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1. Introduction.

1.1. Cell migration and mechanosensing.

Cell migration plays a fundamental role in many physiological processes, such as
morphogenesis, inflammatory response, immunological response, wound healing or
cancer metastasis. An abnormal behaviour in cell migration can lead to different
pathologies, so it becomes especially important to understand, for example, the cause by
which cancer cells migrate from the initial tumour to the vascular system or what
mechanisms leads the fibroblast and endothelial cells for wound healing.

In short, a better understanding of the cell migration process would permit the
development of new therapies, increase the effectiveness of transplants or the efficiency of
artificial tissues employed in regenerative surgery.

Cell migration can be described with five sequential stages that lead to cell
movement:

e Front edge pseudopods protrusion.

e Focal adhesions formation.

e Focalized proteolysis.

e (Cell contraction.

e Detachment and contraction of the cell rear edge.

The process starts with the protrusion of pseudopods in the front edge of the cell
due to the pressure exerted by the actin filaments polymerizing and pushing on the cell
membrane. These protrusions have an exploratory nature and appear in a semi-stochastic
manner. Once the pseudopods are formed, integrins of the cell contact with the ligands of
the extracellular matrix (ECM), gathering in the cell membrane and forming the focal
adhesion whereby the pseudopods adhere to the substrate.

Then, enzymes of the cell degrade the substrate. After the proteolysis, the cell
contraction proceeds due to the acto-myosin (AM) complex relative movement. While the
cell is shrinking, focal adhesions of the rear edge detach from the substrate when stresses
achieve a certain limit. In this way, the cell contracts and migrates through the ECM.

Cell behaviour is governed by different stimuli, which can be generally divided in
three main groups: mechanics, topographic and chemical (Figure 1.1).

Cells are able to sense substrate stiffness (mechanotaxis or durotaxis [2]) or
substrate deformation (tensotaxis [3]). In this regard, it has been demonstrated that cells
tend to migrate to stiffer or more strained regions because focal adhesions are more
stable, allowing exerting higher forces [4-6]. On the other hand, the cell response can be
influenced by the concentration of chemical substances (chemotaxis) or non-soluble
molecules (haptotaxis) [7]. Finally, topography can influence cell polarization and the
cytoskeletal reorganization [8].
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Figure 1.1. Main stimuli affecting cell migration [6].

As previously exposed, cells sense their environment conditions, determining not
only migration-related phenomena but other significant processes. For instance, cell
mechanosensing can lead to different cellular changes, such as membrane channel activity,
altered cell morphology, alteration in protein synthesis because of changes in binding
affinity, or gene expression due to force transmission to the nucleus and to the chromatin
contained inside.

Although several factors take part in cell migration, this work is focused in the
development of a cell contraction model depending on the mechanosensing mechanism
that directly influences cell migration. The proper understanding of this process can
establish the bases to a better knowledge of the whole problem and opening new research
lines.

1.2. Previously developed cellular models.

There is a great variety of computational models that aims to study specific or
general aspects of cell migration. All of them can be divided in three main groups
depending on the studied area. These methods are explained below.

a) Cellular protrusion models.

Actin filaments polymerization against cell membrane is a basic aspect of cell
migration. Single filament models have been developed, elucidating saturation forces and
force-speed relationships. Generally, it is considered that the growing of the filament is
due to actin monomers diffusion that tends to fill the holes generated by the Brownian
movements of the cell membrane. These models allow studying the connection between
the filaments and the membrane, establishing force-generation mechanisms that affect
force-speed relationships [9-10].

Multiple filaments models study the interaction between the filaments and the
crosslinking proteins, with special attention to the filopodia and lamellipodia protrusions
by means of their polymerization a depolymerization [11-12]. Also there are continuous
models to describe the actin lattice structure by means of the concentration and number of
filaments in contact with the membrane, which allows them to study bigger systems.
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These models allow obtaining actin domains, its concentration, force-speed relationships,
lamellipodia speed protrusion, elastic and diffusive membrane properties or filament
length distribution and orientation.

b) Adhesion-retraction models.

