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A B S T R A C T

Numerical simulation of unsteady viscous flow over variable topography under the influence of temperature
changes is a challenge. In order to apply the model to large domains with complex topography, it becomes
mandatory to reduce the model complexity from 3D to 2D by depth averaging the equations and to
apply massive parallelization techniques for an efficient simulation. The depth averaged mass continuity,
momentum and internal energy equations, combined with suitable friction laws, can be used for this type
of flows. Variations in temperature can be accounted for from internal energy changes with density changing
accordingly. The resulting system is solved using a finite volume technique on unstructured triangular grids
well suited for problems over variable topography. A generic model applicable to a wide range of viscous
fluids and validated with synthetic cases is presented to evaluate the performance of the numerical solution
in presence of both external thermal forcing functions and discontinuous initial conditions. Finally, the model
is applied to a realistic application and calibration to a particular case of lava flow taking into consideration
variable density, viscosity and yield stress with temperature . A heat transfer with the air is included to
consider the lava cooling. The numerical results of the lava front advance are compared to the Copernicus
satellite observations at different dates. The efficiency of the GPU implementation allows to simulate a 11 day
event in less than 1.7 h of simulation.
1. Introduction

Free surface geophysical flows include rivers and coastal or oceanic
phenomena, as well as oil spills, landslides, mud or lava flows where
a wide range of fluids and processes can be encountered. The most
widely used approach is based on vertically averaged shallow models,
assuming a hydrostatic pressure distribution in the fluid column and an
incompressible flow hypothesis, thus discarding density variations that
could affect the flow dynamics. Incompressibility is related with the
assumption that pressure variations do not change the density, which,
however, can still vary with temperature.

In rivers and coastal flows, temperature is often considered as a
passively transported scalar with no influence on the flow [1,2]. Some-
times, if the interest is focused on buoyancy effects, the temperature is
included to reproduce vertical motion [3], but not to reproduce hori-
zontal waves generated by density discontinuities. Moreover, the effects
of temperature variation on water quality reactions and substances [4,
5] has also been studied. In other types of viscous incompressible flows
the temperature analysis has been considered more relevant than the
flow dynamics or the velocity field, which are often coarsely modelled
or estimated as in [6–8] for river currents, [9–11] for lava flow or
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in [12,13] for overland oil spills. The technique of decoupling the
resolution of the temperature transport equation from those of the flow
dynamics provides good results in cases where the fluid does not reach
high temperatures, such as environmental engineering problems related
to water [2]. However, there are cases where the coupling between
spatial and temporal temperature changes and fluid dynamics cannot
be ignored so that a model that introduces this behaviour into the
equations is required.

In the present work, a vertically averaged shallow flow model is
presented that solves the fluid dynamics coupled with the internal
energy equation by including density as one of the unknowns. Despite
the simplifications assumed in the coupling process in the equations,
an interesting aspect of the presented approach is that it maintains
an unconditional hyperbolic character, that allows efficient numerical
models capable of dealing with realistic large-scale and long-term
geophysical events to be developed. By establishing a closure rela-
tionship that defines density as a function of temperature, the model
will constitute a system for temperature-driven flows. Furthermore, the
model will include not only density in the fundamental equations of
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965-9978/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.advengsoft.2022.103340
Received 23 February 2022; Received in revised form 11 August 2022; Accepted 1
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

9 October 2022

http://www.elsevier.com/locate/advengsoft
http://www.elsevier.com/locate/advengsoft
mailto:echeverribar@unizar.es
https://doi.org/10.1016/j.advengsoft.2022.103340
https://doi.org/10.1016/j.advengsoft.2022.103340
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2022.103340&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Advances in Engineering Software 175 (2023) 103340I. Echeverribar et al.

b
t

b
d
c
t

𝜏

w
a
c
r

𝐶

d
p
t
c

𝜏

w
t

A

𝜇

w

w
𝐶
b
c
t
l

a

𝑇

s
d
e
o
e

conservation of mass, momentum and energy, but also the influence
of temperature on the rheological properties of the fluid. Temperature,
as an additional variable, is solved by the internal energy conserva-
tion equation with a heat transfer source term causing temperature
variations.

