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ABSTRACT 

Here it is reported the design, synthesis and characterization of new Pluronic
®
 F127 

derivatives, with the ability to form thermosensitive and photopolymerizable hydrogels. 

These active hydrogels undergo a sol-to-gel transition by increasing the temperature in a 

physiologically important temperature range thus resulting attractive for biomedical 

applications and drug delivery systems. Pluronic
®

 F127 has been functionalized with 

photoreactive groups and the obtained derivatives and their precursors have been fully 

characterized by conventional techniques. Then the aimed compounds have been 

processed as macroscopically molded hydrogels and as nanostructured hydrogels 

(nanogels). A highly crosslinked internal structure has been reached by the 

photopolymerization technique for the thermosensitive macroscopic hydrogels designed 

to act as cell scaffolds for cartilage repair. Swelling and degradation studies as well as 

their morphological characterization by SEM have been carried out. Concerning the 

nanostructured hydrogels (nanogels), after determining its critical micellar 

concentration and applying a photopolymerization process to fix the nanostructure, they 

have been characterized by TEM, SEM and DLS. Cell viability assays have been 

carried out for both types of system, the macroscopic hydrogel and the nanogel. 

  



Acronyms 

CGC   Critical gelling concentration 

CMC   Critical micelle concentration 

CMT   Critical micelle temperature 

DLS   Dynamic light scattering  

DCS   Differential scanning calorimetry 

DCM   Dichloromethane 

DMEM  Dulbecco‟s Modified Eagle‟s Medium 

GPC   Gel permeation chromatography 

IHs   Injectable hydrogels 

IR   Infrared 

LCST   Lower critical solution temperature 

MALDI  Matrix-Assisted Laser Desorption/Ionization 

MS   Mass spectrometry 

MSC                Mesenquimal stem cells 

NMR-
1
H         Proton nuclear magnetic resonance 

NMR-
13

C  Carbon nuclear magnetic resonance 

PBS   Phosphate buffered saline 

SEM   Scanning electron microscopy 

TEM   Transmission electron microscopy 

TIM                Test-tube inverting method 

UV   Ultraviolet 
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1. INTRODUCTION  

 Hydrogels 

Hydrogels are three-dimmensional polymeric networks which can swell in water and 

hold a significant amount of water, while maintaining their shape and structure. 

According to the type of driving force leading to crosslinking network, hydrogels are 

divided by physical or chemical hydrogels, which correspond to non-covalent or 

covalent interactions, respectively
1
. One of the techniques to form chemically 

crosslinked hydrogels is by photopolymerization. Photopolymerization is a process 

whereby light interacts with light-sensitive compounds called photoinitiators, to create 

free radicals that can initiate the polymerization of monomers to form crosslinked 

hydrogels in a fast manner under ambient or physiological conditions
2
. 

Nowadays, sensitive hydrogels with specific response to various environmental stimuli 

are being a topic of extensive research. Among these sensitive hydrogels are the 

thermoresponsive hydrogels. 

A thermoresponsive hydrogel utilize a temperature change as the trigger that determines 

its gelling behavior without any additional external factor
3
. For these hydrogels, the 

phenomenon of transition from a solution to a gel is commonly referred to as sol-gel 

transition. Within thermoresponsive hydrogels, there are some of them that exhibit a 

separation from solution (sol state) and the gel state above a certain temperature. This 

threshold is defined as the lower critical solution temperature (LCST), which means that 

the hydrogel is formed upon heating the solution. Concretely, some thermoresponsive 

hydrogels undergo a sol-to-gel transition in a physiologically important temperature 

range of 10-40 ºC
4
, this is the reason why these hydrogels are very interesting for 

biomedical uses, providing the advantage of an easy administration as they can be 

injected in the sol state achieving in situ the gel state under physiological conditions. 

This behavior led to what is now known as injectable hydrogels (IHs). 

An important class of thermoresponsive hydrogels are a type of block copolymers 

formed by blocks of poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG), 

known as Pluronics (BASF trade name) or Poloxamers (ICI trade name), namely 

triblock structures of poly(ethylene glycol-b-propylene glycol-b-ethylene glycol). In a 
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water environment, due to their amphiphilic character, most Pluronics form ordered 

aggregates, most commonly micelles5. These materials are utilized for various 

biomedical applications due to low toxicity and their amphipilic properties
6
. These 

block copolymers in aqueous solution undergo a thermosensitive sol-to-gel transition 

with LSCT
7
. 

The unique properties of the thermogelling materials have recently been investigated as 

a platform technology enabling: minimally invasive drug delivery system, three-

dimensional cell culture and injectable tissue engineering using mesenchymal stem 

cells, post-surgical treatments for adhesion prevention, long-term magnetic resonance 

imaging contrasting, transcatheter arterial embolization and 3D live cell imaging for 

cellular processes
8
. 

The present research work deals with new Pluronic
®
 derivatives, and focuses on two of 

these applications envisaged for thermosensitive hydrogels: Hydrogels for tissue repair 

and nanostructured hydrogels for drug delivery. 

 LCST hydrogels for tissue repair 

A major goal of hydrogel-based technology is the development of injectable hydrogels 

(IHs)
9
, where an aqueous mixture of gel precursors and bioactive agents is administered 

using a syringue and gelates inside the body due to the temperature change. Due to its 

high moldability, they offer the possibility of in vivo delivery in a minimally invasive 

way and also on the capacity of easy and effective encapsulation of cells and/or drugs
9
. 

Within the field of tissue engineering, IHs are being broadly investigated to act as a 

scaffold material for cartilage regeneration
10

.  

Cartilage lesions are potentially a major cause of joint disease and disability affecting 

millions of people all over the world as they can lead to osteoarthritis. Injuries and 

degenerative changes in the articular cartilage are a significant cause of morbidity and 

diminished quality of life. Concretely, it is expected that by the year 2030, 67 million 

(25%) adults will have diagnosed arthritis and the 37% (25 million adults) of those with 

arthritis will report arthritis-attributable activity limitations
11

.  
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The current treatment options for cartilage injuries include microfracture of the 

subchondral bone, joint lavage, tissue debridement, transplantation of autologus or 

allogeneic osteochondral grafts. The success rate of these treatment procedures is not 

consistent and they vary greatly. Some of these techniques show promise of cartilage 

regeneration while others lead to the formation of fibrous tissue, apoptosis and further 

degeneration of cartilage
12

.  

Once a cartilage begins to degenerate, the repair process is very slow and in the majority 

of cases the tissue is not entirely replaced. This is due to the fact that cartilage lacks the 

capability of repairing itself, because of its low vascularity, and low chondrocyte 

activity. This is the reason why the use of tissue engineering methods to repair cartilage 

has become a very attractive option. The ultimate goal is to implant a scaffold that can 

persist in a robust state for sufficient time to allow for the formation of new tissue, but 

which will degrade and become replaced by this tissue. 

 Nanostructured hydrogels, i.e. nanogels 

From a different point of view, another important application of hydrogels involves 

their use as nanocarriers for drug delivery. The term „„nanocarrier‟‟ is used to describe 

hybrid multifunctional systems with sizes typically ranging between 1–200 nm, which 

may deliver the bioactive agent at the targeted site with improved therapeutic activity 

over the free form of bioactive agent
13

. The term “nanogels” usually defines aqueous 

dispersions of hydrogel particles formed by physically or chemically cross-linked 

polymer networks of nanoscale size
14

. 

Nanogels are very promising as drug-delivery carriers because of their high loading 

capacity, high stability, and responsiveness to environmental factors, such as ionic 

strength, pH, and temperature that are unprecedented for common pharmaceutical 

nanocarriers. The main property of the amphiphilic polymers used to prepare nanogels, 

is that they can form a micellar structure with a hydrophobic compact inner core and a 

hydrophilic swollen outer shell in aqueous environments
15

. 

2. OBJECTIVE 

The final aim of this work is the design, synthesis and characterization of new 

amphiphilic block-copolymers, which have the ability to form thermosensitive and 
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photopolymerizable hydrogels. These materials will be processed as macroscopic 

hydrogels to be used as scaffold for cell culture to tissue engineering applications and as 

nanostructured hydrogels (i.e. nanogels) as drug delivery systems. 

The objective and work plan of this Master project lies within the frame of the aim and 

subjects of the Master Degree in Nanostructured Materials for Nanotechnology 

Applications (http://titulaciones.unizar.es/asignaturas/66110/contexto12.html). Indeed, 

the work gathers the synthesis of new molecules that enable the preparation of 

nanostructured materials. Furthermore, the characterization of the newly prepared 

materials is based on techniques learned as suitable for nanosized systems. 

