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Robustness assessment of complex networks using the idle network
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Network robustness is an essential system property to sustain functionality in the face of failures or targeted
attacks. Currently, only the connectivity of the nodes resilient to an attack is used to assess robustness. We
propose to incorporate the properties of the emerging connectivity of the nodes that are affected by the attack
(idle network), which is demonstrated to contain relevant information about network robustness, improving the
accuracy of its assessment. Our work shows that the information contained in the idle network offers a potential
to generalize models, enabling them to estimate robustness for unseen attacks.
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The representation of complex systems as networks, where
system components are abstracted as nodes and their interac-
tions as links, has allowed us to advance our understanding of
the structure and dynamics of such systems in fields as diverse
as biology, engineering, economics, and geosciences [1–9].
Particularly, network theory has been instrumental in develop-
ing methodologies to assess the robustness of interconnected
systems such as power grids, the internet, and airports, in the
face of random failures or targeted attacks [10–16].

The robustness of a network can be defined as its ability
to maintain functionality whilst undergoing an attack. In a
world where critical infrastructures and their connectivities
are potential targets of malicious attacks, it is paramount to
identify what are the key network properties that determine
network resilience to a given attack. Since the pioneering
work by Albert et al. [17], a vast literature has presented
methodologies and metrics to quantify network robustness
[11,12,17–24]. However, current methodologies focus mainly
on the connectivity of the nodes that remain unaffected (active
network) by the attack, while the connectivity of the affected
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nodes (idle network) has received minimal attention [25].
Here, we demonstrate the benefit of including information
about the idle network in assessing network robustness.

Let us formally define the active and idle networks, which
naturally emerge from an attack process acting on a network
[25]. Attacking a network is synonymous to a process of
sequential node removal. Consider an initial network N that
consists of N nodes, denoted {ni} : i = 1, ...N , connected by a
set of links {(ni, n j )}. The sequential node removal process
starts at t = 0 with the original network N , and an attack
strategy D(N ). For every discrete time step t > 0, the attack
eliminates a chosen node ni and all of its corresponding links
(ni, ·), resulting in a new network, formed by the sets of nodes
and links that are unaffected by the attack; we denote this
the active network NA(t ). The attack process also gives rise
to the idle network NI (t ) (the projection of the attack on the
network N ), which consists of the entire set of nodes removed
from the network N up to time t , and the links originally
existing among them (see Fig. 1). We can mathematically
express a given attack strategy D acting on a network N , as
the decomposition of N into the active NA(t ) and idle NI (t )
networks:

D : N → {NA(t ),NI (t )}, t = 1, ...N. (1)

It is clear that with respect to the nodes, the active and idle
networks are complementary, implying that the union of the
nodes in NA(t ) and NI (t ) is the set of nodes in N . However,
this is not the case for the connectivity of the nodes, as it is nei-
ther complementary nor symmetric. When a node is removed,
all of its links are removed from the active network. Yet,
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FIG. 1. Schematic illustration of the active and idle networks at different stages of an attack.

from the set of links removed by the attack, only the subset
that connects affected (removed) nodes is included in the idle
network. We argue that the information about the connectivity
of the affected nodes by an attack, which is just available
in the idle network, provides important information on the
effectiveness of the attack, and therefore on the robustness
of the attacked network. Thus, our research hypothesis can
be summarized as follows: There exists pertinent and readily
available information on the robustness of a network under-
going an attack in the corresponding idle network structure.

To test this hypothesis, we extract indicators from the ac-
tive and idle networks to benchmark our capacity to assess
network robustness using only active indicators (traditional
approach) versus incorporating idle indicators as well. Partic-
ularly, we choose two simple indicators to model robustness:
(i) The largest cluster size C, defined as the ratio of the number
of nodes in the largest cluster (set of connected nodes) over
the number of nodes N in the initial network, quantifies the
effect of the attack in breaking down (building up) the active
(idle) network in terms of its size. Note that this metric does
not encompass the effectiveness of the connectivity of these
networks. (ii) The link fraction L is the number of links in the
active (idle) network, normalized by the number of links in
the initial network N . This indicator describes how the attack
removes (adds) links and thus provides information about how
well-connected the nodes are in the active (idle) network.
These indicators were chosen such that, in complement, they
have information on the overall functionality of the network,
and therefore on its robustness.