Numerical schemes in finite volumes have been developed in the
last decades to solve systems of shallow water equations [2,14–17].
Well designed methods for the simulation of unsteady shallow flows
including variable bed and friction have been a matter of research
in recent times, and have provided different friction and bed slope
discretization methods in the search of the most robust and efficient
approach [15,18]. Among them, well balanced finite volume schemes
have proved to be stable and robust in a wide range of test cases [15,
18,19], solving a traditional problem in the discretization of hyperbolic
systems, such as the preservation of steady-states [20,21]. In this work,
an explicit numerical scheme based on an upwind Riemann solver has
been implemented as in [22], which has been extended to coupling
with density following a procedure analogous to that of [23].

As in all explicit numerical schemes, the restriction of the time step
through the CFL condition to ensure numerical stability poses a chal-
lenge to computational times when the models are applied to realistic
cases. Recent efforts have been made to overcome this limitation as,
for instance, Local Time Stepping (LTS) techniques [24]. In this work,
efficiency is ensured by GPU acceleration [23].

The outline of the text is as follows: First, the governing equations
are presented; then the main properties of the finite volume scheme
used are outlined. The model is validated with theoretical test cases
with reference solutions. The first two test cases consider separately
the heat transfer and the effects of including density in the solver
compared to a classical shallow water model, respectively. A third test
case combines both effects with a modification of the rheological prop-
erties of the fluid. Then, this model is applied to a realistic lava flow,
modelling heat transfer mechanisms and calibrating the fluid properties
to validate a realistic phenomenon in an affordable computational time.

2. Governing equations

The depth averaged continuity equation is written as
𝜕(𝜌ℎ)
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌ℎ𝑢) + 𝜕
𝜕𝑦

(𝜌ℎ𝑣) = 0 (1)

being 𝜌 the depth-averaged bulk density [kg/m3], ℎ the vertical flow
depth [m] and (𝑢, 𝑣) the components of the depth-averaged flow ve-
locity vector 𝐮 [m/s]. Commonly the depth-averaged density 𝜌 can
be linearly related to the flow averaged temperature along the flow
column 𝑇 [◦K] as

𝜌(𝑇 ) = 𝜌0 +𝐾(𝑇 − 𝑇0) (2)

where 𝜌0 [kg/m3] is the fluid reference density at the reference tem-
perature 𝑇0 [◦K], and 𝐾 [kg/(m3⋅◦K)] is a tuning constant.

The depth averaged equations for the bulk linear momentum along
the 𝑥− and 𝑦−coordinates can be expressed as
𝜕(𝜌ℎ𝑢)
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌ℎ𝑢2 + 1
2
𝑔𝜌ℎ2) + 𝜕

𝜕𝑦
(𝜌ℎ𝑢𝑣) = −𝑔𝜌ℎ

𝜕𝑧𝑏
𝜕𝑥

− 𝜏𝑏𝑥 (3a)

𝜕(𝜌ℎ𝑣)
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌ℎ𝑢𝑣) + 𝜕
𝜕𝑦

(𝜌ℎ𝑣2 + 1
2
𝑔𝜌ℎ2) = −𝑔𝜌ℎ

𝜕𝑧𝑏
𝜕𝑥

− 𝜏𝑏𝑦 (3b)

eing 𝑧𝑏 the bed layer elevation [m] and (𝜏𝑏𝑥, 𝜏𝑏𝑦) the components of
he depth-averaged basal resistance stress vector 𝝉𝒃[𝑃𝑎], expressed as