3. PLANNING 

The plan followed in the realization of this work is summarized in the following steps: 

 1º) Design, synthesis and characterization of the target molecules: 

Starting with the commercial polymer Pluronic
®
 F127, “P”, the plan was to 

synthesize two different carbamate-derivatives that incorporate photoreactive 

groups:  a linear block copolymer derivative, named “P/A-2” and a hybrid 

dendritic-linear-dendritic block copolymer derivative, named “P/A-4”. 
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  Scheme 1. Chemical structure and nomenclature of the aimed compounds. 
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Both compounds, as well as the intermediates would be characterized by using 

1
H-RMN, 

13
C-RMN, FT-IR, MALDI and GPC. 

The nomenclature used, e.g. P/A-2, has two parts. The first one, P, refers to the 

structural core of the product, which is based on the structure of the original 

material, commercial Pluronic
®

 F127. The second part, A-2, refers to the new 

lateral groups introduced in the structure of pluronic by several synthesis steps, 

and also refers to the number of these groups. In this particular case, the letter A 

means acrylate, and the number 2, means that there are two acrylate groups at 

the end of the molecule, one on each side. 

2º) Sol-gel studies: 

The second step of the work was to prepare macroscopic hydrogels in order to 

analyze the gelation properties of the new compounds. 

3º) Photopolymerization: 

Hereinafter, it was planned to fix the gel structure of reactive materials through 

photopolymerization techniques, either as a macroscopic hydrogels and as a 

nanogel (nanostructured hydrogel). 

4º) Hydrogel characterization: 

The internal morphology of the macroscopic hydrogel will be studied by SEM. 

The nanogel size and morphology will be studied by TEM, SEM and DLS. 

Furthermore, degradation tests of the macroscopic hydrogels will be studied. 

5º) Cell viability studies: 

Finally, in the aim of biological applications of these materials, cell viability 

studies are also planned, either as a macroscopic hydrogels, and also as a 

nanogels. 
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4. RESULTS AND DISCUSSSION 

4.1.- SYNTHESIS AND CHARACTERIZATION 

 4.1.1) Synthesis of the linear Pluronic derivative, P/A-2. 

In order to synthesize product P/A-2, the synthetic route followed is shown in Scheme 

2:  

O
O

O
O

O
O

6798 98O

O
O

O
O

6798 98

dry DCM

O

O O

O

NO2

OO

O

O2N

H2N
OH

N
H

H
N OH

HO

O

Cl
TEA

dry DCM

O
O

O
O

O
O

6798 98O

O

N
H

H
N O

O

O

O

O
O

O
O

6798 98

OH
HO

Cl O

O

NO2

dry Py

dry DCM

 

 

 

With the purpose to check and prove the correct functionalization in each synthesis step, 

1
H-NMR has been used in order to follow the appearance or disappearance of the main 

characteristic signals corresponding to each molecule, as shown in Figure 1. 

P 

P/NP-2 

P/C-2 

Scheme 2. Synthetic route of compound P/A-2 

P/A-2 
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In the 
1
H-NMR spectrum of the P/NP-2 compound (spectrum 2 in Figure 1), three new 

characteristic signals appear with respect to P. First, the multiplet at 4.41 ppm which 

corresponds to PEG chain protons directly linked to the newly formed carbonate group 

(G protons). The other two characteristic signals are at 7.39 ppm (J protons) and 8.27 

ppm (K protons) corresponding to the aromatic protons. These aromatic signals help to 

follow the next reaction due to its complete disappearance in the spectrum of the 

compound P/C-2 (spectrum 3 in Figure 1). 

Finally, in the last spectrum (spectrum 4 in Figure 1), corresponding to the P/A-2 

molecule, two significant changes are appreciated: three doublets of doublets between 

5.84 and 6.44 ppm, which are the signals of the introduced acrylate groups (M, L and 

M‟), and the multiplet at 4.22 ppm corresponding now to G protons and J protons. 
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Figure 1. 
1
H-NMR spectra of commercial Pluronic F127 (P), P/NP-2, P/C-2, and P/A-2, 

respectivelly. 
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The molecule P/C-2 is difficult to characterize only by 
1
H-NMR because meaningful 

protons are mobile protons, then, another useful tool to check the changes within the 

molecule was infrared spectroscopy (IR), as shown in Figure 2. 

 

 

In the IR spectrum of the P/C-2 compound (red spectrum in Figure 2), it can be 

appreciate a band between 3500-3250 cm
-1

 corresponding to the O-H st, which help to 

confirm the structure of the molecule. Also, another important signal which can be 

compared between the molecules, is the band appearing at 1765 cm
-1

 for the P/NP-2 

compound (blue spectrum in figure 2), corresponding to the C=O st from carbonate, and 

at 1722 cm
-1

 and at 1728 cm
-1

 for the compound P/C-2 and P/A-4, respectively, 

corresponding to the C=O st from carbamate. 

Also, mass spectrometry (MS) has been used to study the compounds P/C-2 and P/A-2 

to prove the mass changes with respect to the original material, P. 

Figure 2. FTIR-ATR spectra of P, P/C-2 and P/A-2 respectively. 
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In Figure 3, a displacement of the mass distribution towards higher mass/charge 

relationship is observed, which is due to the functionalization carried out at the initial 

polymer, P. 

Finally, both compounds were characterized by Gel Permeation Chromatography 

(GPC), using polystyrene standards for calibration. (see Figure 4) 
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Figure 4. Obtained chromatograms by GPC for a) P/C-2 compound and b) P/A-2 compound.  
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The obtained data are presented in Table 1. 

 

 

 

 
Mn 

a 
Mw 

 
PDI 

b MW
c
 calculated (g/mol) 

Pluronic F127 
16748 17193 1.03 

12600 
6438 7105 1.1 

P/C-2 13898 14621 1.05 12774 

P/A-2 13445 14159 1.05 12882 

  

 

Commercial Pluronic F127 shows a chromatogram with two different molecular weight 

distributions (see Appendix 1). The new materials show also two distributions in their 

chromatograms, but they are not so well separated, this behavior could be associated to 

the new functionalization present in the molecules. 

The new materials show two distributions in their chromatograms corresponding to two  

molecular weight distributions as shown by the commercial Pluronic F127 (see 

Appendix 1). Also, as indicated in Table 1, comparing the obtained values from GPC 

referring the calculated ones, MW (last column of Table 1), we find differences. These 

differences can be attributed, in one side to the fact that calibration is made with a 

different polymer, polystyrene, which has a different hydrodynamic volume. On the 

other side, different variables to take into account are how the polymer behaves within 

the column, and the polymer‟s molecular weight.  

The use of this technique also allows us to verify the presence of two molecular weight 

distributions in both materials, as previously noted by MS. 

     

 

 

Table 1. Obtained data from GPC experiments performed with Styrage® columns HR1. 

a
Mn : number average molecular weight (g/mol) obtained by GPC. 

b
PDI: polidispersity index (Mw/Mn) obtained by GPC. 

c
MW calculated: molecular weight in g/mol, calculated as the sum of the 

molecular weight of individual blocks. 
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 4.1.2) Synthesis of the hybrid dendritic-linear-dendritic block 

 copolymer (HDLDBC), P/A-4. 

The synthetic route followed to prepare the compound P/A-4 is shown in Scheme 3: 
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Scheme 3. Synthetic route of compound P/A-4. 
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The products P/B-2, P/OH-4, P/NP-4, and P/C-4 have been correctly obtained and 

isolated, but, the optimal experimental conditions to obtain the final product, P/A-4 

have not been stated so far.  

After using different strategies, the full functionalization of the ending hydroxyl groups 

of P/C-4, was not reached. In all attemps, a certain degree of functionalization, but not 

constant, was observed. The best results, even though functionalization was not 

complete, were achieved using tetrahydrofuran as solvent instead of dichloromethane. 

The optimization of this reaction is still in progress.  

4.2.-SOL-GEL STUDIES 

The sol-gel properties have been studied for the following materials: 

 -Commercial Pluronic F127. 

 -Linear Pluronic derivative, P/A-2 and its precursor, P/C-2. 

For each material, aqueous solutions with five different concentrations (w/v) have been 

tested, i.e. 16 %, 18 %, 20 %, 23 %, and 25 %. (Experimental section 5.3) 

The study of these properties is based in the application of two different methods to 

determine the Low Critical Solution Temperature, (LCST): 

 Test-tube inverting method (TIM):  

This simple method was employed to roughly determine the sol-gel transition 

temperature. When the test-tube, or vial, containing the solution, is inverted, it is 

defined as a sol phase if the solution deforms by flow, or a gel phase if there is no 

flow. Accordingly, the LCST was defined as the temperature when the material 

doesn‟t flow during at least 10 seconds when the vial is upside down.  

Also, in this experiment the materials were heated above the LCST, to find the 

temperature at which the material became again a sol, after reaching the gel state, 

what has been called gel-sol transition. 
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 Differential Scanning Calorimetry (DSC):  

DSC is a thermoanalytic technique that allows determining sol-gel transition 

temperatures, and which has been already used for the study of Pluronic F127 
16, 17

.  

In our case, for each studied material, the same samples prepared for the TIM, have 

been studied by DSC technique.  

