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Abstract: Sensors for respiratory monitoring can be classified into wearable and non-wearable
systems. Wearable sensors can be worn in several positions, the chest being one of the most effective.
In this paper, we have studied the performance of a new piezoresistive breathing sensing system to
be worn on the chest with a belt. One of the main problems of belt-attached sensing systems is that
they present trends in measurements due to subject movements or differences in subject constitution.
These trends affect sensor performance. To mitigate them, it is possible to post-process the data to
remove trends in measurements, but relevant data from the respiration signal may be lost. In this
study, two different detrending methods are applied to respiration signals. After conducting an
experimental study with 21 subjects who breathed in different positions with a chest piezoresistive
sensor attached to a belt, detrending method 2 proved to be better at improving the quality of
respiration signals.

Keywords: wearable sensors; breathing sensors; piezoresistive; measurements; trends; belt; respira-
tion rate

1. Introduction

Continuous monitoring of physiological signals is frequently used by healthcare
professionals, mostly with hospital patients. For instance, monitoring of respiration rate
is commonly used to diagnose overall health of the patients [1], and several diseases can
be detected through respiration rate, such as asthma or sleep apnea [2]. Other common
applications for respiration rate monitoring are in sports to analyze the performance of
athletes [3], the monitoring of the health state of drivers and commercial builders [4], and
emotion recognition [5].

When designing a system for respiration rate monitoring, two different approaches
are used by researchers: wearable and environmental systems, each of which has different
techniques to achieve its purpose. For wearable systems, the most common technique is
to measure chest diameter variations due to inhalation and exhalation of the user. This is
commonly achieved by placing a flexible strap around the chest of the user. Through this
strap, chest movements are transferred to the sensor of the system. Such a sensor could
be a piezoresistive sensor [6], capacitive sensor [3], piezoelectric sensor [7], optical fiber
sensors [8], or inertial measurement units [9], among others [10].

When measuring physiological signals through wearable devices for a relatively
prolonged time, signals show a trend, which is a systematic increase or decrease in the
obtained signal due to movements of the system or subject. However, linear fit can be
applied offline to the registered respiration signals to mitigate this effect, as these trends
may hinder data analysis [11]. A disadvantage of doing so is that relevant information
from the original signal may be lost.

In this study, we show that the effectiveness of eliminating trends in signals depends
on the length of the segmentation window of the measurements. To do so, different
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segmentation windows (periods of time analyzed by the algorithms) are proposed, and
two different algorithms are used to analyze the respiration signals from 21 volunteers.
Respiration signals were obtained through a chest-strap sensing system from a previous
work [12].

2. Results

To analyze the respiration signals from all 21 volunteers, two different algorithms are
used, whose basic principle consists of detecting all zero-crossings from the obtained signals
by determining the zero-axis of such signals. Algorithm 1 measures the time difference
between consecutive zero-crossings (breath cycles), whilst Algorithm 2 counts the number
of crosses by zero. In this way, both algorithms are capable of calculating the respiration
rate from the signal in breaths per minute (bpm). Both algorithms perform a segmentation
of the signal (from 6 to 30 s); from each segmented window, the respiration rate is calculated,
and then the mean from all the segments is taken as the average respiration rate. From each
volunteer, a total of 30 respiration signals are analyzed (six different respiration rates set by
a metronome, and five different activities) for a total of 630 respiration signals analyzed. In
a previous work [12], a complete description of the algorithms and the database is included.

