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1. INTRODUCCIÓN 

La Química Verde (Green Chemistry) es entendida como una química 

respetuosa con el medio ambiente. Este modelo se basa en el uso de tecnologías 

químicas innovadoras que reduzcan el uso o la generación de sustancias químicas 

peligrosas en todas las partes del proceso químico, es decir, diseño, fabricación y uso de 

productos químicos.1 Actualmente, tanto en el sector industrial como en investigación, 

se trabaja o se intenta aplicar el modelo de Química Verde basado en los doce principios 

formulados por Anastas y Warner2 (Figura 1). Estos doce principios establecen una 

nueva forma de trabajo centrada en la prevención, integración de materiales, seguridad, 

eficiencia energética, reducción de subproductos y uso de procesos catalíticos. 

 

Figura 1. Doce principios de la Química Verde según Anastas y Warner. 

Según el principio 5, una gran parte de las expectativas de una industria química 

con bajo impacto medioambiental (química verde) se centra en el desarrollo de procesos 

catalíticos eficientes (Figura 2).3 El concepto de catálisis y el papel que los 

catalizadores realizan en las reacciones químicas son bien conocidos en química desde 

su definición por Berzelius en 1836. El catalizador se asocia a una sustancia que no 

forma parte de la estequiometria de una reacción, pero que afecta a su velocidad. De 

acuerdo con una definición clásica; el catalizador: “es una sustancia que está presente en 
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ura 3).  

una reacción química y acelera, induce o propicia dicha reacción sin formar parte en la 

misma” (Fig

 

Figura 2. El desarrollo sostenible como objetivo estratégico de la sociedad. 

 

 

 

Figura 3. Ciclo catalítico simple: Reacción del  sustrato S con el reactivo R para dar el producto 
P. C es el catalizador. 

Un catalizador no influye en el equilibrio de la reacción, sólo en la velocidad y 

en la selectividad del proceso. Existen varios tipos de catálisis (homogénea, 

heterogénea, fotocatálisis, electrocatálisis o catálisis enzimática). En relación con la 

sostenibilidad de los procesos se espera que los catalizadores ofrezcan: 

 Reacciones selectivas, sin productos secundarios.  
 Temperaturas de reacción próximas a la ambiente. 
 Presiones de reacción próximas a la atmosférica.  
 Idealmente el catalizador puede ser recuperado y reutilizado. 

La catálisis en fase heterogénea se emplea en la obtención de la mayoría de los 

procesos de la industria petroquímica y química orgánica básica. Sin embargo, la 

catálisis en fase homogénea es ampliamente utilizada en la industria farmacéutica y en 

aplicaciones de química fina. Además de estos dos grandes grupos de catalizadores, los 



catalizadores de transferencia de fase contribuyen a facilitar el contacto entre reactivos 

distribuidos entre dos o más fases no miscibles.  

Cuando se habla de catálisis homogénea se hace referencia casi siempre al uso 

de catalizadores que en su gran mayoría son complejos de metales de transición, con 

orbitales d parcialmente ocupados, tales como Ti, Zr, Pd, Pt, Rh, Ir, ó Ru. La existencia 

de orbitales d vacantes facilita la formación de enlaces con moléculas dadoras de 

electrones, los ligandos. Las diferentes propiedades electrónicas y estéricas de los 

complejos vienen moduladas por el tipo de ligandos en la esfera de coordinación del 

metal. El diseño apropiado de ligandos permite influir en la estabilidad, reactividad de 

los complejos formados. 

Hay que tener en cuenta que en fase homogénea se consigue una alta 

selectividad y economía atómica para muchas transformaciones catalíticas, y 

consecuentemente, se obtiene un importante ahorro energético que se deriva de las 

suaves condiciones de operación. Por el contrario, en catálisis homogénea se utiliza una 

gran cantidad de disolvente y son, en general, procesos de baja eficiencia con un factor 

E elevado.4  

  

Los disolventes figuran entre los componentes fundamentales de la inmensa 

mayoría de reacciones tanto preparativas como catalíticas, bien sea como medio de 

reacción o como medio de separación de los productos resultantes. Un amplio rango de 

sustratos es soluble en disolventes orgánicos lo que constituye una de las grandes 

ventajas de estos disolventes, la otra es su gran volatilidad lo que facilita su eliminación. 

Sin embargo, los disolventes orgánicos suelen ser tóxicos, inflamables y poseen una 

baja capacidad calorífica. Los disolventes contribuyen a la generación de residuos, en 

general, al aumento de la formación de ozono ambiental o troposférico y al coste 

económico del proceso. Por el contrario, el agua no es tóxica, no es inflamable, es 

barata y tiene una alta capacidad calorífica. Por el contrario, el agua posee grandes 

desventajas como disolvente ya que la mayoría de las moléculas orgánicas no son 

solubles y a su vez, también reaccionan con ella.  
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La separación de los productos de reacción de los catalizadores suele ser uno de 

los principales hándicap en catálisis homogénea. Los procesos para llevar a cabo esta 

separación, a menudo, pueden causar reacciones de descomposición y desactivación 

progresiva del catalizador, además de la pérdida del mismo. Todo el proceso de 

separación tiene como consecuencia una disminución de productividad. Una forma de 

solventar este problema, y dentro del marco de la química sostenible, es llevar a cabo 

los procesos catalíticos en sistemas bifásicos, como por ejemplo disolvente 

orgánico/agua.5 En este tipo de sistemas, el catalizador, soluble en fase acuosa, puede 

separarse fácilmente de los productos, que quedan en la fase orgánica (Figura 4). 

Existen otros disolventes sostenibles y alternativos como fluidos supercríticos1,6 o 

líquidos iónicos.7 

 

 

Figura 4. Principio general de la catálisis bifásica. 

Adicionalmente a los sistemas bifásicos, el agua como buen medio de reacción 

alternativo, es seguro, rentable y respetuoso con el medio ambiente.8 Además, el agua, 

es el disolvente más abundante y más verde de todos, de fácil acceso y mucho más 

barato que los disolventes orgánicos convencionales y evidentemente, no es tóxico. 

