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A B S T R A C T

ENATE (Enhanced Numerical Approximation of a Transport Equation) is a high-order exponential scheme for
convection–diffusion problems, such as those that govern the transport of fluid properties in a flow field. The
scheme was intended to be employed in fluid-related transport equations, although it can be used for any
inhomogeneous second-order ordinary differential equation. The value of a variable 𝜙 at a generic point is
related to those of adjacent nodes via an algebraic equation. Thus, a three-point stencil is associated to each
node. The coefficients of this equation contain integrals of some fluid and flow parameters. One important
property is that the scheme allows to obtain a machine-accurate solution of an inhomogeneous transport
equation if these integrals can be obtained analytically. As the scheme is essentially one-dimensional, getting
the machine-accurate solution of multidimensional problems is not guaranteed even in cases where ENATE
integrals are analytic along each coordinate. In this regard the paper presents a simple way of getting solutions
in multidimensional problems while still using the one-dimensional formulation. Moreover, if the problem is
such that the solution is machine-accurate in the one-dimensional problem along coordinate lines, it will also
be for the multidimensional domain. Two different methods of evaluating those terms that come out of the
discretization will be explained and compared in various cases.
1. Introduction

The second-order ordinary differential equation (ODE),

𝑝(𝑥)
d2𝜙
d𝑥2

+ 𝑞(𝑥)
d𝜙
d𝑥 + 𝑟(𝑥)𝜙 = 𝑆(𝑥),

has been profusely studied within the applied mathematics, physics
and engineering communities. It is an ODE that governs many physical
phenomena in fluids, electromagnetism, solid mechanics and many
other fields of physics and engineering related to the transport of
physical variables in a spatial domain. From the perspective of numer-
ical mathematics this transport equation contains several features that
make it a challenging problem for robust and accurate discretization
schemes [1].

ENATE is a high-order finite-volume scheme devised for a one-
dimensional transport equation with variable coefficients and source [2].
It belongs to the family of exponential schemes, so called because
the coefficients in the final algebraic equation contain exponentials
of non-dimensional parameters. All these schemes are somehow based
on the exact solution of the homogeneous one-dimensional transport
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equation. The first exponential scheme was proposed by Allen and
Southwell [3] and later rediscovered by Ill’in [4] and Scharfetter and
Gummel [5], all three in very different settings. Scharfetter et al.’s
scheme was the starting point for the development of exponential
schemes in multidimensional problems for particle motion in electronic
devices and convection–diffusion problems in fluids [6,7].

The popularization of exponential schemes within the Computa-
tional Fluid Dynamics (CFD) community came in the 80s with Patankar’s
book [8]. An improvement over the original exponential formulation
for CFD was obtained by Wong and Raithby [9] and Thiart [10] on
considering a constant source across each finite volume (FV) of the
discretization. These two schemes are very close to each other, the
only differences being the definition of the non-dimensional parameters
inside the exponentials and the extension of the interval around a
generic node where the source is assumed to be constant. All schemes
mentioned assume constant coefficients in the FV, although they can
change from one FV to the next. The fact that the coefficients are taken
to be piecewise constant over the whole domain reduces the accuracy of
vailable online 26 November 2022
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Fig. 1. Two intervals sharing 𝐶 node.

he schemes. Recently, ten Thije Boonkkamp and Anthonissen derived
scheme named Finite Volume-Complete Flux (FV-CF) [11] in which

he variation of the coefficients inside the control volume is taken
nto account. ENATE takes an alternative path to reach the same final
iscretization by using the non-dimensional version of the ODE. Both
chemes share the same symbolic algebraic equation but the numerical
reatment of its coefficients is quite different. A paper comparing both
chemes has been published where the similarities and differences
re highlighted [12]. A very close discretization to both FV-CF and
NATE but with constant diffusion coefficient has also been proposed
y Angermann and Wang [13].

The schemes described so far were originally devised for one-
imensional differential equations. The algebraic discretization that
riginates from a one-dimensional differential equation can be easily
omputed with the Thomas Algorithm for tridiagonal matrices (TDMA)
r its extension to pentadiagonal matrices (PDMA) for larger stencils.
n two dimensions, the resulting matrix has non-zero diagonals that are
ot adjacent to the main diagonal as in one dimension. This precludes
he use of TDMA or PDMA. In order to use these efficient solvers in
wo-dimensional problems a line-by-line calculation of the whole two-
imensional domain can be realized. When calculating the stencil of
ne coordinate the contribution of the other is moved to the source
erm. The domain is swept horizontally and vertically visiting every
oordinate line where a tridiagonal/pentadiagonal system is solved
or. Many CFD codes have this option where it is called line-by-line
auss–Seidel or line-by-line Jacobi, depending on whether the newly
alculated values of the previous line or those of the previous sweep
re lumped in the source. As will be explained later in the paper the
pproach followed by ENATE for two-dimensional equations is to build
wo quasi-one-dimensional equations and to discretize them separately.
ater, the two algebraic equations are added in order to make up the
olved equation.

The paper is structured as follows. It starts with a brief description
f ENATE whose main features are highlighted. Then, the extension
f ENATE to multidimensions is detailed. Two ways of converting a
D equation into two quasi-1D equations are explained. Although for
nsteady one-dimensional equations the approach taken by ENATE
s equivalent to that in two spatial dimensions, its particularities are
ommented on in a new section. Finally, some numerical tests are
resented where the two 2D approaches are compared, showing the
igh accuracy of ENATE in multidimensional problems, either spatial
r spatio-temporal. The paper finalizes with some hints on how the
pproach could be improved.

. Brief description of ENATE

ENATE (Enhanced Numerical Approximation of a Transport Equation
s a high-order numerical scheme that under certain circumstances
an provide machine-accurate solution of the steady one-dimensional
ransport equation written as a local boundary value problem (BVP)

d
d𝑥

(

𝜌𝑢𝜙 − 𝛤
d𝜙
d𝑥

)

= 𝑆𝑥, 𝑥𝑢𝑏 < 𝑥 < 𝑥𝑑𝑏,

𝜙(𝑥 ) = 𝜙 , 𝜙(𝑥 ) = 𝜙 ,
2

𝑢𝑏 𝑢𝑏 𝑑𝑏 𝑑𝑏
for arbitrary diffusive, 𝛤 = 𝛤 (𝑥) and convective, 𝜌𝑢 = 𝜌(𝑥)𝑢(𝑥),
oefficients and source, 𝑆𝑥 = 𝑆𝑥(𝑥), that can also depend on the
olution. Details on the derivation of ENATE are given in [2,14]. The
hole domain is split in as many intervals as required. Two generic

ntervals, one between a 𝐶entral node and a 𝐷ownwind node, 𝑥𝐷 > 𝑥𝐶 ,
nd the other between an 𝑈pwind node and a 𝐶entral node, 𝑥𝑈 < 𝑥𝐶 ,
re mapped onto a unity interval. To derive the algebraic discretization
f the ODE the 𝑥 coordinate of both intervals is transformed to 𝑥 =
𝑥 − 𝑥𝑢𝑏)∕(𝑥𝑑𝑏 − 𝑥𝑢𝑏), where 𝑢𝑏 and 𝑑𝑏 stand for upwind boundary
nd downwind boundary respectively, different for each interval. For
nstance, 𝑢𝑏 ≡ 𝑈 for the interval 𝑈𝐶, but 𝑢𝑏 ≡ 𝐶 for the interval 𝐶𝐷, see
ig. 1. In order to obtain a non-dimensional equation all flow parame-
ers are also normalized by their values at the upwind boundary of the
nterval. After some algebra a formula can be obtained in either interval
s sum of the homogeneous and particular solutions. Subsequently, the
iffusive fluxes coming from both intervals are matched at 𝐶, and an
xact algebraic relation between the 𝜙-values at 𝐶, 𝑈 and 𝐷 is obtained.
e present the final expression,

(𝜌𝑢)𝑈 𝑘̃𝑈𝐶 + (𝜌𝑢)𝐶 𝑘̃𝐶𝐷 exp𝑃 𝑥𝐶𝐷

]

𝜙𝐶 =
[

(𝜌𝑢)𝑈 𝑘̃𝑈𝐶 exp𝑃 𝑥𝑈𝐶

]

𝜙𝑈 +
[

(𝜌𝑢)𝐶 𝑘̃𝐶𝐷

]

𝜙𝐷 +

𝑥𝑈𝐶 ∫

1

0
𝑆𝑥

𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

d𝑥
|

|

|

|

|𝑈𝐶
+ 𝛥𝑥𝐶𝐷 ∫

1

0
𝑆𝑥

(

1 −
𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

)

d𝑥
|

|

|

|

|𝐶𝐷
, (1)

the interested reader is referred to [2] for details. The factors in the
source integrals and in the nodal coefficients are

𝐼𝐺𝐸0𝑥 = ∫

𝑥

0

1
𝛤

[

exp∫

1

𝑥′
𝑃𝑥 d𝑥′′

]

d𝑥′, 𝑃𝑥 =
𝜌𝑢 𝛥𝑥
𝛤

, 𝛤 = 𝛤
𝛤𝑢𝑏

,

= 1
𝑃𝑥 𝑢𝑏𝐼𝐺𝐸01

, 𝑃 𝑥 = ∫

1

0
𝑃𝑥 d𝑥,

where 𝑃𝑥 𝑢𝑏 is the Péclet number based on values of 𝜌𝑢 and 𝛤 at the
upwind boundary of the corresponding interval. Note that the Péclet
number can vary across an interval, 𝑃 𝑥 being its average. All integrals
re calculated in the unit interval. The formulation of the source
ontribution is different from that presented in [2] and it comes from
pplying integration by parts to the source term derived in that paper.
s the treatment of the source is of importance in our approach to
ultidimensional problems, it is interesting to mention the asymptotic

ehaviour of the source terms as the two extreme cases, 𝑃𝑥 = 0 and
𝑃𝑥 → ±∞, are approached. When Péclet number tends to zero and 𝛤 is
constant, the source integral is,

∫

1

0
𝑆𝑥

𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

d𝑥
|

|

|

|

|𝑈𝐶
= ∫

1

0
𝑆𝑥 𝑥d𝑥

|

|

|

|

|𝑈𝐶
,

s 𝐼𝐺𝐸0𝑥∕𝐼𝐺𝐸01 tends to 𝑥. If, at the same time, the source is constant
n the interval 𝑈𝐶,

∫

1

0
𝑆𝑥 𝑥d𝑥

|

|

|

|

|𝑈𝐶
= 1

2
𝑆𝑥𝑈𝐶 .

The same factor comes out of the 𝐶𝐷 interval, so the total source
contribution is then one half of the sum of the contributions from each
interval. When Péclet goes to +∞ the ratio of 𝐼𝐺𝐸s is one and there is
only contribution from the upwind interval 𝑈𝐶. If the source is constant
the contribution is

∫

1

0
𝑆𝑥

𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

d𝑥
|

|

|

|

|𝑈𝐶
= ∫

1

0
𝑆𝑥 d𝑥

|

|

|

|

|𝑈𝐶
= 𝑆𝑥𝑈𝐶 .

f 𝑃𝑥 → −∞ the source contribution is 𝑆𝑥𝐶𝐷 as 𝐶𝐷 is now the upwind
nterval. The task of the factor 𝐼𝐺𝐸0𝑥∕𝐼𝐺𝐸01 is always to weigh the

source contribution of either interval, this ratio is drawn in Fig. 2. As
Péclet increases, the weight of the upwind source grows at the expense
of the downwind source.