Since actin fibres cannot exert forces or movement without a mechanical union
with the substrate, these types of models are crucial. Focal adhesion formation and cell-
matrix interactions have been studied taking into account that applied forces have a direct
effect in actin polymerization [13] or taking into account the interaction between these
fibres and the integrins [14]. Also it has been studied the retraction of the rear edge of the
cell, principally based on the myosin [15-16].

c) Whole cell models.

These models take into account dynamic and mechanic phenomenons, including
molecular scale process, different detail levels and different time scales, approaching the
cell mechanics as explicit or as phenomenological models. In addition, the models can be
carried out by two main approximations: Migration of single cells [17-19] or collective
[20-21].

Whole cell models can be studied from several different hypothesis: force based
models, stochastic models, spheroids models and Monte Carlo studies. In the first one, cell
migration is based on the force balance of the front and rear edge of the cell, as well as
protrusion and drag forces due to the resistance exerted by the ECM [16]. Nevertheless,
these models cannot predict migration of individual cells and do not take into account
variations in cell shape or substrate properties owing to degradation. Stochastic models
elucidate the movement of cell populations [22] but do not include factors as traction or
drag forces, neither substrate properties. Cell spheroid models are based on pressure
gradients produced by cell proliferation and death [23]. Combining stochastic movements,
pressure and chemical activity of cellular aggregates, these models are appropriate for
tumorous studies. However, these models do not include mechanical stimuli such as
stiffness, density or matrix porosity. Finally, Monte Carlo studies use a set of simple rules
that allows fast simulations, making them appropriate for long term cellular migratory
patterns [1, 24].

1.3. Objectives.

As previously exposed, cells in organism respond to mechanical stimuli such as
strains, forces, topography or ECM stiffness. An abnormal response to these stimuli is
associated with several pathologies; therefore, numerous investigations have been
developed to determinate cell behaviour and its interactions with the surrounding
substrate.

Studies carried out by Mitrossilis et al. [1] demonstrate that force rate increases
with substrate stiffness, in agreement with the Hill force-velocity relationship. Thus,
cellular response can be considered similar to muscle adaptation to load, highlighting the
role of the AM system as rigidity sensors, providing a mechanosensing mechanism
through focal adhesions. In fact, this mechanism can translate anisotropy in the substrate
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to anisotropy in the cytoskeleton, being able to modify focal adhesion formation and Ca2+
influx, increasing the AM contraction and leading the cell through stiffness gradients.

Due to the importance of how cells sense the mechanical properties of its
surrounding substrate, this work aims to develop a three-dimensional computational
model that allows reproducing the behaviour experimentally observed when a cell is
placed between two plates of variable stiffness.

To reproduce this behaviour it is proposed a phenomenological model that
includes a passive component simulating the cytoskeletal stiffness in parallel with an
active component that simulates the behaviour of the AM complex. In this way, by
coupling the stiffness dependent contraction of the AM system with the passive behaviour
of the cell, the mechanosensing mechanism can be studied.

Finally, this model is used to study the behaviour of a real cell, whose geometry
was obtained through confocal microscopy thanks to Ana Rozaut in the Centro de
Investigacién Médica Aplicada (CIMA) of Navarra University, allowing the observation of
how tumorous cell deforms the surrounding ECM.

In sort, this work aims to develop a tool that allows elucidating the strains exerted
by a cell when it is embedded in real three-dimensional substrates, and achieving a better
understanding of the whole problem.

2. Phenomenological model of cellular response to substrate stiffness variations.
2.1. Material model.

2.1.1. 1-D approach.

The proposed model is based on the interaction between the cell and the ECM,
without taking into account other factors like the interaction with other cells and chemical
or biological factors that could influence its behaviour. Thus, the studied phenomenon is
mechanically regulated by means of the relationship between the cell and substrate
properties.

According to Buxboim et al. [26], cell exerts contractile forces to determine the
substrate stiffness, stressing and straining it. In this way, the cytoskeleton adapts and
polarizes according to the stress direction, creating new focal adhesions at the front edge
and detaching the rear edge adhesions, which involves cell contraction and motility. Even
though cytoskeletal adaptation and cell motility are different phenomena, both are led by
cell mechanosensing.