Además, tiene una constante dieléctrica (´) de 78 a 25 ºC y de 20 a 300 ºC. Este último 

valor es comparable a la de disolventes como la acetona a temperatura ambiente. Por lo 

tanto, el agua puede comportarse como un disolvente pseudoorgánico a temperaturas 

elevadas. Además de las ventajas medioambientales del empleo de agua en lugar de 

disolventes orgánicos, el aislamiento de los productos se facilita por la disminución de 

la solubilidad del producto cuando la reacción se enfría.9  

En consecuencia, la catálisis organometálica en medios acuosos ha tenido un 

gran interés y ha sido muy estudiada ya desde la década de 1970, destacando los 

trabajos pioneros llevados a cabo por Joo,10 Sasson,11 y Sinou.12 Una variedad de 

reacciones catalíticas en fase acuosa tales como reacciones de hidroformilación, 

5 

 



hidrogenación, metátesis, etc. se han documentado desde entonces13 e incluso, algunas 

de ellas, como hidrogenación y hidroformilación, tienen aplicación industrial.14 Por 

ejemplo, la compañía Hoechst AG en Oberhausen (Alemania) produce anualmente 

300.000 toneladas de butiraldehído por hidroformilación de propeno utilizando un 

catalizador homogéneo de rodio soluble en agua. (Figura 5).15 En otras ocasiones, la 

introducción de agua como medio de reacción modifica en gran medida la velocidad de 

la reacción como por ejemplo en la reacción de Diels Alder mostrada en la Figura 6.16 

 
 

 

 

Figura 5. Diagrama de flujo del proceso Ruhrchemie/Rhône-Poulencs en la producción de n-

butiraldehído en un proceso de hidroformilación de Hoechst AG en Oberhausen (Alemania). 

 

 

 

Disolvente Krel endo/exo 

Isooctano 1 78:22 

Metanol 13 90:10 

Agua 741 96:4 

Agua + LiCl 1818 >99:1 

Figura 6. Influencia del disolvente en la velocidad y selectividad de la cicloadición de Diels 

Alder. 
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reacción.21 

Un catalizador debe ser capaz de generar vacantes coordinativas para dar lugar a 

una especie catalíticamente activa que haga posible la coordinación y posterior 

activación de los reactivos. Por tanto, un precursor de catalizador debe contener alguna 

vacante de coordinación o un ligando fácilmente disociable o lábil que la genera. 

La presencia de ligandos con algún grado de labilidad determina la eficiencia del 

catalizador, aunque por otro lado, también puede favorecer su descomposición. Los 

ligandos hemilábiles son potencialmente capaces de realizar una doble función en el 

catalizador; por un lado, permiten que exista disponibilidad de vacantes coordinativas 

en torno al centro metálico y a la vez, protegen el sitio activo del catalizador dado que 

son capaces de realizar un efecto quelante alternante (“on-off”). Los ligandos 

hemilábiles más estudiados han sido las fosfinas funcionalizadas con grupos que 

contienen como átomos dadores O y N. Éstas son capaces de unirse fuertemente al 

centro metálico a través del P y de una manera más lábil a través del heteroátomo (N ó 

O).17 

Los carbenos N-heterocíclicos (NHC) como ligandos tienen características 

especiales como una alta donación de densidad electrónica, a la vez que aportan a los 

complejos una gran estabilidad térmica. Entre los diferentes tipos de carbenos NHC 

caracterizados, unos de los más estudiados son los derivados de imidazol (Figura 7). La 

posibilidad de funcionalizar de manera diferente los dos nitrógenos les confiere una 

gran versatilidad,18 pudiéndose obtener una gran número de derivados. En particular, 

los imidazoles funcionalizados con grupos amino, amido, alcohol, carbonato, 

carboxilato, tiol, ácido, sulfonato, etc.19 han sido especialmente estudiados para la 

síntesis de complejos estables y solubles en agua. Muchos complejos catalíticamente 

eficientes en medio acuoso incorporan ligandos carbeno-NHC solubles en agua en su 

esfera de coordinación.20 Los estudios de actividad catalítica en agua con complejos con 

NHC solubles en agua se han centrado en reacciones de acoplamiento C-C, aunque 

también se han realizado notables avances en metátesis e hidrogenación. Este tipo de 

compuestos, no han sido tan sistemáticamente estudiados como los catalizadores con 

fosfinas solubles en agua y existen muchos tipos de reacciones catalíticas con complejos 

con ligandos NHC solubles en agua que continúan inexploradas en este medio de 



 

Figura 7. Ligando carbeno N-heterocíclico funcionalizado genérico basado en el imidazol. 

La reacción de transferencia de hidrógeno consiste en la reducción de dobles 

enlaces mediante la adición de hidrógeno que proviene de un dador orgánico o 

inorgánico, dependiendo del medio de reacción, pero siempre distinto del H2 (Figura 8). 

La reacción puede iniciarse térmica, fotoquímica o catalíticamente. El proceso iniciado 

de modo catalítico es de mayor interés pues permite trabajar en condiciones más suaves 

y obtener mejor selectividad en el proceso.  

 
 

8 

 

 

Figura 8. Reacción general de transferencia de hidrógeno. 

 
El uso de catalizadores de metales de transición presenta grandes ventajas 

prácticas pues evita el uso de altas presiones de H2 ó de otros reductores peligrosos 

sobre todo a la hora de trabajar a nivel industrial. 

