000123954 001__ 123954
000123954 005__ 20240720100814.0
000123954 0247_ $$2doi$$a10.1016/j.advengsoft.2022.103340
000123954 0248_ $$2sideral$$a131402
000123954 037__ $$aART-2023-131402
000123954 041__ $$aeng
000123954 100__ $$0(orcid)0000-0001-8221-523X$$aEcheverribar, Isabel
000123954 245__ $$aA GPU-based 2D viscous flow model with variable density and heat exchange
000123954 260__ $$c2023
000123954 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123954 5203_ $$aNumerical simulation of unsteady viscous flow over variable topography under the influence of temperature changes is a challenge. In order to apply the model to large domains with complex topography, it becomes mandatory to reduce the model complexity from 3D to 2D by depth averaging the equations and to apply massive parallelization techniques for an efficient simulation. The depth averaged mass continuity, momentum and internal energy equations, combined with suitable friction laws, can be used for this type of flows. Variations in temperature can be accounted for from internal energy changes with density changing accordingly. The resulting system is solved using a finite volume technique on unstructured triangular grids well suited for problems over variable topography. A generic model applicable to a wide range of viscous fluids and validated with synthetic cases is presented to evaluate the performance of the numerical solution in presence of both external thermal forcing functions and discontinuous initial conditions. Finally, the model is applied to a realistic application and calibration to a particular case of lava flow taking into consideration variable density, viscosity and yield stress with temperature . A heat transfer with the air is included to consider the lava cooling. The numerical results of the lava front advance are compared to the Copernicus satellite observations at different dates. The efficiency of the GPU implementation allows to simulate a 11 day event in less than 1.7 h of simulation.
000123954 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T32-20R$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PGC2018-094341-B-I00
000123954 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000123954 590__ $$a4.0$$b2023
000123954 592__ $$a0.826$$b2023
000123954 591__ $$aCOMPUTER SCIENCE, SOFTWARE ENGINEERING$$b21 / 131 = 0.16$$c2023$$dQ1$$eT1
000123954 593__ $$aEngineering (miscellaneous)$$c2023$$dQ1
000123954 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b28 / 179 = 0.156$$c2023$$dQ1$$eT1
000123954 593__ $$aSoftware$$c2023$$dQ2
000123954 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b45 / 169 = 0.266$$c2023$$dQ2$$eT1
000123954 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123954 700__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, Sergio$$uUniversidad de Zaragoza
000123954 700__ $$0(orcid)0000-0002-3635-6223$$aFernández-Pato, Javier$$uUniversidad de Zaragoza
000123954 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, Pilar$$uUniversidad de Zaragoza
000123954 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000123954 773__ $$g175 (2023), 103340 [16 pp.]$$pAdv. eng. softw.$$tADVANCES IN ENGINEERING SOFTWARE$$x0965-9978
000123954 8564_ $$s4396251$$uhttps://zaguan.unizar.es/record/123954/files/texto_completo.pdf$$yVersión publicada
000123954 8564_ $$s2648412$$uhttps://zaguan.unizar.es/record/123954/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123954 909CO $$ooai:zaguan.unizar.es:123954$$particulos$$pdriver
000123954 951__ $$a2024-07-19-18:38:25
000123954 980__ $$aARTICLE