The presented cellular model is based on a structure with two parallel springs and
an actuator representing the main mechanical components of the cell:

e Actin filaments, simulated through a spring with K,.; constant.

e AM contractile system, simulated through an actuator.

e (Cell passive stiffness, due to microtubules, cytosol and cell membrane, initially
simulated with a spring of K, ;¢ constant.
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Therefore, cell strain will depend on the imposed strain of the AM contractile
system and the mechanical behaviour of the actin filaments and the cell passive stiffness.
As previously exposed, the cellular cytoskeleton attaches to the substrate by mean of focal
adhesions and trans-membrane integrins so, in a simplified manner and as first approach,
this union is considered completely rigid.

Figure 2.1. Schematic diagram of the components involved in cell contraction (left). Cellular contraction
model with its components: Active side corresponding to AM + K, and the passive side corresponding to
K45 (right) [18].

The transmitted stress by the cell to the substrate ( ¢y ) depends on the cellular
strain (€cey;,;j )- This strain can be divided in two sides: The actin filaments strain (&q;; )
and the AM complex strain (&.;; ), obtaining:

Ecell = €c T &g (2.1)

Since actin filaments are modelled with a linear elastic behaviour, its strain can be
expressed as:

Pc
Kact

& = (2.2)

Additionally, the stress exerted by the cell to the substrate corresponds to the sum
of the AM complex stress and the stress absorbed by the passive components (K,.; and

Kpas ):
Peett (Ecerr) = De + Pm = Dc(Ec) + Kpas‘scell (2.3)

Stress generated by the AM complex (o ;; ) is related with the overlap of their
filaments [27]. Thus, according to Huxley’s Law [28], it is assumed the following form:

( 0 Ec < Emin (1)
Pmax

- P & + Pmax Emin < & < 0 (2)
min

pc(Ec) =9 P (2.4)

max

- & + Pmax 0< &c < Emax (3)
Emax

\ 0 Emax < &c 4
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It can be distinguished four zones as function of the contractile side strain ( &, ),
shown in figure 2.2. Under high compression loads (Zone 1: ¢, < €,i, ), the AM complex
cannot exert contraction. For reduced or zero load values, the mechanical equilibrium and
the cell strain are led by the AM complex (Zone 2: &,,;, < & < 0). Under traction load
cases (Zones 3 and 4) cell contraction is compensated, decreasing the contribution of the
AM complex until g,,,,, point from which it cannot exert any additional force.

P,

pmﬂx

Maximal

g Rupture
contraction

of bonds

() &
— } — >
gmin 0 gmax

Figure 2.2. Exerted force by the AM complex as function of the filaments overlap. Zone 1: Passive behaviour.
The AM complex is submitted to external compression loads. Zone 2: Contraction. The AM complex exerts
force to sense the substrate properties. Zone 3: Traction. The AM is tractioned but it still presents contraction.
Zone 4: Passive behaviour. The traction forces are too high, bonds break and no compression force is exerted
by the AM complex [18].

Combining equations (2.1), (2.2) and (2.4) the following expressions can be
obtained for each proposed zone:

Dcell
( & < Emin (1)
Kpas

_Pmax
( Emin Pmax
&+ Emin < & < —= 2)
Kact Kact
Ecell = < (_pmax

p
g, + —max MAE < £, < Emax 3
Kact Kact

Sc+pmax>

(2.5)

Sc+pmax)

Dcell
Kce Emax < SC (4)
pas

where the limits have been redefined because when the AM complex strain is null, it can
be written as:

_ Pmax

Ecell = €a = K (2.6)
act

Since the model control will be based on the active part, the expressions are
reorganized as function of this side, obtaining:
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Ecell & < Emin (1)

Pmax
(scell - K gminKact

act Pmax
Emin < & < (2)
SminKact — Pmax ' act
& =3 Dimax (2.7)
(Scell - Kact ) gmaxKact Pmax
< & < Emax (3)
gmaxKact — Pmax Kact

Ecell Emax < Ec (4’)

2.1.2. 3-D model.

Since the model has been developed to be applied in three dimensional geometries,
the equation 2.7 has been used independently for each direction of the 3D system (x,y,x)
Thus, the contraction of the AM system in each direction directly depends on the cell strain
in that direction (sc,w(sce”,w)). Note that this formulation is only valid when the actin
filaments are assumed to act as 1D components.