Los procesos de reducción de compuestos orgánicos mediante reacciones 

catalíticas de transferencia de hidrógeno han cobrado especial importancia en los 

últimos años,22 tanto a nivel industrial como a escala de laboratorio. El proceso de 

hidrogenación catalítica de cetonas es un proceso muy importante a nivel industrial, en 

concreto, para la producción de alcoholes quirales que pueden ser utilizados en la 

síntesis de fármacos, esencias o sabores en la industria farmacéutica o de química fina.23 

El dador de hidrógeno en el proceso de transferencia de hidrógeno puede ser el 

propio disolvente, como por ejemplo isopropanol, que actuará como agente reductor. La 
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 - 1.5 h). 

elección de isopropanol24 como disolvente para llevar a cabo estos procesos catalíticos 

se debe a que es estable, no es tóxico, tiene un punto de ebullición moderado (82°C), es 

barato y es respetuoso con el medioambiente. Cuando la reacción se realiza en medio 

acuoso, el agente reductor, dador de hidrógeno, debe de ser añadido al medio de 

reacción y generalmente es formiato de sodio. Para que el proceso de hidrogenación 

catalítica tenga lugar es necesaria la presencia de una base fuerte (como el propio 

formiato ó KOH) que origine las especies hidruro que son las catalíticamente activas.25 

En ocasiones, la presencia de base puede afectar negativamente a la selectividad y no 

puede usarse con substratos que sean sensibles al medio básico. 

Algunos complejos de Ir(I), Rh(I) y Ru(II) son catalizadores muy efectivos en 

procesos de transferencia de hidrógeno en 2-propanol y además es posible alterar 

notablemente las características del catalizador de un modo sencillo modificando la 

naturaleza de los sustituyentes de los ligandos coordinados. 

La reducción de sustratos insaturados por transferencia de hidrógeno en medio 

acuoso, por lo general, utiliza formiato como dador de hidrogeno y catalizadores de 

rodio y rutenio. Por ejemplo, Joò y colaboradores han demostrado que los compuestos 

RuCl2(tppms)2 
26

 y RuCl2(PTA)4 
27 transforman los aldehídos aldehídos aromáticos α,β-

insaturados en los correspondientes alcoholes aromáticos o insaturados, con una 

selectividad superior al 98%, en un medio acuoso-orgánico bifásico usando formiato de 

sodio como fuente de hidrógeno.  

Las reacciones de transferencia de hidrógeno en medio acuoso catalizadas por 

complejos de metales de transición (sobre todo Rh, Ir y Ru) con carbenos NHC solubles 

en agua también ha sido ampliamente estudiadas.28 Recientemente el grupo de Xiao y 

col.29 han estudiado procesos de transferencia de hidrógeno en agua con catalizadores 

de Rh, Ir y Ru y como ligandos derivados aminosulfonados (Figura 9). Las condiciones 

de reacción son muy suaves (65 ºC) y las proporciones sustrato-catalizador muy 

pequeñas del orden de 1000/1 a 10000/1 consiguiendo conversiones mayores del 99% 

en el caso de los catalizadores de Ir en tiempos relativamente cortos (0.5



H

O

H

OH

Ir-Ts (en)

HCOONa
H2O, 65 ºC

Ts (en) = HN2 NH S

O

O  

Figura 9. Reacciones de transferencia de hidrógeno a aldehídos aromáticos. 

 

En nuestro grupo de investigación se han preparado y estudiado diversos 

complejos de metales de transición con ligandos carbeno NHC funcionalizados y se han 

estudiado diferentes procesos catalíticos, fundamentalmente hidrosililación30 e 

hidrogenación.31 Actualmente, se han preparado complejos de Ir(I) con ligandos NHC 

con sustituyentes polares con el objetivo de conseguir precursores de catalizador 

solubles en agua. Para realizar este trabajo de fin de máster nos hemos basado en la 

síntesis previa de alguno de estos precursores de catalizador (Figura 10)32 y hemos 

realizado un estudio sistemático de la influencia de las condiciones de reacción en la 

reducción de ciclohexanona por transferencia de hidrógeno en medio acuoso. 

 

Figura 10. Precursores de catalizador Ir-NHC-OH. 
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2. OBJETIVOS 

 

El objetivo general de este trabajo es evaluar la actividad catalítica en procesos 

de transferencia de hidrogeno a sustratos insaturados del precursor de catalizador de 

iridio(I) con un ligando NHC funcionalizado con un grupo hidroxilo 

[IrCl(cod)(MeIm(CH2)3OH)]. El medio de reacción es agua y se utilizará como dador de 

hidrogeno formiato de sodio. 

Objetivos específicos: 

 Síntesis de una serie de complejos de Ir(I) con ligandos carbeno N-
heterociclo (NHC) hemilábiles. 

 Estudio de las condiciones optimas de catálisis para el desarrollo de dichos 
catalizadores en agua. 

 Investigación de nuevos ligandos NHC funcionalizados solubles en agua. 

 
 

3. RESULTADOS Y DISCUSIÓN 

 

3.1.  Síntesis de cloruro de 1-hidroxipropil-3-metil-2H-imidazolio 

En nuestro grupo de investigación se han preparado y estudiado diversos 

derivados de carbenos NHC heterociclos funcionalizados con diferentes grupos 

funcionales.30,31 Con objeto de conseguir precursores de catalizador solubles en agua, se 

preparó la sal de imidazolio [MeImH(CH2)3OH]Cl (cloruro de 1-hidroxipropil-3-metil-

2H-imidazolio) siguiendo el procedimiento descrito previamente por Douméche et al. 

(Esquema 1).33 El grupo alcohol favorece la solubilidad en agua del complejo, a la vez 

que potencialmente también podría coordinarse al centro metálico proporcionando, al 

mismo tiempo, estabilidad y solubilidad al complejo. 
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Esquema 1. Síntesis de la sal de imidazolio 1. 



La sal de imidazolio 1 se obtuvo por sustitución nucleófilica del halógeno del  

3-cloropropanol por el nitrógeno del metil imidazol a 90 ºC en acetonitrilo. En el 

espectro de 1H NMR en metanol-d4 (Figura 11) se observa la señal del protón unido al 

carbono dispuesto entre los dos nitrógenos NHCN (en adelante le denotaremos como 

H2) a 9.05 ppm. Esta señal tan desapantallada es típica para los protones H2 de las sales 

de imidazolio. Las tres señales metilénicas de la cadena carbonada, se observan a 4.39, 

3.99 y 3.64 ppm. La señal correspondiente al grupo OH y debido a su rápido 

intercambio con el deuterio (OD) del metanol deuterado usado como disolvente no se 

observa. 
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Figura 11. 1H NMR (CD3OD, 298K) de la sal de imidazolio 1. 

