000123951 001__ 123951
000123951 005__ 20241125101126.0
000123951 0247_ $$2doi$$a10.1016/j.foodres.2022.112280
000123951 0248_ $$2sideral$$a131409
000123951 037__ $$aART-2023-131409
000123951 041__ $$aeng
000123951 100__ $$0(orcid)0000-0002-5895-2157$$aGayán, Elisa$$uUniversidad de Zaragoza
000123951 245__ $$aDynamics of high hydrostatic pressure resistance development in RpoS-deficient Escherichia coli
000123951 260__ $$c2023
000123951 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123951 5203_ $$aHigh hydrostatic pressure (HHP) treatment is one of the most widely accepted non-thermal food processing methods, but HHP-resistance development in pathogenic or spoilage bacteria might compromise the safety and stability of HHP-treated foods. Charting the possible routes and mechanisms of HHP resistance development in foodborne bacteria is therefore essential to anticipate or prevent the appearance of resistant variants. While upregulation of the RpoS-governed general stress response is a well-established route for increased HHP resistance in Escherichia coli, previous work revealed that mutations causing attenuated cAMP/CRP activity or aggregation-prone TnaA variants can evolve to overcome the HHP-hypersensitivity of an E. coli ΔrpoS mutant. In this study, further directed evolution and genetic analysis approaches allowed us to demonstrate that both kinds of mutants tend to co-emerge and compete with each other in E. coli ΔrpoS populations evolving towards HHP resistance, because of the higher HHP resistance of cAMP/CRP mutants and the faster growth rate of the TnaA mutants. Moreover, closer scrutiny of evolving populations revealed RpoS, cAMP/CRP and TnaA independent routes of HHP resistance development, based on downregulation of YegW or RppH activity.
000123951 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000123951 590__ $$a7.0$$b2023
000123951 592__ $$a1.495$$b2023
000123951 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b13 / 173 = 0.075$$c2023$$dQ1$$eT1
000123951 593__ $$aFood Science$$c2023$$dQ1
000123951 594__ $$a12.5$$b2023
000123951 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123951 700__ $$aWang, Zhiying
000123951 700__ $$0(orcid)0000-0002-4915-3302$$aSalvador, Maika$$uUniversidad de Zaragoza
000123951 700__ $$aGänzle, Michael G.
000123951 700__ $$aAertsen, Abram
000123951 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000123951 773__ $$g164 (2023), 112280 [11 pp.]$$pFood res. int.$$tFood Research International$$x0963-9969
000123951 8564_ $$s952779$$uhttps://zaguan.unizar.es/record/123951/files/texto_completo.pdf$$yVersión publicada
000123951 8564_ $$s2752995$$uhttps://zaguan.unizar.es/record/123951/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123951 909CO $$ooai:zaguan.unizar.es:123951$$particulos$$pdriver
000123951 951__ $$a2024-11-22-11:57:40
000123951 980__ $$aARTICLE