000123937 001__ 123937
000123937 005__ 20241125101131.0
000123937 0247_ $$2doi$$a10.1088/1361-6528/aca9d6
000123937 0248_ $$2sideral$$a132394
000123937 037__ $$aART-2023-132394
000123937 041__ $$aeng
000123937 100__ $$aFullerton, J
000123937 245__ $$aControlled evolution of three-dimensional magnetic states in strongly coupled cylindrical nanowire pairs
000123937 260__ $$c2023
000123937 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123937 5203_ $$aCylindrical magnetic nanowires are promising systems for the development of three-dimensional spintronic devices. Here, we simulate the evolution of magnetic states during fabrication of strongly-coupled cylindrical nanowires with varying degrees of overlap. By varying the separation between wires, the relative strength of exchange and magnetostatic coupling can be tuned. Hence, we observe the formation of six fundamental states as a function of both inter-wire separation and wire height. In particular, two complex three-dimensional magnetic states, a 3D Landau Pattern and a Helical domain wall, are observed to emerge for intermediate overlap. These two emergent states show complex spin configurations, including a modulated domain wall with both Néel and Bloch character. The competition of magnetic interactions and the parallel growth scheme we follow (growing both wires at the same time) favours the formation of these anti-parallel metastable states. This works shows how the engineering of strongly coupled 3D nanostructures with competing interactions can be used to create complex spin textures.
000123937 536__ $$9info:eu-repo/grantAgreement/ES/DGA/Q-MAD$$9info:eu-repo/grantAgreement/EC/H2020/101001290/EU/3DNANOMAG-Three-dimensional nanoscale magnetic structures$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101001290-3DNANOMAG$$9info:eu-repo/grantAgreement/EC/H2020/746958/EU/Perpendicular Magnetic Anisotropy: from Topological Defects to Reconfigurable Magnetic Devices/MAGTOPRECON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 746958-MAGTOPRECON$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104604RB/AEI-10.13039-501100011033
000123937 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000123937 590__ $$a2.9$$b2023
000123937 592__ $$a0.631$$b2023
000123937 591__ $$aPHYSICS, APPLIED$$b68 / 179 = 0.38$$c2023$$dQ2$$eT2
000123937 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b87 / 141 = 0.617$$c2023$$dQ3$$eT2
000123937 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b221 / 439 = 0.503$$c2023$$dQ3$$eT2
000123937 593__ $$aBioengineering$$c2023$$dQ2
000123937 593__ $$aElectrical and Electronic Engineering$$c2023$$dQ2
000123937 593__ $$aChemistry (miscellaneous)$$c2023$$dQ2
000123937 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ2
000123937 593__ $$aMechanical Engineering$$c2023$$dQ2
000123937 593__ $$aMechanics of Materials$$c2023$$dQ2
000123937 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ2
000123937 594__ $$a7.1$$b2023
000123937 655_4 $$ainfo:eu-repo/semantics/conferenceObject$$vinfo:eu-repo/semantics/publishedVersion
000123937 700__ $$aHierro-Rodriguez, A
000123937 700__ $$aDonnelly, C
000123937 700__ $$aSanz-Hernández, D
000123937 700__ $$aSkoric, L
000123937 700__ $$aMacLaren, D A
000123937 700__ $$aFernández-Pacheco, A
000123937 773__ $$g34, 12 (2023), 125301 [11 pp.]$$pNanotechnology$$tNanotechnology$$x0957-4484
000123937 8564_ $$s1022836$$uhttps://zaguan.unizar.es/record/123937/files/texto_completo.pdf$$yVersión publicada
000123937 8564_ $$s2093257$$uhttps://zaguan.unizar.es/record/123937/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123937 909CO $$ooai:zaguan.unizar.es:123937$$particulos$$pdriver
000123937 951__ $$a2024-11-22-11:59:07
000123937 980__ $$aARTICLE