In a general case of variable source and coefficients the source
integral can be computed as a sum of functions of the average Péclet
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Fig. 2. 𝐼𝐺𝐸 ratio over a unit interval for a constant Péclet regime. Black line, 𝑃𝑥 = 0.
lue lines, 𝑃𝑥 = {3, 10, 100}. Red lines, 𝑃𝑥 = {−3,−10,−100}.

𝑃 𝑥.

∫

1

0
𝑆𝑥

(

1 −
𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

)

d𝑥 ≈
𝑚
∑

𝑘=0
𝑎𝑘

𝐹𝑘(𝑃 𝑥)
𝐼𝐺𝐸01

,

here 𝐹0(𝑃 𝑥) = (exp𝑃 𝑥 − 1)∕𝑃 𝑥 is the inverse of the Bernoulli function
and 𝐹𝑘(𝑃 𝑥) = (𝑘𝐹𝑘−1(𝑃 𝑥)−1)∕𝑃 𝑥, 𝑘 = 1, 2,…, 𝑚, 𝑚 being the order of the
Hermite polynomial that approximates the source. The coefficients 𝑎𝑘
contain information of ∫ 𝑆𝑥, 𝑆𝑥, 𝑃 𝑥 and their derivatives at the interval
dges [15].

It is also worth mentioning the values of the coefficients in the limit
ases. The coefficients are given by
𝑥
𝐶 = (𝜌𝑢)𝑈 𝑘̃𝑈𝐶 + (𝜌𝑢)𝐶 𝑘̃𝐶𝐷 exp𝑃 𝑥𝐶𝐷,

𝐴𝑈 = (𝜌𝑢)𝑈 𝑘̃𝑈𝐶 exp𝑃 𝑥𝑈𝐶 , 𝐴𝐷 = (𝜌𝑢)𝐶 𝑘̃𝐶𝐷.
(2)

When 𝑃𝑥 = 0 the coefficients satisfy

𝐴𝑥
𝐶 = 𝐴𝑈 + 𝐴𝐷,

and the actual values depend on the variation of 1∕𝛤 across every
interval. On the other hand, when 𝑃𝑥 → +∞,

𝐴𝑥
𝐶 = (𝜌𝑢)𝐶 , 𝐴𝑈 = (𝜌𝑢)𝑈 , 𝐴𝐷 = 0,

and when 𝑃𝑥 → −∞,

𝐴𝑥
𝐶 = −(𝜌𝑢)𝐶 , 𝐴𝑈 = 0, 𝐴𝐷 = −(𝜌𝑢)𝐷.

3. Steady two-dimensional problems

In order to use ENATE in 2D problems two approaches were con-
sidered. The first approach was already developed in [12] and here we
will give a brief outline. The second approach is a new contribution to
the ENATE scheme.

3.1. Fluxes as pseudo-sources (FaP)

The nonhomogeneous steady-state transport equation in two spatial
dimensions can be written as a local BVP,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕
𝜕𝑥

(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝜌𝑣𝜙 − 𝛤
𝜕𝜙
𝜕𝑦

)

= 𝑆,
(𝑥, 𝑦) ∈ (𝑥𝑙𝑏, 𝑥𝑟𝑏)
×(𝑦𝑏𝑏, 𝑦𝑡𝑏),

𝜙(𝑥𝑙𝑏, 𝑦) = 𝜙𝑙𝑏(𝑦), 𝜙(𝑥𝑟𝑏, 𝑦) = 𝜙𝑟𝑏(𝑦), 𝑦𝑏𝑏 ≤ 𝑦 ≤ 𝑦𝑡𝑏,
𝜙(𝑥, 𝑦𝑏𝑏) = 𝜙𝑏𝑏(𝑥), 𝜙(𝑥, 𝑦𝑡𝑏) = 𝜙𝑡𝑏(𝑥), 𝑥𝑙𝑏 ≤ 𝑥 ≤ 𝑥𝑟𝑏,

where 𝑙𝑏, 𝑟𝑏, 𝑏𝑏 and 𝑡𝑏 stand for left boundary, right boundary, bottom
boundary and top boundary respectively. The fluxes in each direction
are defined by

𝐟 = (𝑓𝑥, 𝑓𝑦)𝑇 ∶=
(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙

, 𝜌𝜐𝜙 − 𝛤
𝜕𝜙

)𝑇
.

3

𝜕𝑥 𝜕𝑦
In 2D, the notation employed for the upwind and downwind nodes is
(𝑥𝑈 , 𝑥𝐷)𝑇 ≡ (𝑥𝑊 , 𝑥𝐸 )𝑇 for a line 𝑦 = const, and (𝑥𝑈 , 𝑥𝐷)𝑇 ≡ (𝑦𝑆 , 𝑦𝑁 )𝑇

or a line 𝑥 = const, see Fig. 3. Nodal points are the intersection of the
wo coordinate lines.

An approach to solve this equation is to split the 2D equation in
wo quasi-one-dimensional problems, where the derivative of the flux
n one direction acts as a pseudo-source in the equation along the other,

𝜕
𝜕𝑥

(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙
𝜕𝑥

)

= 𝑆 −
𝜕𝑓𝑦
𝜕𝑦

=∶ 𝑆𝑥,

𝜕
𝜕𝑦

(

𝜌𝑣𝜙 − 𝛤
𝜕𝜙
𝜕𝑦

)

= 𝑆 −
𝜕𝑓𝑥
𝜕𝑥

=∶ 𝑆𝑦.
(3)

The ENATE scheme can then be applied to both equations. This ap-
proach is sometimes referred to as coordinate splitting. The problem
with the pseudo-source is that it is solution-dependent and an iterative
procedure is required. At the same time a quadrature must be em-
ployed for the associated integrals. ENATE starts by interpolating the
integrands, 𝑆 and 𝜕𝑓{𝑦,𝑥}∕𝜕{𝑦, 𝑥}, with Hermite polynomials which are
later integrated. This is the standard procedure in ENATE but any other
quadrature would do. Hermite polynomials require the knowledge of
the function and its derivatives at both interval edges. The integrals of
the polynomial are a function of the polynomial coefficients and hence,
of the derivatives at the nodes. For a third-order Hermite polynomial
only the first derivative at the nodes is needed but if a seventh-order
polynomial is employed, up to third derivatives are required. Neither
𝜕𝑓𝑥∕𝜕𝑥, 𝜕𝑓𝑦∕𝜕𝑦 nor their derivatives are directly available, so prior
to evaluating the source integrals a way of obtaining them is called
for. In this respect ENATE uses compact derivatives [16] to estimate
the derivatives at a node once the function is known. For certain
integrals such as 𝑃 {𝑥,𝑦}(𝑥, 𝑦) and ∫ 1

0 𝑆{𝑥,𝑦}d{𝑥, 𝑦}, Compact Integration
Rules (CIR) are employed [17]. CIR derives a linear combination of
any integral in the working interval and its adjacents in terms of nodal
values of the integrand. In contrast to Hermite polynomials, CIR is a
quadrature free of derivatives. Once the two Eq. (3) are discretized via
(1), they are combined and the 2D algebraic equation solved, see details
in [12]. In some cases to be commented later the two equations are
solved separately.

The complete sequence of steps to calculate the pseudo-source
contribution in both directions is

1. Calculate 𝜙 with ENATE’s 2D algebraic equation using the values
of 𝜕𝑓{𝑦,𝑥}∕𝜕{𝑦, 𝑥} of the previous iteration.

2. Calculate 𝜕𝜙∕𝜕{𝑦, 𝑥} with compact derivatives and then 𝑓{𝑦,𝑥}.
3. Calculate 𝜕𝑓{𝑦,𝑥}∕𝜕{𝑦, 𝑥} with compact derivatives. This is the

function to be integrated.
4. If Hermite polynomials are employed, calculate with compact

derivatives as many derivatives as required by the polynomial
order of the interpolant.

5. Compute the integrals.
6. Back to first step until convergence.

As just explained above there is a number of side calculations of the
pseudo-source terms on top of ENATE’s discretized equation computa-
tion. In the next paragraphs an alternative approach that avoids many
of these extra calculations will be put forward.

3.2. REMEDIES

Let us use coordinate splitting to obtain two quasi-one-dimensional
equations in the form

𝜕
𝜕𝑥

(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙
𝜕𝑥

)

= 1
2
𝑆 + 𝛽,

𝜕
(

𝜌𝑣𝜙 − 𝛤
𝜕𝜙

)

= 1𝑆 − 𝛽.
(4)
𝜕𝑦 𝜕𝑦 2
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I

nstead of the pseudo-sources we now have an unknown scalar field,
= 𝛽(𝑥, 𝑦). The splitting of the source in two halves is totally arbitrary.

n a specific problem it is very difficult to ascertain how much source
s acting in one coordinate or another so the equal distribution is a
onservative approach. This idea was put forward by Lee and Kim [18]
here it was named as axial splitting. The joint solution of the two will
lso be solution of the original two-dimensional transport equation, at
east at the continuum level. It is understood that 𝛽 acts as a sort of
ource redistribution function between coordinates.

Consider a starting 𝛽 = 𝛽ini for which the two equations are

𝜕
𝜕𝑥

(

𝜌𝑢𝜙1 − 𝛤
𝜕𝜙1
𝜕𝑥

)

= 1
2
𝑆 + 𝛽ini =∶ 𝑆𝑥,

𝜕
𝜕𝑦

(

𝜌𝑣𝜙2 − 𝛤
𝜕𝜙2
𝜕𝑦

)

= 1
2
𝑆 − 𝛽ini =∶ 𝑆𝑦.

(5)

ur procedure initializes 𝛽 within the domain with an inverse distance
eighted-average, i.e.

ini
𝐶 =

∑

𝑙∈
𝛽bou
𝑙
𝑑𝐶𝑙

∑

𝑙∈
1
𝑑𝐶𝑙

. (6)

where 𝑑𝐶𝑙 is the euclidean distance from the C point to the boundary 𝑙
and 𝛽bou

𝑙 is the boundary value of 𝛽 at the point cut by the appropriate
coordinate. In this paper Dirichlet boundary conditions are applied
and Eq. (4) is used to compute 𝛽 along the horizontal and vertical
boundary lines . If 𝛽ini is not the correct 𝛽, the solution of both
equations will be different. The differences between the current values
and the correct ones are

𝛥𝛽 = 𝛽 − 𝛽ini, 𝛥𝜙1 = 𝜙 − 𝜙1, 𝛥𝜙2 = 𝜙 − 𝜙2.

As we want to arrive at the solution given in Eq. (4) via successive
updates, an equation for the increments can be obtained by subtracting
Eq. (5) from Eq. (4), i.e.

