000123912 001__ 123912
000123912 005__ 20241125101130.0
000123912 0247_ $$2doi$$a10.1016/j.amc.2022.127642
000123912 0248_ $$2sideral$$a132372
000123912 037__ $$aART-2023-132372
000123912 041__ $$aeng
000123912 100__ $$0(orcid)0000-0001-8221-523X$$aEcheverribar, I.
000123912 245__ $$aExtension of a Roe-type Riemann solver scheme to model non-hydrostatic pressure shallow flows
000123912 260__ $$c2023
000123912 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123912 5203_ $$aThe aim of this work is, first of all, to extend a finite volume numerical scheme, previously designed for hydrostatic Shallow Water (SWE) formulation, to Non Hydrostatic Pressure (NHP) depth averaged model. The second objective is focused on exploring two available options in the context of previous work in this field: Hyperbolic-Elliptic (HE-NHP) formulations solved with a Pressure-Correction technique (PCM) and Hyperbolic Relaxation formulations (HR-NHP). Thus, besides providing an extension of a robust and well-proved Roe-type scheme developed for hydrostatic SWE to solve NHP systems, the work assesses the use of first order numerical schemes in the kind of phenomena typically solved with higher order methods. In particular, the relative performance and differences of both NHP numerical models are explored and analysed in detail. The performance of the models is compared using a steady flow test case with quasi-analytical solution and another unsteady case with experimental data, in which frequencies are analysed in experimental and computational results. The results highlight the need to understand the behaviour of a parameter-dependent model when using it as a prediction tool, and the importance of a proper discretization of non-hydrostatic source terms to ensure stability. On the other hand, it is proved that the incorporation of a non-hydrostatic model to a shallow water Roe solver provides good results.
000123912 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00$$9info:eu-repo/grantAgreement/ES/MINECO/DIN2018-010036
000123912 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000123912 590__ $$a3.5$$b2023
000123912 592__ $$a1.026$$b2023
000123912 591__ $$aMATHEMATICS, APPLIED$$b10 / 332 = 0.03$$c2023$$dQ1$$eT1
000123912 593__ $$aComputational Mathematics$$c2023$$dQ1
000123912 593__ $$aApplied Mathematics$$c2023$$dQ1
000123912 594__ $$a7.9$$b2023
000123912 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123912 700__ $$0(orcid)0000-0002-0415-0001$$aBrufau, P.$$uUniversidad de Zaragoza
000123912 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000123912 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000123912 773__ $$g440 (2023), 127642 [39 pp.]$$pAppl. math. comput.$$tApplied Mathematics and Computation$$x0096-3003
000123912 8564_ $$s7859774$$uhttps://zaguan.unizar.es/record/123912/files/texto_completo.pdf$$yVersión publicada
000123912 8564_ $$s1829600$$uhttps://zaguan.unizar.es/record/123912/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123912 909CO $$ooai:zaguan.unizar.es:123912$$particulos$$pdriver
000123912 951__ $$a2024-11-22-11:58:38
000123912 980__ $$aARTICLE