𝝉𝒃 = (𝜏𝑏𝑥, 𝜏𝑏𝑦) = 𝜏𝑏 𝐧𝐮 (4)

with 𝜏𝑏 the modulus of the vector, and 𝐧𝐮 = (𝑛𝑢𝑥, 𝑛𝑢𝑦) the direction given
y the velocity unit vector. The formulation for the basal shear stress
epends on the rheological law used. When turbulent flow states are
onsidered, a quadratic relation on the depth-averaged velocity governs
he basal resistance, that is modelled as

= 𝜌𝑔ℎ𝐶 |𝐮|2, (5)
2

𝑏 𝑓
here |𝐮| =
√

𝑢2 + 𝑣2 is the depth-averaged velocity modulus, and 𝐶𝑓 is
friction coefficient. If the classical Manning’s formula is chosen, this

oefficient takes the form of a function of flow depth, ℎ, and Manning
oughness parameter, 𝑛𝑏 [s⋅m1∕3], as

𝑓 =
𝑛2𝑏
ℎ4∕3

. (6)

On the other hand, for linear viscoplastic non-Newtonian flows, the
Bingham law is used to model the behaviour of the flow as

2𝜏3𝑏 − 3
(

𝜏𝑦(𝑇 ) + 2𝜇(𝑇 )
|𝐮|
ℎ

)

𝜏2𝑏 + 𝜏𝑦(𝑇 )3 = 0 (7)

where 𝜏𝑦 [Pa] and 𝜇 [Pa⋅s] stands for the bulk yield stress and plastic
viscosity of the flow, respectively. Besides the flow density 𝜌, the
epth-averaged temperature 𝑇 affects directly viscosity and yield stress,
rovoking changes in the basal shear stress between the flow and the
errain. The formulation of these parameters as temperature functions
onsidered here is based on [25] for the yield stress

𝑦(𝑇 ) = 𝐴𝜏 + 𝐵𝜏 exp [𝐶𝜏𝑇 ], (8)

here 𝐴𝜏 , 𝐵𝜏 and 𝐶𝜏 , are flow parameters coming from fluid charac-
erization.

The assumed flow viscosity dependence with temperature is the
ndrade formulation [26]

(𝑇 ) = 𝐴𝜇 exp (𝐵𝜇∕𝑇 ), (9)

here 𝐴𝜇 and 𝐵𝜇 are parameters to be determined in every case.
The depth-averaged temperature equation is derived from the inter-

nal energy equation that, neglecting horizontal diffusion and viscous
dissipation, is written as
𝜕(𝜌ℎ𝑇 )

𝜕𝑡
+ 𝜕

𝜕𝑥
(𝜌ℎ𝑢𝑇 ) + 𝜕

𝜕𝑦
(𝜌ℎ𝑣𝑇 ) = 𝑄̇

𝐶𝑝
(10)

here 𝑄̇ [W/m2] is the heat flux at the free surface and bed surface and
𝑝 [J/(kg⋅K)] is the specific heat. They govern the temperature transfer
etween the flow and the surrounding media. The temperature Eq. (10)
an be divided into a homogeneous and a non-homogeneous heat
ransport for convenience of numerical discretization (to be detailed
ater). The homogeneous part is expressed as
𝜕(𝜌ℎ𝑇 )

𝜕𝑡
+ 𝜕

𝜕𝑥
(𝜌ℎ𝑢𝑇 ) + 𝜕

𝜕𝑦
(𝜌ℎ𝑣𝑇 ) = 0 (11)

which can be rewritten as
𝜕(ℎ𝑇 )
𝜕𝑡

+ 𝜕
𝜕𝑥

(ℎ𝑢𝑇 ) + 𝜕
𝜕𝑦

(ℎ𝑣𝑇 ) = −ℎ𝑇 1
𝜌
𝐷𝜌
𝐷𝑡

(12)

where the term on the right hand side denotes the temperature change
associated to the material derivative of density, i.e. the flow expansion.
Considering (2), the normalized bulk density 𝑟 = 𝜌∕𝜌0 can be expressed
as