𝜕
𝜕𝑥

(

𝜌𝑢𝛥𝜙1 − 𝛤
𝜕𝛥𝜙1
𝜕𝑥

)

= 𝛥𝛽,

𝜕
𝜕𝑦

(

𝜌𝑣𝛥𝜙2 − 𝛤
𝜕𝛥𝜙2
𝜕𝑦

)

= −𝛥𝛽.
(7)

here are three unknowns and two equations so another equation is
eeded to close the problem. It can be obtained from the fact that the
inal solution will be common to both equations, 𝜙 = 𝜙1 + 𝛥𝜙1 = 𝜙2 +
𝛥𝜙2. 𝛥𝜙1 can then be substituted in the first equation by 𝛥𝜙2−(𝜙1−𝜙2).

hen,

𝜕
𝜕𝑥

(

𝜌𝑢𝛥𝜙2 − 𝛤
𝜕𝛥𝜙2
𝜕𝑥

)

= 𝛥𝛽 +
𝜕𝑓𝑥(1−2)

𝜕𝑥
,

𝜕
(

𝜌𝑣𝛥𝜙2 − 𝛤
𝜕𝛥𝜙2

)

= −𝛥𝛽,
(8)
4

𝜕𝑦 𝜕𝑦
here

𝑥(1−2) = 𝜌𝑢(𝜙1 − 𝜙2) − 𝛤
𝜕(𝜙1 − 𝜙2)

𝜕𝑥
,

is a numerical flux due to the difference of the numerical solutions in
both directions independently. Now there are two equations and two
unknowns because 𝜙1 and 𝜙2 are known from Eq. (5) discretized by (1).
The correct 𝛥𝛽 would satisfy both equations at the same time, that is,
𝛥𝜙2𝐶 at a node 𝐶, calculated along 𝑦 = 𝑦𝐶 line with the first equation,
must be the same as 𝛥𝜙2𝐶 calculated along 𝑥 = 𝑥𝐶 line with the second
one. The discretized equations are

𝐴𝑥
𝐶𝛥𝜙2𝐶 = 𝐴𝑊 𝛥𝜙2𝑊 + 𝐴𝐸𝛥𝜙2𝐸 +

𝐴𝑥
𝐶 (𝜙1𝐶 − 𝜙2𝐶 ) − 𝐴𝑊 (𝜙1𝑊 − 𝜙2𝑊 ) − 𝐴𝐸 (𝜙1𝐸 − 𝜙2𝐸 ) +

𝛥𝑥𝑊𝐶 ∫

1

0
𝛥𝛽

𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

d𝑥
|

|

|

|

|𝑊𝐶
+ 𝛥𝑥𝐶𝐸 ∫

1

0
𝛥𝛽

(

1 −
𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

)

d𝑥
|

|

|

|

|𝐶𝐸
,

and

𝐴𝑦
𝐶𝛥𝜙2𝐶 = 𝐴𝑆𝛥𝜙2𝑆 + 𝐴𝑁𝛥𝜙2𝑁 −

𝛥𝑦𝑆𝐶 ∫

1

0
𝛥𝛽

𝐼𝐺𝐸0𝑦

𝐼𝐺𝐸01
d𝑦

|

|

|

|

|𝑆𝐶
− 𝛥𝑦𝐶𝑁 ∫

1

0
𝛥𝛽

(

1 −
𝐼𝐺𝐸0𝑦

𝐼𝐺𝐸01

)

d𝑦
|

|

|

|

|𝐶𝑁
.

f the correct discrete field 𝛥𝛽 = 𝛥𝛽(𝑥, 𝑦) were known the two equations
ould provide the same 𝛥𝜙2 field. As 𝛥𝛽 is unknown moving towards

he right 𝛽 will take a number of iterative steps. We could start for
nstance with 𝛥𝛽 = 0 and calculate 𝛥𝜙2 with the first equation, using
he second equation to calculate 𝛥𝛽. This approach was tested and it did
ot work out as expected, in fact, no converged solution was obtained,
reason will be given later. Another approach to update 𝛽 that turned
ut to be efficient and relatively quick in terms of number of iterations
as based on the characteristics of the 𝛥𝛽 source terms. It starts by

umming up the two equations,

𝐴𝑥
𝐶 + 𝐴𝑦

𝐶 )𝛥𝜙2𝐶 = 𝐴𝑊 𝛥𝜙2𝑊 + 𝐴𝐸𝛥𝜙2𝐸 + 𝐴𝑆𝛥𝜙2𝑆 + 𝐴𝑁𝛥𝜙2𝑁 +
𝑥
𝐶 (𝜙1𝐶 − 𝜙2𝐶 ) − 𝐴𝑊 (𝜙1𝑊 − 𝜙2𝑊 ) − 𝐴𝐸 (𝜙1𝐸 − 𝜙2𝐸 ) +

𝑥𝑊𝐶 ∫

1

0
𝛥𝛽

𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

d𝑥
|

|

|

|

|𝑊𝐶
+ 𝛥𝑥𝐶𝐸 ∫

1

0
𝛥𝛽

(

1 −
𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

)

d𝑥
|

|

|

|

|𝐶𝐸
−

𝛥𝑦𝑆𝐶 ∫

1

0
𝛥𝛽

𝐼𝐺𝐸0𝑦

𝐼𝐺𝐸01
d𝑦

|

|

|

|

|𝑆𝐶
− 𝛥𝑦𝐶𝑁 ∫

1

0
𝛥𝛽

(

1 −
𝐼𝐺𝐸0𝑦

𝐼𝐺𝐸01

)

d𝑦
|

|

|

|

|𝐶𝑁
.

t looks like a discretized 2D transport equation with the 𝛥𝛽 contribu-
tion given by the last two lines. Note that the four 𝛥𝛽 terms come in
pairs with opposite signs. If the flow conditions, the interval sizes, and
the 𝛥𝛽 field were the same in both coordinate directions the integrals
would cancel out and the net contribution would be zero. This is, of
course, a very special situation but in any other case the contribution is

likely to be small due to the opposite signs. According to this argument
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an approximate discretized equation was built up with the 𝛥𝛽 terms
eglected altogether. The resolved equation is thus

𝐴𝑥
𝐶 + 𝐴𝑦

𝐶 )𝛥𝜙2𝐶 = 𝐴𝑊 𝛥𝜙2𝑊 + 𝐴𝐸𝛥𝜙2𝐸 + 𝐴𝑆𝛥𝜙2𝑆 + 𝐴𝑁𝛥𝜙2𝑁 +
𝑥
𝐶 (𝜙1𝐶 − 𝜙2𝐶 ) − 𝐴𝑊 (𝜙1𝑊 − 𝜙2𝑊 ) − 𝐴𝐸 (𝜙1𝐸 − 𝜙2𝐸 ). (9)

The reason why the mentioned procedure of solving sequentially the
two discretized equations did not work out was that on solving the first
equation a term that can be significant is neglected. It is important to
stress that in the approach just explained the 𝛽 terms are neglected after
the two equations are summed up. In that case the net contribution of
all 𝛽 terms is much smaller and neglecting them produces less error.
Note that the most important factor that can make the 𝛽 terms quite
ifferent is the interval size in both coordinates, as the 𝐼𝐺𝐸 ratio will
lways lie between 0 and 1. If the interval sizes are very disparate, for
he 𝛥𝛽 contribution to be of the same order in both coordinates the
lgebraic equation in the 𝑥-direction must be multiplied by 𝛥𝑦∕𝛥𝑥, or
he 𝑦-direction equation by 𝛥𝑥∕𝛥𝑦, before adding them.

Notwithstanding the foregoing, a term that is not zero has been
eglected and as a consequence the final solution cannot be reached
n just one iteration. An iterative procedure will be in place. Note that
he source that drives 𝛥𝜙2 is the difference between 𝜙1 and 𝜙2 so when

the difference gets to machine zero, 𝛥𝜙2 will also be zero and the
procedure will reach the final solution. Although the starting point was
the same, Lee and Kim employed some very drastic simplifications for
the 𝛽 calculation that reduced the order of accuracy.

The updating procedure for 𝛽 can be summarized in the following
steps

1. Solve Eq. (9). A line-by-line Gauss–Seidel procedure is used with
horizontal and vertical sweeps.

2. Obtain 𝛥𝛽 with any of the two Eq. (8).
3. Update 𝛽 and recalculate 𝜙1 and 𝜙2 by solving (5) with ENATE.
4. Go to first step till convergence.

In the results section this procedure will be assessed regarding its
computing time and its accuracy.

This approach has been named ‘‘Rapid Evaluation ofMultidimension
Equations with Distinct Integrals as Extra Sources’’, REMEDIES, and
the whole scheme as ENATE with REMEDIES. ‘‘Distinct Integrals’’
refer to the fact that +𝛽 integral is in the 𝑥 coordinate and −𝛽 in
the 𝑦 coordinate. It is appropriate to mention that this procedure is
not exclusive of ENATE, REMEDIES can be employed by any source
treatment or other alternative discretization from which the coefficients
of Eq. (9) can be obtained.

If a three-dimensional problem is dealt with an additional scalar
function is needed. In fact, every time a new coordinate is considered a
new scalar function turns up. Yet, the procedure already described can
easily be extended just by taking 𝛼+𝛽 in the first coordinate, −𝛼 in the
second and −𝛽 in the third one. In this case two source contributions
appear: 𝑓𝑥 based on 𝜙1−𝜙2 and 𝑓𝑧 based on 𝜙3−𝜙2. When 𝜙1 = 𝜙2 = 𝜙3
the sources will be zero and 𝛥𝛼 = 𝛥𝛽 = 0.

4. Unsteady one-dimensional problems

The unsteady one-dimensional transport equation reads

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝜌𝜙
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙
𝜕𝑥

)

= 𝑆, 𝑥𝑙𝑏 < 𝑥 < 𝑥𝑟𝑏, 𝑡 > 0,

𝜙(𝑥𝑙𝑏, 𝑡) = 𝜙𝑙𝑏(𝑡), 𝜙(𝑥𝑟𝑏, 𝑡) = 𝜙𝑟𝑏(𝑡), 𝑡 > 0,
𝜙(𝑥, 0) = 𝜙0(𝑥), 𝑥𝑙𝑏 ≤ 𝑥 ≤ 𝑥𝑟𝑏.

The ideas put forward in the previous section can be carried over to
this equation just by considering a new spatial dimension 𝜂 = 𝑐𝑡 where
𝑐 is an arbitrary velocity which is constant and positive. The unsteady
one-dimensional convection–diffusion equation is rewritten as follows

𝜕 (𝜌𝑐𝜙) + 𝜕
(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙

)

= 𝑆. (10)
5

𝜕𝜂 𝜕𝑥 𝜕𝑥
Fig. 4. Space–time discrete domain. ■ Boundary and initial values, ∙ Inner values,
tencil of the scheme in red lines and blue dots.

e consider the temporal term akin to a diffusionless transport phe-
omenon with 𝜌𝑐 a convection-like parameter. Then, the numerical
olution of this equation can be computed using the same ideas as those
xplained above. We define the fluxes in (𝑥, 𝜂)-domain as

= (𝑓𝑥, 𝑓𝜂)𝑇 ∶=
(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙
𝜕𝑥

, 𝜌𝑐𝜙
)𝑇

.

