000123887 001__ 123887
000123887 005__ 20240319081028.0
000123887 0247_ $$2doi$$a10.2355/isijinternational.ISIJINT-2022-111
000123887 0248_ $$2sideral$$a132322
000123887 037__ $$aART-2022-132322
000123887 041__ $$aeng
000123887 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000123887 245__ $$aExtending the Operating Line Methodology to Consider Shaft and Preheating Injections in Blast Furnaces
000123887 260__ $$c2022
000123887 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123887 5203_ $$aIn the last years, the injection of reducing gases in the shaft and preparation zone of the blast furnace has been proposed as a decarbonization option, mainly associated to oxyfuel blast furnaces and top gas recycling configurations. However, the Rist diagram, which is one of the preferred methodologies to characterize the operation of blast furnaces, is not valid to evaluate these new decarbonization options. In this article we propose a generalization of the operating line methodology to extend its applicability to scenarios of variable molar flows along the blast furnace (i.e., shaft and preheating injections) and non-continuous oxidation profiles (presence of CO2 and H2O in the injected gases). The extended operating line methodology was implemented in an Aspen Plus simulation, which provides a detailed modelling of the preparation zone, the thermal reserve zone, the lower zone and the raceways. The simulation was used to validate the generalized operating line methodology through three different data sets: (i) an air-blown blast furnace with pulverized coal injection and O2 enrichment, (ii) an oxyfuel blast furnace with shaft gas injection, and (iii) an oxyfuel blast furnace with preheating gas injection in the preparation zone. In general, the discrepancy between the reference data and the simulation results is well below 3.5%, so the extended operating line methodology is considered validated.
000123887 536__ $$9info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 887077-DISIPO
000123887 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000123887 590__ $$a1.8$$b2022
000123887 592__ $$a0.569$$b2022
000123887 591__ $$aMETALLURGY & METALLURGICAL ENGINEERING$$b41 / 79 = 0.519$$c2022$$dQ3$$eT2
000123887 593__ $$aMetals and Alloys$$c2022$$dQ1
000123887 593__ $$aMechanics of Materials$$c2022$$dQ2
000123887 593__ $$aMaterials Chemistry$$c2022$$dQ2
000123887 593__ $$aMechanical Engineering$$c2022$$dQ2
000123887 594__ $$a3.1$$b2022
000123887 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123887 700__ $$aNakagaki, Takao
000123887 700__ $$aKataoka, Ryoma
000123887 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000123887 773__ $$g62, 12 (2022), 2454-2465$$pISIJ int.$$tISIJ INTERNATIONAL$$x0915-1559
000123887 8564_ $$s1292782$$uhttps://zaguan.unizar.es/record/123887/files/texto_completo.pdf$$yVersión publicada
000123887 8564_ $$s2577283$$uhttps://zaguan.unizar.es/record/123887/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123887 909CO $$ooai:zaguan.unizar.es:123887$$particulos$$pdriver
000123887 951__ $$a2024-03-18-16:59:15
000123887 980__ $$aARTICLE