La sal de imidazolio se utilizó directamente en la síntesis de los complejos de 

iridio(I)  con el carbeno NHC-OH que es generado “in situ” en el medio de reacción 

como se verá posteriormente. 

3.2. Síntesis de los precursores de catalizador 

El compuesto [IrCl(cod)(MeIm(CH2)3OH)] (2) se ha obtenido por reacción de  

[{Ir(μ-OMe)(cod)}2] (3) (preparado utilizando los métodos de síntesis descritos en la 

bibliografía34) con sal de imidazolio [MeImH(CH2)3OH]Cl. El grupo metoxo actúa 

como base, desprotonando el protón ácido (H2) de la sal de imidazolio y generando el 

carbeno NHC “in situ” que se coordina al centro metálico. (Esquema 2) 



 

Esquema 2. Síntesis del compuesto 2. 

En el espectro de 1H-RMN en cloroformo-d (Figura 12) se observó la ausencia 

de la resonancia correspondiente al H2 a 9.05 ppm por lo que inmediatamente se deduce 

la desprotonación de la misma. Asimismo en el espectro de 13C{1H} apt se observó una 

señal de carbono cuaternario a 180.25 ppm que es característico del carbono carbénico 

NCN (en adelante C2). Todos los protones de la cadena del imidazol dan lugar a 

diferentes resonancias, lo que indica que la cadena alquílica tiene el giro restringido. 

Este efecto se observa claramente en las resonancias de los protones NCH2 que 

aparecen con 1.21 ppm de diferencia (5.22 y 4.01 ppm) y, en menor medida, en las 

cuatro señales restantes. La asimetría de la molécula también se refleja en la existencia 

de 4 señales (a  = 2.98, 2.90, 4.61 y 4.54 ppm) para los protones vinílicos (=CH) de la 

diolefina. Además, los análisis elementales C, H, N coinciden con la estequiometría 

propuesta y por otra parte, se trata de un compuesto neutro puesto que disoluciones del 

complejo en acetona no muestran conductividad. 

 

 

Figura 12. 1H NMR (CDCl3, 298K) del compuesto 2. 
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A partir del compuesto 2 y por reacción con NaH, se obtuvo el compuesto  

hidroxo-quelato [{Ir(cod){²-C,O-(MeIm(CH2)3O)}] (4). El hidruro de sodio reacciona 

con el protón acido del grupo hidroxilo formando H2 y el grupo alcoxo generado se 

coordina al centro metálico desplazando al cloro de la esfera de coordinación (Esquema 

3). Comparando la Figura 12 (1H NMR de 2 en CDCl3) y la Figura 13 (1H NMR de 4 en 

benceno-d6), se confirmó la desaparición de la señal del grupo OH que en el compuesto 

2 resonaba a 3.14 ppm. Además, las señales correspondientes a los fragmentos metílicos 

y metilénicos del resto de la molécula son diferentes y se observan en el rango típico 

esperable como se describe en la parte experimental. 

 

Esquema 3. Síntesis del compuesto 4. 

 
 

 

 

Figura 13. 1H NMR (C6D6, 298K) del compuesto 4. 
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El compuesto catiónico [Ir(NC-CH3)(cod)(MeIm(CH2)3OH)][BF4] (5) se obtuvo 

por reacción del compuesto 2 con AgBF4. Durante la reacción se produce la abstracción 

del halogenuro, en este caso cloruro, por reacción con una sal de plata soluble, AgBF4, y 

formación de AgCl muy insoluble en el medio de reacción. Adicionalmente, se crea una 

vacante coordinativa en la esfera de coordinación del metal. La vacante no es ocupada 

por el heteroátomo del grupo funcional de la cadena carbonada, en este caso un oxígeno, 

sino por una molécula de disolvente con capacidad coordinante que está presente en el 

medio y es necesaria para aportar estabilidad al compuesto (Esquema 4). En el espectro 

de 1H-RMN en diclorometano-d2 se observó una señal a 2.57 ppm, que se asemeja a la 

resonancia del grupo OH. Además observamos la presencia del ligando CH3CN por la 

resonancia del grupo CH3 a 2.47 ppm. Las medidas de conductividad en acetona se 

corresponden con las de un electrolito 1:1 (M (acetona) = 89 -1cm2mol-1). 

 

Esquema 4. Síntesis del compuesto 5. 

 

>CH2

>CH2

CH

CH

 

Figura 14. 1H NMR (CD2Cl2, 298K) del compuesto 5. 
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Los compuestos organometálicos 2, 4 y 5 son sensibles al aire, especialmente en 

disolución, por lo que todas las reacciones se realizaron en schlenk, en atmósfera de 

argón y previa desoxigenación tanto de los reactivos como de los disolventes.  

Los compuestos neutros 2 y 4 son muy solubles en disolventes clorados como 

cloroformo, diclorometano, benceno y ligeramente solubles en metanol. El compuesto 

catiónico 5 es soluble, además, en tetrahidrofurano y acetona. Pese a que los compuestos 

4 y 5 podrían ser más solubles en agua que el compuesto 2, éstos presentan la desventaja 

de ser menos estables térmicamente y al aire por lo que será 2 el precursor utilizado en 

los ensayos catalíticos. 

3.3.   Reacciones de transferencia de hidrógeno: Catálisis. 

Como sustrato de reacción de transferencia de hidrogeno se utilizó ciclohexanona, 

y su reducción será la reacción base a estudiar al ser un sustrato “fácil” de reducir 

(Esquema 5). Inicialmente, el objetivo de los primeros experimentos de catálisis fue 

determinar las condiciones óptimas de todos los parámetros de este tipo de reacciones 

catalíticas: temperatura, tiempo, relación sustrato/catalizador, concentración de formiato, 

pH, tipo y concentración agente de transferente de fase.  