Considering the FaP approach, Eq. (10) is decomposed into two differ-
ential equations:

𝜕
𝜕𝑥

(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙
𝜕𝑥

)

= 𝑆 −
𝜕𝑓𝜂
𝜕𝜂

=∶ 𝑆𝑥,

𝜕
𝜕𝜂

(𝜌𝑐𝜙) = 𝑆 −
𝜕𝑓𝑥
𝜕𝑥

=∶ 𝑆𝜂 .
(11)

The 𝜂 variable is discretized in intervals of size 𝑐𝛥𝑡, 𝜂𝑛 = 𝑛𝑐𝛥𝑡. The
notation 𝜙(𝑥𝑗 , 𝜂𝑛) = 𝜙𝑛

𝑗 will be employed. The first equation in (11) can
be discretized at a time level 𝑛 in the usual way. On the other hand,
the discretization of the second equation in (11) is accomplished on
integrating in time at a constant 𝑥-coordinate, 𝑥𝐶 , from 𝜂𝑛−1 to 𝜂𝑛. As
this equation has no diffusion term the values of the coefficients and
the source contribution are those stated earlier for 𝑃 → +∞. The result
is

(𝜌𝑐)𝑛𝐶𝜙
𝑛
𝐶 − (𝜌𝑐)𝑛−1𝐶 𝜙𝑛−1

𝐶 = 𝑏𝑛𝜂𝐶 ,

𝑏𝑛𝜂𝐶 = ∫

𝜂𝑛

𝜂𝑛−1
𝑆𝜂 d𝜂

|

|

|

|

|𝑥𝐶

.

Finally, the two discrete equations can be added to arrive at an expres-
sion with a four-point stencil, see Fig. 4.

− 𝐴𝑛
𝑊 𝜙𝑛

𝑊 +
[

(𝜌𝑐)𝑛𝐶 + 𝐴𝑛
𝐶

]

𝜙𝑛
𝐶 − 𝐴𝑛

𝐸𝜙
𝑛
𝐸 = (𝜌𝑐)𝑛−1𝐶 𝜙𝑛−1

𝐶 + 𝑏𝑛𝜂𝐶 + 𝑏𝑛𝑥𝐶 ,

𝑏𝑛𝑥𝐶 =

[

𝛥𝑥𝑊𝐶 ∫

1

0
𝑆𝑥

𝐼𝐺𝐸0𝑥

𝐼𝐺𝐸01
d𝑥

|

|

|

|

|𝑊𝐶

+ 𝛥𝑥𝐶𝐸 ∫

1

0
𝑆𝑥

(

1 −
𝐼𝐺𝐸0𝑥

𝐼𝐺𝐸01

)

d𝑥
|

|

|

|

|𝐶𝐸

]

𝜂𝑛

,

Defining the vectors

𝐜𝑛 ∶= ((𝜌𝑐)𝑛𝑙𝑏 ,… , (𝜌𝑐)𝑛𝐶 ,… , (𝜌𝑐)𝑛𝑟𝑏)
𝑇 ,

𝑛 ∶=
(

𝜙𝑛
𝑙𝑏,… , 𝜙𝑛

𝑊 , 𝜙𝑛
𝐶 , 𝜙

𝑛
𝐸 ,… , 𝜙𝑛

𝑟𝑏
)𝑇 ,

𝐛𝑛 ∶=
(

𝑏𝑛𝜂 𝑙𝑏 + 𝑏𝑛𝑥 𝑙𝑏,… , 𝑏𝑛𝜂 𝐶 + 𝑏𝑛𝑥𝐶 ,… , 𝑏𝑛𝜂 𝑟𝑏 + 𝑏𝑛𝑥 𝑟𝑏
)𝑇

,

and the matrices

𝐀𝑛 ∶= tridiag(−𝐴𝑛
𝑊 , 𝐴𝑛

𝐶 ,−𝐴
𝑛
𝐸 ),

𝐂𝑛 ∶= diag(𝝆𝐜𝑛) .
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The system (𝐂𝑛 + 𝐀𝑛)𝝓𝑛 = 𝐂𝑛−1𝝓𝑛−1 + 𝐛𝑛, 𝑛 ≥ 1, is solved by the
ridiagonal matrix algorithm (TDMA). For 𝑛 = 1, 𝝓0 = 𝜙0(𝐱) where
∶= (𝑥0,… , 𝑥𝐶 ,… , 𝑥𝑘)𝑇 . The velocity in the transformed temporal term
ill always be taken as 1m/s but it will be kept in the formulae out of
imensional consistency.

In this alternative approach of considering an unknown scalar func-
ion 𝛽(𝑥, 𝜂) the algebraic derivations follow the same path as that for
aP, the reader may simply substitute the expressions for the sources.

. Numerical tests

In this section some numerical tests will be presented in order to
ompare both approaches. Problems in two spatial dimensions and
nsteady one-dimensional problems will be shown. All cases were run
n a desktop with an Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz. All
odes were written in Fortran 90.

The numerical cases were chosen with the idea of exploring both
pproaches in very different settings characterized by the Péclet num-
er. The first test is a manufactured case where it will be shown that
NATE can get a machine-accurate solution with a minimum number
f nodes under special but not trivial conditions. The second, third and
ourth test cases encompass extreme cases of Péclet, that is, 𝑃 = 0
n both coordinates, |𝑃 | → ∞ in one coordinate and |𝑃 | → ∞ in
oth coordinates. The additional last case is one proposed by ten Thije
oonkkamp and Anthonissen [11] who developed the FV-CF scheme,
hose formulation is almost identical to ENATE. FV-CF was already

ompared with ENATE in 1D [12] and their performance in 2D is to be
ssessed. In all cases the mesh is uniform with the same interval size
n both coordinates.

.1. 2D machine-accurate solution

The equation solved in this case corresponds to a manufactured
roblem that represents the transport of temperature in a fluid with
ariable velocity. The equation is

𝜕
𝜕𝑥

(

𝜌𝑐𝑝𝑢𝑇 − 𝑘𝜕𝑇
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝜌𝑐𝑝𝑣𝑇 − 𝑘𝜕𝑇
𝜕𝑦

)

= 𝑆,

here 𝜌 is the density and 𝑐𝑝 is the specific heat at constant pressure,
oth are constant. The actual equation solved is

𝜕
𝜕𝑥

(

𝑢𝑇 − 𝛼 𝜕𝑇
𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝑣𝑇 − 𝛼 𝜕𝑇
𝜕𝑦

)

= 𝑆∗,

with 𝛼 = 𝑘∕𝜌𝑐𝑝 and 𝑆∗ = 𝑆∕𝜌𝑐𝑝. The velocity is variable and given by
𝑢 = 𝑦 and 𝑣 = −𝑥. Two cases were run for 𝛼 = {10−2, 10−4}. The source
is 𝑆∗(𝑥, 𝑦) = 𝑥2 − 𝑦2 − 𝑥, such that the solution is 𝜙 = 𝑦(1 − 𝑥). The
omain is (0, 1) × (0, 1).

With cubic Hermite and just one node in the centre of the square
omain the difference between the computed solution and the exact
ne could be of order 10−16, as long as there is a sufficient number
f nodes for the approximating polynomials to be calculated exactly.
n fact, this manufactured test case was especially chosen to show the
apability of ENATE to obtain a machine-accurate solution for any
umber of grid points in a test case with analytic integrals. In the
ollowing it will be explained why the machine-accurate solution can
e obtained.

The integrating factors included in the integrals of the coefficients
re

xp∫

1

𝑥
𝑃𝑥 d𝑥′ = exp

(

𝑃𝑥(1 − 𝑥)
)

, exp∫

1

𝑦
𝑃𝑦 d𝑦′ = exp

(

𝑃𝑦(1 − 𝑦)
)

,

s 𝑃𝑥 depends only on 𝑦 and 𝑃𝑦 depends only on 𝑥. The 𝐼𝐺𝐸s ratios
can be calculated exactly. For instance,

𝐼𝐺𝐸0𝑥 =
𝑥
exp(𝑃𝑥(1 − 𝑥′))d𝑥′ =

1 − exp(−𝑃𝑥𝑥) ,
6

∫0 𝑃𝑥 exp(−𝑃𝑥)
𝐼𝐺𝐸01 =
1 − exp(−𝑃𝑥)
𝑃𝑥 exp(−𝑃𝑥)

,

and, therefore,
𝐼𝐺𝐸0𝑥
𝐼𝐺𝐸01

=
1 − exp(−𝑃𝑥𝑥)
1 − exp(−𝑃𝑥)

,

similarly in the other direction. Thus, 𝑘̃ and 𝑃𝑒 of Eq. (1) are known
and 𝐴𝑊 , 𝐴𝐸 , 𝐴𝑆 , 𝐴𝑁 , 𝐴𝐶 are exact in 2D.

The source and pseudo-sources are quadratic in 𝑥 and 𝑦, so any
olynomial of second degree or higher may approximate it exactly
long one coordinate, in particular a third-degree Hermite polynomial
cubic Hermite), 𝑆∗(𝑥, 𝑦𝐶 ) =

∑3
𝑘=0 𝑎𝑘𝑥

𝑘. After interpolating the inte-
rand, all source contributions reduce to calculating integrals of the
ype ∫ 𝑥𝑛 exp(−𝑃𝑥𝑥)d𝑥. These integrals have analytic primitives that
ave been included in the code. In conclusion, whatever number of
ntervals is used the result of the integrals of both sources and pseudo-
ources is exact. The only limitation is that a minimum number of nodes
s required to be able to calculate derivatives exactly with CCS. As
oth coefficients and source integrals are exact, the code with ENATE
cheme can provide for this example a machine-accurate solution. It
ust be stressed that this case was run with the general-purpose code,
o previous analytic calculation was done by hand to be later coded.
he computer program turned over machine-accurate results in all
ases with cubic, quintic or septic Hermite polynomials. In Fig. 5 the
2-norm vs. iteration number is shown for REMEDIES. Convergence is
eached between 40–60 iterations with an average CPU time between
.1 and 0.15 s. Septic Hermite is more sensitive to roundoff errors
howing a less stable final value, that is slightly above quintic and cubic
ermite. On the other hand, Fap also reached an 𝑙2 norm close to 10−16

ut the convergence was very slow.

