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The effect of dry needling in chronic stroke with a complex network 1 

approach: a case study 2 

Abstract 3 

Background: Dry Needling (DN) has been demonstrated to be effective in improving 4 

sensorimotor function and spasticity in patients with chronic stroke. Electroencephalogram 5 

(EEG) has been used to analyze if DN has effects on the central nervous system of patients with 6 

stroke. There are no studies on how DN works in patients with chronic stroke based on EEG 7 

analysis using complex networks. Objective: The aim of this study was to assess how DN works 8 

when it is applied in a patient with stroke, using the graph theory. Methods: One session of DN 9 

was applied to the spastic brachialis muscle of a 62-year-old man with right hemiplegia after 10 

stroke. EEG was used to analyze the effects of DN following metrics that measure the 11 

topological configuration: 1) network density, 2) clustering coefficient, 3) average shortest path 12 

length, 4) betweenness centrality, and 5) small-worldness. Measurements were taken before and 13 

during DN. Results: An improvement of the brain activity was observed in this patient with 14 

stroke after the application of DN, which led to variations of local parameters of the brain 15 

network in the delta, theta and alpha bands, and inclined towards those of the healthy control 16 

bands. Conclusions: This case study showed the positive effects of DN on brain network of a 17 

patient with chronic stroke. 18 
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Introduction 30 

Stroke is one of the leading causes of disability with up to 70% of stroke patients 31 

experiencing moderate to severe dysfunction post-stroke which places a heavy physical and 32 

mental burden on patients and their families. Early post-stroke rehabilitation can improve 33 

recovery, minimize functional disability, and reduce the potential costs of long-term care [1].  34 

Rehabilitation protocols in stroke patients usually combine different physiotherapy 35 

approaches with different medical treatments, such as oral antispastic drugs or botulinum toxin 36 

type A (BTX-A) infiltration to decrease spasticity and improve motor function. Moreover, in 37 

recent years, other non-pharmacological treatments such as dry needling (DN) have been 38 

demonstrated to be effective in improving sensorimotor function and spasticity in patients with 39 

chronic stroke [2] as well as demonstrating to be a cost-effective treatment [3]. In the case of 40 

DN, recent publications suggest that it may have central effects [4-6]. 41 

Electroencephalogram (EEG) has been used to analyze if interventions in stroke patients 42 

have effects on the central nervous system, as it provides continuous, real-time, non-invasive 43 

measurement of brain function, which offers new insights into the pathophysiology of the brain 44 

after a stroke [7-10]. Studies of brain network organization have adopted techniques used to 45 

quantitative analyze complex networks, largely based on graph theory, which provide a powerful 46 

way of quantifying the brain’s structural and functional systems [11]. The low cost and 47 

availability of EEG, the simplicity, and the extraordinary sensitivity and specificity make this 48 

approach suitable for assessing the efficacy of therapeutic interventions [12].  49 

However, to our knowledge, there are no studies on how DN works in patients with 50 

chronic stroke based on EEG analysis using complex networks. Therefore, the objective of this 51 

case study was to assess the effects of DN on brain network when it is applied in a patient post-52 

stroke, using the graph theory.  53 

 54 

Material and methods 55 

Patient description and assessment 56 

The patient was a 62-year-old man with chronic ischemic stroke as diagnosed by the 57 

neurologist. His stroke duration was two years since onset. He had right hemiplegia. The affected 58 
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limb was in the Brunnstrom Recovery Stage 3 (marked spasticity with basic limb synergies 59 

performed voluntarily). Written consent was obtained before starting the measurements. Initial 60 

assessment was carried out with EEG, collecting data during 5 minutes in a resting mode in 61 

seated position with eyes closed, before and during DN. Data were compared with those of a 62 

healthy matched control (61-year-old). EEG data were recorded with 18 electrodes on the scalp 63 

at a sampling rate of 256 Hz. For recording, we used the 10-20 system and the electrodes Fp1, 64 

Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, P3, Pz, P4, T5, T6, O1.  65 

 66 

Treatment 67 

To perform the intervention, the patient was in supine position on his back. DN was 68 

performed in the approximate motor point of the brachialis muscle [13] for 60 seconds using a 69 

