B.10)

Se sustituye la derivada por su definicién:

ul — un+1

= —divp + M(AT Ayt — AT g) (B.11)
-
(u" — u™h) = —rdivp™t + TA(AT Au T — ATg) (B.12)
Finalmente, la actualizacion puede derivarse de la siguiente expresion:
w4+ TAATA) = u" + rdivp™ Tt + TAATg (B.13)

37

Seccion B.5 B. Deducciones matematicas

B.5. Derivacién de la funcién de energia para el
problema de la deconvolucion

Partiendo de la definicion de funcion de energia, y considerando que la
OuE(u,p) = 0, se obtiene que:

A
0B, p) = 0u(—(p, Vi) + 5 || Au =g [I3 =0,(p)) (B.14)
Sustituyendo términos por su valor:

OuE(u, p) = divp + MNAT (Au — g) (B.15)

Si se coloca 4 = u — Tdivp en el algoritmo, se puede escribir que divp = “==
-

u —

OuE(u,p) = Yy MT(Au—g) =0 (B.16)

-

Se realiza el cambio de la matriz A que como ya se ha comentado es muy
complicada de implementar y se sustituye por kx, que es la convolucién. Tiene el
significado fisico de pasar la mascara por la imagen.

u— U

+ AN x (kxu—g)=0 (B.17)

Donde kx es la convolucién y k*x es el conjugado que convoluciona, es la equi-
valencia a la AT anterior. En este momento se aplica la Transformada de Fourier
a la izquierda y derecha de la ecuacion.

F(u) — F(a)

+ AF(k)*(F(k)F(u) — F(g)) = F(0) (B.18)

Al aplicar Fourier, las convoluciones se convierten en productos. Se sigue ope-
rando hasta dejar a un lado de la ecuacién F(u):

F(u) — F(a) + TAF (k)*F (u) — TAF (k)" F(g)) = 0 (B.19)
Fw)(1+7AF(k)?) = F(a) + TAF (k)" F(g) (B.20)
_ F(a) + 7AF (k)" F(g)
F) = =05 m7am (B-21)
Se realiza la transformada inversa y asi se obtiene la sucién final:
[F(@) + TAF(k)*F(g)
=7 ((L PAF(k)?) > (B:22)

38

B. Deducciones matematicas Seccién B.5

Es necesaria una k del tamano de la imagen para poder realizar la transformada
de Fourier y que su producto tenga sentido. De esta manera, siguiendo el algoritmo
de actualizacion primal dual habitual, y mediante el calculo de la FFT en CUDA,
se puede realizar la deconvolucion de una forma muy rapida.

39

Apéndice C

Tipos de ruido

C.1. El ruido Gaussiano

El ruido Gaussiano asigna a cada pixel de la imagen una funcién gaussiana
centrada en el valor de dicho pixel.

Figura C.1: Comparacién de la funcién gaussiana para diferentes valores de o

De esta forma, para valores de o pequenos, el valor del pixel cambiard muy
poco el la mayoria de los casos. Para valores de o grandes, los pixeles cambiaran
mucho su valor en media. El cédigo que crea el ruido gaussiano es el siguiente:

1 Mat addNoise (Mat &I, float mean, float std)
{

3 Mat Inoisy;

Mat Inoise(I.rows, I.cols, CV_32FCl);
randn (Inoise , mean, std);

41

Seccién C.2 C. Tipos de ruido

Inoisy = I+Inoise;
cv::max(Inoisy, 0.0, Inoisy);
cv::min(Inoisy, 1.0, Inoisy);

return Inoisy;

La funciéon randn genera un valor aleatorio de media mean y de o std. Se
impone mean igual a cero, de forma que la matriz Inoise creada es una funcion
centrada en cero y de la desviacién estandar asignada. Luego se suma Inoise a la
matriz original para crear el ruido, acotando los valores maximos y minimos que
pueda tener.

C.2. El ruido de sal y pimienta

Recibe este nombre por su similitud a la sal y la pimienta al colocar los pixeles de
color blanco y negro. Es una forma de generar espurios y comprobar lo robusto del
algoritmo ante su aparicién. El parametro que recibe como entrada es el porcentaje
relativo de pixeles espurios que se desea aparezcan en la imagen. Se supone misma
cantidad de pixeles generados blancos que negros. El cédigo para generarlo es el
siguiente:

10

20

Mat Add_sal_y_pimienta(Mat original , float porcentaje)

{

int cols = original.cols;
int rows = original.rows;
bool rotar = false;
cv::Mat I = original;

for (int i = 0; i<cols; i++)
for (int j=0; j<rows; j++)
{
int valor = rand () %100;
it ((float)valor <= porcentaje)
{

if (rotar = false)

I.at<float >(i,j) = 0;
rotar = true;

}

else

{
I.at<float >(i,j) = 1;
rotar = false;

42

N
¥]

C. Tipos de ruido Seccion C.2

return I;

Para cada pixel se genera un valor aleatorio que al hacer %100 se calcula el
resto de ese valor con 100. Asi, el niimero resultante es un valor entre 00 y 99. Si el
nimero aleatorio generado es inferior al porcentaje, significa que ese pixel va a ser
un espurio. La variable booleana rotar es quien se encarga de decidir si el espurio
sera blanco o negro, cambiando su valor para el siguiente espurio.

43

Apéndice D
Software

Hay varios apartados interesantes dentro del entorno Qtcreator que deben ser
explicados.

D.1. El CMakelist.txt

Como ya se ha mencionado, el CMakelist.txt es un archivo donde se coloca
informacion previa a la compilacién con el fin de simplificar los archivos de céodigo,
evitando la inclusion de rutas de librerias o procedimientos de linkado en dichos
archivos.

Se comienza colocando la version del CMake, que es quien compila el programa
de Qtcreator. También se coloca el titulo del proyecto.

2

CMAKE MINIMUM REQUIRED(VERSION 2.8.0)

PROJECT(visualization)

A continuaciéon se deben colocar las distintas fuentes del programa. Los
archivos .cpp contienen funciones que se ejecutan en CPU. Los archivos .h
contienen la cabecera de esas funciones. Los archivos .cu contienen funciones
ejecutadas en GPU y las funciones que, ejecutandose en CPU, llaman las que
se ejecutan en GPU. Como en el caso anterior, los archivos .cuh contienen las
declaraciones de dichas funciones. Finalmente, los archivos .ui son aquellos que
contienen la informacién de la interfaz. Estos archivos los genera automaticamente
Qtcreator a través de un entorno grafico muy sencillo de utilizar donde el usuario
puede colocar botones, widgets y otras ttiles con mucha facilidad. En el CMake-
list.txt se anade de la siguiente forma (ejemplo de interfaz individual de denoising):

45

Seccién D.1 D. Software

1

SET (SOURCES main.cpp denoising.cu denoising.cpp viewerwidget.cpp)
SET (HEADERS denoising.h denoising.cuh viewerwidget .h)

3 SET(FORMS denoising . ui)

Siempre debe haber un archivo llamado main.cpp, que es el principal. El es
quien se encarga de llamar al resto de archivos. A continuaciéon se deben anadir
los paquetes necesarios en la aplicacién. En caso de que no se encuentren esos
paquetes, se debe anadir su ruta manualmente.

s FIND_ PACKAGE

FIND PACKAGE(CUDA REQUIRED)
FIND_PACKAGE(Qt4 REQUIRED)
FIND_PACKAGE (GLEW REQUIRED)
FIND_PACKAGE(OpenGL REQUIRED)
(OpenCV REQUIRED)

Para hacer una precompilacién, se anade el siguiente codigo, donde se generan
los .moc y .ui, no ejecutables con un editor de texto y que permiten la generacion
de la interfaz. Las dos ultimas lineas especifican dénde se colocara el ejecutable.

QT4 WRAP_CPP (HEADERSMOC $ {HEADERS})
QT4.WRAP_UI(FORMS HEADERS ${FORMS})
QT4 ADD_RESOURCES (RESOURCES.RCC $ {RESRC})

5 INCLUDE_DIRECTORIES ($ { CMAKE_CURRENT BINARY DIR })

INCLUDE_DIRECTORIES ($ { CMAKE_CURRENT_SOURCE_DIR })

Finalmente, se anade la informacién de compilacion. El apartado ADD
DEFINITIONS es el que se encarga de escribir la orden de compilacién, aquella
que el usuario deberia escribir por consola en caso de hacerlo manualmente. Las
ultimas dos lineas generan el ejecutable a partir de los archivos fuente y las
librerias necesarias.