.2. Poisson equation

The accuracy of ENATE either with FaP or with REMEDIES depends
n many factors, particularly on the Péclet number based on the
nterval size. As part of the assessment of REMEDIES two cases with
ero Péclet, i.e. a Poisson equation, were run. The Poisson equation is
idely used in physics and specially in computational fluid dynamics

o solve the pressure field [19,20].
The two cases presented were also studied by Zapata and Balam [21]

here they used high-order compact schemes to solve the Poisson
quation with different sources. Both cases solve

𝜕2𝜙
𝜕𝑥2

+
𝜕2𝜙
𝜕𝑦2

= −𝑆,

n a squared domain of unit side. The two sources, plotted in Fig. 6,
nd boundary conditions are such that the solution for the first case is

(𝑥, 𝑦) = exp
(

−0.5(4𝜋)2((𝑥 − 1∕2)2 + (𝑦 − 1∕2)2)
)

,

and for the second

𝜙(𝑥, 𝑦) = (𝑥3 − 𝑦4 + 𝑥2𝑦3) sin 2𝜋𝑥 sin 2𝜋𝑦.

uniform mesh in both coordinates was used with 𝛥𝑥 = 𝛥𝑦. In these
cases the accuracy of results will be measured by the 𝑙2-norm of the
vector difference between the computed results and the exact ones,
‖𝜙𝑐𝑜𝑚𝑝 − 𝜙𝑒𝑥𝑎‖2 =

∑

𝑖[(𝜙𝑐𝑜𝑚𝑝𝑖 − 𝜙𝑒𝑥𝑎𝑖 )
2𝛥𝑥𝛥𝑦]1∕2.

In Fig. 7 the comparison between the two approaches, REMEDIES
and FaP, is depicted. The norm is presented against the mesh size. The
order of accuracy of both is the same but the actual values are slightly
different with a gap of half an order of magnitude between them. The
relative behaviour is a bit surprising because with cubic Hermite FaP
is slightly better than REMEDIES but it is the other way round with
quintic Hermite. The differences may only be caused by the buildup of
errors due to the total number of arithmetic operations required to get
to a converged solution.
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Fig. 5. 𝑙2-norm of the error versus number of iterations for Case 5.1, 2D Machine-accurate solution, in REMEDIES for a 10 × 10 mesh and 1 sweep. Solid line with cubic Hermite.
Dashed line with quintic Hermite. Dash-dotted line with septic Hermite.
Fig. 6. Source term for the Poisson equation: first case (top), second case (bottom).
7

Fig. 7. 𝑙2-norm of the error for the first Poisson problem. Solid lines are for REMEDIES
and dashed lines correspond to FaP approach. ■ Cubic Hermite. ⧫ Quintic Hermite.

FaP solves the algebraic equation resulting from the sum of Eq. (3)
once discretized, whereas REMEDIES solves the algebraic equation for
𝛥𝜙2 after solving for 𝜙1 and 𝜙2 along coordinate lines. CPU times will
be presented later but we anticipate that REMEDIES is usually faster
than FaP in reaching the converged solution.

Fig. 8 compares ENATE with REMEDIES with results from Zapata
and Balam of similar order of accuracy. These authors present tables
of 𝑙2-norms for explicit, implicit and high-order implicit schemes, the
names refer to the way the second derivatives are evaluated. In each
category different approximations of the source function are consid-
ered. We chose for comparison those whose formal orders of accuracy
are sixth, eighth and tenth respectively, named as EF3, IF3 and HIF3
in the paper. The theoretical orders of accuracy of cubic, quintic and
septic Hermite are fourth, sixth and eighth but in this case, apart
from cubic, the orders were closer to the others just mentioned. Cubic
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Table 1
First Poisson problem. CPU time in seconds for different mesh sizes, number of sweeps, and Hermite polynomial to get a target 𝑙2-norm = 10−6.
No entry means the approach does not reach the target.
Hermite Sweeps Mesh

50 × 50 100 × 100 200 × 200

FaP REM FaP REM FaP REM

Cubic

1 15.771 0.575 262.090 6.906
10 54.847 0.696 269.909 4.111
50 30.730 1.350 281.100 21.750
100 61.000 1.684 476.569 10.765

Quintic

1 4.938 0.004 23.733 0.516 453.636 12.042
10 3.023 0.008 33.895 0.517 445.161 17.941
50 14.590 0.150 58.400 1.380 425.110 22.490
100 14.586 0.491 134.185 8.585 369.123 27.797

Septic

1 7.538 0.004 31.383 0.705 369.807 6.018
10 4.616 0.007 90.719 0.353 434.121 19.869
50 22.630 0.130 89.680 1.410 787.850 22.140
100 44.465 0.602 209.496 8.108 691.379 30.655
Fig. 8. 𝑙2-norm of the error for the first Poisson problem. Solid lines are those of
REMEDIES and dashed lines correspond to Zapata and Balam data of similar order of
accuracy. ■ Cubic Hermite and EF3. ⧫ Quintic Hermite and IF3. ▴ Septic Hermite and
HIF3.

Hermite is the only Hermite polynomial that conforms to the formal
order of accuracy. For a short range of mesh sizes quintic Hermite is
eighth-order but in the last mesh becomes sixth-order. Septic Hermite
is tenth-order over an ample range of mesh sizes and follows closely
the convergence results of HIF3.

The second Poisson case is depicted in Fig. 9. Similar conclusions
to those of the first Poisson case can be drawn from the comparison of
REMEDIES and FaP. For cubic Hermite both approaches gave very close
𝑙2 results. For quintic Hermite the differences were more noticeable,
always in favour of the 𝛽 treatment. It seems that the new terms in
the interpolant introduced by quintic Hermite are more important in
this case and the requirements of a larger number of iterations for FaP
contribute to greater discretization errors. Yet, in the final range of
interval sizes both behave as sixth-order.

Fig. 10 shows the comparison with Zapata and Balam schemes.
All schemes present the formal order of accuracy except septic that is
tenth order. For all interval sizes cubic Hermite is almost two orders
of magnitude better than Zapata et al.’s comparable scheme. Quintic
Hermite is two orders of magnitude better only for small interval sizes.

The explicit schemes of Zapata and Balam require the use of TDMA
or PDMA to solve the final system of equations but due to the stencil
of the implicit schemes, namely 21 points for both IF3 and HIF3 in
2D, a SOR procedure is followed. ENATE only employs TDMA, for a
8

Fig. 9. 𝑙2-norm of the error for the second Poisson problem. Solid lines are for
REMEDIES and dashed lines correspond to FaP approach.

Fig. 10. 𝑙2-norm of the error for the second Poisson problem. Solid lines are those of
REMEDIES and dashed lines correspond to Zapata and Balam data of similar order of
accuracy. ■ Cubic Hermite and EF3. ⧫ Quintic Hermite and IF3. ▴ Septic Hermite and
HIF3.

three-point stencil in each coordinate is employed, which also makes
the coding much less burdensome.
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Fig. 11. First Poisson problem. 𝑙2-norm of the error versus number of iterations in FaP (red line) and REMEDIES (blue line) for a 50 × 50 mesh and 100 sweeps. Solid line with
ubic Hermite. Dashed line with quintic Hermite. Dash-dotted line with septic Hermite.
The 𝑙2 data from Zapata and Balam are extracted directly from their
aper where no information about the CPU time taken by each scheme
s provided for these two cases. In the course of our research with
EMEDIES it was found that the CPU time was strongly dependent
n the Péclet number of the problem. The smaller this number is, the
onger CPU time is needed to get the final solution due to the number of
weeps required to obtain a reasonably good estimation of 𝛥𝜙2. A good
stimation reduces the number of iterations. Remind that this equation
s the only one in REMEDIES that is 2D, the equations for 𝜙1 and 𝜙2
re 1D.

In Tables 1 and 2 the CPU time taken in the two Poisson cases by
aP and REMEDIES is shown. Tables show the time taken to reach a
esired 𝑙2-norm by different Hermite polynomials as interpolants. The
arget norm was arbitrarily set to 10−6. The code was run for a large

number of iterations and the iteration at which 𝑙2-norm was less than
10−6 for the first time was recorded. Times given at the tables were
9

obtained by using the total time and the ratio between the iteration
number of the target and the total number of iterations. One additional
variable that is considered at the tables is the number of sweeps per
iteration as explained in the theoretical description. Note that the right
hand side of the discretized equations is only updated after an iteration
with a prescribed number of inner sweeps is performed. Sweeps control
the accuracy of the solved variable at the end of one iteration.

At earlier stages of this research it was also observed for REMEDIES
that there existed a minimum number of sweeps below which the
solution diverged. This happened when Péclet was very low, that is,
for very fine meshes. With just one iteration in fine meshes a small
number of sweeps do not provide an acceptable solution at the end of
one iteration. The problem was solved by also considering the residual
of the 2D discretized equation for 𝛥𝜙2 at each point in the equation
to obtain 𝛥𝛽. This modification allowed to obtain a converged solution
whatever number of sweeps were set. Note that due to our procedure,
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Table 2
Second Poisson problem. CPU time in seconds for different mesh sizes, number of sweeps, and Hermite polynomial to get a target 𝑙2-norm = 10−6.
Null entry means the run diverged.
Hermite Sweeps Mesh

50 × 50 100 × 100 200 × 200

FaP REM FaP REM FaP REM

Cubic

1 0.62 1.12 9.26 13.88 198.17 220.42
10 2.33 0.42 13.49 6.04 104.12 98.55
50 11.13 0.35 35.48 5.32 313.06 88.10
100 22.03 0.38 71.34 5.26 386.06 86.86

Quintic

1 1.12 1.39 21.36 18.75 342.57 347.93
10 3.76 0.42 25.61 6.34 237.11 128.20
50 17.55 0.34 68.52 5.43 216.07 108.54
100 34.78 0.35 135.85 5.17 193.38 106.05

Septic

1 1.68 1.67 30.12 28.57
10 5.60 0.48 40.22 8.46 137.44
50 28.01 0.37 106.61 6.68 109.92
100 55.60 0.38 210.06 6.43 106.00
e

a
s
c

i.e. sweeps+TDMA, an infinite number of sweeps would theoretically
be required to obtain the exact solution in each iteration. With a finite
number of sweeps there will always be an iteration error and, hence, a
residual.

From the tables it can be seen that CPU times taken by REMEDIES
are shorter than those by FaP, especially for relatively coarse grids.
For the same number of inner sweeps the number of operations is
similar in both approaches, but FaP requires more outer iterations than
REMEDIES to obtain convergence (see Figs. 11 and 12). The number
of operations required for both approaches is detailed in Appendix.
In some test cases FaP is prohibitively slow partially due to the need
of underrelaxation in the flux updates to control the oscillations that
frequently appear in FaP. In order to dampen them an underrelaxation
factor of 0.1 was always used, simply to be on the safe side. No studies
were carried out to determine the optimal value of this factor for every
case. It is very likely that the CPU time may be improved on optimizing
the underrelaxation factor, although it will surely be case dependent.

There are some differences in CPU time between the two cases
comparing FaP and REMEDIES. It seems that the source spatial dis-
tribution plays a significant role in the convergence process. For the
second case, which contains a more complicated source, the differences
in computing time for both approaches are smaller than in the first
case. As the sources are more involved both updated outputs, 𝛽 for
REMEDIES and fluxes for FaP, are more spatially complex and the
differences are reduced.