50mm x 0.3 mm disposable sterile needle; DongBang AcuPrime Ltd, Korea. The needle was 70 

manipulated fast in and fast out, with a frequency of approximately 1Hz. The brachialis muscle 71 

was selected as it is shown the most limiting factor of the elbow extension in spasticity flexion 72 

pattern of elbow and the relevant target for spasticity treatment post stroke [13]. A point from 73 

distal 30% and 2 cm medial to a reference line connecting humerus lateral epicondyle to the 74 

coracoid process was needled for brachialis muscle [14].  75 

 76 

Data analysis 77 

Graph theory allows studying a complex real-world system by defining a network (or 78 

graph) as composed by a set of nodes (vertices) and the links (edges) between them, which 79 

models such system. Network structures exist in a wide range of different areas, such as 80 

technological and transportation infrastructures, social phenomena, biological and neural 81 

systems. Each network structure presents specific topological features which characterize a 82 

network's connectivity, interactions, and dynamic processes [15].  Therefore, a complex 83 

network's analysis relies on using measurements that can express its most relevant topological 84 

features to enable characterization of its complex statistical properties [16]. In the case of brain 85 

function studies, structural and functional brain networks can be defined from anatomical 86 

representations of the brain or from EEG electrodes, while links, depending on the data set, 87 

refers to anatomical, functional, or effective connections [17]. In this study, we considered a 88 

functional brain network using the electrodes as nodes of the graph and edges defined by 89 
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analyzing the generalized partial directed coherence (GPDC) [18] between the signals of each 90 

pair of electrodes. EEG data was extracted in European Data Format and was processed in 91 

MATLAB with EEGLAB toolbox to generate the brain functional network and the association 92 

matrices. The analyzes were performed in python with NetworkX and SciPy to assess the effects 93 

of DN in this patient with stroke. Data below 45 Hz were considered for analysis. 94 

Prior to data analysis, aberrant waves such as blink and electromyography signals were 95 

removed. GPDC relates each pair of electrodes by assigning a normalized signal coherence value 96 

between 0 and 1, thus nodes’ association matrix defines a weighted link between all the nodes of 97 

the network. We converted the matrices from weighted to non-weighted directed by establishing 98 

a cut-off threshold of 0.15, removing the links between nodes with signal coherence below that 99 

threshold. Finally, 2700 unweighted directional matrices for each dataset were obtained 100 

corresponding to the processing of the EEG signals carried out on delta (below 4 Hz), theta 101 

(between 4 Hz to 8 Hz), alpha (between 8 to 13 Hz), beta (between 13 to 30 Hz), and gamma 102 

(between 30 and 45 Hz) bands.  103 

For the assessment of the effects of DN in this patient with stroke, we used the following 104 

metrics that measure the topological configuration: 1) network density, 2) clustering coefficient, 105 

3) average shortest path length, 4) betweenness centrality, and 5) small-worldness. Table 1 106 

summarizes these key metrics. 107 

Table 1. Network metrics 108 

Parameter Abbreviation Formula  

Density 𝐷𝐷 𝐷𝐷 =
2𝑚𝑚

𝑛𝑛(𝑛𝑛 − 1)
 

(1) 

Average shortest path length 𝐿𝐿 𝐿𝐿 =
1

𝑛𝑛(𝑛𝑛 − 1)
�𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑖𝑖

 
(2) 

Local clustering coefficient 𝐶𝐶𝑖𝑖 𝐶𝐶𝑖𝑖 =
1

𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1)
�𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗
𝑖𝑖,𝑗𝑗

 
(3) 

Global clustering coefficient 𝐶𝐶 𝐶𝐶 =
1
𝑛𝑛
�𝐶𝐶𝑖𝑖
𝑖𝑖

 (4) 

Betweenness centrality 𝐵𝐵𝐶𝐶 𝐶𝐶𝐵𝐵(𝑖𝑖) = �
𝜎𝜎𝑖𝑖𝑖𝑖(𝑖𝑖)
𝜎𝜎𝑗𝑗𝑖𝑖𝑖𝑖≠𝑖𝑖≠𝑗𝑗

 
(5) 