2

1

ADD_DEFINITIONS(—0O2 —march=core2 —msse3 —Wall)

CUDA_ADD EXECUTABLE($ {CMAKE PROJECT NAME} ${SOURCES} ${HEADERSMOC} $
{FORMS HEADERS} ${RESOURCES RCC})

TARGET_LINK_LIBRARIES ($ {CMAKE PROJECT NAME} ${SDK_LIBS} ${OpenCV_LIBS
} ${OPENGL_LIBRARIES} ${GLEW _LIBRARIES} ${QT_LIBRARIES} ${QWT_LIBS

)

46

D. Software Seccién D.2

D.2. Archivos de interfaz

Una interfaz tiene siempre asignados tres archivos, siguiendo con el ejemplo
anterior, serian: denoising.cpp, denoising.h y denoising.ui. El archivo .ui tiene poco
interés porque contiene el disenio grafico. Se comienza por la explicacion del archivo
h.

Dentro del archivo .h se debe comenzar por definir una clase, que contendra to-
das las funciones y variables de esa interfaz. La definicién de la clase tiene la
siguiente estructura:

N

16

namespace Ui {
class Denoising;

}

class Denoising : public QMainWindow
Q-OBJECT

public:
explicit Denoising (QWidget *parent = 0);

“"Denoising () ;

private slots:

private:

}s

Los slots son las funciones que tienen que ver con la interfaz, como podrian
ser boton pulsado o editado de variable finalizado. En el apartado de private slots
es en el que se declaran. En el apartado private, se incluyen todas las variables y
funciones privadas que no son slots, como podria ser la funcién que genera ruido.
En el archivo .cpp es donde se implementan todos los slots.

47

Seccién D.3 D. Software

D.3. CUDA

CUDA [4] trabaja en GPU, ejecutando los algoritmos més rapido al poder para-
lelizarlos. Sin embargo, la informaciéon que esta en CPU hay que enviarsela a GPU
y ésta a su vez devolverla a GPU, algo que cuesta tiempo. Si este procedimien-
to se realizase en cada iteracion para cada variable, el ahorro en tiempo no seria
muy grande. Por este motivo surgen las texturas. Las variables en GPU pueden
ser asignadas a texturas donde son guardadas y no deben ser enviadas de CPU
para ser actualizadas, acelerando el proceso. Al principio del programa se deben
declarar las texturas y luego asignarles las variables que se introduciran en ellas.

w

texture<float , 2> tex_u;
texture<float , 2> tex_g;
texture<float , 2> tex_u_hat;
texture<float2 , 2> tex_p;
texture<float , 2> tex_u_comp;

cudaBindTexture2D (NULL, tex_u , u_dev , chd_float , cols, rows,
BYTES PERROW) ;

cudaBindTexture2D (NULL, tex_g , g_dev , chd_float , cols, rows,
BYTESPERROW) ;

cudaBindTexture2D (NULL, tex_u_hat , u_hat_dev , chd_float ,
cols , rows, BYTESPERROW);

cudaBindTexture2D (NULL, tex_p , p-dev , chd_float2 , cols, rows,
BYTES PER_ROW2) ;

(en el .cuh:)

static const cudaChannelFormatDesc chd_float = cudaCreateChannelDesc<
float >();
static const cudaChannelFormatDesc chd_float2 = cudaCreateChannelDesc

<float2 >();

En toda declaracion y asignacién de textura debe especificarse el tipo de dato
que se va a guardar en ella y la dimension, en este caso dos: ancho y alto de la
imagen.

A toda funcion que se ejecuta en GPU deben aportarsele dos parametros
concretos: la cantidad de bloques y la cantidad de threads por bloque. Los threads
son los pequenos componentes de la tarjeta grafica que ejecutan las operaciones
sencillas que se les envian con CUDA. Los bloques son una agrupacion ficticia
realiza el programador para tratar de optimizar el cédigo. Ambos valores deben
ser enteros, por lo que una vez definidos los threads por bloque, la cantidad de

48

D. Software Seccién D.3

bloques se calcula dividiendo filas y columnas por los threads por bloque. Para ase-
gurar que se recorre toda la imagen, se hace una divisiéon redondeando hacia arriba.

1 #define NTHREADSBLOCK 16

3 dim3 nThreads (NTHREADS BLOCK, NTHREADSBLOCK) ;
dim3 nBlocks (divUp(cols, nThreads.x) ,divUp(rows, nThreads.y));

Para mejorar la organizaciéon y claridad del cédigo, a todas las funciones ejecu-
tadas en GPU se les nombra con el prefijo kernel de forma que asi es mas sencillo
entender qué se estd ejecutando y dénde. Un ejemplo de algoritmo primal-dual es
el siguiente:

for (int iter = 0; iter < maxIter; 4++iter)
{
kernel_update_dual _ TV_ROF<<<nBlocks, nThreads>>>(p_-dev,
u_hat_dev, cols, rows, sigma, gx_dev, gy.dev);
4 cudaThreadSynchronize () ;
theta = 1.0f/sqrtf (1.0 f4+2+«gammaxtau) ;
6 kernel_update_Primal TV_ROF <<<nBlocks, nThreads>>>(u_-dev ,
u_hat_dev, g_dev, p.dev, tau, lambda, theta, cols, rows, div_p_dev
)
cudaThreadSynchronize () ;

tau = thetaxtau;
10 sigma = sigma/theta;

Las variables con el sufijo dev son todas aquellas que estdn en la GPU y las
host son aquellas que reciben los datos de dev en la CPU. Asi, se recorre un bucle
"for” durante las iteraciones que se desee, actualizando los valores u dev (primal)
y p dev (dual) en cada una de las iteraciones.

49

Apéndice E
Programacion

La estructura bésica de el archivo donde se ejecutan los algoritmos matematicos
deducidos en los apartados 2,3,4 y 5 sigue una secuencia como la expuesta en el
apartado anterior. En este apartado se explica cémo se realizan las actualizaciones
del Primal y del Dual. Se comienza con un ejemplo:

{

15

19

-_global__ void kernel_update_dual(float2 xp_dev, float xu_hat_dev,
int cols, int rows, float sigma)

int x = blockDim.x*blockldx.x + threadldx.x;
int y = blockDim.y*blockldx.y + threadldx.y;

if(x < cols & y < rows)

float tx = x 4+ 0.5f;
float ty =y + 0.5¢;
int offset = yxcols+x;

float gx = tex2D(tex_u_hat, tx+1,ty)—tex2D(tex_u_hat, tx,ty);
float gy = tex2D(tex_u_hat, tx,ty+1)—tex2D(tex_u_hat, tx,ty);

if (x = (cols—1))

gx = 0.0f;
}
if (y = (rows—1))
{
gy = 0.0f;
}

float2 p = tex2D(tex_p ,tx,ty);
pP-X = p.X + sigmaxgx;

o1

E. Programacion

p.y = p.y + sigmaxgy;

float norma = sqrtf(p.x*p.x+p.y*p.y);
float den = fmaxf(1.0f, norma);

p.x = p.x/den;

p.y = p.y/den;

p_dev[offset] = p;

El primer paso es la definicién de los valores x e y en funcién del bloque y el
Thread concreto de ese bloque en el que se vaya a ejecutar el codigo. Esta funcion
actualiza el dual, quien, segun el algoritmo expuesto, requiere del gradiente de 1,
que ha sido guardado en textura. Como la textura habia sido definida previamente
con dos dimensiones, es muy sencillo tomar los valores del gradiente ya que se
hace como se haria en una matriz de pixeles: El pixel de la derecha menos el pixel
en el que se ejecuta la funcion es el gradiente en x y el pixel de abajo menos el
pixel actual es el gradiente en y. p también se encuentra en textura, lo que hace
mas rapido el algoritmo de actualizacion. Una vez calculada la norma, la p.x y
la p.y, se debe enviar mediante la instruccién pge,|of fset] = p; a la variable pge,,
para que su nuevo valor se almacene en textura y en la siguiente iteracion se
pueda proceder de la misma manera.