In any case, the model equations can be described for any kind of threedimensional
behavior as follows:

Ocell = 0c T 0p (2.8)

Ecell = Ec T+ &4 (2.9)

Where the passive and active stresses would depend on the material behaviour
(op = f(&p) and o = g(&,) = h(&,)).

For instance, considering both the actin and the passive as linear elastic materials,
the equations would become:
Ocell = O¢ + 0'p = Ca: Eq + Cp: Sp = Ca: (Sceu - Sc) + Cp: Ecell (210)
Ecoll = Ec+ Eq = €.+ C31: 0, (2.11)

where Cs are the material behavior tensors for the actin filaments and the passive
components. In addition o, could be defined in several ways, for example (taking the
expression from equation 2.4 (2)):

pmax/smin (Sg - gmin) 0 0
0. = 0 pmax/gmin (Sg - smin) 0 (2-12)
0 0 pmax/gmin (Sg - Emin)
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2.2. Numerical implementation.

The model has been developed using ABAQUS 6.11® with user subroutines and
based on the Finite Element Method (FEM). This allows the simulation of complex
geometries, combining user-defined behaviours (the model) with Abaqus-library
materials, obtaining high flexibility and adaptability to new experimental results that may
alter the main hypothesis. Hence, the cell is modelled with double elements: one set
corresponds to the passive side and the other one to the active contractile side. In this
way, is not needed the development of specific and custom elements to reproduce the
parallel behaviour of both components. Moreover, this fact simplifies the employment of
several behaviour equations by changing the passive side of the model directly in the CAE
module of the software.

Specifically, the cell active behaviour has been simulated as a thermal strain-
dependent contraction, in parallel with the passive components simulated using different
material definitions (elastic, hyperelastic, poroelastic). Different subroutines were
necessary to run the model as described below:

Through the UEXTERNALDB subroutine the values of the controlled variables are
initialized and the calculus process can be checked. With the URDFIL subroutine the
values of the element identifier, node number and strain in every direction of all nodes
involved in the cell contraction are obtained. Finally, using the UEXPAN subroutine, the
expressions developed for cell contraction are implemented.

I Cell elements duplication

y Y

I Passive element set | I Active element set

[Stepi | —] UEXTERNALDB

A\ 4

Variable initialization in the first step and element actualization
with the expansion of the previous state.

Element, node and strain reading.

\ 4

UEXPAN

\ 4

| i=i+1 |H Active side contraction and strain element actualization.

Figure 2.3. Computational algorithm.
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The values used for each parameter of the contraction model are exposed in the
Table 2.1. The parameters corresponding to the behavior of the substrate and the passive
cell side will be detailed in the following sections according to each developed model.

Parameter Description Value Reference
Cact Actin elastic modulus 0.01 (MPa) Schafer and Radmacher,
2005 [29]

Emin Minimum overlap of the AM -0.4 Moreo et al., 2008 [30]
fibres

Emax Maximum overlap of the AM 0.4 Moreo et al., 2008 [30]
fibres

0.nax Maximum stress exerted by the 2.5 (MPa) Maskarinec et al., 2009
AM complex [31]

Table 2.1. Parameters used in the contraction model.

2.3. Behaviour of the passive component of the cytoskeleton.

The passive components of the cytoskeleton can be modelled according to
different behaviour equations, depending on its complexity. Taking into account different
behaviour laws allow determining which of them is more suitable for the cell contraction
phenomenon. The two main approximations that will be considered are explained below.

a) Linear elastic.

Is the simplest model, defined by its elastic modulus and Poisson’s coefficient.
Experimental studies set these values in 1 - 75 kPa for elastic modulus with near
incompressible behaviour, so Poisson’s coefficient is near to 0.5 [29].

Nevertheless, the main limitation of this behaviour law is that it does not describe
anything about the microstructure. The continuum mechanics replaces the contribution of
the cytoskeletal discrete stress fibres with an averaged constitutive law that is applied at
the whole cell.

b) Poroelastic.