Network robustness, as the network’s capacity to maintain
functionality whilst undergoing an attack, is a complex, a
priori unknown function of both the specific attack strategy
and network properties. In this study, we use the efficiency E
as a proxy for robustness. Recall that E of a network N with
N nodes is defined as the standardized sum of the reciprocal
of the shortest paths di, j between all pair of nodes i and j:

E = 1

N (N − 1)

∑

i, j∈N ,i �= j

1

di, j
. (2)

In our study, E is normalized to always start at 1, by
dividing the efficiencies computed at the different stages of
an attack by the value of the efficiency for the intact network.
The choice of E as the proxy for robustness is threefold:

(i) it is a well-established proxy of robustness [26–29], (ii)
it avoids circular reasoning in testing our hypothesis, as it
is a function of only the active network, and (iii) its high
complexity offers us a playground to emulate realistic network
robustness assessments, where low complexity indicators are
necessary. Importantly, the framework and results presented in
this work are generalizable for different proxies of robustness
as they are not particular to the choice of efficiency.

Given the two indicators and the proxy for robustness, we
transform our hypothesis into a regression problem. Thus, we
evaluate the difference in estimation accuracy achieved via a
neural network when only active indicators are included in the
training set, and when idle indicators are also included. We
use a forward-feeding and back-propagating artificial neural
network with 3 hidden layers of 10 neurons per layer, each
with ReLu activation functions; set to optimize validation
squared residual loss. Each neural network was implemented
with a dataset of 200 attack sequences, with a 6 : 1 : 1 train,
test, validation split. The output of the neural network is the
estimation of the efficiency as the proxy for robustness. In
order to verify our hypothesis, the estimation accuracy must
increase when the neural network is granted the active and
idle indicators, compared to the estimation produced using the
active indicators alone.

Our study investigates different stochastically generated
synthetic network topologies and attack strategies to test our
hypothesis systematically. Namely, we test the robustness es-
timation for random (Erdős-Rényi [30]), scale-free (using a
configuration model [31]), and small world (Strogatz-Watts
[1]) topologies, undergoing three different attack strategies:
targeted (degree), random failure, and random spreading [25].
Furthermore, the different topologies were explored for vary-
ing initial link densities, as characterized by k̄ (average degree
of the initial network N ). The tested link densities for all
of the synthetic topologies correspond to k̄ ∈ {3, 6, 12, 24}.
Thus, we have explored 36 combinations of topologies, at-
tacks, and link densities. For each of these combinations, 200
different stochastic topologies were generated and exposed
to a full attack evolution, where the indicators and efficiency
were calculated at the different stages of the attack (see Sup-
plemental Material (SM) [32]).

Figure 2 displays a representative case to illustrate our re-
sults. Note that the sum of the square residuals (SSR) has been
used to directly compare the performance of the assessments
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FIG. 2. Evolution of the (a) active and (b) idle indicators (largest
component and link fraction) for a scale-free network with N = 1000
nodes (k̄ = 12), undergoing a degree attack. Estimation of the net-
work efficiency as a function of the attack stage via a neural network
using indicators from (c) only active, (d) only idle, or (e) both active
and the idle networks. The computed values of network efficiency
using Eq. (2) are displayed for comparison in panels (c)–(e). (f)
Sum of the squared residuals (SSR) as a function of the attack stage
computed for a testing set.

by the artificial neural network [33–35] depending on the set
of indicators used for the regression (all the evaluations of
model performance are done over full attack sequences, and
thus comparing SSR is equivalent to comparing mean square
error or root mean square error). As expected, the estimation
of network robustness using active indicators [Fig. 2(a)] is
quite accurate [Fig. 2(c): SSR = 0.02 ± 0.01]. Noticeably, the
idle indicators alone [Fig. 2(b)] allowed us to estimate fairly
well (SSR = 0.06 ± 0.05) the trend of the evolution of the
efficiency as shown in Fig. 2(d). Most importantly, as hy-
pothesized, by combining the indicators of the active and idle
networks [Fig. 2(e)], we obtained a more accurate estimation
of network robustness (SSR = 0.01 ± 0.006). Note that the
difference between the SSR obtained from the model trained
with only active indicators and the model trained with both
active and idle indicators can be interpreted as the marginal
reduction in the SSR obtained by the addition of idle indica-
tors. Additionally, the increased accuracy in the estimation is
consistent throughout all stages of the attack [Fig. 2(f)]. Our
results for the whole data set of network topologies and at-
tacks demonstrate systematically that active indicators, when
combined with idle indicators, increase the accuracy in the
estimation of robustness from 20% to 900% depending on the
topology and attack, verifying our hypothesis (see the SM).

As shown in detail in the SM, we have also observed
from the analysis of the different topologies and attacks that
the more complex (i.e., more variability at different scales)

the efficiency curves are, the greater the improvement in the
accuracy of robustness assessment by acknowledging idle in-
dicators. Guided by this finding, we investigate the potential
role of idle information in distilling variability in the data set
to improve network robustness estimation. To this end, we
systematically explore the effect of variability in the training
set in estimating robustness. More specifically, we trained
neural networks with training sets of increasing variability
by combining different topologies, attacks, and link densities
(including a data set consisting of all combinations), and then
compared the estimation accuracy when only active indicators
are considered, and when active and idle indicators are both
included.