10

16

__global__ void kernel_update_Primal(float xu.dev, float xu_hat_dev,
float xg_dev, float2 xp_dev, float tau, float lambda, float theta,
int cols, int rows)

int x = blockDim.x*blockldx.x + threadldx.x;
int y = blockDim.yxblockldx.y + threadldx.y;

float uhat;
float u;

if (x < cols & y < rows)

float tx = x + 0.5f;
float ty =y + 0.5f;
int offset = yxcols+x;

float kijx = 0, kijy = 0, ki_1jx = 0, kij_ly = 0;
-1

float2 py_ij_1 = tex2D(tex_p,tx,ty

)

52

36

46

E. Programacién

float2 p_ij = tex2D(tex_p ,tx,ty);
float2 px_i_1j = tex2D(tex_p,tx—1,ty);

if (y > 0)

kij_ly = py-ij-1.y;

if (y < rows—1)

kijy = p-ij.y;

if (x> 0)
ki_1ljx = px_i_1j.x;
}
if (x < cols—1)
{
kijx = p-ij .x;
}

float u_old = tex2D(tex_u, tx,ty);
float g = tex2D(tex_g, tx,ty);

float dip = kijx—ki_1jx+kijy—kij_1ly;
uhat = u_old +tauxdip;

u = (uhat+tauxlambdaxg)/(1+tauslambda) ;
uhat = utthetax(u—u_old);

u.-dev|[offset] = u;

u_hat_dev|[offset] = uhat;

La manera de actualizar el Primal cambia sustancialmente en funciéon del méto-
do. Este ejemplo corresponde al TV-ROF. El primer paso comun a todos los méto-
dos es la realizacién de la divergencia de p. Para ello se definen las variables kijx,
kijy , kiigjx y kiji1y, que se refieren al valor de p en el pixel actual en p.x y en
p.y, al pixel de la derecha en el caso de p.x y al pixel de abajo en el caso de p.y.
La divergencia se calcula como se muestra en el cdédigo. A continuacion se debe
guardar el valor de uyq para la futura actualizacion de u. A partir de ahi, se debe
seguir el algoritmo. Finalmente, tanto @ como u deben enviarse a la variable que

esta en textura para que la actualizacion sea efectiva.

93

Apéndice F

Resultados

Se exponen a continuaciéon los resultados y conclusiones obtenidas a partir de
los diferentes algoritmos.

F.1. Resultados Denoising

F.1.1. Evaluacion del modelo TV-ROF

El primer experimento se realiza sobre una imagen a la que se le ha adicionado
ruido gaussiano con desviacion estandar o,. El resultado de la figura F.1 se ha
obtenido al ejecutar el algoritmo TV-ROF.

(b) Imagen ruidosa (c) Imagen resultado
o = 0,1 A = 8,0 TV-ROF

Figura F.1: Primer experimento del modelo TV-ROF

Como es de esperar, el uso de la norma del gradiente no penaliza las discon-
tinuidades en la imagen pudiéndose mantener los bordes. Asi mismo, las regiones
con intensidades cercanas se suavizan. Durante la ejecucién del algoritmo se ha

55

Seccién F.1 F. Resultados

llevado a cabo un analisis de verificacion del GAP definido para cada modelo. La
figura F.2 muestra el resultado para un numero fijo de iteraciones. Se puede notar
que el GAP tiende a cero con apenas 30 iteraciones.

0 20 40 B0 a0 100
Iteraciones

Figura F.2: Evolucion del GAP respecto a las iteraciones

Figura F.3: Imagen ruidosa o = 0,3 Figura F.4: Imagen resultado A = 8,0
TV-ROF

Se puede observar que al aumentar drasticamente el porcentaje de ruido en la
imagen el algoritmo no puede recuperar totalmente la imagen original. No obstante,
ésto ocurrira para cualquier algoritmo de filtrado. Los parametros optimos del
método se pueden obtener mediante una simulacién. Asi, se obtienen las graficas:

56

F. Resultados Seccién F.1

25 140

24 130

P 5 120

22 5
21

=

@ o
0 2
19

18 =

17 50

18 L L L 40
0 g 1 15 0

0 0.2 0.4 0.6 o0g 1

(2 i)

Dependencia SnR respecto a A en Dependencia iteraciones hasta
TV-ROF convergencia respecto a 7 en
TV-ROF

Figura F.5: Evaluacién de parametros \ y 7

De acuerdo a los resultados, el valor 6ptimo para A\ seria de 12 tal como se

observa en F.5 a) y un valor 6ptimo de 7 serfa de 0.25, de acuerdo a la gréfica F.5
b).

Los valores 6ptimos también dependeran de la cantidad de ruido introducido,
siendo A especialmente sensible a esta variacion. La figura F.4 se ha calculado para
o, = 0.3. Si se realiza la evaluacion de SnR de los pardmetros para este ruido, el
valor de A\ varia como se muestra en la figura .

18

18

17

16

16

14

13

12

Figura F.6: dependencia SnR respecto a A en TV-ROF para un ruido de ¢ = 0.3.

El 6ptimo de A ha variado a 4.2. Con ese nuevo valor se obtiene una resultado
distinto. La figura F.7 muestra una comparacion entre el resultado previamente
obtenido con A = 8 y el valor 6ptimo:

o7

Seccién F.1 F. Resultados

| SR B8 (o) e 1)
Imagen resultado A = 8,0 TV-ROF Imagen resultado A = 4,2 TV-ROF

Figura F.7: Comparacién de resultados cuando se incrementa el ruido en la imagen
y se aplican valores diferentes de \.

Cuanto menor es el error, mayor es la fiabilidad de la imagen sobre la que el
algoritmo actia, por lo que el resultado serd muy similar a dicha imagen de forma
que A sera muy elevada. Cuanto mayor es el error, mas importante sera el término
de gradiente, asi que el A 6ptimo deberd ser menor.

F.1.2. Evaluacion del modelo Huber-ROF

En el caso del modelo de Huber-ROF, observar que el algoritmo primal dual
converge mucho mas réapido a la soluciéon en comparaciéon con el modelo TV-ROF.
La figura F.8 ilustra el resultado obtenido. Las figuras F.9 y F.10 representan
cémo varia el GAP y la relacion SnR respecto a un parametro. Se puede concluir
por tanto que este parametro siempre converge en las mismas iteraciones. El valor
6ptimo de X\ es de 7.5 y el de « es de 0.025.

4 & (a)
Imagen ruidosa o, = 0,1 Imagen resultado A = 5,0
Huber-ROF

Figura F.8: Resultado por el algoritmo primal dual para el modelo Huber-ROF'.

98

F. Resultados Seccién F.1

Figura F.9: Evolucion del GAP por iteraciéon para el modelo Huber-ROF.

25 24.5

24

23

22

21

20

13

18 21,6
1 2 3 4 5 B 7 8 9 10 o 0,05 01 0,18 0,2

) (a) ; - (b)

Dependencia SnR respecto a A Dependencia SnR respecto a «

Figura F.10: Evaluacion de parametros para el modelo Huber-ROF

F.1.3. Evaluacion del modelo TV-L1

El algoritmo TV-L1 contiene una diferencia esencial respecto a los dos ante-
riores: La dificultad del calculo del GAP. A diferencia de los otros modelos, se ha
calculado el valor de la funcién de energia. Dicha funcién de energia debe alcan-
zar un valor minimo una vez el algoritmo haya convergido a la solucién éptima.
La figura F.11 muestra la imagen de resultado obtenida mientras la figura F.12
muestra la evolucién de la energia para el modelo TV-L1.

29

Seccién F.1 F. Resultados

(a)

Imagen ruidosa o, = 0,1 Imagen resultado A = 1,5 TV-L1

Figura F.11: Resultado obtenido para el modelo TV-L1

Se comprueba que efectivamente su funcion de energia disminuye hasta alcanzar
un minimo.

0 0 40 B0 a0 100
iteraciones

Figura F.12: Evolucion de la funcién de energia por iteracién para el modelo TV-
L1.

El método TV-L1 es el que méas grados de libertad tiene de los tres implemen-
tados. Por tanto, se realizara un andlisis de A, 7 y 6 representados graficamente en
la figura F.13.

60

F. Resultados Seccién F.1

2 450 100

400

5

g 380

:

g

2 a0

2 g
5 =

19 § 0 i=

P

=

H

g 150

100

14 50 90
] 2 4 3 & 10] 0.1 0.2 0.3 0.4 0.5 04 02 03 04 05 0F 07 08 03 1
1 t q

(a) Dependencia SnR (b) Dependencia (¢) Dependencia
respecto a A iteraciones hasta iteraciones hasta
convergencia respecto a convergencia respecto a
T. 0.

Figura F.13: Evaluaciéon de parametros para el modelo TV-L1.

Observando los resultados se puede concluir que el valor 6ptimo de A es de 1,25
aproximadamente y el de 7 es de 0.025. 6 afecta en menor medida que los otros
parametros pudiéndose asignar un valor de 0.5.

F.1.4. Comparaciéon de modelos

La figura F.14 muestra los resultados visuales para los tres modelos. Asi mismo,
la tabla F.1 muestra el tiempo total de ejecucion para cada solucion.

(a) TV-ROF (b) TV-L1

Figura F.14: Comparacion de modelos. Resultados obtenidos al aplicar el conjunto
de parametros 6ptimos en cada caso.

Para una misma cantidad de ruido (¢ = 0,1), el resultado es muy similar. A
simple vista, se observa que la imagen resultado del TV-L1 elimina algo peor el
ruido en comparacién a los modelos TV-ROF y HUBER-ROF. Entre el modelo
TV-ROF y el HUBER-ROF se encuentran pocas diferencias apreciables.