𝑟 = 1 + 𝐾
𝜌0

(𝑇 − 𝑇0) (13)

llowing to define the dimensionless normalized temperature 𝑇∇ as

∇ = 𝐾
𝜌0

(𝑇 − 𝑇0) (14)

o the normalized density is rewritten as 𝑟 = 1 + 𝑇∇ and the flow
epth can be expressed as ℎ = 𝑟ℎ− ℎ𝑇∇. Using (13) and performing an
stimation of the order of magnitude, the term on the right hand side
f (12) can be neglected, and replacing (14) into (12), the transport
quation for the dimensionless temperature can expressed as

𝜕(ℎ𝑇∇)
𝜕𝑡

+ 𝜕
𝜕𝑥

(ℎ𝑢𝑇∇) + 𝜕
𝜕𝑦

(ℎ𝑣𝑇∇) = 0 (15)

On the other hand, considering the non-homogeneous part of the
energy Eq. (10) is written as
𝜕(𝜌ℎ𝑇 )

= 𝑄̇ (16)

𝜕𝑡 𝐶𝑝
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and, assuming 𝜕(𝜌ℎ)∕𝜕𝑡 = 0 to ensure mass conservation during the heat
xchange process, the non-homogeneous time variations of temperature
educes to
𝜕𝑇
𝜕𝑡

= 𝑄̇
𝜌ℎ𝐶𝑝

=  (17)

The thermal source term  = 𝑄̇∕(𝜌ℎ𝐶𝑝) can include different heat
xchange mechanisms working along the vertical direction throughout
he flow free surface, such as convection transfer produced by wind,
eat increase due to the solar radiation, etc. In this work, these heat
luxes are directly set as external forcing functions, in order to as-
ess the sensitivity of the model to them. However, this term might
e divided into different heat sources representing different transfer
echanisms when simulating realistic cases, as in the last test case.
he relative importance of the different heat transfer mechanisms is
ifferent depending on the fluid considered. When simulating lava
lows, the emitted radiation is extremely relevant, as the fluid can be at
very high temperature. However, when simulation thin oil slicks, the

mitted radiation might not be important, but the received radiation
rom sun would maintain its relatively high temperature for a longer
ime.

. Numerical method

Therefore, the final system of equations to be solved is formed by:
he mass (1) and momentum Eqs. (3a)– (3b) in terms of the normalized
ensity 𝑟, the homogeneous part of the energy equation to transport
he normalized temperature 𝑇∇ (15), and the non-homogeneous part
f temperature equations which contains the vertical thermal exchange
17). The system is completed with the closures for the normalized
ensity 𝑟 (13) and normalized temperature 𝑇∇ (14).

The complete normalized system is solved in two steps. First, the
ystem composed of the mass, momentum and homogeneous tempera-
ure transport equations is considered
𝜕(𝑟ℎ)
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑟ℎ𝑢) + 𝜕
𝜕𝑦

(𝑟ℎ𝑣) = 0 (18)

𝜕(𝑟ℎ𝑢)
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑟ℎ𝑢2 + 1
2
𝑔𝑟ℎ2) + 𝜕

𝜕𝑦
(𝑟ℎ𝑢𝑣) = −𝑔𝑟ℎ

𝜕𝑧𝑏
𝜕𝑥

−
𝜏𝑏𝑥
𝜌0

(19a)

𝜕(𝑟ℎ𝑣)
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝑟ℎ𝑢𝑣) + 𝜕
𝜕𝑦

(𝑟ℎ𝑣2 + 1
2
𝑔𝑟ℎ2) = −𝑔𝑟ℎ

𝜕𝑧𝑏
𝜕𝑥

−
𝜏𝑏𝑦
𝜌0

(19b)

𝜕(ℎ𝑇∇)
𝜕𝑡

+ 𝜕
𝜕𝑥

(ℎ𝑢𝑇∇) + 𝜕
𝜕𝑦

(ℎ𝑣𝑇∇) = 0 (20)

Eqs. (18), (19) and (20) can be written in a compact form, useful
for the development of the finite volume method, as
𝜕𝐔
𝜕𝑡