When detrending the respiration signals, two different methods were used. In the
first method, the whole signal was detrended before calculating the respiration rate from
each segment, whilst in the second method, each segmentation window was detrended
individually. A depiction of both methods is shown in Figure 1. Relative error from each
signal and each segmentation window was obtained from the original signals and each
detrending method; then, a comparison in the increase or reduction in relative error was
performed.
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For detrending method 1 and Algorithm 1, the 6 s segmentation window shows an
increase in relative error by 5.46%, whilst for the rest of the windows, the relative error



Eng. Proc. 2021, 6, 84 3 of 5

decreases. By detrending the signals and calculating respiration rate with Algorithm 1,
there is an average improvement (decrease in relative error) of 1.08%, with a maximum
improvement of 2.52% (11 s window) and a maximum deterioration (increase in relative
error) of 5.46% (6 s window). For Algorithm 2, only windows from 12 to 15 s show a
deterioration of predicted respiration rate. There is an average improvement of 0.48%, with
a maximum improvement of 1.78% (30 s window) and a maximum deterioration of 0.55%
(13 s window).

When detrending original signals with method 2 for Algorithm 1, an average improve-
ment of 1.54% is achieved, with a maximum improvement of 3.19% (11 s window) and a
maximum deterioration of 3.58% (6 s window). For Algorithm 2, only windows of 6–8 s
show a deterioration in the predicted respiration rate. There is an average improvement of
1.28%, a maximum improvement of 2.88% (30 s window), and a maximum deterioration of
2.35% (6 s window). A summary of these results is shown in Table 1. The improvement
and deterioration obtained from each segmentation window are show in Figures 2 and 3
for detrending method 1 and detrending method 2, respectively.
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Figure 2. Improvement and deterioration obtained when calculating respiration rate after detrending the original signal
with method 1.
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Figure 3. Improvement and deterioration obtained when calculating respiration rate after detrending the original signal
with method 2.
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Table 1. Improvement in respiration signal after detrending the original signal with both methods,
for each algorithm.

Algorithm 1 Algorithm 2

Average MI 1 MD 2 Average MI 1 MD 2

Method 1 1.08 2.52 5.46 0.48 1.78 0.55
Method 2 1.54 3.19 3.58 1.28 2.88 2.35

1 Maximum improvement. 2 Maximum deterioration.

3. Conclusions

Both detrending methods show an improvement when calculating respiration rate;
however, detrending method 2 shows a better performance, as the average improvement
is higher for both algorithms. From detrending method 2 and Algorithm 1, only the 6 s
window shows deterioration, and all other windows show improvement when calculating
respiration rate. However, this improvement is not consistent when moving along the
different windows. On the other hand, for Algorithm 2 it is noticed that, as the segmenta-
tion window increases, the improvement increases accordingly. Therefore, even though
improvement in respiration rate prediction is moderate when detrending the signals, both
detrending methods shows improvement when compared with the original signals with
trends. For this specific application, detrending method 2 proves to be better.

Supplementary Materials: The poster presentation is available online at https://www.mdpi.com/
article/10.3390/I3S2021Dresden-10118/s1.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of
CEICA (protocol title “Evaluación de la estabilidad y ritmo cardiaco en la práctica de mindfulness
mediante sensores vestibles (wearables)”, protocol code 12/2017 and date of approval 21/06/2017;
derived experiment from that protocol).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The database used for this study can be found at IEEE DataPort by the
name “Breathing data from a piezoresistive breathing sensor” [13].

References
1. Milenkovic, A.; Otto, C.; Jovanov, E. Wireless sensor networks for personal health monitoring: Issues and an implementation.

Comput. Commun. 2006, 29, 13–14. [CrossRef]
2. Cao, Z.; Zhu, R.; Que, R.-Y. A wireless portable system with microsensors for monitoring respiratory diseases. IEEE Trans. Biomed.

Eng. 2012, 59, 3110–3116. [PubMed]
3. Hoffmann, T.; Eilebrecht, B.; Leonhardt, S. Respiratory monitoring system on the basis of capacitive textile force sensors. IEEE

Sens. J. 2010, 11, 1112–1119. [CrossRef]
4. Gatti, U.C.; Schneider, S.; Migliaccio, G.C. Physiological condition monitoring of construction workers. Autom. Constr. 2014, 44,

227–233. [CrossRef]
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