61

Seccién F.1 F. Resultados

Modelo Tiempo 200 iteraciones | Tiempo hasta convergencia
TV-ROF 30 ms Sms
HUBER-ROF 37 ms lms
TV-L1 28 ms 5ms

Tabla F.1: Tiempos de ejecucién para los modelos evaluados

En todos los métodos se han aplicado 200 iteraciones para asegurar convergen-
cia. Sin embargo, no todos los métodos convergen con las mismas. En el mejor de
los casos, bastan 40 repeticiones de TV-ROF, 10 iteraciones de HUBER-ROF y 60
de TV-L1 para alcanzar el valor de convergencia. Los resultados de tiempos de eje-
cucién se observan en la segunda columna de la tabla. De acuerdo a los resultados,
el método éptimo seria el HUBER-ROF, ya que permite su aplicacion en tiempo
real y buena precisién. También podrian ser aplicados los métodos TV-ROF y
TV-L1, ya que 5 ms es muy poco tiempo. Asi, lo mas importante es la calidad
de la imagen obtenida. La de mayor calidad es la de TV-ROF, de forma que se
escogerda TV-ROF si se prima la calidad y HUBER-ROF si se prima el tiempo de
ejecucion.

El anélisis previo se ha considerado ruido gaussiano, donde cada pixel ha modi-
ficado su valor segun el pardmetro o,. Otra forma de considerar el efecto del ruido
es a partir de la contabilizacién de los datos espurios. Si a una imagen se le aplica
ruido de sal y pimienta, que coloca un porcentaje de los pixeles de color blanco y
negro, se puede observar cémo reaccionan los diferentes métodos (ver figura F.15).

(a) Imagen ruido Sal Pimienta, 20 % (b) Resultado TV-ROF

62

F. Resultados Seccién F.1

(c) Resultado Huber-ROF (d) Resultado TV-L1

Figura F.15: Resultados para los modelos evaluados ante la adicién de ruido de sal
y pimienta.

Si bien ante un ruido Gaussiano, el algoritmo TV-L1 no era considerado como
el mas efectivo, ante un ruido de espurios resulta ser el mas adecuado. El motivo
es que la norma cuadrética Ly suaviza los pixeles de variaciones pequenas pero le
da mucho peso a las variaciones grandes. Asi, la norma cuadratica es mejor ante
variaciones pequenas mientras la norma L; es mejor ante variaciones grandes o
espurios. La figura F.17 muestra la comparacién entre normas L2 y L;. La figura
F.16 muestra la SnR del algoritmo TV-L1 ante ruido de Sal y Pimienta.

)

Figura F.16: Evoluciéon de SnR frente a ruido de Sal y Pimienta en TV — L1

63

Seccién F.2 F. Resultados

Figura F.17: Normas L1y L2

Por este motivo, para ser capaces de tomar una decisién acerca del algoritmo a
aplicar, se debe saber de antemano qué ruido va a aparecer en la imagen. De esta
manera, si el ruido es Gaussiano, se aplicarda un algoritmo TV-ROF o HUBER-
ROF. En caso de que el ruido esté compuesto por espurios, se debera aplicar el
algoritmo TV-L1.

F.2. Resultados Zooming

La figura F.18 muestra cémo varia la imagen resultado en funcién del factor de
ampliacion s.

T

-

(a) s =2, A = 300 (b) s = 10, A = 300

Figura F.18: Resultado del zooming para diferentes valores de escala deseados.

A diferencia de los otros problemas tratados en este proyecto, el parametro
A puede dar lugar a la divergencia del algoritmo. Este problema se debe que el

64

F. Resultados Seccién F.2

método de Jacobi impone su propia restriccién para asegurar la convergencia. Es
posible probar que el algoritmo converge siempre y cuando A < us*/(s* — 2).

Es légico pensar por tanto que el parametro A\ éptimo para cada factor de
ampliacién vaya a variar. Asi, para un mismo A, con un factor de ampliacién de 2,
la imagen aparece mucho méas pixelada que en el caso de factor de ampliacién de
10. Si se quiere un resultado similar, habria que reducir el parametro A en el caso
de factor 2 o ampliarlo en el caso de factor 10. Reduciéndolo en el caso de factor
2, se obtiene un resultado muy similar (ver figura F.19, izquierda). La evolucién
de la energia se muestra en la figura F.19, derecha.

1Bx 10

14
12

Fdl

= M B M om

0 10 20 30 40 50
(a) Iteraciones

Resultado éptimo (b) SnR

Figura F.19: Resultado de zomming para s = 2, A = 100

El método converge muy rapidamente y la funcién de energia decrementa mucho
su valor, mas que en los anteriores casos. El motivo es que anteriores apartados,
la imagen resultado era inicializada al valor de la imagen danada y en este caso
la imagen resultado es inicializada con todos sus pixeles negros. El valor de A en
la optimizacién de pardametros solo tendra sentido para un factor de ampliacion
constante. Si se varia éste, A variard en consecuencia. Para calcular el valor é6ptimo
de X\ hay que calcular se calcula la razén SnR. Ese pardmetro requiere la imagen
original sin danar. La imagen original se puede interpretar como el resultado ideal
al que convergeria el método si toda la informaciéon pudiese recuperarse. Para
simular este fenémeno, se toma una imagen, se reduce externamente al programa,
y se aplica el algoritmo zooming con el mismo pardmetro de reduccién a la imagen
reducida. De esta forma, se obtiene un resultado que es comparable a la imagen
ideal. La figura F.20 ilustra los resultados obtenidos de evaluacion de precision.

65

Seccién F.2 F. Resultados

26 T T T 24

25,8
25,6
E 5.4 1 =
25,2

25

24,8 21,5 L . L L .
0 500 1000 1500 2000 0 1000 2000 2000 4000 5000 EO00

1 1

(a) SnR, s =4 (b) SnR, s =38

Figura F.20: Evaluacién de precisién respecto a la variacién del parametro A, para
s=4ys=28.

En el experimento se ha tomado p = 100. Aplicando la ecuacion anterior, se
deduce que el valor maximo de A que asegura convergencia es de 1828.57. En
el experimento se ha superado ese valor y el método ha convergido, pero més
lentamente. Observado la grafica, el valor que se escogeria es el 6ptimo mas lejano
de la no convergencia, es decir, A = 800. En el caso de factor igual a 8, el valor
maximo de A\ es de 6606.45, por lo que el experimento se acota al valor 6000. Se
encuentra el valor 1800 como optimo tedrico en este caso. En este algoritmo A
decrece muy lentamente una vez alcanzado el 6ptimo, sin embargo conviene no
tomar A muy alto, pues el método podria no converger.

A continuacion, se comprueba el valor 6ptimo de 7. De nuevo se va realizar el
mismo experimento para dos escalados diferentes y se interpretaran los resultados
obtenidos:

66

F. Resultados Seccién F.2

4000 14000

3500 12000

3000 10000
2500
2000
2000
1500 E000

1000 4000

Iteraciones hasta convergencia
Iteraciones hasta convergencia

i 20000
0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04

t t

(a) SnR, s =4 (b) SnR, s =8

Figura F.21: Evaluacion de precision para el parametro 7, paras = 4 y s= 8

En el primer caso, el valor é6ptimo de 7 esta en torno a 0.025, donde el método
converge en unas 800 iteraciones. Esto se debe al error minimo establecido para
alcanzar la convergencia. Si es error admisible se aumenta, el método es muy rapido
pues disminuye el numero de iteraciones. En el segundo caso, el valor 6ptimo de
7 es similar, de 0.02, sin embargo las iteraciones hasta la convergencia aumentan
considerablemente. Al tener un factor mayor, las iteraciones se multiplican.

0 es el ultimo parametro a analizar de acuerdo a su influencia en la aceleracién

de la convergencia. En la figura F.22 se comprueba cémo evoluciona su valor para
s = 4.

67

Seccién F.3 F. Resultados

Factor de ampliacién | Escala | Tiempo minimo de convergencia
4 100x100 243ms
4 50x50 90ms
8 50x50 1589ms

Tabla F.2: Tiempo de ejecucién para el algoritmo de zooming

1865

1860

1855

1850

1845

1340

Iteraciones hasta convergencia

1635
0.5 0.6 0.7 0.8 0.9 1
(a) i

Resultado éptimo (b) SnR

Figura F.22: Evaluacion de la precision para el parametro 6, para s = 4.

Se observa que 6 debe ser lo més pequena posible para que disminuya las itera-
ciones. El minimo para asegurar la convergencia es de 0.5, por lo que se mantiene
ese valor como 6ptimo. Adicionalmente se han realizado tres experimentos para
obtener un valor aproximado del tiempo de computo del algoritmo. La tabla F.2
resume los resultados para diferentes valores de escala. Se puede por tanto com-
probar que el tiempo de computo aumenta sustancialmente con el tamano de la
imagen, pero es mas sensible ante variaciones en el factor de ampliacion.