The second possible approximation is the poroelastic model. In this model the
following parameters must be defined: Logarithmic bulk modulus, Poisson’s coefficient,
stress limit, density, permeability and void ratio. The last one expresses the relationship
between the void and solid part of the material by mean of the following expression:

(2.13)

where I}, is the void ratio and V; is the total volumen. In this way, 1 corresponds to a
totally void volume and 0 to a solid volume.
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The values obtained for these parameters, according to experimental studies [32-
33], can be observed in the table 2.3.

Parameter K G g, p k e

Value 0.001 15000 1000000 993.25 0.974 0.5

Table 2.2. Poroelastic model parameters. The units are: Dimensionless for the logarithmic bulk modulus K, Pa
for the shear modulus G, Pa for the stress limit 6}, m/s for permeability k and kg/m3 for density p at 37 °C [32-
33].

2.4. Model application to the Mitrossilis et al. experiment.

In order to experimentally determine forces exerted by cells in substrates of
diverse stiffness, Mitrossilis et al. [1] carried out a study placing a C2.7 myoblast between
two parallel microplates working as a microrheometer coated with fibronectin to improve
cell adhesion, spread and contraction (Figure 2.4). The top plate was flexible and the lower
plate could be considered as infinitely rigid. In this way, the cell pull down the top plate
and the force, stiffness and displacement are correlated through:

F=K§ (2.14)

where K is the top plate stiffness and § its deflection. Furthermore, the displacement of
the top plate is equal to the shortening of the cell, thus the force rate is proportional to the
shrinkage velocity.

Flexible microplate
(“spring” of stiffness k) Deflection

o)  __—

L(t)

Rigid microplate

Figure 2.4. Force measurement method [1].

Force generation and the evolution in cell shape can be divided in three phases
(Figure 2.5): First, the cell spreads and changes its form from convex to concave. In the
second stage, the cell continue spreading, increasing the generated force during 10
minutes. Finally, the spreading stops and the force saturates.
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Figure 2.5. C2.7 Myoblast placed between two microplates. The evolution in cell shape along force generation
can be divided in three main phases. The plateau force and the force rate increase while increasing the
stiffness of the top plate. Two sets are represented: k = 21 nN/um (open circles) and infinite stiffness (filled
circles) [1].

It can be observed that the generated force is proportional to the stiffness of the
flexible plate for rigidities lower than 60 nN/um. For higher plate stiffness values, the
force exerted saturates in 300 nN. These results are in agreement with experimental
studies [35] that suggest that cells exert higher forces in stiffer substrates.

2.4.1. Finite Element Model description.

The developed model aims to accurately reproduce the experiment of Mitrossilis et
al. [1]. In this way, the model comprises three main parts (Figure 2.6): The flexible top
plate, modelled with shell elements, the cell, composed by hexahedrical elements, and the
lower plate, modelled as a rigid solid.

4
Figure 2.6. Developed model to reproduce the experimental study of Mitrossilis et al. [1]. Green: Flexible top
plate. Orange: Cell. Blue: Rigid lower plate.

11
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The cell properties for the active part are set according to the model described in
section 2.2. Material formulation. The passive components follow the behaviours listed in
section 2.4. With these settings and varying the elastic modulus of the top plate to achieve
different values of stiffness, different cellular responses can be measured.

Since contact modelling is a challenging task, there were made successive
approaches. In first instance, the cell shape was simplified to a cylinder with the interfaces
totally attached to both plates. When the convergence was achieved for a wide variety of
cantilever stiffnesses, friction coefficients were tested, aiming to a compromise value that
allows cell spreading and enough attaching to the substrate. Following this, cell shape was
changed to an oval shape, increasing the agreement between the Mitrossilis experiment
and the computational model.

2.4.2. Results.

In this section the principal results of the model are shown. Further information
about previous steps and calculus can be found in the Appendix I - Calculation report.

a) Linear elastic passive behaviour.

As a first approach, the cell was modelled with a linear elastic behaviour of the
passive component with a cylinder like cell. During cell contraction, the shape changes,
shrinking axially and changing its shape from a cylinder to a concave form as can be seen
in figure 2.7.

U, Magnitude

+1.383e+01
+1.268e+01
+1.152e+01
+1.037e+01
+9.218e+00
+8.066e+00
+6.914e+00
+5.761e+00
+4.609e+00
+3.457e+00
+2.305e+00

Figure 2.7. Cylinder like cell displacement with linear elastic passive behaviour. Flexible top plate stiffness: 15

nN/um.