Figure 3 shows the model outputs for the most generalized
case: data for all three topologies, four densities, and three
attacks are included in the training set. The results are appar-
ent: the inclusion of idle indicators [see Figs. 3(c) and 3(g)]
produce exceedingly good predictions when compared with
those achieved via only active indicators [see Figs. 3(a) and
3(b)]. When the difference between the model output and the
true value of robustness (SSR) is computed as a function of
the attack stage [see Figs. 3(d) and 3(h)], a consistent pattern
is observed: active and idle indicators combined outperformed
the active indicators alone during the most significant part of
the attack sequence.

As expected, a general trend is also observed (see the SM):
the more heterogeneous the training set is, the less accurate is
the estimation of network robustness done by all three neural
networks. However, the rate of performance deterioration is
not comparable. As soon as variability is introduced in the
training set, the neural network using the active indicators
exclusively is not able to estimate even the general trend.
Whereas the neural network trained using both the active and
idle indicators is able to estimate the general trend very well
and a majority of the variability. These results are consistent
for all of the topologies tested (see Fig. 3 and the SM).

Two further remarks are noteworthy: (i) In several in-
stances, the neural networks trained exclusively with idle
indicators outperform their active counterparts in assessing
network robustness, highlighting the relevant information
content in the idle network. (ii) In select cases, the neural
network trained with all topologies, densities, and attacks
provides a more accurate estimation of robustness, than the
neural network trained for a specific topology, attack, and link
density, highlighting the value of idle indicators in interpreting
the overall variability in the data set to improve estimations.

Acknowledging that the used synthetic networks lack
some properties often exhibited by real-world networks (e.g.,
modularity), we further test the relevance of idle network
information in assessing robustness of real networks. We
simulate stochastic degree attacks on real-world topologies,
where the probability of removing a given node is proportional
to its original degree. We also evaluate the role of idle infor-
mation in generalizing the estimation robustness for an unseen
attack (e.g., based on betweenness centrality). Particularly, we
first train a neural network using only active indicators result-
ing from 200 node removal sequences obtained by following
a stochastic degree attack strategy. Our results show a fairly
good estimation of our proxy of robustness [see Fig. 4(a):
Little Rock Lake Food Web [36]]. That same trained neural
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FIG. 3. Performance of a neural network in estimating network robustness when trained with the entire data set of topologies, attacks, and
link densities. Results for three different models are presented: neural network trained with (a),(e) active indicators, (b),(f) idle indicators, and
(c),(g) both active and idle indicators. The estimations are displayed for an Erdős-Rényi topology with k̄ = 6 undergoing degree attacks (top
panels), and for scale-free networks of k̄ = 12 undergoing random attacks (bottom panels). The mean and standard deviation of the sum of the
squared residuals (SSR) computed for a testing set, consisting of 25 synthetic topologies undergoing their respective attacks, is also reported
as an inset in the respective panels. Cumulative values of SSR as a function of the attack stage for the (d) Erdős-Rényi and (h) scale-free
topologies are displayed as well.

network fails to estimate the robustness of the same network
under a stochastic betweenness attack (unseen attack) dur-
ing the vast majority of the attack sequence [see Fig. 4(c)].
Notably, if a neural network is trained with the active and idle

FIG. 4. Illustration of the four real network topologies tested
(top panels). An artificial neural network was trained by attack-
ing the Little Rock Lake’s topology with 200 stochastic degree
attack sequences. The estimation of network robustness are shown
for (a),(c) attacks of the same type as those in the training, and
(b),(d) previously unseen attack schemes (stochastic betweenness
attack).

indicators of the same 200 node removal sequences (stochastic
degree attacks), not only do we obtain better accuracy in
estimating network robustness under stochastic degree attacks
[see Fig. 4(b)], but also that neural network provides an
exceptionally well-maintained accuracy in the estimation of
network robustness for a previously unseen attack (stochastic
betweenness attack) for the vast majority (and relevant) part
of the attack sequence [see Fig. 4(d)]. These results have
been tested for several real-world networks (Little Rock Lake
Food Web [36], Budapest Connectome [37], and US airports
[38], see the SM), corroborating our two previous findings,
namely, idle network information (i) systematically improves
our capacity to estimate network robustness, and (ii) allows
us to retain accuracy in network robustness estimation under
scenarios of enhanced variability, both in the training set and
out-of-sample (e.g., altered attack strategies).