 

Esquema 5. Reacción de reducción de ciclohexanona en medio acuoso. 

La recuperación de los compuestos orgánicos producto, ciclohexanol, de las 

reacciones de catálisis se realizó siguiendo un protocolo de extracción de la fase acuosa y 

consistió en: 

 Enfriar el experimento de catálisis hasta temperatura ambiente. 

 Adicionar 3 ml CH2Cl2 a la mezcla resultante. 

 Extraer la fase orgánica. 

 Filtrarla por medio de una columna de celita, para separar los restos de catalizador. 
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Las disoluciones en CH2Cl2 de los productos de la reacción se analizaron 

posteriormente por cromatografía de gases (GC) utilizando 1,3,5-trimetilbenceno 

(mesitileno) como estándar interno que fue añadido después de la extracción. 

 

Figura 15. Cromatograma modelo de la reducción de la ciclohexanona 

 

3.3.1. Influencia de la temperatura. 

Tabla 1. Reducción de ciclohexanona a diferentes temperaturas.[a] 

No. T (ºC) Conversión (%) TON TOF/h-1 

1 40 60 60 1 
2 60 79 79 2 
3 80 89 89 2 
4 100 97 97 2 

 

[a] 7.5 mmol HCOONa, 2.5 mmol de ciclohexanona, 0.025 mmol de catalizador, 0.1 mmol de TEBA y 
4.5 mL de agua. 48 horas. TON: mol ciclohexanol x mol-1 [Ir] y TOF: mol ciclohexanol x mol-1 [Ir] x h-1 

 

Se han realizado varios ensayos catalíticos a las temperaturas de 40, 60, 80 y 100 

ºC. Existe una clara influencia de la temperatura en el rendimiento de la reducción, 

obteniendo las mayores conversiones a 100 ºC por lo que se ha elegido esta temperatura 

como la de trabajo. Es una temperatura moderada y fácil de alcanzar. 
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3.3.2. Influencia del tiempo de reacción. 

Tabla 2. Variación del tiempo de reacción a 100 ºC.[a] 

No. Tiempo (h) Conversión 
(%) 

TON TOF/h-1 

5 0.014 h 44 44 3143 
6 12 81 81 7 
7 24 93 94 4 
8 36 94 90 2 
9 48 99 99 2 

 
[a] 7.5 mmol HCOONa, 2.5 mmol de ciclohexanona, 0.025 mmol de catalizador, 0.1 mmol de 
TEBA y 4.5mL de agua.  

 

El TOF inicial (Turnover Frequency) no tiene una definición homogénea dentro 

de la bibliografía, y el cálculo del mismo está sujeto a las preferencias del autor.35 Por el 

desarrollo intrínseco del proceso catalítico, los TOF calculados a tiempos largos son en 

general inferiores o muy inferiores a los obtenidos en los primeros estadios de la 

reacción. Por este motivo, en muchas publicaciones encontramos datos de TOF a 

tiempo 0, cuando el catalizador presenta su máximo de actividad. En la tabla anterior se 

puede observar claramente este efecto siendo especialmente llamativo el valor para el 

tiempo inicial. 

Dado que ya se alcanzan conversiones de 94% a tiempos de reacción de 24 

horas, no merece la pena prolongar el tiempo de reacción. 

3.3.3. Influencia de la concentración de la ciclohexanona. 

Tabla 3. Variación de la relación de ciclohexanona/catalizador. [a] 

No. Tiempo 
(h) 

Ciclohexanona 
(mmol) 

Catalizador 
(mmol) 

Proporción
C/S 

Conversión 
(%) 

TON TOF/h-

1 

10 12 0,5 0,025 1:20 97 14 3 
11 12 1 0,025 1:40 94 19 2 
12 12 2,5 0,025 1:100 81 81 7 
13 24 2,5 0,025 1:100 93 94 4 
14 24 2,5 0,005 1:500 76 283 12 
15 24 2,5 0,0025 1:1000 60 603 25 

 
[a] 7.5 mmol HCOONa, 0.1 mmol de TEBA y 4.5 mL de agua. 100 ºC. TON: mol ciclohexanol x mol-1 [Ir] y TOF: 
mol ciclohexanol x mol-1 [Ir] x h-1 
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Pese a que el catalizador no es capaz de procesar gran cantidad de sustrato, se 

obtienen unas conversiones mayores del 90% para proporciones C/S de 1:100 con 

tiempos de reacción de 24 horas. En adelante hemos utilizado una relación C/S de 1:40, 

con tiempos de medida de tan sólo 12 horas, con la idea concreta de poder hacer más 

experimentos para poder optimizar todos los parámetros del sistema. 

3.3.4. Influencia de la concentración de formiato. 

Tabla 4. Variación de la cantidad de formiato.[a] 

No. HCOONa 
(mmol) 

Proporción  
Cata./HCOONa 

Conversión (%) TON TOF/h-1 

16 1,25 1:50 55 22 2 
17 2,5 1:100 73 29 2 
18 5 1:200 83 33 3 
19 7,5 1:300 94 38 3 
20 12,5 1:500 96 38 3 
21 25 1:1000 94 38 3 

 
[a] 1 mmol de ciclohexanona, 0.025 mmol de catalizador, 0.1 mmol de TEBA y 4.5mL de agua. 12 horas 
a 100 ºC.

 
TON: mol ciclohexanol x mol-1 [Ir] y TOF: mol ciclohexanol x mol-1 [Ir] x h-1 

 

La concentración de formiato influye significativamente en la velocidad de la 

reacción de la transferencia de hidrogeno de formiato a ciclohexanona. Como es lógico, 

a mayor cantidad de dador de hidrogeno más rápida ha de ser la transferencia, y para 

que la conversión alcance niveles por encima del 90%, la proporción con respecto al 

catalizador debe de ser al menos de 1:300. Para mayores proporciones de formiato ya no 

se mejoran los resultados. 