For this second Poisson case using REMEDIES there are small dif-
ferences in the time taken by a given Hermite polynomial for 10, 50 or
100 sweeps, that is much less than that with 1 sweep. This gives the
user some confidence regarding the chosen number of sweeps: between
10 and 100 they are not going to penalize much the run time. For the
first Poisson case the longest run time is with 100 sweeps which shows
that the number of optimal sweeps is critically dependent on the source
distribution which consequently affects the solution pattern. According
to this very limited study it can be concluded that an adequate number
of sweeps is around 10. This discussion on the optimal number of
sweeps is only relevant when both coordinates are elliptic, that is,
contain a diffusion term. If one of them is parabolic/hyperbolic only
one sweep is required.

5.3. Unsteady homogeneous one-dimensional convection–diffusion problem

The equation solved is an unsteady transport equation in a domain
of unit length for a time 𝑡 ∈ (0, 𝑇 ], i.e.

⎧

⎪

⎪

⎨

⎪

⎪

𝜕𝜌𝜙
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝜌𝑢𝜙 − 𝛤
𝜕𝜙
𝜕𝑥

)

= 0, (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇 ],

𝜙(0, 𝑡) = 0, 𝑡 ∈ (0, 𝑇 ],
𝜙(𝑥, 0) = exp(5𝑥) sin(𝜋𝑥), 𝑥 ∈ (0, 1).
10

⎩

with 𝜌 = 1, 𝑢 = 0.1, 𝑇 = 1 and 𝛤 = 0.01. The solution is 𝜙(𝑥, 𝑡) =
xp(5𝑥 − 𝑡(0, 01𝜋2 + 0, 25)) sin(𝜋𝑥).

As explained earlier, the case has been run with both approaches
s a two-dimensional convection–diffusion equation with a pseudo-
patial coordinate 𝜂 = 𝑐𝑡, 𝑐 = 1. A uniform mesh is employed in both
oordinates with 𝛥𝜂 = 𝛥𝑥.

In Fig. 13 norms of FaP and REMEDIES are compared against each
other as well as with a traditional scheme like Crank–Nicolson. All
schemes conform to their theoretical order of accuracy: Crank–Nicolson
is second order, and all 𝑛th-order Hermite polynomials are of (𝑛 + 1)th
order of accuracy, at least over a decade. Cubic Hermite provides the
same norms for both FaP and REMEDIES. Quintic-REMEDIES is roughly
two orders of magnitude better than Quintic-FaP, both being sixth-
order in part of the graph. Septic-REMEDIES is between eighth- and
ninth-order.

The CPU time for REMEDIES to get a 𝑙2-norm = 10−6 is well below
one second even for the finest meshes, Table 3. Only a sweep is required
to estimate the 2D variables which makes the difference in CPU time
for both approaches more noticeable, always in favour of REMEDIES.
The sweep is always forward in time and the 𝑡 = cons. line can be
calculated with TDMA. In the case of Poisson equation the connection
of a generic point is the same with a north point which has not yet been
updated as with a south point newly obtained in a south–north sweep.
As a consequence, it takes more sweeps, south–north and north–south,
to get a good value. This is only due to our strategy of sweeping the
2D domain line-by-line, had we used another procedure to invert the
coefficient matrix the conclusions about the computer time associated
to various Péclet numbers would have been different.

The convergence for every approach is presented in Fig. 14. As
before, REMEDIES requires far less iterations than FaP. With high-order
polynomials the convergence is less smooth for both approaches, even
FaP-septic does not get a stable value. The reason is very likely to be
related to the presence of a coordinate with no diffusion that makes
the approaches very sensitive to the way the sources are treated, in this
case via CCS. It is well known that CCS are more prone to instabilities
as their degree increases.

5.4. Unsteady inhomogeneous one-dimensional convection problem

The equation solved is an unsteady inhomogeneous transport equa-
tion in a domain of unit length for a time 𝑡 ∈ (0, 𝑇 ], i.e.

⎧

⎪

⎪

⎨

⎪

⎪

𝜕𝜌𝜙
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌𝑢𝜙) = −
𝜙
𝜏
, (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇 ],

𝜙(0, 𝑡) = exp(−𝑡∕𝜏) sin(−𝜋𝑢𝑡), 𝑡 ∈ (0, 𝑇 ],
𝜙(𝑥, 0) = sin(𝜋𝑥), 𝑥 ∈ (0, 1).
⎩
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Fig. 12. Second Poisson problem. 𝑙2-norm of the error versus number of iterations in FaP (red line) and REMEDIES (blue line) for a 50 × 50 mesh and 100 sweeps. Solid line
with cubic Hermite. Dashed line with quintic Hermite. Dash-dotted line with septic Hermite.
Table 3
CPU time in seconds for different mesh sizes to get a target 𝑙2-norm = 10−6 for Case 5.3, the sourceless unsteady equation. Cubic 50 × 50 does
not reach the target 𝑙2. Other null entries mean no convergence.
Hermite Mesh

50 × 50 100 × 100 200 × 200

FaP REM FaP REM FaP REM

Cubic 7.31 0.06 0.03
Quintic 0.43 0.03 47.28 0.08 0.22
Septic 2.06 0.03 0.09
h
s
s
s
d

with 𝜌 = 1, 𝑢 = 1, 𝜏 = {0.5, 0.05}, and 𝑇 = 1. The exact solution is
(𝑥, 𝑡) = exp(−𝑡∕𝜏) sin(𝜋(𝑥 − 𝑢𝑡)). Parameter 𝜏 is a characteristic time
f decay. This convection–reaction problem could be classified as a
yperbolic equation with a stiff–relaxation source term [22], similar to
he Boltzmann equation but with the absence of the local equilibrium
istribution [23].
11
To obtain accurate solutions with FaP the two coordinate lines
ad to be calculated separately. It can be easily checked that the
um of the two produces a discretized 2D equation identical to the
tandard upwind discretization in finite volumes. This gives rise to a
olution pattern very diffusive associated to large amounts of numerical
iffusion. Initially, the standard procedure was followed with FaP but
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Table 4
CPU time in seconds for different mesh size, scheme, and Hermite polynomial to get a target 𝑙2-norm = 10−6 fro Case 5.4, the stiff-source
hyperbolic equation. Null entry means the run diverged.
Hermite Scheme Mesh

50 × 50 100 × 100 200 × 200

FaP REM FaP REM FaP REM

Cubic CCS 1.15 0.27 10.34 0.42 102.94 1.02
CIR 0.86 0.23 7.20 0.39 78.03 0.93

Quintic CCS 4.39 0.31 40.63 0.56 1.35
CIR 2.05 0.22 19.65 0.41 1.02
C
w
i
H

t
f
o
H
a
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⎪

Fig. 13. 𝑙2-norm of the error for Case 5.3, the sourceless unsteady equation. Solid lines
are for REMEDIES and dashed lines are for FaP. ∙ Crank–Nicolson ■ Cubic Hermite.
⧫ Quintic Hermite. ▴ Septic Hermite.

after realizing the overly diffusive solution the procedure had to be
changed and the two equations solved separately. Data from one were
used in the source of the other.

The source depends linearly on the solution and has to be updated
in every iteration. Remind that if Péclet goes to infinity the upwind
integral of the source is the only contribution of the right-hand side. As
CIR may also be employed to calculate this source integral, a thorough
comparison between CIR and CCS in both approaches was carried out
in this test case.

The existence of the solution-dependent source makes the equations
for 𝛥𝜙2 and 𝛥𝜙1 contain an extra source that can be split in two, so the
equations for 𝛥𝜙1 and 𝛥𝜙2 are

𝜕
𝜕𝑥

(

𝜌𝑢𝛥𝜙1 − 𝛤
𝜕𝛥𝜙1
𝜕𝑥

)

= −
𝛥𝜙1
2 𝜏

+ 𝛥𝛽,

𝜕
𝜕𝜂

(

𝜌𝑐𝛥𝜙2
)

= −
𝛥𝜙2
2 𝜏

− 𝛥𝛽.
(15)

The algebraic equation for 𝛥𝜙2 differs from that presented in Eq. (9)
given by

(𝐴𝑥
𝐶 + 𝐴𝜂

𝐶 )𝛥𝜙2𝐶 = 𝐴𝑊 𝛥𝜙2𝑊 + 𝐴𝐸𝛥𝜙2𝐸 + 𝐴𝑆𝛥𝜙2𝑆 + 𝐴𝑁𝛥𝜙2𝑁 +

𝐴𝑥
𝐶 (𝜙1𝐶 − 𝜙2𝐶 ) − 𝐴𝑊 (𝜙1𝑊 − 𝜙2𝑊 ) − 𝐴𝐸 (𝜙1𝐸 − 𝜙2𝐸 ) −

𝛥𝑥𝑊𝐶
2 ∫

1

0

𝛥𝜙1
𝜏

d𝑥
|

|

|

|

|𝑊𝐶
−

𝛥𝜂𝑆𝐶
2 ∫

1

0

𝛥𝜙2
𝜏

d𝑦
|

|

|

|

|𝑆𝐶
.

In our implementation the equation for 𝛥𝜙2 is employed to update
the solution. 𝛥𝜙1 in the first integral of last line is considered to
be equal to 𝛥𝜙2 during the whole updating process. The reason is
that in order to calculate 𝛥𝛽 we found convenient to have the same
olution-dependent source in both Eq. (15).

In Fig. 15 the convergence pattern of two cases of cubic Hermite,
ne with no source in the RHS of 𝛥𝜙 equation and the other with it,
12

2
⎩

is shown. Both runs start from scratch with a mesh of 500 × 500. The
main difference between both approaches is in the initial increase of
the norm during the first iterations. When including the extra source
this increase is much less pronounced what makes the convergence
quicker in the initial stages. In both runs there is a noticeable change
of slope when the norm reaches the region of low values. This may be
related to the relative importance of the neglected 𝛥𝛽 terms compared
to the considered ones. When the neglected integrals are much less than
the terms kept in the RHS associated to 𝜙1 − 𝜙2 the convergence is
very quick, whereas it slows down considerably if they are of the same
order. However, this change of slope is not seen in all cases tested, so
further studies are required to ascertain its origin. For a large interval
of the convergence curve the two curves lie on top of each other. A
criterion to decide whether including or not the 𝛥𝜙2 source can be the
time taken for both approaches to reach a certain 𝑙2-norm, for instance
10−6. Well, the run with no source takes 23 s and that with source
30 s. At least in this case it is not worth to include it. It may well be
that in other computational tests the inclusion of this source makes a
favourable difference.

In this test problem the convergence pattern has some ups and
downs for some combinations of meshes and Hermite polynomials.
In Fig. 16 the 𝑙2-norm is plotted against the number of iterations
for two meshes 100 × 100 and 200 × 200 with quintic Hermite.
This hilly behaviour always appears for quintic and septic Hermite
polynomials and relatively fine grids. Moreover, in the downward part
of the convergence hill the curve is mildly oscillatory that may suggest
that the process of convergence is more unstable in these cases. For
very coarse grids, 10 × 10 and 20 × 20, there is a slight rise in the
norm during several iterations that can barely be noticed.

In Figs. 17 and 18 the 𝑙2-norm is depicted with FaP and REMEDIES.
ubic Hermite behaves as a fourth order scheme. Quintic Hermite
ith FaP is sixth order but with REMEDIES is seventh-order for some

ntervals. Septic Hermite behaviour is pretty close to that of Quintic
ermite.

