000123924 001__ 123924
000123924 005__ 20230421130024.0
000123924 0247_ $$2doi$$a10.1016/j.fuel.2022.127074
000123924 0248_ $$2sideral$$a132397
000123924 037__ $$aART-2023-132397
000123924 041__ $$aeng
000123924 100__ $$0(orcid)0000-0002-7743-0426$$aPerpiñán, J.$$uUniversidad de Zaragoza
000123924 245__ $$aIntegration of carbon capture technologies in blast furnace based steel making: a comprehensive and systematic review
000123924 260__ $$c2023
000123924 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123924 5203_ $$aDecarbonization of the iron and steel industry, which accounts for 7–9% of global annual emissions, is a strategic objective to achieve carbon emissions reduction targets in line with climate change policies, while maintaining economic competitiveness. Carbon capture (CC) technologies are of critical importance to achieve these goals. This work presents the first systematic review of the integration of CC technologies in the blast furnace-basic oxygen furnace (BF-BOF) steelmaking route, which is expected to maintain a dominant market share over the coming decades. Integration options for post-combustion, looping cycles, oxy-combustion and pre-combustion are described and compared in terms of energy penalty, carbon emissions abatement potential, cost, technology readiness level, and practical deployment considerations. The review yielded 188 studies from peer-reviewed articles and technical papers. Research is mainly focused on chemical absorption, physical adsorption, and oxy-blast furnace technologies, but other carbon capture methods including calcium looping, Sorption Enhanced Water Gas Shift, and membranes appear promising in terms of cost and carbon emission reduction. This article provides an in-depth analysis of the current state of the art and crucial considerations for future decision making in the techno-economic selection and integration of CC technologies. Barriers to overcome for practical implementation are also identified and discussed in this article.
000123924 536__ $$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2020-TEC-06$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-126164OB-I00/AEI/10.13039/501100011033$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 887077-DISIPO$$9info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO
000123924 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000123924 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123924 700__ $$0(orcid)0000-0001-9967-5806$$aPeña, B.$$uUniversidad de Zaragoza
000123924 700__ $$0(orcid)0000-0002-9174-9820$$aBailera, M.$$uUniversidad de Zaragoza
000123924 700__ $$aEveloy, V.
000123924 700__ $$aKannan, P.
000123924 700__ $$aRaj, A.
000123924 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, P.$$uUniversidad de Zaragoza
000123924 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L. M.$$uUniversidad de Zaragoza
000123924 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000123924 773__ $$g336 (2023), 127074 [30 pp.]$$pFuel$$tFuel$$x0016-2361
000123924 8564_ $$s5896530$$uhttps://zaguan.unizar.es/record/123924/files/texto_completo.pdf$$yVersión publicada
000123924 8564_ $$s2597803$$uhttps://zaguan.unizar.es/record/123924/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123924 909CO $$ooai:zaguan.unizar.es:123924$$particulos$$pdriver
000123924 951__ $$a2023-04-21-12:44:50
000123924 980__ $$aARTICLE