+ ∇ ⋅ 𝐄(𝐔) = 𝐒𝐛 + 𝐒𝝉 (21)

where 𝐔 is the conservative variables vector,

𝐔 =
(

𝑟ℎ 𝑟ℎ𝑢 𝑟ℎ𝑣 ℎ𝑇∇ )𝑇 (22)

𝐄 =
(

𝐅(𝐔),𝐆(𝐔)
)

denote the conservative fluxes,

𝐅 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟ℎ𝑢
𝑟ℎ𝑢2 + 1

2 𝑔𝑟ℎ
2

𝑟ℎ𝑢𝑣
ℎ𝑢𝑇∇

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐆 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟ℎ𝑣
𝑟ℎ𝑢𝑣
𝑟ℎ𝑣2 + 1

2 𝑔𝑟ℎ
2

ℎ𝑣𝑇∇

⎞

⎟

⎟

⎟

⎟

⎠

, (23)

𝐛 represents the bed slope source term and 𝐒𝝉 stands for basal resis-
ance term.

𝐒𝐛 =

⎛

⎜

⎜

⎜

⎜

0
−𝑔𝑟ℎ(𝜕𝑧𝑏∕𝜕𝑥)
−𝑔𝑟ℎ(𝜕𝑧𝑏∕𝜕𝑦)

⎞

⎟

⎟

⎟

⎟

, 𝐒𝝉 =

⎛

⎜

⎜

⎜

⎜

0
−(𝜏𝑏∕𝜌0) 𝑛𝑢𝑥
−(𝜏𝑏∕𝜌0) 𝑛𝑢𝑦

⎞

⎟

⎟

⎟

⎟

. (24)
3

⎝

0
⎠ ⎝

0
⎠

System (21) is solved using an explicit first-order Finite Volume (FV)
cheme supported by a novel Riemann solver developed for the upwind
omputation of the numerical fluxes at the cell edges for thermally-
riven compressible shallow flows. Once the homogeneous component
f the system is solved, the heat exchange is incorporated into the
olution in a second step by explicitly solving the non-conservative
omponent of the temperature equation, (17) and reconstructing the
haracteristic flow features at the next time step.

.1. Finite volume scheme for the conservative component

Following [23], a finite volume numerical scheme is derived by
ntegrating the hyperbolic system (21) into a control volume, or com-
utational cell 𝛺𝑖.

d
d𝑡 ∫𝛺𝑖

𝐔d𝛺 + ∫𝛺𝑖

∇ ⋅ 𝐄(𝐔)d𝛺 = ∫𝛺𝑖

𝐒𝑏(𝐔)d𝛺 + ∫𝛺𝑖

𝐒𝜏 (𝐔)d𝛺 (25)

By applying the Gauss theorem, the volume integral of convective
luxes can be transformed into a surface integral along the boundaries
f the cell, leading to

d
d𝑡 ∫𝛺𝑖

𝐔d𝛺 +
𝑁𝐸
∑

𝑘=1

(

𝐄(𝐔) ⋅ 𝐧
)

𝑘𝑙𝑘 = ∫𝛺𝑖

𝐒𝑏(𝐔)d𝛺 + ∫𝛺𝑖

𝐒𝜏 (𝐔)d𝛺 (26)

here the sum is performed over the edges 𝑘, of a length 𝑙𝑘, that
eparate the cell 𝛺𝑖 and its NE neighbouring cells (NE=3 in triangular
eshes, NE=4 in square meshes), being 𝐧 the outward unit normal

ector at each cell edge.
In order to obtain a numerical solution from time t𝑛 to time t𝑛+1,

he cell averaged value of conservative variables 𝐔(𝑥, 𝑦, 𝑡) at a cell 𝑖 of
rea 𝐴𝑖 at time 𝑡𝑛 is expressed as