The obtained thermograms allow the recognition of two different signals,   

corresponding to the micellization and gelation processes (Figure 5). 

 

 

The main peak corresponds to the micellization process. It allows to know the critical 

micellization temperature (CMT), at which the aggregation of the polymeric chains, for 

a particular concentration takes place. 

As it may be appreciated in Figure 5, the gelation peak appears as a small peak at higher 

temperature, this peak is only well defined when the polymer concentration is high, 

usually 25 %(w/v)
18

, for smaller concentrations this peak is not so well defined.  

In the cases where the gelation peak was not clearly appreciated in the thermogram, but 

the material showed sol-gel properties, we stated as the value for LCST as the 

temperature at which it is considered that the gel is entirely formed, corresponding this 

temperature with the stabilization of the baseline in the thermogram ( Figure 6).  
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The obtained DSC thermograms for all the studied materials are presented in 

Appendix 2. 

4.2.1 .- Sol-Gel properties of  commercial Pluronic F127 

Figure 7 shows the phase diagram of this material, which shows how Pluronic F127 

behaves depending on concentration and temperature. 

 

 

Table 2 summarizes the sol-gel properties obtained from the application of the two 

above-commented methods, the test-tube inversion method (TIM) and the differential 

scanning calorimetry (DSC). 
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P/C-2 

23 %(w/v) 

Figure 6. DSC thermogram obtained for the material P/C-2 at 23 % (w/v). Example to 

illustrate how the LSCT is determined for materials where the gelation peak is not 

detected. 



 

15 

 

 

 
Micellization Temp. (°C) LCST  (gelation process)(°C) Gel-sol transition (°C) 

%  [P] (Obtained by DSC) TIM DCS (baseline)
*
 

DCS (gel 
peak) 

TIM 

16,5 14 37 32 - 59 

18 13 36 30 - 65 

20 11 26 25 - 68 

23 10 21 26 18 76 

25 9 18 30 17 78 

  

4.2.2 .- Sol-Gel properties of  P/C-2 

Results concerning the gelling properties for P/C-2 are shown in Figure 8 and Table 3. 

 

 

 

  
LCST (gelation process)(ᵒC) Gel-sol transition (ᵒC) 

% [P/C-2] Micellization T. (ᵒC) TIM DCS (baseline)
*
 TIM 

16 13 no gel no gel - 

18 13 no gel no gel - 

20 11 36 29 48 

23 10 26 25 62 

25 9 22 25 70 
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Table 2. Summary of the obtained data for Pluronic F127 with TIM and DSC methods. 

Table 3. Summary of the obtained data for P/C-2  with TIM and DSC methods. 

Figure 8. Phase diagram for P/C-2 , obtained from TIM. 

*Data obtained as illustrated in Figure 6. 

*Data obtained as illustrated in Figure 6. 
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Compound P/C-2, which has hydroxyl groups as terminal groups in both parts of the 

molecule, shows a different behaviour in terms of gelation properties compared to 

Pluronic F127. Indeed, it is necessary, due to the chemical modification within the 

molecule, to increment the concentration of the compound up to 20% (w/v) to obtain a 

hydrogel. 

4.2.3.- Sol-Gel properties of  P/A-2 

Finally, results concerning the gelling properties for P/A-2, are shown in Figure 9 and 

Table 4. 

 

 

Compounds P/C-2 and P/A-2 behave similarly with respect to the critical gelling 

concentration (CGC), 20 % (w/v), which is not affected by the fact of changing the size 

of the side groups of the molecule. However, for P/A-2 the temperature range for the gel 

state is bigger than for compound P/C-2. This leads us to conclude that the presence of 

acrylate groups allows the stabilization of the gel. 
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Figure 9. Phase diagram for P/A-2, obtained from TIM . 
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LCST (gelation process)(ᵒC) Gel-sol transition 

% [P/A-2] Micellization T. (ᵒC) TIM DCS (baseline)
*
 DCS (gel Peak) TIM 

10 17 no gel no gel no gel - 

16 14 no gel no gel no gel - 

18 15 no gel no gel no gel - 

20 9 23 23 14 60 

23 10 22 24 20 63 

25 9 21 24 18 66 

 

Finally, it is necessary to remark, that the obtained results from TIM and DSC, for the 

three studied compounds, are not completely comparable between them. This can be 

attributed to the fact that the determination of the LCST, is strongly dependent on the 

amount of sample used for the experiment, as well as of the sample‟s container 

geometry
19

 , and here, the container used in each of the techniques, is different (see 

Experimental section 5.3). 

 4.3 PHOTOPOLYMERIZED HYDROGELS 

This section is organized in two parts, which are related with the two aimed applications 

of the thermosensitive hydrogels prepared 

 The first part shows the results concerning the compound P/A-2, and 

corresponds to the formation of the chemically crosslinked macroscopic 

hydrogels, to be used as scaffolds for cell culture. 

 The second part shows the results concerning the preparation of nanostructured 

hydrogels (nanogels) to be used for molecular encapsulation applications.  

4.3.1.MACROSCOPIC HYDROGEL 

4.3.1.1.-Photopolymerized hydrogel 

To produce the crosslinked photopolymerized hydrogel, compound P/A-2, was disolved 

in a PBS solution containing a certain amount of Irgacure 2959 photoinitiator. The 

Table 4. Summary of the obtained properties for P/A-2 with TIM and DSC methods. 

*Data obtained as illustrated in Figure 6. 
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polymerized macroscopic structures (Figure 10) were obtained as detailed in 

Experimental section 5.4. 

In this study, concentrations to carry out the photopolymerized hydrogels with the P/A-

2 material of 20% and 23% (w/v) were chosen, because as seen previously, these were 

the concentrations where the material shows gel characteristics.  

 

 

4.3.1.2.-Morphological characterization 

To characterize the internal morphology of the photopolymerized hydrogel derived from 

P/A-2, scanning electron microscopy (SEM) has been used. 

To prepare the samples, the obtained hydrogel with the fixed structure (See 

Experimental section 5.4) was equilibrated for 3 days in 2 ml of PBS 10 mM, pH= 7.4. 

Then, in order to fracture the gel and keep the internal structure intact for a properly 

characterization, it was necessary to freeze the gel by using liquid nitrogen, once 

broken, the sample was lyophilized overnight. 

Before carrying out the SEM experiments, the sample was fixed on a carbon tape, and 

coated it with gold. 

Figures 11 and 12 gather SEM images obtained for photopolymerized hydrogel 

prepared from two different concentrations of P/A-2, 20% and 23% (w/v), respectively. 

ⱷ SEM images of 20% P/A-2: 

The material shows an irregular porous internal morphology, Figure 11. 

Figure 10. Obtained photopolymerized hydrogel after demould it. Material: P/A-2, 23% (w/v). 
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The pore size goes from 4 to 12 μm, as can be appreciated in Figure 11 c). 

ⱷ SEM images of 23% P/A-2: 

In this case, the material shows also an irregular porous internal morphology, Figure 12. 

      

Figure 11. Internal morphology of photopolymerized P/A-2 hydrogel, 20%. SEM images. 

a) b) 

c) d) 

Figure 12a. Internal morphology of photopolymerized P/A-2 hydrogel, 23%. SEM images. 
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The pore size varies from 5 to 14 μm, what is quite similar to the material at 20 %(w/v).  

4.3.1.3.-Swelling and degradation 

Scaffolds for tissue engineering applications are required to be biodegradable, and, 

consequently experiments to determine the extent and rate of degradation were 

necessaries. 

The swelling and the degradation processes of the highly crosslinked material, P/A-2, 

were studied for both concentrations, 20 and 23 % (w/v) (see Experimental section 5.5).  

The swelling, which is defined as the increase in volume of the gel, caused by the 

absorption of liquid from the environment, can be calculated as the weight taken at a 

certain time, Wt , divided by the initial one, Wo . 

𝑠𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =  
𝑊𝑡

𝑊𝑜
 

In this way, at the beginning of the test, the swelling rate has to be equal to 1, and when 

the hydrogel is completely degraded, it has to be equal to zero. 

Figure 13 shows the results from the test performed for the P/A-2 photopolymerized 

material, at two different concentrations. 

Figure 12b. Internal morphology of photopolymerized P/A-2 hydrogel, 23%. SEM images. 
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Both highly crosslinked materials show a similar behavior. Initially they present a low 

swelling rate. After 50 days, the swelling ratio increases faster, reaching its maximum 

after 70 days of experiment. This is because the bonds within the hydrogel structure are 

being degraded, causing loss of the structural integrity and allowing to the hydrogel 

absorb bigger amounts of surrounding PBS. 

The swelling of the hydrogel directly affects the morphology thereof. The degradation 

continues until the complete breakup of the gel structure. The total time required for this 

compound to complete the breakup was 92 days (see Figure 14). 
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Figure 13. Swelling and degradation profile of the P/A-2 photopolymerized hydrogel at different 

concentrations. 