F.3. Resultados Deconvolution

Dada una imagen, se aplica una méscara de motion blurring de 10 pixeles de
longitud de movimiento y 45° de inclinacion. La figura F.23 expone la imagen
original, la imagen degradada con blurring y la imagen de resultado obtenida
después de la deconvolucion.

68

F. Resultados Seccién F.3

(a) Imagen original (b) Imagen con (c) Imagen resultado
blurring, d, = 10, a = A = 1000
45°

Figura F.23: Resultado obtenido tras la deconvolucién aplicando el algoritmo pri-
mal dual.

Para evaluar la eficacia del algoritmo de deconvolucién, se ha incrementado

el efecto de blurring. La figura muestra el resultado para una méscara lineal de
d,=100

(a) Imagen original (b) d, = 100, av = 45° (c) A =1000

Figura F.24: Resultado de deconvolucién para una imagen degradada con d,=100

Una primera conclusién que se puede obtener tras observar la evolucién de la
funcién de energia (ver figura F.25) es que ésta disminuye muy poco debido a la
utilizacion de la transformada de Fourier que transforma el resultado del dominio
espacial al de la frecuencia.

69

Seccién F.3 F. Resultados

7
x 10 ZB
26,5
25
24,8
24

~y
ol

9.4

1
=

5,35

2}
)

5.3

@
=

5,25

Fdl
SnR

@
=)

5.2 23,5

5,15 23

w
=3

.
o

5.1 22,5

Iteraciones hasta convergencia

5,08 22 40
0 50 100 150 200 250 300 0 2000 4000 BQ00 8000 100¢ 0,005 0,01 0,015 0,02 0,025 0.03 0035 0,04

iteraciones 1 t

(a) Evolucién de FdU, (b) Evolucién de A (¢) Evolucién de 7
d, = 100

Figura F.25: Evaluaciéon de parametros

Si se observan las graficas del parametro A se deduce que lo mas correcto es
tomar una A infinita, pues ésta no deja de aumentar. Sin embargo, ;qué sucede en
el caso de que una imagen se vea afectada al mismo tiempo por blurring y ruido?
Imaginemos un 5% de la imagen con pixeles blancos y negros. Al transformar la
imagen al dominio frecuencial y optimizar ahi el algoritmo, se intentard mantener a
toda costa la cantidad de pixeles ruidosos. Ademas, al aplicar la mascara de forma
inversa en la resolucién del algoritmo, el ruido se expande. Como conclusion, se
utilizara A = 1000 como parametro éptimo.

En cuanto al parametro 7, se observa que para un valor de 0.012 es éptimo.
El parametro 6 no se incluye pues no provoca variacién en las iteraciones hasta
convergencia en su rango de aplicacion.

Para poder mostrar como evoluciona el algoritmo en caso de que haya ruido
en la imagen, se ha habilitado la posibilidad de generarlo en la interfaz. De esta
forma, se realiza un blurring sobre la imagen y ademas se anade un ruido gaussiano
de o = 0.1. La imagen danada es la siguiente:

Figura F.26: Imagen con blurring y ruido de o = 0.1

70

F. Resultados Seccién F.3

El 6ptimo tedrico de la deconvolucion es A = oo, se asigna A = 10000. El 6ptimo
teodrico para solucionar el ruido esta en torno a 10. De esta forma, para comprender
mejor el algoritmo, se hacen cuatro experimentos: A = 10, A = 100, A = 1000 y A
= 10000.

1000 10000

Figura F.27: Resultado de deconvolucién para diferentes valores de A al adicionar
ruido gaussiano.

Si se observa la imagen F.27 a), no ha reparado su blurring. Sin embargo, ya
no aparece nada de ruido y las superficies han sido homogeneizadas. En la imagen
F.27 b) se ha removido la mayor parte del ruido y la degradacién por movimiento
ha sido casi reparada. La imagen F.27 ¢) muestra lo que sucede si A toma un valor
demasiado alto, el ruido no sélo no desaparece, sino que es deconvolucionado con

71

Seccién F.3 F. Resultados

el método y se ha expandido. La imagen F.27 d) muestra el resultado para un A
= 10000 para el cual el blurring ha sido eliminado, pero el ruido persiste.

El problema que se trata de resolver en este apartado es el del blurring, no el
ruido, por lo que una ¢ = 0.1 es muy grande para este punto. Se anade un ruido
de o = 0.01, inapreciable para el ser humano y se realiza el mismo experimento.
Simulando una situacion real, se empieza con una A = 1000 que habia sido sugerida
en el analisis de parametros, ya que no se sabe que existe ruido.

Figura F.28: Imagen con gran blurring y ruido de ¢ = 0.01

1000

72

F. Resultados

Seccién

F.4

—_= 5 s

i 3
o RO

1000000

Figura F.29: Resultado de deconvolucién para differentes valores de A al adicionar

ruido gaussiano.

Como el resultado de A = 1000 no repara el blurring completamente, se piensa
en aumentar el valor de A\. Conforme se aumenta en un factor de 10, el resultado
cada vez es peor. Este tltimo andlisis demuestra que pese a que un analisis tedrico
muestre que el A éptimo es 0o, conviene no aumentarlo por encima de cierto valor,
ya que puede haber algo de ruido inapreciable que puede empeorar drasticamente

el resultado.

En cuanto a la eficiencia del método, se ha evaluado también el tiempo de
ejecucién. Notese que los tiempos no varian demasiado en funcién de la longitud
de movimiento en pixeles (Ver tabla F.3).

Longitud de movimiento

Tiempo minimo de convergencia

10

17 ms

100

55 ms

Tabla F.3: Tiempo de ejecucion para el método de convolucion.

F.4. Resultados Image Inpainting

La imagen utilizada en este apartado vuelve a ser Lena.jpg, la misma que se
utiliz6 en el apartado de denoising. Como primera simulacién, se dana el 50 % de
la imagen y se recupera segun el algoritmo de inpainting.

73

Seccién F.4 F. Resultados

Figura F.30: Imagen danada Figura F.31: Imagen arreglada A\ =
640

7
% 10

3.0 i

2.5]

Fdu
-

1.5]

0.5 j

0] 100 150 200
iteraciones

Figura F.32: Evolucién de FdU

El algoritmo es muy potente, ya que es capaz de recuperar la imagen practi-
camente en su totalidad. Hay que decir que en la realidad no se encontraria un
resultado tan fiel a la realidad, puesto que en la funcién que repara la imagen se
debe introducir qué pixeles son espurios. En esta aplicacion se maneja la informa-
cion perfecta de qué pixeles son defectuosos, lo que en la realidad no es posible.
Para que este algoritmo tenga una aplicaciéon mas realista, se debe crear un algo-
ritmo que sea capaz de calcular puntos espurios con precision. Como ejemplo de
la potencia del algoritmo si maneja informacion perfecta, se introduce una imagen

danada al 85 %.

74

F. Resultados Seccién F.4

Figura F.33: Imagen danada Figura F.34: Imagen arreglada \ =
640

Una vez se han mostrado los resultados del algoritmo, se expone la optimizacién
de parametros:

29.4 250

150 1

100 1

50 1

Iteraciones hasta convergencia

. . . . 0 . . .
0 2000 4000 EO00 8000 10000] 0,01 0,02 0,03 0,04 0,08

Figura F.35: Evolucién de A Figura F.36: Evolucion de 7

Al igual que en el caso anterior, vuelve a aparecer una A infinita como éptima.
De nuevo, hay que tomar este resultado con precauciéon, porque en esta aplicacion
se maneja informacién perfecta. Si no se detectan todos los pixeles espurios. Para
demostrarlo, se presenta a continuacién una imagen danada al 50 %, donde tan
solo se ha detectado la mitad de danados y se aplica una A muy elevada:

75

Seccién F.4 F. Resultados

Figura F.37: Imagen danada 50 % Figura F.38: Imagen resultado sélo
detectando 50 % espurios

Por tanto, una A muy elevada sélo es 1util ante informacién perfecta, de modo
que es mejor no tomarla demasiado elevada. De esta manera, el valor de A éptimo
se estima en 640 y el valor éptimo de 7 se estima en 0.025.

Inpainting no sélo es capaz de recuperar una imagen danada por pixeles. Es
posible que algunas filas o columnas enteras sean danadas en algtin instante del
tratamiento de imagen. El algoritmo inpainting es capaz de recuperar la imagen
original razonablemente bien:

Figura F.39: Imagen danada 10% Figura F.40: Imagen resultado del
con lineas 10% de lineas

76

F. Resultados Seccién F.4

“ | m”ilﬂ“\\
L |

Figura F.41: Imagen danada 50 % Figura F.42: Imagen resultado del
con lineas 50 % de lineas

El el caso del 10 % no se aprecia diferencia entre la imagen obtenida y la imagen
real. En el caso del 50 % hay zonas de la imagen danada donde hay hasta 10 lineas
seguidas danadas. Este hecho provoca en el algoritmo zonas en las que no es del
todo preciso, pero el resultado sigue siendo muy satisfactorio.