Small-worldness 𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆 = 𝐶𝐶/𝐿𝐿 (6) 
 109 
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Network density (𝐷𝐷, formula 1) was obtained by the ratio of the number of network edges 110 

to the maximum possible number of network edges [19], with  𝑛𝑛 as the number of nodes and 𝑚𝑚 111 

the number of edges. Values of 𝐷𝐷 may range from 0 to 1. The closer 𝐷𝐷 is to one, the more 112 

cohesive and denser the network, and the lower the number, the less cohesive the network. 113 

Average shortest path length (𝐿𝐿, formula 2) is defined as the average number of steps in 114 

the shortest paths for all node pairs in a network [20], where 𝑑𝑑𝑖𝑖𝑖𝑖 indicates the distance between 115 

node 𝑖𝑖 and node 𝑗𝑗 (the number of edges in the shortest path between both nodes). 116 

Local clustering coefficient (𝐶𝐶𝑖𝑖, formula 3) calculates the local cohesion of a node 𝑖𝑖 with 117 

its neighbors [20], being 𝑘𝑘𝑖𝑖 the number of nodes directly connected with node 𝑖𝑖, and 𝑎𝑎𝑥𝑥𝑥𝑥 terms 118 

indicate connections between pair of nodes (𝑥𝑥,𝑦𝑦) (they equal 1 if nodes are connected and 0 119 

otherwise). Global clustering coefficient (𝐶𝐶, formula 4), also called Network average clustering 120 

coefficient, provides an overall measure of the cohesion of the nodes in the whole network. 121 

Centralities measure the relative importance of a node in a network, such as connecting 122 

directly or being available to others as well as being an intermediary between others. 123 

Infrastructural analysis to determine the characteristics of a network is derived from the concept 124 

of centrality, which is measured by a variety of criteria. In this analysis, we used betweenness 125 

centrality. Betweenness centrality (𝐵𝐵𝐶𝐶, formula 5) determines which particular node is most 126 

among the nodes in the network [21]. In the formula, 𝜎𝜎𝑗𝑗𝑖𝑖 is the number of shortest paths from 127 

node 𝑘𝑘 to node 𝑗𝑗, and 𝜎𝜎𝑗𝑗𝑖𝑖(𝑖𝑖) is the number of those paths that pass through node 𝑖𝑖. 128 

The measure of network small-worldness (𝑆𝑆𝑆𝑆, formula 6) is defined as the ratio between 129 

C and L [22,23]. The 𝑆𝑆𝑆𝑆 coefficient is used to describe the balance between the local 130 

connectedness and the global integration of a network. When 𝑆𝑆𝑆𝑆 is larger than 1, a network is 131 

said to have small-worldness properties. Small-worldness organization mixes short path length 132 

and high clustering. 133 

Results 134 

The results of the EEG analysis using complex dynamic networks are presented in figures 135 

1 to 5, which show the variations of the metrics defined in Table 1 for each of the EEG bands. 136 

Each figure present 3 curves showing the changes in the network metrics considered from its 137 

maximum value to its minimum value. The green and blue lines show the changes in the network 138 
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parameter considered for the patient before and during the DN treatment respectively, and the 139 

red line shows the parameter for the healthy subject as control. 140 

Figure 1 shows the changes in network density, variations in the delta, theta, and alpha 141 

bands of the stroke case that are significantly different than those of the healthy control. As 142 

shown in figure 1, the values of the delta, theta and alpha bands in the stroke case are becoming 143 

closer to the healthy control during DN application. In the case of beta and gamma bands, the 144 

values are similar for both the stroke patient and the healthy control, although some changes also 145 

occurred in these bands during DN. 146 

 147 

 148 
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 149 

Figure 1. Variations in network density show delta (a), theta (b), and alpha (c) bands that 150 
becoming more similar to those of the healthy control during DN application. The beta (d) and 151 

gamma (e) bands show no significant differences between the stroke case and the healthy 152 
control. 153 