𝑛
𝑖 =

1
𝐴𝑖 ∫𝛺𝑖

𝐔(𝑥, 𝑦, 𝑡)𝑑𝛺 (27)

nd an approximation of the source terms time integration at 𝑡𝑛 can be
efined as

𝛺𝑖

𝐒𝐛(𝐔𝑛
𝑖 )d𝛺 ≈ 1

𝛥𝑡 ∫

𝑡𝑛+1

𝑡𝑛 ∫𝛺𝑖

𝐒𝑏(𝐔)d𝛺d𝑡 (28)

∫𝛺𝑖

𝐒𝝉 (𝐔𝑛
𝑖 )d𝛺 ≈ 1

𝛥𝑡 ∫

𝑡𝑛+1

𝑡𝑛 ∫𝛺𝑖

𝐒𝝉 (𝐔)d𝛺d𝑡 (29)

Therefore, the finite volume method leads to the explicit updating
scheme

𝐔𝑛+1
𝑖 = 𝐔𝑛

𝑖 −
𝛥𝑡
𝐴𝑖

𝑁𝐸
∑

𝑘=1

(

𝐄(𝐔) ⋅ 𝐧
)

𝑘𝑙𝑘 +
𝛥𝑡
𝐴𝑖

(

∫𝛺𝑖

𝐒𝐛(𝐔𝑛
𝑖 )d𝛺 + ∫𝛺𝑖

𝐒𝝉 (𝐔𝑛
𝑖 )d𝛺

)

(30)

nd requires specific formulations for the discrete fluxes and source
erms. In the present work they will be based on a well balanced
pproximate Riemann solver defined at the cell edges. For that purpose,
t is beneficial to move to a rotated reference system [23,27]. The
onservative flux matrix, 𝐄(𝐔), satisfies the rotation invariant prop-
rty [22,28]. That is, considering the local framework created by the
ormal 𝐧 = (𝑛𝑥, 𝑛𝑦) and tangential 𝐭 = (−𝑛𝑦, 𝑛𝑥) directions to 𝑘th cell

edge, the associated rotation matrix 𝐑𝑘 is defined as

𝐑𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0
0 𝑛𝑥 𝑛𝑦 0
0 −𝑛𝑦 𝑛𝑥 0
0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠𝑘

(31)

and the convective flux matrix 𝐄(𝐔) satisfies
( ) −1
(𝐄(𝐔) ⋅ 𝐧)𝑘 = 𝐅(𝐔)𝑛𝑥 +𝐆(𝐔)𝑛𝑦 𝑘 = 𝐑𝑘 𝐅(𝐑𝑘𝐔) (32)
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Fig. 1. Representation of the local framework built at the cell edge between cell 𝑖 and its neighbour cell 𝑗.
where 𝐑−1
𝑘 is the inverse matrix of 𝐑𝑘. This approach allows to work

within the local framework depicted in Fig. 1 for each 𝑘th cell edge, by
defining the local conservative variables vector 𝐔̂ as

𝐔̂ ≡ 𝐑𝑘𝐔 =
(

𝑟ℎ, 𝑟ℎ𝑢𝑛, 𝑟ℎ𝑣𝑡, ℎ𝑇
∇)𝑇

𝑘 (33)

being 𝑢𝑛 = 𝐮 ⋅ 𝐧 = 𝑢𝑛𝑥 + 𝑣𝑛𝑦 and 𝑣𝑡 = 𝐮 ⋅ 𝐭 = −𝑢𝑛𝑦 + 𝑣𝑛𝑥 the normal
and tangential projections of the velocity in the local edge framework
respectively, and the local conservative flux vector 𝐅(𝐔̂) as

𝐹 (𝐔̂) ≡ 𝐅(𝐑𝑘𝐔) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑟ℎ𝑢𝑛
𝑟ℎ𝑢2𝑛 +

1
2
𝑔𝑟ℎ2

𝑟ℎ𝑢𝑛𝑣𝑡
ℎ𝑢𝑛𝑇∇

⎞

⎟

⎟

⎟

⎟

⎠𝑘

(34)