3.3.5. Influencia del pH. 

Tabla 5. Variación de la relación HCOOH/HCOONa.[a] 

No. HCOOH/HCOONa pH Conversión 
(%) 

TON TOF/h-1 

22 1:10 4 62 28 2 
23 1:500 7 70 25 2 
24 -[b] 8 95 38 3 

 
[a] 7.5 mmol HCOONa, 1 mmol de ciclohexanona, 0.025 mmol de catalizador, 0.1 mmol de TEBA y 4.5 mL 
de agua. 12 horas a 100 ºC TON: mol ciclohexanol x mol-1 [Ir] y TOF: mol ciclohexanol x mol-1 [Ir] x h-1 [b] 
0 mmol HCOOH.  



Las mejores conversiones son sin duda las obtenidas a pH superior a 8, por lo 

que en este caso el medio básico es el más adecuado. Hay que tener en cuenta que al 

adicionar fórmico al medio de reacción, la solubilidad de ciclohexanona/ciclohexanol 

varia en gran medida y no se separa adecuadamente con el protocolo hasta ahora 

utilizado para la extracción de la fase orgánica. Los datos se han obtenido utilizando 

nuevas rectas de calibración para los diferentes pH. 

En general, existen muchos procesos de transferencia de hidrogeno en agua que 

se ven afectados en gran medida por el pH del medio, particularmente para aquo 

complejos del tipo [Cp*Ir(H2O)3][SO4] de la figura 16 para los que los mejores 

rendimientos se obtienen a pH ácidos.36 Podemos concluir que en nuestro sistema no 

participan especies aquo.como especies activas puesto que el medio de reacción debe de 

ser básico. 

 

Figura 16. Influencia del pH en la transferencia de hidrógeno. Condiciones: [Cp*Ir(H2O)3]SO4 

(1 μmol), cyclopropanocarboxaldehido (10 μmol), HCOONa (50 μmol), H2O (1 mL), 25 °C. 

 
3.3.6. Influencia del tipo y concentración del surfactante. 

Para que este tipo de catálisis bifásicas tengan lugar se requiere de un aditivo 

complementario que permita que los sustratos y el catalizador entren en contacto a 

través de la interfase. Estos agentes de transferencia de fase (surfactantes) son 

moléculas orgánicas que poseen una parte hidrofílica y otra hidrofóbica.37 Las sales de 

amonio o sulfatos son los más comúnmente utilizados. 

Como se muestra en la tabla 6, se estudió la influencia del cloruro de 

trietilbencilamonio (TEBA) en el medio de reacción. La presencia de un agente de 
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transferencia de fase es imprescindible para que la reacción se lleve a cabo ya que 

cantidades muy pequeñas de TEBA, incrementan considerablemente la velocidad de la 

reacción onbteniéndose elevadas conversiones incluso en cantidades equimolares con el 

catalizador, 1:1.  

Tabla 6. Variación del agente de transferencia de fase (T.F.).[a] 

No. Agente de T.F 
 

Conversión (%) 

24 Sin T.F 7 
25 1:1[b] 96 
26 1:2[b] 95 
27 1:4[b] 95 
28 1:8[b] 97 
29 R4NPF6 89 
30 SDS 82 
31 TEBA 95 

 
[a] 7.5 mmol HCOONa, 1 mmol de ciclohexanona, 0.025 mmol de 

catalizador, 0.025 mmol de TEBA y 4.5mL de agua. 12 horas con 100 ºC. [b] 

Proporción Cat/TEBA. TON: mol ciclohexanol x mol-1 [Ir] y TOF: mol 
ciclohexanol x mol-1 [Ir] x h-1 

 

De los tres surfactantes utilizados, TEBA (cloruro de trietilbencilamonio), SDS 

(dodecilsulfato sódico) y NBu4PF6 (hexafluorofosfato de tetrabutilamonio), se 

obtuvieron unos resultados ligeramente mejores con los derivados de tipo amonio, y en 

concreto con el TEBA. 

• Condiciones óptimas.  

De los diferentes experimentos de catálisis se resume que las condiciones 

óptimas determinadas para la reducción de la ciclohexanona con formiato de sodio 

catalizada por [IrCl(cod)(MeIm(CH2)3OH] (2) en medio acuoso son: 24 horas de 

reacción, temperatura de 100 ºC y proporciones de NaCOOH (como dador de 

hidrogeno) de 7.5 mmol, ciclohexanona (como sustrato) de 2.5 mmol, el compuesto 2 

(como catalizador) de 0.025 mmol, TEBA (como agente de transferente de fase) de 

0.025 mmol y 4.5 mL de agua como disolvente. Estas condiciones serán tomadas como 

base para posteriores reacciones catalíticas, tanto para reducir diferentes sustratos como 

para diferentes precursores. 



3.3.7. Otros sustratos. 

Solamente se realizaron un par de ensayos catalíticos con otros sustratos en las 

condiciones anteriormente optimizadas. En concreto: acetofenona y benzaldehído. El 

rendimiento obtenido para la reducción del benzaldehído a alcohol bencílico es similar 

al obtenido para la ciclohexanona en las mismas condiciones (94 %). Sin embargo, el 

rendimiento fue mucho menor para la reducción de la acetofenona a 1-feniletanol  

15 %, aunque se consiguió llegar al 73% de conversión con 48h de reacción. Esta baja 

conversión se debe a la baja solubilidad de este sustrato en agua. Por lo tanto, en este 

caso concreto, se debería aumentar tanto la temperatura y tiempo de reacción. 

La solubilidad en agua tanto de los sustratos como del catalizador es un factor 

crucial que influye directamente en el rendimiento del proceso catalítico de la 

transferencia de hidrogeno. Por esta razón se busca sintetizar nuevos ligandos que sean 

más solubles en agua y que permitan a su vez obtener precursores de catalizador 

también más solubles. Una posible vía de entrada a este tipo de ligandos es la síntesis de 

derivados sulfonados de imidazol21 como el propuesto en la Figura 17 en la línea de lo 

que se está trabajando actualmente. 