Our results indicate that the key role of idle indicators is
to partially harness the existing information in the internal
variability of the training set to gain estimation power (i) in
the face of variability in the training set (either from its intrin-
sic stochastic variability or due to the inclusion of different
topologies and attacks in the training set), and (ii) for unfore-
seen attacks and topological features that generate variability
compatible with that observed in the training set. Thus, the
idle network information is instrumental for our model (neural
network) to interpret variability and improve the robustness
assessment. It is worth noting that the indicators chosen in this
study (size of the largest cluster and link fraction) could be
particularly clumsy in encoding complementary information
on network robustness to that encoded by the active indicators
for certain network topologies (e.g., spatial networks such as
the power grid [1]), and therefore, alternative idle indicators
could be proposed to more effectively mine the information
available in the idle network in those cases.
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We would like to remark that this study uses a neural
network as a tool to turn our hypothesis into a regression prob-
lem. The chosen neural network architecture and typology to
estimate our proxy of robustness is not intended to be optimal,
but to demonstrate the information content and role of the
idle network in the assessment of network robustness. Thus,
we anticipate that using convolutional neural networks may
improve the accuracy of robustness estimation. Such further
improvements in the accuracy of estimating efficiency can
lead to important implications, since neural networks trained
for generalized data sets would offer a light way to estimate
network efficiency, which otherwise is a computationally very
demanding quantity to be calculated.

Finally, we want to emphasize that we have presented this
new general framework for network robustness assessment
and tested our hypothesis using undirected and unweighted
monoplex for clarity and better interpretability of our results.
Nevertheless, our framework relies on no assumptions that
prevent it from being used in more general setups. In fact,
it would be interesting to explore the role of the idle network
in assessing network robustness for weighted monoplex and
multilayer networks.

Assessing network robustness accurately is essential to
ensure the correct and sustained functionality of many nat-
ural and engineered systems. Our study shows that there is

pertinent and readily available information on the robustness
of a network in the so-called idle network. The inclusion of
idle network information in models to assess network robust-
ness allows us to improve the accuracy of our estimations for a
specific network topology and attack and equips models with
the capability to interpret in-sample and out-sample variability
to preserve estimation power amid noise and unseen variabil-
ity. Thus, evaluating network robustness in the light of the idle
network constitutes a conceptual paradigm shift that could
improve the quality and accuracy of its assessment and might
lead to new strategies to guide enhanced network resilience.
Along these lines, our work also opens the path to developing
new ways to design and reconfigure existing networks in order
to maximize or optimize their structural robustness.
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[30] P. Erdős and A. Rényi, On random graphs I, Publicationes
Mathematicae Debrecen 6, 290 (1959).

[31] M. Catanzaro, M. Boguñá, and R. Pastor-Satorras, Generation
of uncorrelated random scale-free networks, Phys. Rev. E 71,
027103 (2005).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.4.L042050 for extended results cor-
responding to the complete set of experiments performed in this
work.

[33] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, USA, 2016).

[34] T. Chakraborty, A. K. Chakraborty, and S. Chattopadhyay, A
novel distribution-free hybrid regression model for manufac-
turing process efficiency improvement, J. Comput. Appl. Math.
362, 130 (2019).

[35] R. Iten, T. Metger, H. Wilming, L. del Rio, and
R. Renner, Discovering Physical Concepts with
Neural Networks, Phys. Rev. Lett. 124, 010508
(2020).

[36] N. D. Martinez, Artifacts or attributes? effects of resolution on
the little rock lake food web, Ecological Monographs 61, 367
(1991).

[37] B. Szalkai, C. Kerepesi, B. Varga, and V. Grolmusz, The bu-
dapest reference connectome server v2.0, Neurosci. Lett. 595,
60 (2015).

[38] V. Colizza, R. Pastor-Satorras, and A. Vespignani,
Reaction–diffusion processes and metapopulation
models in heterogeneous networks, Nat. Phys. 3, 276
(2007).

L042050-6

https://doi.org/10.1016/j.physa.2017.07.020
http://arxiv.org/abs/arXiv:2202.09692
https://doi.org/10.1038/s41598-017-08714-3
https://doi.org/10.1093/comnet/cnt004
https://doi.org/10.1093/comnet/cnu010
https://doi.org/10.1098/rsos.160196
https://doi.org/10.1016/j.physa.2020.124317
https://doi.org/10.5486/PMD.1959.6.3-4.12
https://doi.org/10.1103/PhysRevE.71.027103
http://link.aps.org/supplemental/10.1103/PhysRevResearch.4.L042050
https://doi.org/10.1016/j.cam.2019.05.013
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.2307/2937047
https://doi.org/10.1016/j.neulet.2015.03.071
https://doi.org/10.1038/nphys560