Figure 14. Pictures from the progressive degradation of photopolymerized P/A-2 hydrogels, 

collected during the swelling and degradation test. 
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4.3.2. NANOGEL (NANOSTRUCTURED HYDROGEL) 

4.3.2.1.-Critical micelle concentration (CMC) determination 

A very important step previous to the nanogel preparation, is to know from which 

concentration in solution, our materials are organized into micelles. 

The micelles are made by the self-assembly of amphiphiles above a certain level of 

concentration of this material in solution, the so called critical micelle concentration 

(CMC)
20,21

. In these micelles, the hydrophobic chains aggregate together to form the 

core and the hydrophilic chains are extended towards the aqueous environment.  

For determining the CMC of P/C-2 and P/A-2 we have followed a method based on 

pyrene fluorescence
22

. Pyrene is a hydrophobic compound, which is encapsulated 

within the hydrophobic part of the micelles above the CMC of the corresponding 

amphiphilic compound. In this method, the changes in the ratio of pyrene excitation 

spectra intensities are monitored in a fluorescence spectrometer, in a range from 300 to 

350 nm with a λem = 390 nm. The ratio between the excitation intensity at 335 nm 

(encapsulated pyrene) and the intensity at 332 nm (non-encapsulated pyrene) can 

provide the information about the location of pyrene probes in the solution, and hence 

about the concomitant formation of the micelles 

The results obtained for our materials are gathered in Figure 15. 
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Figure 15. Results from the pyrene method to calculate the CMC. 
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From where we obtain the values of CMCP/C-2 = 0.034 %(w/v), and CMC P/A-2 = 0.011 

%(w/v), by establishing the intersection of the straights. 

These CMC are much lower than the one of the starting material, Pluronic F127, which 

has a CMC = 0.25 % (w/v)
20

. This  significant (one order of magnitude) decrease of the 

CMC could minimize or overcome the problem that occurs with Pluronic, for which 

dissociation of the micelles upon dilution leads to the release of encapsulated drug 

before it reaches the targeted site. 

Another important fact to underline is the lower CMC for the P/A-2 material with 

respect to P/C-2 material. This result proves that modifying the ending groups from 

hydroxyl to acrylate groups, micelle formation becomes easier, requiring lower 

concentration for micelles to form. 

4.3.2.2.-Photopolymerized nanogels  

Nanogels were prepared by disolving P/A-2 in distilled water containing the 

photoinitiator Irgacure 2959 (see Experimental section 5.6). Then, the solution was UV-

irradiated and next, the photopolymerized nanogels were dyalized during 24 hours and 

finally they were filtered
23

. The correct photopolymerization of the nanogels was 

checked by 
1
H NMR, observing that all signals corresponding to unreacted acrylate 

groups disappear after the photopolymerization process (Figure 16). 

 

a) 

b) 

Figure 16. 
1
H-NMR of P/A-2 material. a) original synthesized compound. b) Photopolymerized nanogel, 

dialyzed, filtered, lyophilized, re- dissolved in distilled water, lyophilized again and solved in CDCl3. 
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The photopolymerized nanogels obtained in this way, were named “PDF nanogels”, 

what means they have been photopolymerized, dialyzed and filtered. The characteristics 

of these PDF nanogels where checked by SEM, TEM and DLS.  

Another performed test on these nanogels was to submit the PDF nanogel to a 

lyophilization process, getting a solid material. This solid was mixed with distilled 

water to verify that its properties were maintained. Checking the characteristic of this 

redissolved nanogel also by TEM, SEM and DLS. The nanogels obtained in this way 

are named “PDF re-dis nanogels”, what means they are photopolymerized, dialyzed, 

filtered, lyophilized and re-dissolved again. The aim of this experiment was twofold: 

One, to know if the material withstands manipulations for future applications in which 

the fact of having a solid material could represent some advantages. Second to know 

that micelles don‟t become an indissoluble aggregate block. 

4.3.2.3.-Morphological characterization 

To characterize the morphology of the photopolymerized P/A-2 nanogel, TEM and 

SEM have been used. 

Throught both techniques it has been proven the formation of nanostructures which can 

be interpreted as aggregates of micelles. The rounded shape is present for the PDF 

nanogel and also for the PDF re-dis nanogel, as can be perfectly appreciate in the SEM 

images (Figures 17, 18, 19 and 20). 

 Characterization by TEM 

- P/A-2 PDF nanogel 

    

Figure 17a. TEM images of photopolymerized, dialyzed and filtered 

P/A-2 nanogel. 
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- P/A-2 PDF re-dis nanogel 

    

 

 

 Characterization by SEM 

- P/A-2 PDF nanogel 

      

 

 

 

Figure 17b. TEM images of photopolymerized, dialyzed and filtered 

P/A-2 nanogel. 

Figure 18. TEM images of photopolymerized, dialyzed, filtered, 

lyophilized and redissolved P/A-2 nanogel. 

Figure 19. SEM images of photopolymerized, dialyzed and filtered P/A-2 nanogel. 



 

26 

 

- P/A-2 PDF re-dis nanogel 

      

 

Also, thanks to this characterization, we can confirm that the micellar aggregates 

don‟t aggregate further, once the material is lyophilized and subsequently 

dissolved again in distilled water.  

 Size distributions 

Results concerning the size distribution of the observed nanostructures are summarized 

in Table 5. 

 

 
P/A-2 PDF nanogel diameter P/A-2 PDF re-dissolved nanogel diameter 

SEM  52.5 -172.8 nm 42.4- 60.8 nm 

TEM (average) * 56.9 nm  135.8 nm 

DLS 

Effective 
diameter 

52.0 ±1.2 nm 83.8 ±1.0 

Mean 
diameter 

74.9 nm 143.9 nm 

 

In the case of P/A-2 PDF nanogel, the diameter obtained with different techniques 

results coherent, because the TEM value is within the range of SEM values, and the 

mean diameter obtained by DLS, is also a reasonable value, taking into account that 

DLS technique provides the hydrodynamic diameter.  

Figure 20. SEM  images of photopolymerized, dialyzed and filtered P/A-2 nanogel. 

Table 5. Summary of sizes obtained from SEM, TEM and DLS, for the P/A-2 nanogel. 

(
*
 average value calculated from more than 10 structures.) 
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In contrast, more divergent data are obtained in the case of P/A-2 re-dissolved nanogel. 

These variations can be attributed to a possible further aggregation between 

nanoaggregates but deeper studies should be carried out. 

4.4.-CELL VIABILITY TESTS 

Taking into account the potential biomedical applications of these materials, cell 

viability assays are needed. 

Cell viability assays were carried out for both macroscopic hydrogels and for nanogels 

with two different cells types: 

- Human mesenchymal stem cells (MSCs), study carried out on the macroscopic 

hydrogels in collaboration with Dr. María José Martinez, from Blood and Tissue 

Bank of Aragon. 

- HeLa cells, study carried out on the nanogels in collaboration with Dr. Pilar 

Martín-Duque, from Araid Foundation and Rebeca González, from IIS Aragón, 

Biomedical Research Center of Aragon. 

Concerning MSCs, the two main characteristics of these cells are
24,25

: 

- Adherence to plastic. MSC must be plastic-adherent when maintained in 

standard culture conditions using tissue culture flasks. 

- Multipotent differentiation potential. MSCs are able to differentiate into a 

number of mesenchymal phenotypes, including those that form bone, cartilage, 

muscle, fat and other connective tissues. 

 

Concerning HeLa cells, they are a human epithelial adenocarcinoma cell line. This cell 

line is the oldest and most widely used human cell line
26

. 

4.4.1.MACROSCOPIC HYDROGEL 

In order to check the cell viability of P, P/C-2 and P/A-2 when forming macroscopic 

hydrogels, tests were performed with cells MSCs. 
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2D and 3D experiments (Figure 21) have been performed to evaluate cell viability in the 

hydrogels prepared. 2D cell culture was performed by covering the cells layer with the 

hydrogel, while, in 3D cell culture, the hydrogel was formed in presence of the cells, 

then cells were distributed within the hydrogel. Cells growth and sample preparation are 

described in the Experimental section 5.7. 

                 

 

Cell viability assays have been performed for: 

- Pluronic F127, and its hydrogels, in order to compare it with our derivatives. 

- Compound P/C-2, and its hydrogels. 

- Compound P/A-2, and its non photopolymerized and photopolymerized 

hydrogels. 

The assessment of cell vialibility was performed with the LIVE/DEAD
® 

Viability/Cytotoxicity Kit, which can discriminate live from dead cells by 

simultaneously staining with green-fluorescent calcein-AM to indicate intracellular 

esterase activity and red-fluorescent ethidium homodimer-1 to indicate loss of plasma 

membrane integrity
27

, as shown in Figure 22. (For further information, see Appendix 2.) 