 

Figura 17. Sulfonato Imidazolio soluble en agua  

4. CONCLUSIONES 

Los compuestos de iridio(I) con ligandos NHC heterocíclicos funcionalizados 

del tipo [Ir(NHC)(cod)X] han demostrado ser activos en procesos de transferencia de 

hidrogeno de formiato de sodio a cetonas. La actividad de los precursores de catalizador 

utilizados en este estudio es moderada si se compara con algunos ejemplos descritos en 

la bibliografía. 

Se han optimizado las condiciones de reacción utilizando ciclohexanona como 

sustrato. Se ha determinado que la proporción óptima de formiato de sodio debe ser de 

1:300 con respecto al catalizador y esto, en gran parte, condiciona el pH del medio, 
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obteniéndose los mejores resultados a pH básicos. De igual manera, se ha observado 

que la presencia de un agente de transferencia de fase en el medio es imprescindible, 

obteniéndose los mejores resultados utilizando TEBA. Además, se requieren tiempos de 

reacción de 24 horas a temperaturas de 100ºC para obtener rendimientos mayores del 

95%.  

Los ensayos realizados con otros sustratos han demostrado que este método 

puede ser aplicado de forma general para procesos de transferencia de hidrógeno en 

agua a aldehídos o cetonas, pero también podrían ensayarse otro tipo de sustratos 

insaturados como iminas. En cualquier caso, debido a las diferencias de solubilidad 

probablemente sea necesario optimizar las condiciones de reacción para cada sustrato. 

5. PARTE EXPERIMENTAL 

Todos los experimentos se llevaron a cabo en atmósfera inerte de argón 

utilizando línea de vacío y una caja seca MBraun. Los disolventes utilizados se han 

obtenido de un sistema de purificación de disolventes (SPS, Innovative Technologies). 

Los ensayos se llevaron a cabo, en un schlenk de vidrio reforzado, puesto que se 

emplean temperaturas de reacción que están por encima de la temperatura de ebullición 

de alguno de los sustratos. La agitación se consigue con un núcleo magnético. Los 

schlenks se introdujeron en un baño termostatizado a la temperatura adecuada y se 

empezó a contabilizar el tiempo inicial inmediatamente después de la inmersión. Una 

vez alcanzado el tiempo de reacción el schlenk se retiró del baño termostatizado y se 

enfrió a temperatura ambiente para así evitar la pérdida de disolvente o de otros 

compuestos volátiles. Los análisis cromatográficos de los productos se realizaron en un 

cromatógrafo de gases Agilent 4890D equipado con una columna HP-Innowax (25m x 

0.2mm x 0.4μm). 

Los ensayos catalíticos se han realizado por duplicado, para garantizar la 

reproducibilidad de las medidas experimentales. 

La calibración se ha realizado para cada uno de los sustratos ensayados 

(ciclohexanona, benzaldehído y acetofenona), en cada caso se prepararon cinco 

muestras que contenían un 0.5, 1, 1.5, 2 ó 2.5 moles del sustrato. Además a estos 



patrones se ha adicionado formiato, agua y TEBA en las cantidades seleccionadas 

anteriormente para ajustar las concentraciones a las que serían similares a las de los 

ensayos catalíticos. Por último, añadimos una cantidad constante de mesitileno en todos 

los casos (0.36 mmol, 50 μL), como estándar interno. 

Se define como factor f adimensional, a la relación de áreas del cromatógrama, 

para sustrato y estándar, con moles de sustrato y estándar. Estos valores son los factores 

de respuesta de la columna del cromatógrafo para un determinado sustrato. 

                                                 

                                                           

f es la pendiente de la representación gráfica de los cocientes de áreas 

sustrato/estándar frente al cociente de los moles de sustrato/estándar. Estas rectas se 

denominan rectas de calibrado. Conocido el valor de f para los diferentes sustratos será 

fácil interpolar en las rectas de calibrado cuando el valor de las moles restantes del 

sustrato no convertido sea el único valor desconocido en la recta y así calcular el 

sustrato sin reaccionar y correspondientemente, la conversión del experimento. 

Tabla 7. Valores medios de los factores de calibración. 

SUSTRATO f  

Ciclohexanona 0,663 

Acetofenona 0,845 

 

Los diagramas No. 1 y 2 muestran la relación de área y moles de 

sustrato/estándar para los sustratos ciclohexanona y acetofenona.  

 

Diagrama 1. Curva de calibración de la ciclohexanona. 
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Diagrama 2. Curva de calibración de la acetofenona. 

 

En los experimentos de catálisis, como valores indicativos de la actividad del 

catalizador se emplean los parámetros TON y TOF, definidos como: 

TON =  TOF =  

Los espectros de resonancia magnética nuclear, RMN, de ¹H utilizados para 

contrastar la pureza de los catalizadores32 se han registrado en  Bruker Avance (400 y 

300 MHz), Bruker ARX (300MHz). Los desplazamientos se expresan en partes por 

millón (ppm), usando como referencia interna las señales residuales de los disolventes 

deuterados y las constantes de acoplamiento se expresan en hertzios. 

 
 Síntesis de [MeImH(CH2)3OH]Cl (1). 

A una suspensión de imidazol (1 mL, 0.0125 mmol) en acetonitrilo se adicionó 

 3-cloropropanol (1.05 mL, 0.0125 mmol). La mezcla se agitó en un baño 

termostatizado a 90º C durante 3 días. La disolución amarillo claro resultante se llevó 

hasta sequedad a vacío. El residuo se lavó con dietil éter a baja temperatura y se secó a 

vacio. El compuesto se obtiene como un sólido de color blanco. Rdto: 91% 

 

1H RMN (298K, CD3OD): δ 9.05 (s, 1H, NCHN Im), 
7.71 (d, J = 1.8, 1H, CH Im), 7.64 (d, J = 1.8, 1H, CH Im), 4.39 
(t, J = 7.0, 2H, CH2), 3.99 (s, 3H, CH3), 3.64 (t, J = 5.9, 2H, 
CH2), 2.13 (q, J = 6.5, 2H, CH2). 

