Evolution of social mood in Spain throughout the COVID-19 vaccination process: a machine learning approach to tweets analysis
Resumen: Objectives: This paper presents a new approach based on the combination of machine learning techniques, in particular, sentiment analysis using lexicons, and multivariate statistical methods to assess the evolution of social mood through the COVID-19 vaccination process in Spain. Methods: Analysing 41,669 Spanish tweets posted between 27 February 2020 and 31 December 2021, different sentiments were assessed using a list of Spanish words and their associations with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy and disgust) and three valences (neutral, negative and positive). How the different subjective emotions were distributed across the tweets was determined using several descriptive statistics; a trajectory plot representing the emotional valence vs narrative time was also included. Results: The results achieved are highly illustrative of the social mood of citizens, registering the different emerging opinion clusters, gauging public states of mind via the collective valence, and detecting the prevalence of different emotions in the successive phases of the vaccination process. Conclusions: The present combination in formal models of objective and subjective information would therefore provide a more accurate vision of social reality, in this case regarding the COVID-19 vaccination process in Spain, which will enable a more effective resolution of problems.
Idioma: Inglés
DOI: 10.1016/j.puhe.2022.12.003
Año: 2023
Publicado en: PUBLIC HEALTH 215 (2023), 83-90
ISSN: 0033-3506

Factor impacto JCR: 3.9 (2023)
Categ. JCR: PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH rank: 61 / 408 = 0.15 (2023) - Q1 - T1
Categ. JCR: PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH rank: 61 / 408 = 0.15 (2023) - Q1 - T1

Factor impacto CITESCORE: 7.6 - Public Health, Environmental and Occupational Health (Q1)

Factor impacto SCIMAGO: 1.203 - Public Health, Environmental and Occupational Health (Q1) - Medicine (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/S35-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/LMP35_21
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Métodos Cuant.Econ.Empres (Dpto. Economía Aplicada)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-11-22-11:57:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Métodos Cuantitativos para la Economíay la Empresa



 Registro creado el 2023-02-24, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)