In Table 4 the CPU time to get down to 𝑙2 = 10−6 is compared for the
wo approaches with 𝑢 = 1 and 𝜏 = 0.5. In all mesh sizes REMEDIES is
aster than FaP. For a given approach, CIR accelerates the convergence
f ENATE with FaP or REMEDIES, as seen in Fig. 19 for a 50 × 50 mesh.
owever, it is less accurate than CCS in ENATE with REMEDIES. With
nother mesh size and 𝜏 parameter the performance is similar.

.5. Wave travelling problem

The last test case is one with a bit more complicated source term.

𝜕𝜙
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑢𝜙) = −1
𝜏
𝜙(1 − 𝜙), (𝑥, 𝑡) ∈ (0, 1) × (0, 0.5],

𝜙(0, 𝑡) = 𝜙0(𝑡) = 0.8 + 0.2 sin(2𝜋𝑡), 𝑡 ∈ (0, 0.5],
𝜙(𝑥, 0) = 𝜙0(𝑥) = 0.8, 𝑥 ∈ (0, 1).
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Fig. 14. 𝑙2-norm of the error versus number of iterations for Case 5.3, the sourceless unsteady equation, in FaP (red line) and REMEDIES (blue line) for a 50 × 50 mesh. Solid
line with cubic Hermite. Dashed line with quintic Hermite. Dash-dotted line with septic Hermite.
As in the previous example, 𝜏 is a characteristic time of decay. The
solution is

𝜙(𝑥, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

1 +
(

1
𝜙0 (𝑡 − 𝑥∕𝑢)

− 1
)

exp
( 𝑥
𝑢𝜏

)

]−1
for 𝑥 < 𝑢𝑡

[

1 +
(

1
𝜙0 (𝑥 − 𝑢𝑡)

− 1
)

exp
( 𝑡
𝜏

)

]−1
for 𝑥 ≥ 𝑢𝑡

This example was also chosen by ten Thije Boonkkamp and Anthonissen
to assess the FV-CF scheme [11]. The solution of this case is only
0 across the characteristic line 𝑥 = 𝑢𝑡. Both the fluxes and 𝛽 are
discontinuous at this line what makes this a challenging test case for our
approach. Additionally, it was shown in [12] that FV-CF and ENATE
were almost identical in 1D but differed considerably in 2D, and this
case is a good test to assess the accuracy of our approach in comparison
to FV-CF.
13
The exact solution decays in time except along the characteristic line
that starts at 𝑥 = 0, 𝑡 = 1∕4 along which 𝜙 is one and the source zero.
This lack of decay initially transforms the sine function into a spiky
function that eventually converts into a function of value one at points
of the straight line 𝑥 = 𝑢(𝑡−1∕4) and measure zero in the 𝑥-domain. The
assessment of both approaches will be performed in the 𝑥-domain for
𝑡 = 0.5. No extra source due to the solution-dependent term has been
included in the 𝛥𝜙2 equation.

In Fig. 20 comparative results with a very coarse grid are depicted.
Contrary to the Euler method, both ENATE approaches follow the
spiky part of the solution but with significant over- and under-shoots,
especially REMEDIES. With such a coarse grid the results are not
very good and a possible solution for a high resolution could be the
clustering of nodes near 𝑥 = 𝑢(𝑡 − 1∕4).

In Fig. 21 the comparison between FV-CF and ENATE is pre-

sented. The values of the parameters employed are 𝜏 = 0.04 and
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,

Fig. 15. 𝑙2-norm of the error versus number of iterations for Case 5.4, the stiff-source
hyperbolic equation, in REMEDIES for a 500 × 500 mesh. Red line with 𝛥𝜙2 source.
Blue line without 𝛥𝜙2 source.

𝑢 = 0.95. We computed the 𝑙1-norm of the error, ‖𝜙𝑐𝑜𝑚𝑝 − 𝜙𝑒𝑥𝑎‖1 =
𝛥𝑥

∑

𝑖 |𝜙𝑐𝑜𝑚𝑝𝑖 − 𝜙𝑒𝑥𝑎𝑖 |, at 𝑡 = 0.5 s. As shown, FV-CF is second-order
and the two ENATE versions, FaP and REMEDIES, are fourth-order.
The main difference between both approaches is the source treatment.
Splitting Eq. (10) into two quasi-one-dimensional equations seems to
work fine either with FaP or REMEDIES because both approaches use
high-order quadratures. In the case of FV-CF, 𝜕𝜙∕𝜕𝑡 is only included
as pseudo-source. Then the scheme produces a first-order ODE system
solved by a second-order Crank–Nicolson method, see [11] for details.

The results presented with ENATE-REMEDIES have been carried out
with CCS for the integrals, but FaP used CIR. Compact derivatives of
fourth-order are used to evaluate the first derivative of the appropriate
variables. Despite the discontinuities of the latter, fourth-order compact
derivative is still able to provide a reasonably good estimation of the
first derivative. In fact, fourth-order compact derivative estimation
even provides usable values of second and third derivatives for Quintic
and Septic Hermite. However, the use of compact derivatives of order
higher than fourth caused a blowup of the calculations. When a com-
bination of Hermite polynomials and compact derivatives of different
orders is used, the order of accuracy of the results is the lower of
the two, for example, Quintic Hermite (sixth-order) and fourth-order
compact derivatives gives a fourth-order accuracy overall. There are
huge differences in the CPU time. FaP took 50 min to reach the solution
at 𝑡 = 0.5 s with a 500×500 mesh whereas REMEDIES employed around
4 min.

6. Conclusions and future research

In this paper, multidimensional convection–diffusion problems were
solved numerically by a novel high-order exponential scheme named
ENATE. This FV-like scheme seeks the exact solution of the second-
order one-dimensional ODE via a discrete equation with a three-point
stencil solved by TDMA. The coefficients and the discrete source con-
tain some integrals of the Péclet number, diffusion parameter and
source.

In order to apply ENATE to steady-state two-dimensional transport
equations, two approaches were used, one of them already developed
in [12]. FaP consists of a coordinate splitting where 𝜕𝑓𝑥∕𝜕𝑥 and 𝜕𝑓𝑦∕𝜕𝑦
are pseudo-sources from the quasi-one-dimensional transport equations
in the other coordinate. On the contrary, REMEDIES is a so-called
axial splitting that, via an extra source 𝛽 and successive corrections
14

in the split differential equations, is able to reach the solution of the
convection–diffusion problem with less number of iterations than FaP.
For transient problems of one spatial dimension, we can solve the
transport equation considering the temporal term as a diffusionless flux,
so we might apply the same approaches as previously.

Five numerical tests were performed. The first example showed that
even if we did not know the exact solution in 2D, we might obtain a
machine-accurate solution with a minimum number of grid points in
two-dimensional problems as long as Péclet number is constant along
the coordinate lines and the source is a polynomial of third-degree or
less (with cubic Hermite). In the example of the Poisson equation, FaP,
REMEDIES and the schemes in [21] were compared. FaP was a bit more
accurate than REMEDIES for Cubic Hermite but with Quintic it was the
other way round, the difference being more noticeable. This drop in
accuracy for FaP is likely due to the number of iterations that increase
with Quintic. In fact, FaP with Septic was not plotted because it showed
a chaotic behaviour, worsening Quintic predictions. With the implicit
scheme in [21], no large differences are found except for the second
case where REMEDIES is two orders of magnitude better with a much
shorter computational stencil.

The final examples were unsteady. In the first one, with diffusion
but no source, REMEDIES enhanced the accuracy in the solution and
reduced the CPU time. The other two are diffusionless with a source
that depends on the solution in different ways. In the first one, FaP
was the best approach due to the treatment of the source by CIR, the
accuracy with REMEDIES was deteriorated in comparison. Pretty small
differences were found with both approaches in the decaying wave
travelling example.

Generally speaking, this study shows than REMEDIES is a viable
alternative to FaP, reducing considerably the run time and providing
a more accurate solution in numerous cases.

Finally, since the scheme is employed through an iterative proce-
dure, theoretical questions such as stability, consistency, and conver-
gence should be addressed in upcoming versions of 2D ENATE.
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Appendix. Floating-point operations

The calculations of arithmetical operations in ENATE with FaP and
with REMEDIES take into account the number of sums, subtractions,
multiplications, and divisions in all numerical procedures. The # symbol
stands for number of arithmetical operations for a numerical procedure.

In general, four numerical procedures take place in ENATE, namely:
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Fig. 16. 𝑙2-norm of the error versus number of iterations for Case 5.4, the stiff-source hyperbolic equation, in REMEDIES with Quintic Hermite. Red line: 100×100, Blue line:
200×200.
Table A.1
Counting the number of sweeps.

Sweeping in 𝑥 direction 𝑝𝑥 Sweeping in 𝑦 direction 𝑝𝑦
east → west → east 1/2 south → north → south 1/2
east → west → east → west → east 1 south → north → south → north → south 1
⋮ ⋮ ⋮ ⋮
east→ west → … →

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎 times

east 𝑎∕4 south→ north → … →
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑏 times

south 𝑏∕4
f

#

#

#

Fig. 17. 𝑙2-norm of the error for Case 5.4, the hyperbolic equation, with 𝑢 = 1 and
= 0.05. ■ Cubic Hermite. ⧫ Quintic Hermite. ▴ Septic Hermite. Solid line, REMEDIES.
ashed line, FaP.

ri-Diagonal Matrix Algorithm, Central Compact Scheme, Compact
ntegration Rules, and Gauss–Seidel line-by-line method.

The Tri-Diagonal Matrix (Thomas) Algorithm implemented in the
ode has

Sums/subtractions = 4𝑚 − 5

Multiplications/divisions = 6𝑚 − 6
#TDMA(𝑚) = 10𝑚 − 11

operations where 𝑚 is the number of variables to solve and 𝑚 ≠ 1.

The Central Compact Schemes solve a tridiagonal linear system of
quations, e.g. 𝐌𝜕𝜙𝜙𝜙∕𝜕𝑥 ≈ (1∕𝛥𝑥)𝐐𝜙𝜙𝜙, using the Thomas Algorithm. The
15
Fig. 18. 𝑙2-norm of the error for Case 5.4, the stiff-source hyperbolic equation, with
𝑢 = 1 and 𝜏 = 0.5. ■ Cubic Hermite. ⧫ Quintic Hermite. ▴ Septic Hermite. Solid line,
REMEDIES. Dashed line, FaP.

total number of operations for the stencil, 𝐐𝜙𝜙𝜙, is

#Sums/subtractions = 𝑚 + 4

#Multiplications/divisions = 2𝑚 + 6

#TDMA(𝑚)
#CCS4(𝑚) = 13𝑚 − 1

or a 4th order scheme and

Sums/subtractions = 3𝑚 + 4

Multiplications/divisions = 4𝑚 + 4

TDMA(𝑚)

#CCS6(𝑚) = 17𝑚 − 3
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Fig. 19. 𝑙2-norm of the error versus number of iterations for Case 5.4, the stiff-source hyperbolic equation, in FaP (top) and REMEDIES (bottom) for a 50 × 50 mesh. Red line
with CCS. Blue line with CIR. Solid line with cubic Hermite. Dashed line with quintic Hermite.
Table A.2
Number of operations for ENATE with FaP.

