000123886 001__ 123886
000123886 005__ 20240319081028.0
000123886 0247_ $$2doi$$a10.1016/j.seppur.2022.122915
000123886 0248_ $$2sideral$$a132432
000123886 037__ $$aART-2022-132432
000123886 041__ $$aeng
000123886 100__ $$aBerned-Samatán, Victor$$uUniversidad de Zaragoza
000123886 245__ $$aNanofiltration with polyamide thin film composite membrane with ZIF-93/SWCNT intermediate layers on polyimide support
000123886 260__ $$c2022
000123886 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123886 5203_ $$aAmong current separation processes, nanofiltration (NF), besides its easy scalability, exhibits low energy consumption, environmental impact and footprint, being widely used for water treatment and solvent recovery. The development of membranes for NF involves perfecting the skin selective layer, the sublayers and the support. In this work, a multilayer structure membrane is presented where a selective layer of polyamide (PA, thickness 40–60 nm) was interfacially polymerized on a sub-layer of MOF ZIF-93 (thickness ∼ 50 nm) grown on another sub-layer of single-walled carbon nanotubes (SWCNT, thickness ∼ 400 nm) vacuum filtrated on an asymmetric polyimide P84® support (thickness ∼ 200 μm). The membrane with structure PA/ZIF-93/SWCNT/P84 showed excellent results in water NF and methanol organic solvent NF of different dyes (with the highest values of water and methanol permeances of up to 57.6 and 84.5 L·m−2·h−1·bar−1, respectively, with rejections usually greater than 99%). By means of a wide range of characterization techniques (contact angle, AFM, XRD, ATR-FTIR and FIB-SEM) the role of every component in the membrane was elucidated. In fact, the presence of the sublayer of ZIF-93 increased the roughness and hydrophilicity as well as decreased the thickness of the PA layer. These effects are related to the fact that the sublayers subordinate the interfacial polymerization as well as influence the properties of the PA film and therefore its NF performance, even showing chlorine resistance as well as ten-day cross-flow NF stability.
000123886 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T43-20R$$9info:eu-repo/grantAgreement/EUR/ERDF-ESF/Investing in your future$$9info:eu-repo/grantAgreement/ES/MCIN-AEI/PID2019-104009RB-I00-AEI-10.13039-501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/BES-2017-080209
000123886 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000123886 590__ $$a8.6$$b2022
000123886 592__ $$a1.339$$b2022
000123886 591__ $$aENGINEERING, CHEMICAL$$b12 / 141 = 0.085$$c2022$$dQ1$$eT1
000123886 593__ $$aFiltration and Separation$$c2022$$dQ1
000123886 593__ $$aAnalytical Chemistry$$c2022$$dQ1
000123886 594__ $$a12.7$$b2022
000123886 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123886 700__ $$aPiantek, Marten
000123886 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000123886 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, Carlos$$uUniversidad de Zaragoza
000123886 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000123886 773__ $$g308 (2022), 122915 [10 pp.]$$pSep. Purif. Technol.$$tSeparation and Purification Technology$$x1383-5866
000123886 8564_ $$s7405588$$uhttps://zaguan.unizar.es/record/123886/files/texto_completo.pdf$$yVersión publicada
000123886 8564_ $$s2604856$$uhttps://zaguan.unizar.es/record/123886/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123886 909CO $$ooai:zaguan.unizar.es:123886$$particulos$$pdriver
000123886 951__ $$a2024-03-18-16:57:27
000123886 980__ $$aARTICLE