 

 

 

Figure 21.  Illustration of 2D and 3D cell culture 

3

D 

Figure 22. Example of images taken from the fluorescence inverse microscope of stained cells with the 

LIVE/DEAD
® 

KIT. Images of a)Pluronic F127, 2D, 24h, 20 %(w/v).b)P/C-2, 2D,24h, 20 %(w/v).c)P/A-2, 

2D, 24h, 20 %(w/v). d)Pluronic F127, 2D, 48h, 20% wt, dead cells. 

2D 3D 



 

29 

 

Cell viability for the three materials was checked at 24, 48 and 72 hours by using a 

fluorescence inverted microscope. All experiments were performed in triplicate. In each 

of the three wells for each experiment, two images were taken from different areas of 

the well, therefore the results shown, are an average of six values. 

The percentage of living cells was determined by counting living cells and dead cells, 

and referring to cell viability as the percentage of the amount of living cells over total 

present cells. All control samples, containing only cells and DMEM, presented a cell 

viability above the 98%. 

 The chosen concentrations to carry out the cell viability assays, have been the 

same for all tested materials: 

- 5 %(w/v), 10 %(w/v). At these concentrations, none of the materials are forming 

the hydrogel, therefore it is considered that the monomers are in solution. 

- 20 %(w/v), 23 %(w/v). Concentrations where the thermoresponsive hydrogel is 

formed in all materials. 

 

4.4.1.1.-Results of 2D cell viability assays.  

The results obtained from the 2D cell viability assays, for Pluronic F127, P/C-2, P/A-2 

and their hydrogels, are presented in Figure 23.  

Figure 23 shows the variations on the cell viability depending on the material, its 

concentration, and time. Take notice that for these assays, the material P/A-2 was not 

photopolymerized. 
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From these comparative studies different conclusions can be obtained: 

- All materials in solution, cause a decrease in cell viability when increasing the 

concentration from 5 to 10%, Figure 23 a) and b). This fact is not so clearly 

observed when the material is forming the physical gel, comparing Figure 23 c) 

and d), even for some cases, the viability is higher for the higher concentration. 

- In general terms, except for the material P/A-2 at 23 %, in the gel state, Figure 

23 c) and d), our materials have a higher cell viability than the original Pluronic 

F127, showing in some cases up to 40% difference. 

- The best cell viability is obtained for the material P/C-2. 
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Figure 23. Results from 2D cell viability assays at different concentrations. a)5 % (w/v), b) 10 %(w/v), c) 20 % 

(w/v), d)23 %(w/v). 
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4.4.1.2.-Results of 3D cell viability assays. 

Figure 24 shows the results obtained from the cell viability assays carried out with the 

same materials in a 3D system, where cells are distributed within the hydrogel network. 

For these assays the material P/A-2 was not photopolymerized. 

 

 

In this case it can not be drawn a clear conclusion about the relationship between cell 

vibility and concentration. What can be appreciated again, is that the best cell viability 

corresponds to the samples based on the material P/C-2 for both concentrations, and the 

worst one corresponds for those based on the acrylated material P/A-2. 

Nevertheless, during measurements, it was observed for the 3D experiments that the 

staining providing the fluorescent green color, was much more difficult to get, and 

consequently, is was more difficult to quantify the alive cells in these experiments. This 

difficulty has been associated to a lower diffusion rate, due to the fact of working with a 

dye kit not originally designed for the assays in gel samples. 

4.4.1.3.-Non-photopolymerized vs. photopolymerized hydrogel. 

Material P/A-2. 

In order to compare the difference between the material based on a physical network or 

on a physical-chemical network, the results obtained for the P/A-2 material at different 

concentrations, non-photopolymerized and photopolymerized, are presented in Figure 

25. 

0

20

40

60

80

100

24 48 72

C
e

ll 
vi

ab
ili

ty
 %

Time (h)

Studied material, 3D tests at 20 
% (w/v).

Pluronic, 3D, 20%

P/C-2, 3D, 20%

P/A-2, 3D, 20%

0

20

40

60

80

100

24 48 72
C

e
ll 

vi
ab

ili
ty

 %
Time (h)

Studied material, 3D tests at 23 
% (w/v).

Pluronic, 3D, 23%

P/C-2, 3D, 23%

P/A-2, 3D, 23%

Figure 24. Results from 3D cell viability assays at different concentrations. e) 20 % (w/v), f) 23 %(w/v). 

e) f) 



 

32 

 

 

 

 

 

Comparing the 2D assays with 3D assays, a clear decrease in the cell 

viability can be appreciated concerning both concentrations and the dregree 

of crosslinking within the hydrogels. We have tentatively attributed these 

results to a limited diffusion within the polymeric network. 

In almost all cases, when the material is photopolymerized, the cell viability 

decreases, regardless the concentration and the test type. 

One possibility, to explain this result is the drowning of the cells due to the 

internal structure fixed by the photopolymerization process, providing an 
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internal network with 5–14 μm pore size distributions (see section 4.3.1.2, 

Morphological characterization). This fact together with the low diffusion of 

nutrients, may be the primary cause of cell death. 

Other possibility was that UV light affects significantly cells. In order to 

rule out this possibility, control samples were used to test the effect of UV 

light applied in the photopolymerization process. In this way it was possible 

to check that the UV light does not affect at all cell viability, as shown in 

Figure 26. 

 

 

4.4.2.NANOGEL 

To check the cell viability of P/A-2 acting as a nanostructured hydrogel, cell viability 

assays were performed with HeLa cells. 

The assessment of cell viability was done with Resazurin, which is a redox dye that is 

commercially available as Alamar Blue
®
, it exhibits both colorimetric and fluorometric 

change that relates to cellular metabolic activity. (For further information see Appendix 

2.) 

Cell viability was checked at 24, 48 and 72 hours for 3 different concentrations, 0.25 

mg/mL, 0.5 mg/mL and 1mg/mL. Sample preparation, is described in the Experimental 
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section 5.7. The cell viability is expressed as relative viability of cells (% compared to 

the control cells incubated only with medium).  

The obtained results for this viability assay are summarized in Figure 27.  

 

 

As it is appreciate in Figure 27, the nanogel has a lower cell viability at higher 

concentrations. This fact have been associated to the idea of a possible internalization of 

the nanoobjects inside the cells
28

. 

5.-EXPERIMENTAL SECTION 

5.1.-SYNTHESIS OF THE LINEAR PLURONIC DERIVATIVE 

In order to obtain the linear derivative, the synthetic steps and their experimental 

procedure, according to Scheme 2, are the following:  

-Synthesis of P/NP-2  
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Figure 27. Results of the cell viability test from P/A-2 PDF nanogel at different concentrations. 
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The different experimental conditions used in order to obtain the P/NP-2 product, are 

summarized in Table 6: 

 

  
g mmol eq 

a 

Pluronic F127 5 0.397 1 

p-nitrophenyl chloroformate 1.128 5.6 14 

DMAP 0.684 5.6 14 

b 

Pluronic F127 5 0.397 1 

p-nitrophenyl chloroformate 1.128 5.6 14 

Pyridine 0.391 4.94 12 

c 

Pluronic F127 5 0.397 1 

p-nitrophenyl chloroformate 0.64 3.17 8 

Pyridine 0.391 4.94 12 

 

Finally the third option, c, was the best one, due to the lower amount of p-nitrophenyl 

chloroformate used, and the easier processing. 

-Experimental procedure with DMAP, (a). 

In a flask, dry Pluronic F-127 (dried in vacuum, 115° C, 3 hours) (5g, 0.397 mmol, 1 

eq) was dissolved in 15 mL of dry dichloromethane. P-nitrophenyl chloroformate (1.128 

g, 5.6 mmol, 14 eq) was separately dissolved in 5 mL of dry dichloromethane and the 

resulting solution was added to the reaction flask under argon atmosphere. Then a 

solution of DMAP (4-dimethylaminopyridine) (0.684 g, 5.6 mmol, 14 eq) in 5 mL dry 

dichloromethane was added dropwise to the previous mixture, under argon atmosphere, 

appearing a white precipitate. The mixture was stirred at room temperature for 4 hours. 

Then, the crude was directly precipitate on 500 mL of cold diethyl ether, and placed in 

the fridge for one night. The solid white mixture containing the product and the 

subproduct was filtered, washed with cold diethyl ether and redisolved in 100 mL of 

dichloromethane. The organic phase was extracted twice with a 1N HCl solution (2x75 

mL), and with a NaCl saturated solution (1x75 mL), dried with MgSO4, filtered, and 

evaporated to reduce the volume. Then, the obtained oily product is precipitate in 500 

Table 6. Summary of the different experimental conditions used for the synthesis of P/NP-2 

http://en.wikipedia.org/wiki/4-Dimethylaminopyridine
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mL of cold diethyl ether, placed into the fridge during one night, filtered and washed in 

order to obtain the product as a yellowish powder. Yield: 74 %.  

-Experimental procedure with pyridine, (b and c). 

In these cases two different amounts of p-nitrophenyl chloroformate were used. 