Operations Hermite

Cubic Quintic

+ and− × and ∕ Total + and− × and ∕ Total

#𝐴′s 3𝑁 ′
𝑥𝑁

′
𝑦 𝑁 ′

𝑥𝑁
′
𝑦 + 4𝑁 ′′

𝑥 𝑁
′′
𝑦 (8𝑁

2
) 3𝑁 ′

𝑥𝑁
′
𝑦 𝑁 ′

𝑥𝑁
′
𝑦 + 4𝑁 ′′

𝑥 𝑁
′′
𝑦 (8𝑁

2
)

#Boundaries 2𝑁 ′′
𝑥 + 2𝑁 ′′

𝑦 + 8 2𝑁 ′
𝑥 + 2𝑁 ′

𝑦 (4𝑁𝑥 , 4𝑁𝑦) 2𝑁 ′′
𝑥 + 2𝑁 ′′

𝑦 + 8 2𝑁 ′
𝑥 + 2𝑁 ′

𝑦 (4𝑁𝑥 , 4𝑁𝑦)

#𝑆𝑥 [1 + 2#CCS4(𝑁𝑦)]𝑁𝑥 − 4 (26𝑁
2
) [1 + #CCS6(𝑁𝑦)]𝑁𝑥 − 4 (17𝑁

2
)

#𝑆𝑦 [1 + 2#CCS4(𝑁𝑥)]𝑁𝑦 − 4 (26𝑁
2
) [1 + #CCS6(𝑁𝑥)]𝑁𝑦 − 4 (17𝑁

2
)

#𝜕𝑆𝑥∕𝜕𝑥 𝑁 ′
𝑦#CCS6(𝑁𝑥) − 4 (17𝑁

2
)

#𝜕𝑆𝑦∕𝜕𝑦 𝑁 ′
𝑥#CCS6(𝑁𝑦) − 4 (17𝑁

2
)

#𝐼𝑆𝑥
01 𝑁 ′

𝑦#CIR4(𝑁𝑥 − 1) (13𝑁
2
) 𝑁 ′

𝑦#CIR6(𝑁𝑥 − 1) (17𝑁
2
)

#𝐼𝑆𝑦
01 𝑁 ′

𝑥#CIR4(𝑁𝑦 − 1) (13𝑁
2
) 𝑁 ′

𝑥#CIR6(𝑁𝑦 − 1) (17𝑁
2
)

#𝑏′s 10𝑁 ′
𝑥𝑁

′
𝑦 10𝑁 ′

𝑥𝑁
′
𝑦 (20𝑁

2
) 18𝑁 ′

𝑥𝑁
′
𝑦 16𝑁 ′

𝑥𝑁
′
𝑦 (34𝑁

2
)

16
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Table A.3
Number of operations for ENATE with REMEDIES.

Operations Hermite

Cubic Quintic

+ and− × and ∕ Total + and− × and ∕ Total

#𝐴′s 3𝑁 ′
𝑥𝑁

′
𝑦 2𝑁 ′

𝑥𝑁
′
𝑦 + 8𝑁 ′′

𝑥 𝑁
′′
𝑦 (13𝑁

2
) 3𝑁 ′

𝑥𝑁
′
𝑦 𝑁 ′

𝑥𝑁
′
𝑦 + 4𝑁 ′′

𝑥 𝑁
′′
𝑦 (8𝑁

2
)

#Boundaries 2𝑁 ′′
𝑥 + 2𝑁 ′′

𝑦 + 8 2𝑁 ′
𝑥 + 2𝑁 ′

𝑦 (4𝑁𝑥 , 4𝑁𝑦) 2𝑁 ′′
𝑥 + 2𝑁 ′′

𝑦 + 8 2𝑁 ′
𝑥 + 2𝑁 ′

𝑦 (4𝑁𝑥 , 4𝑁𝑦)

#𝑆𝑥 𝑁𝑥𝑁𝑦 − 2 𝑁𝑥𝑁𝑦 − 2 (2𝑁
2
) 𝑁𝑥𝑁𝑦 − 2 𝑁𝑥𝑁𝑦 − 2 (2𝑁

2
)

#𝑆𝑦 𝑁𝑥𝑁𝑦 − 2 𝑁𝑥𝑁𝑦 − 2 (2𝑁
2
) 𝑁𝑥𝑁𝑦 − 2 𝑁𝑥𝑁𝑦 − 2 (2𝑁

2
)

#𝜙1 𝑁 ′
𝑦#TDMA(𝑁 ′

𝑥) (10𝑁
2
) 𝑁 ′

𝑦#TDMA(𝑁 ′
𝑥) (10𝑁

2
)

#𝜙2 𝑁 ′
𝑥#TDMA(𝑁 ′

𝑦) (10𝑁
2
) 𝑁 ′

𝑥#TDMA(𝑁 ′
𝑦) (10𝑁

2
)

#𝛥𝜙2 5𝑁 ′
𝑥𝑁

′
𝑦 3𝑁 ′

𝑥𝑁
′
𝑦 (8𝑁

2
) 5𝑁 ′

𝑥𝑁
′
𝑦 3𝑁 ′

𝑥𝑁
′
𝑦 (8𝑁

2
)

#𝛥𝛽 2𝑁 ′
𝑥𝑁

′
𝑦 6𝑁 ′

𝑥𝑁
′
𝑦 (8𝑁

2
) 2𝑁 ′

𝑥𝑁
′
𝑦 6𝑁 ′

𝑥𝑁
′
𝑦 (8𝑁

2
)

#Update 2𝑁 ′
𝑥𝑁

′
𝑦 (2𝑁

2
) 2𝑁 ′

𝑥𝑁
′
𝑦 (2𝑁

2
)

#𝜕𝑆𝑥∕𝜕𝑥 𝑁 ′
𝑦#CCS4(𝑁𝑥) − 4 (13𝑁

2
) 𝑁 ′

𝑦#CCS6(𝑁𝑥) − 4 (17𝑁
2
)

#𝜕𝑆𝑦∕𝜕𝑦 𝑁 ′
𝑥#CCS4(𝑁𝑦) − 4 (13𝑁

2
) 𝑁 ′

𝑥#CCS6(𝑁𝑦) − 4 (17𝑁
2
)

#𝜕2𝑆𝑥∕𝜕𝑥2 𝑁 ′
𝑦#CCS6(𝑁𝑥) − 4 (17𝑁

2
)

#𝜕2𝑆𝑦∕𝜕𝑦2 𝑁 ′
𝑦#CCS6(𝑁𝑦) − 4 (17𝑁

2
)

#𝑏′s 14𝑁 ′
𝑥𝑁

′
𝑦 12𝑁 ′

𝑥𝑁
′
𝑦 (26𝑁

2
) 22𝑁 ′

𝑥𝑁
′
𝑦 18𝑁 ′

𝑥𝑁
′
𝑦 (40𝑁

2
)
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#
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Fig. 20. Exact solution at 𝑡 = 0.5 s (black line) for Case 5.5, the wave travelling
equation. Numerical solutions in a mesh with 𝛥𝑥 = 0.0625 m and time step 𝛥𝑡 = 0.0625
: Explicit Euler method (blue dots), ENATE with FaP (red diamonds) and ENATE with
EMEDIES (green diamonds).

Fig. 21. 𝑙1-norm of the error for Case 5.5, the wave travelling equation. ∙ FV-CF
scheme. ■ ENATE. Solid line, REMEDIES. Dashed line, FaP.
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for a 6th order scheme. Similarly, the Compact Integration Rules use
homas to solve 𝐏 ∫ 𝜙𝜙𝜙d𝑥 ≈ 𝛥𝑥𝐑𝜙𝜙𝜙, for example, with a total number of
perations for the stencil, 𝐑𝜙𝜙𝜙, is

Sums/subtractions = 𝑚 + 2

Multiplications/divisions = 2 𝑚

TDMA(𝑚)
#CIR4(𝑚) = 13 𝑚 − 9

or a 4th order scheme and

Sums/subtractions = 3𝑚 + 2

Multiplications/divisions = 2𝑚 + 2

TDMA(𝑚)
#CIR6(𝑚) = 15𝑚 − 7

or a 6th order scheme.
On the other hand, given a Cartesian mesh, the number of nodes

n the 𝑥 direction is written as 𝑁𝑥, in the 𝑦 direction as 𝑁𝑦, the total
umber of nodes as 𝑁 = 𝑁𝑥𝑁𝑦, and the geometric average nodes as

𝑁 =
√

𝑁 . By removing nodes at the boundaries (Dirichlet conditions),
the number of inner nodes in the 𝑥 direction is 𝑁 ′

𝑥 = 𝑁𝑥 − 2 and
𝑁 ′

𝑦 = 𝑁𝑦 − 2 in the 𝑦 direction. Also is defined 𝑁 ′′
𝑥 = 𝑁 ′

𝑥 − 1 and
𝑁 ′′

𝑦 = 𝑁 ′
𝑦 − 1.

The building block of the code is the matrix solver performing a
Gauss–Seidel line-by-line method. This means: (1) starting with a line
(e.g. 𝑦 = const.) where the neighbouring nodes are known from the
previous iteration, (2) solving the system of equations by the Thomas
Algorithm, and (3) following 1 for all lines. The resolution of all lines
(vertical and horizontal) is named ‘‘one sweep’’. Defining 𝑝𝑥 as the
number of sweeps in 𝑥 direction and 𝑝𝑦 in 𝑦 direction, see Table A.1,
the number of operations for the Gauss–Seidel line-by-line is

#lbl-TDMA = 4𝑝𝑥𝑁 ′
𝑥#TDMA(𝑁 ′

𝑦) + 4𝑝𝑦𝑁 ′
𝑦#TDMA(𝑁 ′

𝑥) + #Neighbour

where #Neighbour = 24𝑝𝑥𝑁 ′
𝑥 + 24𝑝𝑦𝑁 ′

𝑦 are the solution points whose
contribution is considered as source. Therefore, #lbl-TDMA ∼ (80𝑝𝑁

2
)

with 𝑝 = (𝑝𝑥 + 𝑝𝑦)∕2 is the average arithmetic sweep.

A.1. ENATE with FaP

In Table A.2 all operations are summarized except #lbl-TDMA,
hich is an operation in common to both Hermite quadratures. The

otal number of operations for ENATE is #FaP-cubic ∼ ((106+80𝑝)𝑁
2
)

and #FaP-quintic ∼ ((140 + 80𝑝)𝑁
2
).
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A.2. ENATE with REMEDIES

In Table A.3 all operations are summarized except #lbl-TDMA,
which is an operation in common to both Hermite quadratures. The
total number of operations for ENATE is #REMEDIES-cubic ∼ ((107 +
0𝑝)𝑁

2
) and #REMEDIES-quintic ∼ ((163 + 80𝑝)𝑁

2
).
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