After several calculations with a wide variety of top plate stiffnesses it can be
assumed that the axial strain of the cell is higher when the substrate is less stiff. Moreover,
to higher stiffnesses, the axial displacement decreases to such degree that is smaller than
the transversal displacement that leads the change in cell shape (Figure 2.8). This
behaviour can be explained in a way that the cell feels its own stiffness and reacts
consequently to its mechanical load.

12
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Maximum displacements in axial and transversal directions.
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Figure 2.8. Maximum displacements obtained in the cell. Passive component characterized as linear elastic.
Cylinder like cell. Blue: Axial displacement. Red: Transversal displacement.

The force exerted by the cell for the whole calculations are shown in figure 2.9.
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Figure 2.9. Force exerted by the cell for different stiffness values of the flexible top plate. Passive component
characterized as linear elastic. Cylinder like cell.

In

spite of the appropriate development of cell shape, there is not achieved a

plateau force. Although it can be observed a change in the trend of the force exerted by the
cell when it reaches 200 nN/um, it is not enough to stabilize the force to a same value.

Therefore, an improvement in the model is needed. The first step is changing the

cell shape

to a barrel like cell in order to make a better match with the Mitrossilis et al.

experiment [1].

13
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Similarly to the previous case, the axial displacement decreases as the stiffness of
the flexible top plate increases. Nonetheless, unlike the previous case, the axial
displacement does not reach a maximum value for the studied values. The summary of
these results can be seen in the figure 2.10.

Maximum displacements in axial and transversal directions.
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Figure 2.10. Maximum displacements obtained in the cell. Passive component characterized as linear elastic.
Barrel like cell. Blue: Axial displacement. Red: Transversal displacement.

Eventually, using the same stiffness values and changing the cell shape, the forces
exerted are shown in figure 2.11.

Force exerted by the cell.
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Figure 2.11. Force obtained for different stiffness values. Passive component characterized as linear elastic.
Barrel like cell.

Even though the cell shape matches better with the actual experiment of
Mitrossilis et al., the final cell shape as well as the exerted force does not agree with the
expected behaviour.
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b) Poroelastic passive behaviour.

Aiming to a better agreement with a real cell, it is proposed another passive
behaviour based on a poroelastic model. Moreover, the contact behaviour is changed from
a totally attached contact to a contact with friction, allowing the cell certain movement
along the surface as can be seen in the edges of the cell in figure 2.12.

Figure 2.12. Evolution of cell shape along the contraction process with a cylinder like cell and poroelastic
behaviour.

As previous cases, the axial displacement of the cell decreases as the stiffness of
the flexible top plate increases. Nevertheless, the transversal displacement tends to
stabilize, possibly due to the poroelastic behaviour of the passive side (Figure 2.13).

Maximum displacements in axial and transversal directions.
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Figure 2.13. Maximum displacements obtained in the cell. Passive component characterized as poroelastic.
Cylinder like cell. Blue: Axial displacement. Red: Transversal displacement.
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The exerted forces for different top plate stiffnesses are shown in figure 2.14.

Poroelastic behaviour of the passive component. Cylinder like cell.
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Figure 2.14. Force obtained for different stiffness values. Passive component characterized as poroelastic.
Cylender like cell.

The main difference with the models with a linear elastic behaviour is that the cell
reaches a plateau force between 2200 nN and 2400 nN once the stiffness of the flexible top
plate is set to 750 nN/pm.

Nevertheless, although the force exerted by the cell behaves properly, reaching a
maximum force after a specific stiffness, the evolution in cell shape does not agree with the
observed in the experiment, in which the cell shrinks axially and spreads transversally.

2.5. Model application to real cell geometry.

2.5.1. Model description.

The studied cellular model is based on a breast cancer cell line MDA-MB-231
cultured using microfluidic devices. The cell was imaged under confocal microscopy and
then reconstructed. Further explanation about cell reconstruction can be found in
Appendix [ - Calculation report. In the same way as the previous case, the cell is
characterized with a passive and an active side.

<

Figure 2.15. Cellular model obtained in the Centro de Investigacion Médica Aplicada of Navarra.
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2.5.2. Cell embedded in a substrate.