 154 

Figure 2 on the average shortest path length shows that the variations in the stroke case 155 

are smaller than those of the normal case, with significant differences observed in the delta, theta 156 
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and alpha bands. In the beta and gamma bands, there are no significant differences between the 157 

stroke case and the healthy control. In the delta, theta, and alpha bands, during DN application, 158 

the values of stroke case variations are becoming closer to normal. In the beta and gamma bands, 159 

although there is no difference between the stroke case and healthy control, performing DN 160 

increased the average shortest path length parameter values in these bands. 161 

 162 

Figure 2. Variations in average shortest path show delta (a), theta (b), and alpha (c) bands 163 
becoming more similar to the healthy control during DN application. The beta (d) and gamma (e) 164 

bands show no significant differences between the stroke case and the healthy control. 165 
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Figure 3 shows the global clustering coefficient. In delta, theta, and alpha bands, there are 166 

significant differences between the stroke and the healthy control. During DN application, the 167 

global clustering coefficient parameter variations in the stroke case are becoming closer to 168 

normal. In beta and gamma bands, there are not much difference between the stroke case and the 169 

healthy control. In fact, DN caused changes in the structure of the stroke patient’s brain network. 170 

The variations in Figure 3 are very similar to the density variations as shown in Figure 1. 171 
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 172 

Figure 3. Variations in global clustering coefficient show delta (a), theta (b), and alpha (c) bands 173 
becoming more similar to the healthy control during DN application. The beta (d) and gamma (e) 174 

bands show no significant differences between the stroke case and the healthy control. 175 

Figure 4 shows the betweenness centrality changes. The values of these variations in all 176 

bands show a lower value for the stroke case compared to those of the healthy control. In all 177 

bands, the betweenness centrality variations in the stroke case are becoming closer to normal 178 

during DN. In the delta, theta, and alpha bands, there are significant differences in maximum 179 
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values of the variations in betweenness centrality between the stroke case (maximum value less 180 

than 0.1) and the healthy control (maximum value larger than 0.2). The betweenness centrality is 181 

the only parameter that shows differences in all bands between the stroke case and the healthy 182 

control. 183 

 184 

 185 

Figure 4. Variations in betweenness centrality show delta (a), theta (b), alpha (c), beta (d), and 186 
gamma (e) bands becoming more similar to the healthy control during DN application.  187 

 188 
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Figure 5 shows the small-worldness parameter. There were significant differences in 189 

small-worldness parameter variations in the patient with stroke and the healthy control in delta, 190 

theta, and alpha bands. In these bands, DN caused changes in the structure of the brain network 191 

in the stroke case towards normal. There were no differences in the beta and gamma bands 192 

between the stroke case and healthy control. In fact, DN caused changes in the structure of the 193 

stroke patient’s brain network.  194 

 195 

Figure 5. Variations in small-worldness show delta (a), theta (b), and alpha (c) bands becoming 196 
more similar to the healthy control during DN application. The beta (d) and gamma (e) bands 197 

show no significant differences between the stroke case and the healthy control. 198 
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Discussion 199 

Stroke affects the whole brain and its network characteristics and therefore can be 200 

considered as a network disease. Many studies have been performed on the brain networks as 201 

well as on the effects of rehabilitation on patients with stroke. Network assessment to predict the 202 

treatment effects and to individualize rehabilitation is a promising approach to enhance the 203 

specific treatment effects and overall outcome after stroke [12]. 204 

We found that variations in network density, global clustering coefficient, and small-205 

worldness were similar. The values of the parameters for the stroke case were higher than the 206 

values of the healthy control in the delta, theta, and alpha bands. During DN, the values of the 207 

stroke case parameters became closer to the values of the healthy control. The variations in 208 

average shortest path and betweenness centrality were the only variations where the healthy 209 

control had smaller values than the stroke case. In the case of the average shortest path 210 

variations, differences between the stroke case and the healthy control were seen only in delta, 211 

theta, and alpha bands, whereas the differences in betweenness centrality variations were in all 212 

bands. In all parameters except betweenness centrality, the beta and gamma bands had no 213 

differences between the stroke case and the healthy control. However, there were differences in 214 

all bands in the betweenness centrality parameter between the patient with stroke and the healthy 215 

control. 216 

Among rehabilitation methods, DN impact positively on spasticity, pain, and range of 217 

motion in patients with stroke [24]. Our results in this patient with stroke showed that DN causes 218 

structural changes in the brain network, which is in line with other studies that have used and 219 

analyzed the EEG [29] and fMRI [6]. Calvo et al [25] showed that after the application of DN 220 

[DNHS technique] based on the measurement of quantitative EEG activity and EEG 221 

concordance, improvements in the regional brain activity occured. Mohammadpour et al [6] by 222 

using fMRI, showed that DN had a positive effect on the stroke patient's recovery. Absence of 223 

resting-state network rearrangement in beta and gamma bands is consistent with previous data 224 

