000123906 001__ 123906
000123906 005__ 20241108104651.0
000123906 0247_ $$2doi$$a10.1016/j.compfluid.2022.105740
000123906 0248_ $$2sideral$$a132341
000123906 037__ $$aART-2022-132341
000123906 041__ $$aeng
000123906 100__ $$0(orcid)0000-0003-3570-0202$$aLlorente, Víctor J.
000123906 245__ $$aExtension of an exponential discretization scheme to multidimensional convection–diffusion problems
000123906 260__ $$c2022
000123906 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123906 5203_ $$aENATE (Enhanced Numerical Approximation of a Transport Equation) is a high-order exponential scheme for convection–diffusion problems, such as those that govern the transport of fluid properties in a flow field. The scheme was intended to be employed in fluid-related transport equations, although it can be used for any inhomogeneous second-order ordinary differential equation. The value of a variable
at a generic point is related to those of adjacent nodes via an algebraic equation. Thus, a three-point stencil is associated to each node. The coefficients of this equation contain integrals of some fluid and flow parameters. One important property is that the scheme allows to obtain a machine-accurate solution of an inhomogeneous transport equation if these integrals can be obtained analytically. As the scheme is essentially one-dimensional, getting the machine-accurate solution of multidimensional problems is not guaranteed even in cases where ENATE integrals are analytic along each coordinate. In this regard the paper presents a simple way of getting solutions in multidimensional problems while still using the one-dimensional formulation. Moreover, if the problem is such that the solution is machine-accurate in the one-dimensional problem along coordinate lines, it will also be for the multidimensional domain. Two different methods of evaluating those terms that come out of the discretization will be explained and compared in various cases.
000123906 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón
000123906 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000123906 590__ $$a2.8$$b2022
000123906 592__ $$a0.968$$b2022
000123906 591__ $$aMECHANICS$$b52 / 137 = 0.38$$c2022$$dQ2$$eT2
000123906 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b72 / 110 = 0.655$$c2022$$dQ3$$eT2
000123906 593__ $$aEngineering (miscellaneous)$$c2022$$dQ1
000123906 593__ $$aComputer Science (miscellaneous)$$c2022$$dQ1
000123906 594__ $$a6.0$$b2022
000123906 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123906 700__ $$0(orcid)0000-0003-1161-7893$$aPascau, Antonio$$uUniversidad de Zaragoza
000123906 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000123906 773__ $$g251 (2022), 105740 [18 pp.]$$pComput. fluids$$tComputers and Fluids$$x0045-7930
000123906 8564_ $$s1486525$$uhttps://zaguan.unizar.es/record/123906/files/texto_completo.pdf$$yVersión publicada
000123906 8564_ $$s2593234$$uhttps://zaguan.unizar.es/record/123906/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123906 909CO $$ooai:zaguan.unizar.es:123906$$particulos$$pdriver
000123906 951__ $$a2024-11-08-10:44:52
000123906 980__ $$aARTICLE