In a flask, dry Pluronic F-127 (dried in vacuum, 115° C, 3 hours) (5g, 0.397 mmol, 1 

eq) was dissolved in 15 mL of dry dichloromethane. Dry pyridine (0.4 mL, 4.94 mmol, 

12 eq) was added to mixture drop by drop under argon atmosphere. P-nitrophenyl 

chloroformate (1.128 g, 5.6 mmol, 14 eq in experiment (b), or 0.64 g, 3.17 mmol, 8 eq 

in experiment (c)) was separately dissolved in 5 mL of dry dichloromethane and the 

resulting solution was added to the initial one under argon atmosphere, appearing a 

white precipitate. The mixture was stirred at room temperature for 24 hours. Then, the 

crude is redisolved with 50 mL of dichloromethane and extracted twice with a 1M 

NaHSO4 solution (2x30 mL) and with a NaCl saturated solution (1x30 mL), dried with 

MgSO4, filtered, and evaporated to reduce the volume. Then, the obtained oily product 

is precipitate in 500 mL of cold diethyl ether, placed into the fridge during one night, 

filtered and washed in order to obtain the product as a yellowish powder. Yield: 75 % 

(b), 80 % (c). 

1
H-NMR (300 MHz, CDCl3): δ (ppm): 1.13 (m, 201H, A), 3.39-3.80 (m, ~ 1100H, B, 

C, D, E, F), 4.07 (m, 4H, G), 7.37 (m, 4H, J), 8.26 (m, 4H, K). 

13
C-NMR (75 MHz, CDCl3): δ (ppm): 17.4- 17.5 (A), 68.4 (G), 68.7 (F), 70.7 (D, E), 

72.9- 73.5 (C), 75.2- 75.4- 75.6 (B), 121.8 (J), 125.4 (K), 145.5 (L), 152.5 (H), 155.6 

(I). 

IR (cm
-1

, ATR-FTIR): 2867 (C-H st), 1769 (C=O st carbonate), 1110 (C
_
O

_
C). 

MS (MALDI+): 4999.3 m/z and 12842.8 m/z.  
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-Synthesis of P/C-2  
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In a flask, the compound P/NP-2 (2g, 0.154 mmol, 1eq), was dissolved in dry 

dichloromethane, 13 mL. Ethanolamine (0.038 g, 0.622 mmol, 4 eq) was dissolved into 

2 mL dichloromethane and added dropwise to the previous solution under argon 

atmosphere. The mixture was stirred at room temperature for 24 hours. Then, the crude 

was precipitate in 300 mL of cold diethyl ether and stored in the fridge overnight. The 

product was filtered and washed with cold diethyl ether. Yield: 80 %. 

1
H-RMN (300 MHz, CDCl3): δ (ppm): 1.12 (m, 201H, A), 3.30-3.80 (m, ~ 1100, B, C, 

D, E, F, I, J), 4.21 (m, 4H, G). 

13
C-RMN (100 MHz, CDCl3): δ (ppm): 17.4-17.5 (A), 43.6 (I), 61.8 (J), 63.9 (G), 68.6-

68.7-69.6 (F), 70.6 (D, E), 72.9- 73.4 (C), 75.2- 75.4- 75.5 (B), 157.0 (H). 

IR: (cm
-1

, ATR-FTIR):1722.3 (C=O st, carbamate), 3250-3500 (O-H st). 

MS (MALDI+): 5936.3 m/z and 13608.6 m/z. 

-Synthesis of P/A-2  
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In a flask, P/C-2 (1.2 g, 0.0939 mmol, 1 eq), was dissolved in 10 mL of dry 

dichloromethane. 150 mg of 4-methoxyphenol were added. The flask was placed in an 

ice bath and triethylamine (TEA) (0.0836g, 0.826 mmol, 8.8 eq), was added dropwise 

under inert atmosphere. Next, acryloil chloride (0.067 g, 0.725 mmol, 8 eq) was added 

dropwise and also under inert atmosphere. The reaction mixture was stirred at room 

temperature for 24 hours in the dark. The solution was passed through a neutral alumina 

column and the filtrate was dried with Na2CO3 during 2 hours, filtered and evaporated 
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to reduce the volume. Finally the product was precipitate in 200 mL of cold diethyl 

ether and stored in the fridge overnight. The product was filtered and washed with cold 

diethyl ether. Yield: 69 %. 

1
H-RMN (300 MHz, CDCl3): δ (ppm): 1.12 (m, 201H, A), 3.37-3.80 (m, ~ 1100H, B, 

C, D, E, F, I), 4.22 (m, 8H, G,J), 5.85 (dd, Jcis=10.1 Hz, Jgem=1.2Hz, 2H, M), 6.12 (dd, 

Jtrans= 17.3 Hz, Jcis= 10.4 Hz,2H, L), 6.41 (dd, Jtrans= 17.4 Hz, Jgem=1.2 Hz, 2H, M‟). 

13
C-RMN (75 MHz, CDCl3): δ (ppm): 17.4- 17.5 (A), 39.9 (I), 63.5 (F), 66.7 (G), 68.9 

(J), 70.4 (D, E), 72.8- 73.2 (B), 75.2 (C), 127.9 (L), 130.9(M), 156.2 (H), 165.7 (K). 

IR: (cm
-1

, ATR-FTIR):1728.1 (C=O st, carbamate) 

MS (MALDI+): 5938.6 m/z and 13644 m/z. 

 

5.2.-SYNTHESIS OF THE HYBRID DENDRITIC-LINEAR-DENDRITIC 

BLOCK COPOLYMER 

 

-Synthesis of Benzylidene-2,2-bis(oxymethyl)propionic acid. 

 

In a flask, 2,2-Bis(hydroxymethyl)-propionic acid (30 g, 223.7 mmol), benzaldehyde 

dimethyl acetal (56 mL, 378.1 mmol) and p-toluenesulfonic acid monohydrate (2.03 g, 

10.5 mmol) were solved in 120 mL of acetone. The reaction mixture was stirred for 4 

hours at room temperature. After storage of the reaction mixture in the refrigerator 

overnight, the solid was filtered off and washed with cold acetone to give the product as 

a white powder. Yield: 49 %. 
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1
H-RMN (300 MHz, CDCl3): δ (ppm): 1.11 (s, 3H, G), 3.70 (d, J=11.7 Hz, 2H, F), 4.64 

(d, J=11.4 Hz, 2H, F´), 5.49 (s, 1H, E), 7.37 (m, 3H, A, B), 7.47 (m, 2H, C). 

13
C-RMN (75 MHz, CDCl3): δ (ppm): 17.7 (G), 42.1 (H), 73.4 (F), 101.9 (E), 126.2 (C), 

128.3 (B), 129.0 (A), 137.5 (D), 178.8 (I). 

IR (cm
-1

, KBr): 3005 (OH), 2865 (C-H st), 1702 (C=O). 

-Synthesis of Benzylidene-2,2-bis(oxymethyl)propionic anhydride. 

 

In a flask, benzylidene-2,2-bis(oxymethyl)propionic acid, (11.0 g, 49.6 mmol) and DCC 

(5.7 g, 27.7 mmol) were mixed in 200 mL of CH2Cl2. The reaction mixture was stirred 

overnight at room temperature. The precipitated urea DCC byproduct was filtered off 

and washed with a small volume of CH2Cl2. The crude product was concentrated using 

a rotavapor and precipitated into 1 l of cold hexane.  After one night in the fridge, the 

product is filtered and washed with cold hexane to give the product as a white powder. 

Yield: 92 %. 

1
H-RMN (300 MHz, CDCl3): δ (ppm): 1.12 (s, 6H, G), 3.69 (d, J=11.6 Hz, 4H, F), 4.66 

(d, J=11.7 Hz, 4H, F´), 5.47 (s, 2H, E), 7.34 (m, 6H, A, B), 7.45 (m, 4H, C).
 

13
C-RMN (75 MHz, CDCl3): δ (ppm): 16.9 (G), 44.2 (H), 73.2 (F, F´), 102.1 (E), 126.3 

(C), 128.2 (B), 129.1 (A), 137.6 (D), 169.1 (I). 

IR (cm
-1

, KBr): 2865 (C-H st), 1816 (C=O st sim), 1746 (C=O st as). 
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-Synthesis of P/B-2 

O
O

O

67

O

98

O

98

O

O

J

O

H

O

O

H

O

O
A

B
CD

DE

E F

GF

G

H

I´

I

L

M

N

N

P

O
P

K

 

Dry Pluronic F-127 (10.0 g, 0.79 mmol), DMAP (0.12 g, 0.98 mmol) and benzylidene-

2,2-bis(oxymethyl)propionic anhydride (2.0 g, 4.68 mmol) were dissolved in 20 mL of 

CH2Cl2. The mixture was stirred at room temperature overnight under argon blanket. 

The excess of anhydride was quenched by adding 7 mL of methanol. The mixture was 

stirred while 6 hours and the crude was precipitated in 1 L of cold diethyl ether. After a 

night in fridge the product was isolated by filtrating and washing with diethyl ether, as a 

white powder. Yield: 97 %. 