[26, 27] considering that measurements with EEG were performed with closed eyes. A possible 225 

explanation could be that coherence in higher bands may be more involved in active (either 226 

motor or cognitive) tasks [28-30] and therefore, it might be better to study the effects of DN with 227 

open eyes for beta and gamma bands. However, we clearly observed the positive effects of DN 228 
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in the delta, theta and alpha bands, which suggest performing DN in resting state could improve 229 

the structure of the brain network in this patient with stroke. There is a need for further study on 230 

the effects of DN on the structure of the brain network in patients with stroke using the EEG with 231 

eyes open. In the case of other interventions in stroke patients such as focal vibration, the authors 232 

reported binding power occurred in some central electrodes after focal vibration [31]. In fact, 233 

focal vibration as a rehabilitation method causes a cortical reorganization of the somatosensory 234 

representational maps. However, DN rebuilds the structure of the brain as shown in this patient 235 

with stroke, which has not been observed, to the best of our knowledge, in any other study. 236 

The delta, theta and alpha bands are related to low frequency bands in EEG. With bregard 237 

to the large differences between the brain network of the stroke case and the healthy control on 238 

these bands before DN and significant improvements occurring during DN, we may 239 

conceptualize that the DN normalized the structure of the brain network of this patient with 240 

stroke in low frequency bands. Changes in resting state network were mainly detected in EEG 241 

low frequency bands, while no network rearrangement was found in beta and gamma bands 242 

except for betweenness centrality parameter which is consistent with previous findings [32].  243 

Regarding high frequency bands of beta and gamma, there were no significant changes in 244 

the brain network structure in the studied parameters. Nevertheless, DN changed the structure of 245 

the brain network in this patient with chronic stroke. There were differences between the stroke 246 

case and the healthy control in high frequency bands and betweenness centrality parameter in the 247 

brain network. Considering the betweenness parameter, DN caused improvements even in high 248 

frequency bands such that they became similar to those of the healthy control network. The 249 

greatest difference between the stroke case and the healthy control was in the betweenness 250 

centrality parameter. Given that betweenness centrality plays an intermediate role in the network, 251 

it seems that DN could work through the creation of a network that maximizes the betweenness 252 

centrality in the nodes. This indicates that the betweenness centrality is an important parameter 253 

in the brain as it was modified in all bands in this patient with stroke. 254 

Small-worldness organization of the brain networks [32-35] along with other measures 255 

from graph theory have been used to quantify the changes in brain connectivity and functional 256 

recovery in patients after stroke [36-39]. The results on the delta, theta, and alpha bands showed 257 

that the small-worldness variations in the patient with stroke were greater than those in the 258 
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healthy control, which is consistent with the previous a reports for the theta band [40]. 259 

Accordingly, Caliandro et al. [32] found an increased segregation and a decreased integration in 260 

θ-band network consistent with a previous fMRI study [41]. 261 

This study has strength and limitations. The main strength is the innovation associated 262 

with using graph theory of complex network approach in the clinical context used for analysis of 263 

the effects of DN on the structure of the brain network. The main limitation is that this study was 264 

carried out only in one patient and therefore further study is needed to investigate whether DN is 265 

effective in improving the brain networks in stroke patients towards normal and whether there 266 

might be a cause-effect relationship. Future research should also examine how the brain network 267 

structure differs from normal in patients with chronic stroke. In this patient with stroke, the 268 

changes were not evaluated after the end of DN application. As well, clinical measures 269 

particularly muscle spasticity level and motor function were not assessed. Therefore, studies with 270 

larger sample sizes with rigorous design and follow-up should be carried out to investigate the 271 

effects of DN on the structure of the brain network and evaluate the associations with functional 272 

changes in patients with stroke.  273 

In conclusion, this case study showed the positive effects of DN on brain network with 274 

the delta, theta and alpha bands becoming closer to the normal in density, average shortest path, 275 

global clustering coefficient, and small-worldness parameters in a patient with stroke. Further 276 

investigations in the context a well-design clinical trials are warranted.  277 

 278 

 279 

 280 

 281 

 282 
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 284 

 285 

 286 

 287 
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