No sélo es capaz de recuperar la imagen en caso de que haya lineas o pixeles
danados, también se puede recuperar una zona relativamente grande que ha sido
perdida, de esta manera:

Figura F.43: Imagen danada al 5%

77

Seccién F.4 F. Resultados

Figura F.44: Imagen arreglada tras Figura F.45: Imagen arreglada tras
200 iteraciones 20000 iteraciones

El algoritmo Image Inpainting repara la zona danada, pero cuanto mayores son
las dreas a reparar, mas costoso es el método. Asi, con 200 iteraciones bastaba para
reparar el punteado completamente, aunque éste fuera del 50 % de la imagen, ya
que se tiene mucha informacién alrededor de cada espurio para que en pocas re-
peticiones se alcance el resultado 6ptimo. En las lineas el problema es algo mayor,
aunque también se soluciona con relativamente pocas iteraciones. Sin embargo,
cuando son superficies compactas las que hay que reparar, se requiere un nimero
muy elevado de repeticiones. Asi, con 200, el resultado es insatisfactorio. Sin em-
bargo, aumentando a 20000 repeticiones, se obtiene un resultado que incluso trata
de adoptar los colores del sombrero en la zona més clara y en la zona més oscura.

Figura F.46: Imagen danada al 20 %

78

F. Resultados Seccién F.4

Figura F.47: Imagen arreglada tras Figura F.48: Imagen arreglada tras
10000 iteraciones 200000 iteraciones

Cuanto mayor es la superficie, mayor es la cantidad de pixeles a estimar. De esta
manera, si se dafia la imagen con un cuadrado que ocupa el 20 % de la imagen, el
resultado tras 10000 iteraciones sigue siendo insatisfactorio, ya que el algoritmo ha
rellenado el area danada con la tonalidad del fondo de la imagen. Si se aumenta la
cantidad de iteraciones hasta 200000 se observa que el algoritmo ya ha convergido,
no aportara solucién mejor que la obtenida, de modo que esta acotado.

Figura F.49: Imagen danada en el Figura F.50: Imagen con el hombro
hombro arreglado

En la figura F.50 se puede comprender cémo evoluciona el algoritmo inpainting.
Las esquinas del cuadrado danado toman los valores proximos a ellas de forma que
se prediga el interior desconociendo la profundidad de las tonalidades.

En cuanto a los tiempos, el algoritmo se comporta de la siguiente manera:

79

Seccion F.4 F. Resultados

Tipo de danado | % de dano | Tiempo minimo de convergencia
pixeles 50 % 20 ms
pixeles 20 % 14 ms
lineas 50 % 63 ms
lineas 20 % 31 ms
area 20 % 169 ms

De esta forma, se puede observar que la variaciéon de tiempo en funciéon de la
cantidad del % de pixeles danados es infima. No es asi sin embargo la variacién del
tiempo respecto al tipo de danado, siendo el danado por pixeles el mas rapido, el
danado por lineas el medio y el danado por area el més lento.

80

Apéndice G

Manual de usuario

G.1. Ventana Principal

Una vez ejecutado el programa, aparece la siguiente interfaz:

Elija la accion que desea realizar sobre laimagen

| Denoising | Deconvolution |
| Zooming | Inpainting |
Estimation Segmentation

Figura G.1: Ventana Principal

Donde se puede escoger entre los cuatro programas realizados, habilitando la
posible implementacién futura de la Estimation y Segmentation. Una vez se pulsan
los botenes correspondientes, aparecen las nuevas interfaces descritas a continua-
cion:

81

Seccion G.2 G. Manual de usuario

G.2. Ventana Denoising

Cuando se escoge la opcién Denoising se abre la siguiente interfaz de usuario:

Denoising

6

Programa Principal | Evaluacién Pardmetros | Simulacién Tiempo Real |

1 2 Adicionar ruido sigma | 0.1
Cargar Imagen

IRmdo gaussiano |
) log GAP. 4 Evolucion del GAP [Escala logaritmica -
Imagen original Imagen ruidosa

1,000

800

600

400

- ST Imagen restltado
- 200
Eleccion de método - 1
Eleccién parémetros
od
Lambda |- T T T T T T T T T T d
0 200 400 600 800 1,000
b [
By log iteraciones
Alfa o
Thet: -
et 5 Tiempo de computo: ms
teraciones [

Figura G.2: Interfaz denoising al inicio de ejecucién

Punto 1. El botén lleva asignada la eleccién de una imagen. Al pulsarlo, se abre
una ventana que permite navegar por las carpetas del sistema y escoger la imagen
deseada. Automaticamente esta imagen se guarda en la memoria del programa y
se muestra en el hueco habilitado para Imagen original. Siempre que se introduce
una imagen, se dana o se arregla, cuando se muestra en su lugar de la interfaz, se
modifica su tamano para que se ajuste al hueco que le corresponde.

Punto 2. En el desplegable inferior al botén Adicionar ruido se escoge el tipo
de ruido que se desea: un ruido gaussiano de valor o el que se introduce en el
espacio habilitado para ello, o el ruido de sal y pimienta, al que se le introduce
como parametro el porcentaje de imagen danada que se desea. Este porcentaje se
introduce en el hueco donde ahora se ve la palabra sigma. Al cambiar el tipo de
ruido, se cambia el nombre sigma por % para hacerlo mds intuitivo para el usuario.
La imagen danada se guarda en memoria y se muestra en el widget Imagen ruidosa.

Punto 3. La ejecucién del programa depende del algoritmo utilizado. El des-
plegable que se encuentra en esta zona permite elegir entre TV-ROF, Huber-ROF
y TV-L1. Una vez que se escoge un método se habilitan espacios para introducir
los pardmetros en funcién del método (por ejemplo, en TV-ROF, 6 depende de
7y A, por lo que sélo se habilitan estos dos tltimos) con unos parametros que
convergen cargados por defecto. Una vez se pulsa el botén, se ejecuta el algoritmo
en la tarjeta grafica y muestra por pantalla la imagen resultado.

82

G. Manual de usuario Seccién G.2

Punto 4. La grafica muestra en escala logaritmica o decimal en funcién del des-
plegable la evolucién del GAP o funcion de energia segtin el caso de los algoritmos.
Asi, se puede observar que en cada iteracion el GAP decrece hasta 0, valor que
toma cuando el método ha convergido. Por su parte, la funcién de energia nunca
valdra 0, alcanzard un minimo en el que se mantendra cuando haya convergido.

Punto 5. Tras la ejecucién del algoritmo se muestra por pantalla la imagen
resultado, la evolucién del GAP o funcién de energia y el tiempo de computo. Este
tiempo de computo es el que invierte el algoritmo en realizar los calculos propios
del algoritmo, descontando el tiempo invertido en calcular el GAP, ya que éste es
mas de cien veces mayor y es absurdo calcular el GAP en cada iteracién para saber
si el método ha convergido. Si no se sabe con exactitud las iteraciones necesarias
para converger, es computacionalmente mas barato aumentar en uno el orden de
las iteraciones previstas y no calcular el GAP, que es muy costoso.

Punto 6. Las pestanas de la intefaz. Aqui se puede cambiar entre las diferentes
opciones.

A continuacion se muestra la interfaz una vez se ha reparado una imagen. El
ruido generado es de sal y pimienta y se soluciona mediante el tinico algoritmo
que lo soluciona: El TV-L1. Se puede observar cémo o se ha cambiado por % al
cambiar el tipo de ruido y el resultado en logaritmico. En TV-L1 se calcula la
funcién de energia y no el GAP asi que también ha cambiado en los ejes de la
grafica. El TV-L1 es un método muy rapido y con tan sélo 100 iteraciones y ante
tan poco ruido, tarda muy poco tiempo en finalizar la ejecucion.

Denoising

Programa Principal | Evaluacion Pardmetros | Simulacion Tiempo Real |

Adicionarruido [% |10
Cargar Imagen

[Ruido sal y pimienta =

o log FdE Evolucion de FdE [Escala logaritmica <]
Imagen original Imagen ruidos:

w‘ Imagen resultado]

3.8 -
Tv-L1 E
Eleccién par&metros 7]
3.6 -
Lambda [15 ; i] ! 2
o 05 1 15 2
Tau 0.02 it
log iteraciones
Alfa =
Thet:
eta T Tiempo de cémputo: 5 ms
tteraciones [100

Figura G.3: Interfaz denoising tras simulacion

Se muestra ahora la pestana de Evaluacién de Parametros vacia, para explicar
su funcionamiento.