 
13C{1H} RMN (298K, CD3OD): δ 124.90, 123.77 (CH 

Im), 55.84 (CH2), 47.91 (CH2), 36.51 (CH3), 33.55 (CH2).  
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 Síntesis de [IrCl(cod)(MeIm(CH2)3OH)] (2). 

En un schlenk se adicionó [MeImH(CH2)3OH]Cl (52.82 mg, 0.30 mmol) a una 

suspensión de [{Ir(μ-OMe)(cod)}2] (100 mg, 0.15 mmol) en tetrahidrofurano. Esta 

suspensión se agitó durante 12 horas a temperatura ambiente y se filtró para obtener una 

disolución naranja. El disolvente se eliminó por evaporación a vacío y el aceite formado 

se disgregó con fuerte agitación a temperaturas bajas con hexano. El compuesto 

obtenido es un sólido amarillo que se filtró y se secó a vacío. Rdto: 86%. 

 
 

 
 
 

¹H RMN (298 K, CDCl3): δ 6.85, (q, J = 1.9, 2H, CH 
Im), 5.22 (dd, J = 11.5, 4.1, 1H, NCH2), 4.61, 4.54 (m, 2H, 
1H:1H, CH cod), 4.01 (dt, J = 13.8, 4.1, 1H, NCH2), 3.94 (s, 3H, 
Melm), 3.56, 3.47 (m, 2H, 1H:1H, CH2O), 3.14 (m, 1H, OH), 
2.98, 2.90 (m, 2H, 1H:1H, CH cod), 2.22 (m, 4H, CH2 cod), 
2.11–1.88 (m, 2H, CH2), 1.80–1.54 (m, 4H, CH2 cod). 

 
 
¹³C{¹H} RMN (298 K, CDCl3): δ 180.25 (NCN), 122.46, 

119.31 (CH Im), 85.08, 84.42 (CH cod), 56.71 (CH2O), 52.49, 
52.18 (CH cod), 46.15 (NCH2), 37.62 (MeIm), 33.99, 33.32 (CH2 
cod), 32.74 (CH2), 29.98, 29.36 (CH2 cod). 

 

 

 Síntesis de [Ir(cod){k²-C,O(MeIm(CH2)3O)}] (4). 

A una suspensión de [IrCl(cod)(MeIm(CH2)3OH)] (2) (100 mg, 0.210 mmol) en 

tetrahidrofurano se adicionó NaH (5.3 mg, 0.210 mmol). La suspensión se agitó a 

temperatura ambiente durante 4 horas. Pasado este tiempo se filtró y la disolución 

amarilla y se llevó a sequedad a vacio. El residuo se disgregó y se lavó con hexano. 

Rdto: 82%. 

 

 

¹H RMN (298 K, C6D6): δ 6.23, 6.10 (s, 2H, 1H:1H, CH 
Im), 5.24 (m, 1H, NCH2), 5.11, 5.05 (m, 2H, 1H:1H, CH cod), 
3.65 (m, 3H, 1H:2H, NCH2 y CH2O), 3.50 (s, 3H, MeIm), 2.99 
(m, 4H, CH2 cod), 1.93, 1.80 (m, 2H, 1H:1H, CH2), 1.76–1.56 
(m, 4H, CH2 cod). 

 
¹³C{¹H} RMN (298 K, C6D6): δ 180.68 (NCN), 121.92, 

119.30 (CH Im), 84.94, 84.18 (CH cod), 56.93 (CH2O), 51.56, 
51.24 (CH cod), 46.42 (NCH2), 37.03 (MeIm), 34.43 (CH2), 
33.56, 33.24, 30.37, 29.63 (CH2 cod). 
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 Síntesis de [Ir(NC-CH3)(cod)(MeIm(CH2)3OH)][BF4] (5). 

A una disolución de [IrCl(cod)(MeIm(CH2)3OH)] (2) (142.60 mg, 0.30 mmol), 

en acetona, se adicionó AgBF4 (58.21 mg, 0.30 mmol) y acetonitrilo (15.61 μL, 0.30 

mmol). La suspensión obtenida se agitó durante 4 horas a temperatura ambiente. 

Transcurrido ese tiempo se filtró el AgCl formado y se obtuvo una disolución naranja. 

El disolvente se eliminó por evaporación a vacio y el residuo se lavó con Et2O. Rdto: 

86% 

 
 
 

 
 
 

1H RMN (298K, CD2Cl2): δ 7.07 (d, J = 1.9 1H, CH 
Im), 7.01 (d, J = 1.9 1H, CH Im), 4.61 (m, 1H, CH2N), 4.53  
(m, 1H, CH cod), 4.44 (m, 1H, CH cod), 4.29 (m, 1H, 
CH2N), 3.92 (s, 3H, CH3), 3.67 (m, 2H, CH2O), 3.56  
(m, 2H, CH cod), 2.57 (Br, 1H, OH), 2.44 (s, 3H, CH3CN), 
2.27 (m, 4H, CH2 cod) 2.07 (m, 2H, CH2), 1.88 (m, 4H, CH2 
cod). 

 
13C{1H} RMN (298K, CD2Cl2): δ 173.82 (NCN 

Im), 124.65 (CH3CN), 123.47, 121.98 (CH Im), 84.92, 
83.74 (CH cod), 65.58, 65.00 (CH cod), 59.62 (CH2O), 
48.03 (CH2N), 37.91 (CH3), 34.14 (CH2), 33.54, 32.98 (CH2 
cod), 30.30, 29.99 (CH2 cod), 4.01 (CH3CN). 

 

19F RMN (298K, CD2Cl2): δ -152.57 (s, BF4). 
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