In this model, the cell is embedded in a cubic substrate of 194 um side,
characterized both as linear elastic as hyperelastic. The linear elastic model has an elastic
modulus of 1 KPa and a Poisson’s ratio of 0.49. For the hyperelastic consideration, the
values are obtained via uniaxial test. The parameters are given in Appendix I - Calculation
Report.

The passive component, according with the cell properties given by the CIMA, is
characterized as linear elastic with an elastic modulus of 75 KPa and near-incompressible
behaviour with a Poisson’s ratio of 0.49.

The results showed in figure 2.16 show that cell strain differs depending on
whether the cell is in a linear elastic substrate or in a hyperelastic substrate, producing not
only a whole cell contraction but also an accentuation of the protrusion in the last case.
This fact is in agreement with the probing role of the lamellipodia and filopodia in the
mechanosensing mechanism.

Elastic substrate
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Figure 2.16. Rear view of the cell contraction obtained after the model application. Undeformed shape
(translucent) and deformed shape (inside). Displacement displayed. It can be observed a cell contraction
between 0.50 and 0.02 pm, with a protrusion accentuation. Scale factor: 15.
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2.5.3. Simulating focal adhesions.

Since the cells are not totally attached to its substrate, the case developed above
must be refined. As a first approach, the substrate is eliminated and it is replaced by
springs as boundary conditions on the main protrusion of cell surface. Therefore, applying
several stiffnesses to the springs, different kinds of the substrates can be modelled.

Figure 2.17. Cell (green) with focal adhesions placed on the protrusions (purple).

a) Cell without nucleus.

Firstly, the cell is studied without nucleus. As expected, the minimum cell
displacement takes place in the focal adhesions whereas the cell body shrinks while it
exerts force. Moreover, the stress distribution is uniform in the cell body, increasing in the
adhesions.
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Figure 2.18. Stresses obtained with 7.5 nN/um of focal adhesion stiffness.
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After the analysis of the cell with several adhesion stiffnesses, the results of figure
2.19 are obtained. The cell displacement initially follows a linear behaviour until 50
nN/um of focal adhesion stiffness. Then, the trend changes and the displacement reach a
maximum value of 5.7 pm for the following focal adhesion stiffnesses. Furthermore, the
displacement of the focal adhesions follows an exponential behaviour, reaching the
minimum to stiffer substrates.

Focal adhesion and cell displacement
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Figure 2.19. Focal adhesion displacement (red) and cell displacement (blue) depending on the stiffness of the
substrate.

Abaqus® does not allow obtaining the reaction force in this kind of boundary
conditions. Hence, considering that the stress is in relationship with the force exerted by
the cell by mean of the maximum stress generated, the results in the figure 2.20 are
obtained.

Maximum stress in the cell without nucleus depending on the stiffness of
the adhesion
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Figure 2.20. Maximum stress obtained within the cell without nucleus depending on the stiffness of the
simulated adhesions.
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The figure above shows that a plateau stress of 14.4 kPa is reached at a stiffness
value of 500 nN/pum, where the cell cannot exert more force even though the substrate is
stiffer.

b) Cell with nucleus.

Additionally, the cell is studied with a nucleus to study its influence in the process
of cell contraction. Similarly to the previous case, the minimum cell displacement is
obtained in the focal adhesions. It must be noted that when the nucleus is stiffer than the
cytoskeleton, the contraction process exerts more force around the nucleus and generate
stress in it (Figure 2.21).
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Figure 2.21. Stresses obtained with 100 nN/um of focal adhesion stiffness. Inside the cell can be seen the
nucleus stressed.

This process is also noticeable in the whole cell contraction because it shrinks
more than the previous case, as it can be observed in figure 2.22.

Focal adhesion and cell displacement
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Figure 2.22. Focal adhesion displacement (red) and cell displacement (blue) depending on the stiffness of the
substrate.
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Nevertheless, the stress generated in the cell is similar to the previous case,
reaching a maximum value around 14.5 kPa when the stiffness of the focal adhesion is set
to 500 nN/ pm.