83

Seccion G.2 G. Manual de usuario

Denoising

Programa Principal Evaluacion Parémetros | Simulacién Tiempo Real |

Adicionar ruido sigma [0.1
Cargar Imégen
[Ruido gaussiano |

Sefial-Ruido 2 Senal-Ruido/Lambda
Imagen original Imagen ruidosa

1,000

e Imagen resultado
200
Eleccion de método -]
4 Eleccion pardmetros 0
r T T T T 1
M e =D 0 200 400 600 800 1,000
¥ Lambda 1 1 1 e
I~ Tau 1 1 o
I Alfa 1 1 o
I~ Theta 1 1 o

Eror oo

Figura G.4: Interfaz denoising parametros al inicio de ejecucién

Punto 1. De nuevo se puede escoger el método que se desee. Ademas, se debe
elegir qué parametro se va a evaluar colocando un tick donde se desee. Una vez
se elige el pardametro, se asignan unos parametros por defecto en si mismo y los
demds. En el escogido se habilitan tanto el min, max y el paso. En los demas, s6lo
se habilita el min, donde se coloca el valor asignado al otro pardmetro. Se evalia
el algoritmo para el valor de cada pardametro seleccionado entre el min y el max,
iterando segun el paso. La cantidad de veces que se ejecuta el algoritmo es por tanto
W siempre redondeando hacia arriba para asegurar que se evaltian los dos
extremos. Asi, conforme mayor sea la diferencia entre el min y el max y menor sea
el paso, mas tiempo tardard en ejecutarse la evaluacion de parametros. También se
debe considerar que en algunos algoritmos hay limites de convergencia en algunos
de ellos. Si los limites son demasiado amplios podrian originarse problemas de no
convergencia en algin método.

Punto 2. Tras la evaluacién, aparecera el ratio Senal-Ruido si se escoge A o «
y las iteraciones hasta convergencia para 7 y 6. La grafica representara el valor
evaluado en el rango del parametro.

Se muestra un ejemplo solucionado. Se trata de la evaluaciéon de « en el algo-
ritmo de Huber ante un ruido gaussiano.

84

G. Manual de usuario

Seccién G.3

Denoising

Evaluacién Pardmetros | Simulacion Tiempo Real |

Adicionar ruido | sigma [0.1

Programa Principal

Cargar Imagen |

[Ruido gaussiano

Imagen original

i-AR

Imagen ruidosa

Imagen resultado

iAs

I Lanzar programa 1
HUBER-ROF |

Eleccidn parametros

Min Max Paso

Fuma s E 6

I o T

P At [ooor [0z [ooor

I Theta [e |
eor oo

Senal-Ruido Senal-Ruido/Alfa

27

Afa

Figura G.5: Interfaz denoising parametros al final de ejecucion

G.3. Ventana Zooming

Una vez pulsada la opcién de Zooming en la ventana principal, aparece la

siguiente interfaz de usuario.

zooming

{"Programa Principal | Evaluacién Pardmetros | Simulacién Tiempo Real

1

Eleccion pardmetros.

2
Cargar Imagen Escala |2 Lambda 500
Tau 0.01
Lanzar programa
_ umrpogome | eta 05

Iteraciones 200

log Fdu Evolucion del GAP

Escala logaritmica ~]

1,000

800 -

600 -

400

200

0

1
1,000

log iteraciones

T
400 600 800

Tiempo de computo:

 ms

Figura G.6: Interfaz zooming al inicio de la ejecuciéon

Punto 1.

La organizacion de la interfaz ha cambiado un poco. En este caso,

aparece un hueco grande donde aparecerd la imagen ampliada. Al ser negro en

el inicio no

se puede ver la zona donde aparecera la imagen pequena, que es la

85

Seccién G.3 G. Manual de usuario

esquina superior izquierda de la zona negra. Zooming consiste en una ampliacion
de la imagen de partida. Si esta imagen es de 100x100 y se amplia con un factor de
5, la imagen resultante es de 500x500. En una interfaz compacta es imposible de
modelar, pues la imagen resultante se podria solapar con la grafica o los parame-
tros si hubiera un factor de escalado muy grande. La decisién que se tomo para
representar de una forma grafica la ampliacién es fijar el tamano de la grande en la
interfaz, variando en tamano de la pequena. El algoritmo trabaja con los tamanos
reales pero a la hora de mostrar por pantalla se ajusta a lo dicho anteriormente.
Asi se puede apreciar cémo varia la relacién de tamanos. Se debe introducir un
factor de ampliacion lo suficientemente grande respecto a la imagen original para
que supere el tamano de 400x400 que tiene el hueco para la imagen grande. Si
es mas pequena el algoritmo funciona igual y la imagen queda representada de la
misma manera, pero para ajustarse al tamano se realiza una interpolacién lineal
que provocard que el resultado final sea una mezcla del primal dual (lo que se rea-
liza en el algoritmo) y una interpolacion lineal (lo que se trata de evitar al realizar
el primal dual).

Punto 2. El factor de escalado introducido por defecto es 2. Una vez que se
edita, el tamano asignado a la imagen pequena varia, aunque si no se ha ejecutado
el programa no se aprecia al ser la zona de color negro. Se expone a continuacion
la interfaz resultado con dos diferentes escalados: 2 y 10.

Zooming
Programa Principal Evaluacién Pardmetros. Simulacién Tiempo Real
log FdU. Evolucion de FdU [Escala logaritmica, =]
5.5
5]
4.5 4
4]
3.5
Eleccion pardmetros 3- : . . - - -
0 05 1 15 2 25
Cargar Imagen Escala |2 LR 300 log iteraciones.
- . Tau 0.01
Lanzar programa
L . Theta 05 Tiempo de cémputo: 13 ms
teraciones 200

Figura G.7: Interfaz zooming al final de la ejecucion, s = 2

86

G. Manual de usuario

Seccién G.3

zooming

Programa Principal | Evaluacion Parsmetros | Simulacion Tiempo Real

N

log Fdu

Evolucién de FdU [Escala logaritmica <]

6

Eleccién parametros 3.5 -

Cargar Imdgen Escala [10 Lambda [300

0.01

E . Tau
Lanzar programa
L . Theta 05

Iteraciones [200

|
05 1 15 2 25
log iteraciones

1098 ms

Tiempo de computo:

Figura G.8: Interfaz zooming al final de la ejecucion, s = 10

Con los ejemplos se entiende algo mejor como se debe interpretar la interfaz.
Para distintos escalados, se observa la diferencia existente entre la imagen original
y la imagen ampliada. Ademas, se pueden hacer pruebas con el parametro A,
observando que aunque en la imagen de escalado 2 parece 6ptimo, en la imagen
de escala 10 el resultado estd mas difuminado. También a igual valor de 7 y 6,
se puede observar en la grafica y tiempo de cémputo la diferencia en iteraciones
hasta convergencia y en tiempo de computo existente en funcion del escalado.

Se muestra a continuacién la interfaz de la evaluacion de parametros antes y

después de la ejecucion:

Sefial AuidofLambda

Eleccibn parémetros.

Mn_ max paso
P tambda [100 | [1000 | [100 |
cargarimsgen | escala |2
o [oor | [oor ([0 |
Lanzar programa I heta. | ool ol ol
Emor [oo0r

200 400 600 800 1,000
Lambda

Figura G.9: Interfaz zooming parametros al inicio de la ejecucion

Punto 1. De nuevo se puede escoger qué parametros evaluar. En este caso el
resultado no depende de a de forma que el parametro ha desaparecido. Los dife-
rentes valores del resto son inicializados con parametros que convergen y, al igual

87

Seccién G.3 G. Manual de usuario

que en la interfaz denoising, pueden variar como desee el usuario. Es critico tener
cuidado con la introduccion del parametro A, que mediante una dependencia con
T v s puede provocar la no convergencia del método y podria dar como resulta-
do una imagen completamente blanca. Es habitual en evaluacién de pardametros
colocar limites de evaluacién muy separados con un paso muy pequeno con el fin
de obtener una grafica precisa. Estos limites deben introducirse con cuidado o la
grafica de SnR podria carecer de sentido. Si se observa en dicha grafica algo ilégico
tan como una caida o una subida muy brusca en el valor de SnR, probablemente
sea porque el método no ha convergido y se puede saber a partir de qué valor
de X sucede este fenémeno. Se muestra a continuacién el resultado del método
convergiendo y no convergiendo:

rograma Fincipal | Evaluacin parmetros | Simuacion Tiempa feal |

—~
«——— v ot niapanic
ze
- A 258
N
g Il 254
»
o s 2ad ‘
Lo 500 1,000 1,500 2,000 2,500
,— F Lambda 100 2500 [10 -
T [oor oo [
Lo L2NPRC PrOGTEME I~ Theta [os o5 [0
oo o

Figura G.10: Interfaz zooming pardmetros al final de la ejecucién que converge

200ming

Frograma Principal Evauacion parsmetros | simulacion Tempe feal |

Sefal-fuido Sefal-RuidofLambda

Eleccion parametros. 208 - = : :
i 0 500 1000 1500 2000 2500 3,000 3,500 4,000

M Max Paso
[©tambda [100 | [a000 [0 o
cargarimagen | Escala [4 e
ki T [oor |[oor ([0
[Gwarprogama | Theta [os 5 [
eror [ao01 |

Figura G.11: Interfaz zooming parametros al final de la ejecucién que no converge

Se observa para este segundo caso que el método a partir de A = 3200 no
converge. Segun la ecuacion:

88

G. Manual de usuario Seccion G.4

A< pust/(s* —2) (G.1)

Sabiendo que p = %, que 7 = 0.01 y que s = 4, sélo se asegura convergencia
para valores de A\ menores a 1828,57. Este valor es aproximadamente el punto en
el que en el primer experimento la SnR empieza a decrecer. Se debe calcular este
valor antes de lanzar ninguna simulacion, porque sino podria aparecer un resultado
como el de la figura G.11.