Additionally, to get an augmented scheme that includes the momen-
tum source contributions into the numerical fluxes, both the bed slope
and the basal resistance terms are split into local contribution as

∫𝛺𝑖

𝐒𝐛(𝐔𝑛
𝑖 )d𝛺 =

𝑁𝐸
∑

𝑘=1
𝐑−1
𝑘 𝐇(𝐔̂)𝑘𝑙𝑘 (35)

∫𝛺𝑖

𝐒𝝉 (𝐔𝑛
𝑖 )d𝛺 =

𝑁𝐸
∑

𝑘=1
𝐑−1
𝑘 𝐓(𝐔̂)𝑘𝑙𝑘 (36)

where 𝐇(𝐔̂)𝑘 and 𝐓(𝐔̂)𝑘 are the bed slope and basal friction flux vectors,
respectively, expressed in the local edge framework and defined as

𝐇(𝐔̂)𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

0
−𝑔𝑟̃ℎ̃ 𝛥𝑧𝑏
0
0

⎞

⎟

⎟

⎟

⎟

⎠𝑘

𝐓(𝐔̂)𝑘 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

−
𝜏𝑏
𝜌0

(𝑛𝑢𝑥𝛥𝑥 + 𝑛𝑢𝑦𝛥𝑦)

0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝑘

(37)

where 𝑟̃𝑘, ℎ̃𝑘, 𝜏𝑏𝑘 and (𝑛𝑢𝑥, 𝑛𝑢𝑦)𝑘 are the edge-averaged quantities of the
corresponding variable. that is ⟨̃⋅⟩𝑘 = (⟨⋅⟩𝑛𝑖 + ⟨⋅⟩𝑛𝑗 )∕2, and (𝛥𝑧𝑏)𝑘 and
(𝛥𝑥, 𝛥𝑦)𝑘 denotes the edge-increments of the corresponding variables,
that is (𝛥⟨⋅⟩)𝑘 = ⟨⋅⟩𝑛𝑗 − ⟨⋅⟩𝑛𝑖 . It is worth noting that, to ensure good
properties, the momentum flux vectors 𝐇(𝐔̂)𝑘 and 𝐓(𝐔̂)𝑘 must satisfy
the rotation invariant property [27].

Replacing (32), (35) and (36) into (30), the piecewise reconstruction
of the conservative variables can be updated as

𝐔𝑛+1
𝑖 = 𝐔𝑛

𝑖 −
𝛥𝑡
𝐴𝑖

𝑁𝐸
∑

𝑘=1
𝐑−1
𝑘

[

𝐅(𝐔̂)𝑘 −𝐇(𝐔̂)𝑘 − 𝐓(𝐔̂)𝑘
]

𝑙𝑘 (38)

allowing to define an augmented flux vector  ↓
𝑘 through the 𝑘th cell

edge which includes the convective fluxes and the momentum source
contributions as

 ↓
𝑘 =

[

𝐅(𝐔̂) −𝐇(𝐔̂) − 𝐓(𝐔̂)
]

𝑘 (39)

In this work, the augmented flux vector is upwind computed us-
ing a novel 4-wave Riemann solver developed for thermally-driven
compressible shallow flows (see Appendix) as

 ↓−
𝑘 = 𝐅(𝐔̂𝑛

𝑖 ) +
∑

[

(𝜆𝑚𝛼𝑚 − 𝛽𝑚 − 𝜎𝑚) 𝐞̃𝑚
]𝑛
𝑘 (40)
4

𝑚−
where (𝜆𝑚)𝑛𝑘 are the wave celerities at the edge, i.e. the eigenvalues of
the Jacobian matrix of the local Riemann problem (RP), (𝐞̃𝑚)𝑛𝑘 are the
eigenvectors of the RP, (𝛼𝑚)𝑛𝑘 denotes the wave strengths accounting
for the discontinuity on the local conservative variables, (𝛽𝑚)𝑛𝑘 are the
source strengths which include the integrated bed slope contribution
and (𝜎𝑚)𝑛 are the source strengths which include the integrated basal
resistance contribution through the cell edge. The subscript 𝑚− under
the sums indicates that only the waves travelling inward the 𝑖 cell are
considered, leading to the explicit upwind computation of the flux at
the edge. Hence, the updating formula for the conservative variables
can be reduced to