Maximum stress in the cell with a nucleus elastic modulus of 100 kPa
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Figure 2.23. Maximum stress obtained within the cell with nucleus depending on the stiffness of the simulated
adhesions. The elastic modulus of the nucleus is set to 100 kPa.

3. Conclusions.

Cell mechanosensing is a difficult and challenging field that must be approached
carefully. Although the model did not work completely as expected, his work fixed the
basis and guidelines for further research in this area.

3.1. Applying the model to the Mitrossilis et al. experiment.

The force exerted by the cell during its contraction, employing the linear elastic
passive behaviour, does not agree with the results shown in the Mitrossilis et al.
experiment [1], where the cell shrinks axially and spreads transversally, reaching a
plateau force.

Notwithstanding, when the passive behaviour is modelled as poroelastic, a better
agreement with the experiment is achieved. In other words, the final cell shape shows
more similitude and a plateau force is achieved. There are two main reasons to approach
this issue: The poroelastic model is closer to the behaviour of a real cell than the linear
elastic one because it makes a simplification of the relationship between the cytoplasm
and the organelles. Furthermore, the contact between the plates is changed to allow
certain movement, which permits the cell exert force without the movement restriction
imposed in the previous case. It must be noted that, even though the maximum force
achieved differs from the experiment, the measurements of the model are an
approximation and hence, differences in the force must be expected.
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Additionally, although the final shape of the cell may seem adequate, the evolution
during the cell contraction does not show any kind of transversal spreading that can be
seen in the experiment. Nevertheless, a better agreement is achieved with the last model
whereas with the linear elastic behaviour more transversal displacement was obtained.

Thanks to these conclusions it can be stated that, although the mechanosensing
mechanism is leaded by the AM complex, there is another factor that takes part on the cell
spreading. The first possible mechanism that must be taken into account in is the
polymerization of actin filaments as the cell shrinks. Moreover, it must be studied the
evolution of the cell volume while it shrinks because the preservation of the cell volume in
the model could be a feasible solution to the main problem. Approaching this issue
properly, it could be reached a better agreement with the cell behaviour because the cell
could spread and, while spreading, exert more force on both plates thanks to a bigger
surface, reaching a thinner final state similar to the experiment.

3.2. Applying the model to the cellular geometry obtained in the CIMA.

After applying the model to the real cell geometry can be obtained two main
conclusions: As the substrate becomes stiffer, the contraction of the whole cell increases,
in agreement with the exposed by some authors [34] who state that the cell migrates
toward stiffer substrates because they can exert more forces. Additionally, the nucleus of
the cell does not have influence on cell displacement but it has in the exerted force. In this
way, the cell not only can sense the stiffness of its surrounding but also the stiffness of its
own nucleus, applying force consequently. Therefore, for stiffer nucleus the cell exerts
more force than for softer ones, where the main contribution of the nucleus is decreasing
the ability of the cell to exert force.

4. Future work.

This model may be considered as the first step of a more complex model. However,
although the AM complex works properly, it must be dealt the main problem stated
before: the cell spreading must be included to a better agreement with the real behaviour.

Hence, it must be taken into account other passive behaviours, as well as looking
for a way to make the cell shrink but also spread in the other directions maintaining the
cell volume.

Once reached these objectives, this model could be included in a whole cell model
to reproduce cell motility, the mechanosensing mechanism and even cell process guided
by mechanical factors as, for example, cell differentiation.

5. Applications.

As previously exposed, this model can be useful as complement to a whole cell
model to reproduce cell processes that includes mechanosensing. Increasing the
knowledge in the mechanosensing mechanism it can be known how does it works and
how can be controlled and thus, make accurate drugs.

Knowing the mechanosensing mechanism, the factors that have influence on this
process can be controlled and treated if necessary. This fact is especially useful in diseases
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as cancer, where the main problem is to understand how the cell migrates to another
tissue. Although the cancerous cell travels through the blood vessels, first it must detach it
from the tumorous mass. Therefore, aiming to these mechanisms, metastasis can be
addressed and treated eliminating cell motility.

Moreover, the model can be used to model the wound healing as well as the
recellularization of tissues employed in tissue engineering, increasing the knowledge in
this field, increasing the accuracy of the parameters that must be controlled during this
process and allowing the development of new techniques that can lead to new
improvements in tissue engineering,.
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