1
H-RMN (400 MHz, CDCl3): δ (ppm): 1.04 (s, 6H, J), 1.13 (m, 201H, A), 3.37-3.82 (m, 

~1100H, B, C, D, E, F, I´), 4.35 (m, 4H, G), 4.66 (d, J=11.6 Hz, 4H, I), 5.44 (s, 2H, L), 

7.32 (m, 6H, P, O), 7.42 (m, 4H, N). 

13
C-RMN (300 MHz, CDCl3): δ (ppm): 17.3, 17.4 (A), 17.9 (J), 42.4 (K), 64.2 (G), 

68.5- 68.6-69.1 (F), 70.5 (D, E), 72.9- 73.3 (C, I, I´), 75.1- 75.3- 75.5 (B), 101.7 (L), 

126.2 (N), 128.2 (Q), 128.9 (P), 137.9 (M), 173.9 (H). 

-Synthesis of P/OH-4 
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In a flask, compound P/B-2 (10 g, 0.77 mmol) was dissolved in 200 mL of EtOAc. 

Once P/B-2 is dissolved, 10 % (w/w) Pd/C was added. After three vacuum-argon 

cycles, the reaction mixture was stirred at room temperature in hydrogen atmosphere 
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overnight. The Pd/C was filtered off with Celite
®
 and the filtrate was evaporated to give 

the product as white solid. Yield: 93 %. 

1
H-RMN (400 MHz, CDCl3): δ (ppm): 1.11 (s, 6H, J), 1.13 (m, 201H, A), 3.37-3.82 (m, 

~1100H, B, C, D, E, F, I), 4.34 (m, 4H, G). 

13
C-RMN (300 MHz, CDCl3): δ (ppm): 17.1 (J), 17.3- 17.4 (A), 49.5 (K), 63.2 (G), 67.3 

(I), 68.4- 68.5- 68.7 (F), 70.5 (D, E), 72.9- 73.3 (C), 75.1- 75.3- 75.5 (B), 175.6 (H). 

-Synthesis of P/NP-4 

 

In a flask, P/OH-4 (3 g, 0.233 mmol, 1 eq) was dissolved in 20 mL of dry CH2Cl2, then, 

0.8 mL of dry pyridine and p-nitrophenyl chloroformate (0.75 g, 3.76 mmol, 16 eq), 

were added to the reaction flask under argon blanket and stirring. The reaction mixture 

was stirred at room temperature for 24 h. The crude was redisolved with 50 mL of 

dichloromethane and extracted twice with a 1M NaHSO4 solution (2x30 mL) and with a 

NaCl saturated solution (1x30 mL), dried with MgSO4, filtered, and evaporated in 

rotavapor to reduce the volume. Then, the product was precipitate in 300 mL of cold 

diethyl ether, placed in the fridge overnight, filtered and washed with cold diethyl ether. 

Yield: 79 %. 

1
H-RMN (300 MHz, CDCl3): δ (ppm): 1.13 (m, 201H, A), 1.38 (s, 6H, J), 3.37-3.85 (m, 

~1100H, B, C, D, E, F), 4.34 (m, 4H, G), 4.47 (d, J= 9 Hz, 4H, I), 4.58 (d, J= 9 Hz, 4H, 

I´), 7.37 (m, 8H, M), 8.26 (m, 8H, O). 

13
C-RMN (75 MHz, CDCl3): δ (ppm): 17.4- 17.5 (A), 17.7 (J), 46.5 (K), 64.5 (G), 68.6-

68.7-69.2 (F), 70.7 (D, E, I, I´), 72.9- 73.5 (C), 75.2- 75.4- 75.6 (B), 121.7 (M), 125.3 

(O), 145.5 (P), 152.1 (L), 155.2 (N), 171.5 (H). 
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-Synthesis of P/C-4  
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In a flask, P/NP-4 (1.6 g, 0.118 mmol, 1 eq) was dissolved in 10 mL dry 

dichloromethane under argon blanket and stirring. Ethanolamine (0.043g, 0.704 mmol, 

6 eq) along with 2 mL of dry dichloromethane, were added to the reaction flask. The 

reaction mixture was stirred for 24 h at room temperature, next, the crude was 

precipitated into 200 mL of cold diethyl ether and placed in the fridge overnight. The 

product was filtered and washed with cold diethyl ether to obtain the product as a white 

powder. Yield: 90 %. 

1
H-RMN (300 MHz, CDCl3): δ (ppm): 1.13 (m, 201H, A), 1.23 (s, 6H, J), 3.29 (m, 8H, 

M), 3.39-3.87 (m, ~1100H, B, C, D, E, F, N), 4.26 (m, 12H, I, G). 

13
C-RMN (75 MHz, CDCl3): δ (ppm): 17.1 (A), 43.3 (K), 46.4 (M), 61.2 (N), 65.6 (I) 

66.8 (G), 68.6 (F), 70.2 (D, E), 72.6- 73.08 (C), 74.8- 75.2 (B), 156.35 (L), 172.85 (H). 

-Synthesis of P/A-4 
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In a flask, P/C-4 (1.2 g, 0.091 mmol, 1 eq) was solved in 10 mL of dry dichloromethane 

(or dry THF) under argon blanket and stirring, then the inhibitor, 4-methoxyphenol was 

added in excess (300-850 mg). Once the mixture was solved, the flask was placed in an 

ice bath and TEA (0.162 g, 1.6 mmol, 17.6 eq) was added dropwise under inert 

atmosphere. Next, acryloil chloride (0.132 g, 1.46 mmol, 16 eq) was added dropwise 

and also under inert atmosphere. The reaction mixture was stirred at room temperature 
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for 48 hours in the dark. The solution was passed through a neutral alumina column and 

the filtrate was dried with Na2CO3 during 2 hours, filtered and evaporated to reduce the 

volume. Finally the product was precipitate in cold diethyl ether (200-300 mL) and 

stored in the fridge overnight. The product was filtered and washed with cold diethyl 

ether. 

5.3.-TIM and DSC procedures 

- TIM procedure 

First, the chosen concentration samples were prepared in solution with PBS (10 mM, 

pH =7.4), 100 μl, inside a 2 mL vial. To obtain a good solution the samples were placed 

at 4 º C overnight and in the dark. 

Then, the samples were heated with a heater block (speed 1 ºC/min.). 

During the heating process, the state of the samples was visually followed to determine 

at what temperature, indicated by the heater block, the transition from sol state to gel 

state took place for each sample. The LCST was defined as the temperature when the 

material does not flow for at least 10 seconds, when the vial is upside down. 

- DSC procedure 

The samples were introduced inside of airtight capsules, and the applied method for all 

samples was the same: to heat the sample from -10 °C to 50 °C, following by a cooling 

process from 50 °C to -10 °C with a ramp of 5 °C/min. 

5.4.-Photopolymerized macroscopic hydrogel obtention 

To prepare the photopolymerized hydrogels, the obtained products were prepared at 

selected concentrations, by dissolving them in 100 μL of a previously prepared PBS 10 

mM solution containing 0.1% w/v of photoinitiator Irgacure 2959. 

IRGACURE 2959 is a highly efficient non yellowing radical photoinitiator for 

the UV curing of systems comprising of unsaturated monomers and 

prepolymers. It is especially suited where low odor is required and for use in 

water borne systems based on acrylate or unsaturated polyester resins
29

. 
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These solutions were stored overnight at 4°C and in darkness to ensure a good and 

homogeneous dissolution of the products. 

Subsequently, the gels are formed by the effect of temperature. To do this, a hotplate 

was used (see Figure 28). Upon the hotplate, a cylindrical holder of 6 mm diameter by 3 

mm high, is positioned on a glass slide. 

 

When the achieved temperature by the hotplate was 37°C, the cold solution prepared is 

poured into the holder. This process must be carried out keeping and manipulating the 

samples in cold conditions, in order to prevent the gel formation prematurely. 

 

Once the gel was formed within the holder, it was exposed to ultraviolet radiation 

(365nm) at 8 cm distance for 10 minutes to fix the structure. 

 

 

 

After the 10 minutes of exposure to the UV light, the photopolymerized hydrogels are 

demoulded and used for its morphological characterization by SEM and for the 

degradation studies. 

5.5.-Swelling and degradation procedure 

The procedure method was as follows: 

 To weigh the freshly prepared photopolymerized hydrogel at certain 

concentration. Defining Wo as the initial weight of the hydrogel. 

 Each sample was incubated in 2mL of PBS (10 mM, pH=7.4) at 37 °C. 

 At constant intervals of time, equal for all samples, each one was weighed. For 

this purpose, the sample was dried prior to weighing by removing excess of 

c 

a 

c 

Figure 28. Hydrogel’s photopolymerization system. a) hotplate at 37 ºC. b) cylindrical mould. c) 

UV lamp. 

a 

b 
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PBS, subsequently, another 2 mL of new PBS in the same conditions were 

added to recover the experimental swelling conditions. 