G.4. Ventana Deconvolution

Una vez pulsada la opcién de Deconvolution en la ventana principal, aparece
la siguiente interfaz de usuario.

Deconvolution

i

Programa Principal Evaluacién Pardmetros | Simulacién Tiempo Real |

IRATE : Longitud |10

AT | |c|or|ar mﬂ\nr?'\len 0 Angule [43
Adicionar ruido .

sigma 0

H

imagen original T log FdU Evolucién de FdU [Escala logaritmica |
1,000 o
800
600 —
400 —
Lanzar programa | Imagen resultado
200 -
Eleccién pardmetros. 7
bd 0-
Lambda 1000 r T T T T T T T : = -
0 200 400 600 800 1,000
P l—
= — log iteraciones
Theta 1

Iteraciones | 100

Tiempo de computo: ms

Figura G.12: Interfaz deconvolution al inicio de la ejecucién

La interfaz es calcada a la de denoising. La diferencia reside en que donde antes
se generaba ruido, ahora se genera movimiento. El valor de la longitud en pixeles
de movimiento esté acotado, ya que la imagen tiene una dimensién y en caso de
exigir un movimiento demasiado grande, el algoritmo toma pixeles exteriores a
la imagen, volviéndola completamente negra. Se sugiere no introducir un valor
superior a 300. El angulo no tiene limitaciones.

89

Seccion G.4 G. Manual de usuario

Una vez ejecutado el programa se obtiene lo siguiente:

Programa Principal | Evaluacion Pardmetros | Simulacion Tiempo Real |
Longitud [10
Cargar Imagen Adicionar movimiento Angulo re

Adicionar ruido
sigma [0

Imagen ruidosa

log FdU Evolucién de FdU [Escala logaritmica v

7.698

’M ;4 7.697
s .

Imagen original

4 g 2 7.696

2 ¢ 7.695

‘il —— > 7.694 3

SR J’g 7.693
- 7.692

i 1 Imagen resultado
| Lanzar programa | S

7.69

Eleccién parémetros

Lambda [1000

7.689 J

o 05 1 15 2
Ta
au 0.0125 log iteraciones.
Theta T 3 =
[100 3 B .
eraciones — Tiempo de computo: 26 ms

Figura G.13: Interfaz deconvolution al final de la ejecucion

La pestana de los pardametros sin ejecucion toma la siguiente forma:

5

Programa Principal { Evaluacion Parametros || - Simulacién Tiempo Real |

Pl T
Sefial-Ruido Senal Ruido/Lambda
Imagen original Imagen ruidosa

1,000

800

600

400

T e Imagen resultado
200
Eleccion pardmetros
od
r T T T T J
Min Lo _ED 0 200 400 600 800 1,000
¥ Lambda 100 10000 [100 Lambda
I Tau 0.005 0.05 0
I~ Theta 0.2 1 0
Error 0.001

Figura G.14: Interfaz deconvolution pardametros al inicio de la ejecucion

Esta interfaz no introduce novedad, de nuevo no se deben introducir valores
elevados de longitud. Si se ejecuta el algoritmo aparece un resultado de la siguiente
manera:

90

G. Manual de usuario Seccién G.4

Figura G.15: Interfaz deconvolution parametros al final de la ejecucién

91

Seccion G.5

G. Manual de usuario

G.5. Ventana Inpainting

Una vez pulsada la opcién de Inpainting en la ventana principal, aparece la

siguiente interfaz de usuario.

Inpainting

U

Programa Principal Evaluacion Parametros | Simulacién Tiempo Real |

Est i 50
g g | (@) _ssorearimagn | %

|E5tropeada por pixels j

Imagen original Imagen estropeada

Lanzar programa | Imagen resultado

Eleccion parametros

Lambda 1000

Tau 0.01
Theta 05

Iteraciones | 200

log FdU

1,000

800

600

400

200

Evolucion del GAP [Escala logaritmica |

T T T T 1
200 400 600 800 1,000

log iteraciones

Tiempo de cémputo: ms

Figura G.16: Interfaz inpainting al inicio de la ejecucion

Punto 1. La tnica diferencia que aparece en esta interfaz respecto a las anterio-
res es el danado de la imagen. Se escoge el porcentaje de imagen danada y el tipo
de dano que se quiere aplicar. Se puede escoger entre danado por pixeles, lineas o
area. Este danado es aleatorio de forma que no se escogen los pixeles, lineas o area

danada, tan sélo su magnitud.

Se presenta el resultado ante lineas:

92

G. Manual de usuario

Seccién G.5

Inpainting

T

Programa Principal | Evaluacién Parametros | Simulacién Tiempo Real |

Estropear imagen 50 %

Cargar Imagen |

Evoluci6n del GAP [Escala logaritmica

[Estropeada por lineas =

Imagen original Imagen estropeada i

8 o

7.8

7.6 H

7.4

7.2

7]

1 oo]

6.6 o

Eleccion parametros E

6.4 -
Lambda 1000 :
0

Teu 0.01

Theta 0.5
Iteraciones | 400

Tiempo de cémputo:

56 ms

I~ |
T 1
25 3
log iteraciones

Figura G.17: Interfaz inpainting al final de la ejecucion

La pestana de parametros toma la siguiente forma:

Inpainting
z

[Evaluacion Parametros || simulacion Tiempo Real |

Estropear imagen 50 5%

[Estropeada por pixels 4|

Programa Principal

Cargar Imagen |

) Sefial-Ruido
Imagen original

Imagen estropeada
1,000

800 +

600

400 +

Lanzar programa Imagen resultado

200 +

Eleccién pardmetros

Sial-Ruido/Lambda

Min Max Paso

¥ Lambda 100 10000 [100
™ Tau 0.01
I™ Theta

eror [ooor

200 400 600 800

1
1,000
Lambda

Figura G.18: Interfaz inpainting parametros al inicio de la ejecucion

Es muy similar a las anteriores, si se lanza el programa se obtiene lo siguiente:

93

Seccién G.5

G. Manual de usuario

Inpainting
u

Programa Principal Evaluacion Parémetros | simulacién Tiempo Real |

Estropear i 50
Cargar Imagen | stropear imagen %

[Estropeada por pixels

Imagen original Imagen estropeada

Lanzar programa | Imagen resultado

Eleccién pardmetros

Min Max Paso

¥ Lambda 10 1000 [10
I~ Tau 0.01 0.01 0
I~ Theta 0.5 0.5 o

Error 0.001

|

Senal-Ruido Senal-Ruide/Lambda

30 4

29 o

28 4

27 o

26

BEE

24

234

224

214

T T T T T T T T T 1
[200 400 600 800 1,000
Lambda

Figura G.19: Interfaz inpainting parametros al final de la ejecucion

94

Bibliografia

[1]

2]

A. Delshams A. Aubanell, A. Benseny. UTILES BASICOS DE CALCULO
NUMERICO. 1993.

Adrien Angeli Andrew J. Davison Ankur Handa, Richard A. Newcombe. Ap-
plications of Legendre-Fenchel transformation to computer vision problems.
2012.

Antonin Chambolle and Thomas Pock. A First-Order Primal-Dual Algorithm
for Convex Problems with Applications to Imaging. J. Math. Imaging Vis.,
40(1):120-145, May 2011.

Edward Kandrot Jason Sanders. CUDA by Example. 2010.
Raul Cabanes Martinez. SERIES DE FOURIER. 2008.

T. Pock and A. Chambolle. Diagonal preconditioning for first order primal-dual
algorithms in convex optimization. In IEEFE Int. Conf. on Computer Vision
(ICCV), pages 1762-1769, 2011.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,
New Jersey, 1970.

95