5.6.-Photopolymerized nanogel obtention. 

For obtaining the nanogels, two solutions were prepared separately 

 First, it is necessary to prepare a solution containing 0.1% (w/v) of the 

photoinitiator Irgacure 2959 in distilled water. (Solution A) 

 Secondly, a solution containing the product P/A-2, 10 % in (w/v), dissolved in 

600 μL of solution A, this one was placed overnight at 4ºC in darkness to ensure 

an homogeneous dissolution of the material. (Solution B) 

Then, both solutions were filtered with a 0.20 μm filter, and taken to a final volume 

of 5 ml (Solution C), where the P/A-2 concentration was 0.77 % wt.  

Then, the solution C was poured in a clean glass container where the 

photopolymerization process will be carried out. 

The solution was exposed to ultraviolet radiation (365nm) with 8 cm distance 

between the lamp and the sample, for 10 minutes, at room temperature. 

Once the structure of the nanogel has been fixed, the photopoymerized solution is 

placed inside a membrane [cellulose ester (CE), MWCO300 000 with a nominal 

pore size of 35 nm], and dialyzed for 24h at 4ºC in a 2 L vessel. 

The aim of the dialysis process is to purify the nanogel, mainly by eliminating all 

the possible particles which could be within the nanogel solution, chiefly the 

presence of free monomers. 

Once the dialysis process was finished, the samples are again filtered with a single use 

0.20 μm filter and prepared to be characterized by TEM, SEM and DLS.   
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5.7.-MSCs and HeLa cell culture and sample preparation. 

 MSCs 

First MSCs were grown in alfa-MEM (minimum essential medium) with FGF 

(fibroblast growth factor) and 10 % of FBS (fetal bovine serum). Media was removed 

each 3 or 4 days, and cells were cells trypsinized after reaching 80% confluence. 

To prepare the samples, Pluronic F127, P/C-2 or P/A-2, in its solid state, were sterilized 

by UV light for an hour. Next, these sterilized compounds were dissolved in an also 

sterilized DMEM, with or without photoinitiator Irgacure 2959 (0.1 %). DMEM is a 

modification of Basal Medium Eagle (BME) that contains a four-fold higher 

concentration of amino acids and vitamins, as well as additional supplementary 

components.To ensure a good solubilization, samples were left overnight in the 

refrigerator at 4 ° C, tightly closed. 

For 2D assays, 10000 cells/well were seeded in a 96 well-plate. Cells were covered by 

100μL of polymeric solution (Pluronic 127, P/C-2 or P/A-2), and incubated for 5 

minutes at 37 °C to reach the physical hydrogel. Then, the photopolymerization process 

was carried out when needed, by exposing the 96well-plate to UV light for 10 minutes 

at 8 cm distance. After it, 100 μL of freshly medium was added. 

In the case of 3D assays, the process was similar but previously, cells were dispersed 

into the polymeric solution, and then the assembly was transferred to the 96 well-plate. 

 HeLa cells 

HeLa cells were seeded at a density of 1-3 x10
3
 cells/well in a 96 well-plate with 

DMEM. The P/A-2 PDF nanogel, in this case, was prepared as explained in 

Experimental section 5.6, then lyophilized and dissolved again in sterile DMEM, 

1mg/mL. 

Upon 24h incubation, media was removed and fresh media was added to the control 

wells and the P/A-2 nanogel diluted in media at different concentrations (0.25, 0.5 and 1 

mg/mL) was added to the rest of the wells.  
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Media was removed after 24, 48 and 72h of incubation with the P/A-2 PDF nanogel, 

and fresh media was added to all the wells (control and sample wells); then a 10% of the 

media volume of Alamar Blue solution (Invitrogen by Life Technologies, Thermo 

Fisher Scientific, Spain) was added. After 2h incubation at 37ºC, fluorescence was read 

at 530/590 (excitation/emission) on a Synergy HT (BioTek, USA) plate reader. 

6.-Conclusions 

 Pluronic F127 allows to prepare thermosensitive and photopolymerizable hydrogels 

by the incorporation of hydroxyl and acrilate terminal groups. 

 The photopolymerization technique can be successfully applied for the preparation 

of both the macroscopic molded hydrogels and nanostructured hydrogels (nanogels). 

 Concerning the macroscopic hydrogel: 

o The internal morphology, characterized by SEM, reveals a pore size 

distribution from 4 to 12 μm.   

o The materials exhibit a total degradation in 92 days. 

o Functionalized derivatives offer better cell viability than Pluronic F127 in 

the 2D assays. 

 Concerning the nanostructured hydrogel: 

o Functionalized derivatives offer improved CMC than Pluronic F127. 

o The morphological characterization by TEM and SEM, have confirmed the 

micellar structure of the nanogels in water, and the possibility of its drying 

and further re-dissolution.   
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APPENDIX 1 

ⱷ Pluronic F-127 
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APPENDIX 2 

ⱷ DSC 
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ⱷ Materials and methods 

 

Materials: 

- All the products where purchased from Sigma-Aldrich and Acros Organics. 

-The dialysis membrane was purchased from Spectrum. 

General methods: 

-  
1
H-NMR and 

13
C NMR spectra were recorded on a Bruker AV-400 (operating at 400 

MHz for 
1
H and 100 MHz for 

13
C) and on a Bruker AMX300 (operating at 300 MHz for 

1
H and 75 MHz for 

13
C). CDCl3 was used as solvent, chemical shifts are given ppm 

relative to TMS, and the solvent residual peak was used as internal standard. 

-  The infrared spectra of all the complexes were obtained with a Bruker Vertex 70 in 

ATR mode model MKII Golden Gate Single Reflection ATR System from Specac. 

-  Differential scanning calorimetry (DSC) was performed using a DSC Q20 V24.10 

Build 122 from TA Instruments. 

- Mass Spectrometry was performed using an ESI Brüker Esquire 300+, a 

MALDI+/TOF Brüker Microflex system. 

-  SEM analyses were performed with a SEM Inspect F50 with gold or platinum coated 

samples, at the Laboratory of Advanced Microscopy (LMA) of the INA (Nanosciences 

Institute of Aragon). 

-  TEM measurements were performed using a TECNAI G20 (FEI COMPANY), 200 

kV, at the Laboratory of Advanced Microscopy (LMA) of the the INA (Nanosciences 

Institute of Aragon). Samples were prepared on holey carbon film 300 Mesh Cu (50) 

from Agar Scientific. 

-   DLS measurements were performed using a Brookhaven 90 Plus Particle Analyzer. 
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- GPC measurements were performed using a Waters e2695 Alliance liquid 

chromatography system equipped with a Waters 2424 evaporation light scattering 

detector, Styragel® columns HR1 from Waters. Measurements were performed in THF 

with a flow of 1mL min
-1 

using polystyrene (PS) narrow molecular weight standard. 

-  Fluorescence measurements were performed in a Perkin Elmer LS 55 fluorescence 

spectrometer. 

-   Cells images were taken at a fluorescence inverted microscope model Olympus IX81 

at CIBA (Aragon Biochemical Research Center). 

 

ⱷ Staining for cell viability tests 

 

 LIVE/DEAD
® 

Viability/Cytotoxicity Kit  

Live cells are distinguished by the presence of ubiquitous intracellular esterase activity, 

determined by the enzymatic conversion of the virtually nonfluorescent cell-permeant 

calcein AM to the intensely fluorescent calcein. The polyanionic dye calcein is well 

retained within live cells, producing an intense uniform green fluorescence in live cells . 

EthD-1 enters cells with damaged membranes and undergoes a 40-fold enhancement of 

fluorescence upon binding to nucleic acids, thereby producing a bright red fluorescence 

in dead cells. EthD-1 is excluded by the intact plasma membrane of live cells. The 

determination of cell viability depends on these physical and biochemical properties of 

cells. Cytotoxic events that do not affect these cell properties may not be accurately 

assessed using this method. Background fluorescence levels are inherently low with this 

assay technique because the dyes are virtually non-fluorescent before interacting with 

cells. 

 AlamarBlue® 

The assay is based on the ability of viable, metabolically active cells to reduce resazurin 

to resorufin and dihydro-resorufin. This conversion occurs intracellularly, where the 

oxidized form of the resazurin enters the cytosol and is converted to the reduced form 
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by mitochondrial enzyme activity by accepting electrons from NADPH, FADH, FMNH, 

NADH as well as from numerous cytochromes. The reduction related to growth causes 

the resazurin to be converted from the oxidized (or non-fluorescent) blue form to the 

reduced (fluorescent) red form. Since Resazurin is not-toxic to cells and is stable in 

culture media, continuous measurement of cell proliferation in vitro can be achieved. 

Toxic compounds that impair cell viability and proliferation also affect the capacity to 

reduce resazurin, and the rate of dye reduction is directly proportional to the number of 

viable cells present.  

 

 

 

 

 

 

 

 

 

 

 

 

 