𝐔𝑛+1
𝑖 = 𝐔𝑛

𝑖 −
𝛥𝑡
𝐴𝑖

𝑁𝐸
∑

𝑘=1
𝐑−1
𝑘  ↓−

𝑘 𝑙𝑘 (41)

As an explicit numerical scheme is being used, an stability condition
is needed to ensure a proper time step size, 𝛥𝑡. This value must be small
enough to avoid the interaction between propagating waves and cell
boundaries and is computed at each 𝑘th cell edge as

𝛥𝑡𝑘 =
min (𝐴𝑖, 𝐴𝑗 )

𝑙𝑘 max𝑚
(

|𝜆𝑚|
)𝑛
𝑘

(42)

and thus, the global time step size is limited by the Courant–Friedrichs–
Lewy (CFL) condition as

𝛥𝑡 = CFL min
𝑘

𝛥𝑡𝑘 (43)

bounding the CFL coefficient between 0 and 1 for 2D triangular meshes.
The global time step is dynamically controlled by the wave celerities

given by the eigenvalues of the Jacobian matrix of the conservative
fluxes preserving the scheme stability even for large density gradients
and rapid flows. The upwind discretization of the source terms avoids
additional time step reductions to ensure the stability of the solution
regardless of the basal resistance formulation [29]. The numerical
algorithm is implemented using GPU-acceleration techniques applied
to compressible non-Newtonian shallow models, in order to generate
an efficient simulation tool suitable for realistic large-scale long-term
lava flow events without requiring the use of coarse meshes.

3.2. Non-conservative heat flux component

Once the value of the conservative variables (𝐔) at the 𝑖 cell is up-
dated with the homogeneous transport component, intermediate values
for the primitive variables flow depth, depth-averaged temperature and
flow density can be reconstructed as

ℎ∗𝑖 = (𝑟ℎ)𝑛+1𝑖 − (ℎ𝑇∇)𝑛+1𝑖 (44a)

𝑇 ∗
𝑖 =

𝜌0
𝐾

(ℎ𝑇∇)𝑛+1𝑖
(ℎ)∗𝑖

+ 𝑇0 (44b)

𝜌∗𝑖 = 𝜌0 +𝐾(𝑇 ∗
𝑖 − 𝑇0) (44c)

The superscript ∗ represents the fact that (44a), (44b) and (44c) do
not provide the final updated variables. It is worth noting that the heat
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exchange term has not been considered and, thus, neither flow depth,
temperature nor density are the final updated variables at time 𝑡𝑛+1 yet.

he updated temperature is computed explicitly as
𝑛+1
𝑖 = 𝑇 ∗

𝑖 + 𝛥𝑡 ( )𝑛𝑖 (45)

here ( )𝑛𝑖 is the cell-centred heat exchange at the 𝑖 cell for the time
𝑛, computed as

 )𝑛𝑖 =
𝑄̇𝑛

𝑖
𝜌0(𝑟ℎ)𝑛𝑖 𝐶𝑝

(46)

Therefore, the value of the flow density can be also updated with
he new temperature field as
𝑛+1
𝑖 = 𝜌0 +𝐾(𝑇 𝑛+1

𝑖 − 𝑇0), (47)

nd, assuming that the heat flux does not modify the conservative flow
ass at the cells, the final flow depth is updated as

𝑛+1
𝑖 =

𝜌0 (𝑟ℎ)𝑛+1𝑖

𝜌𝑛+1𝑖

(48)

Finally, the two-dimensional velocity field is calculated as

𝑢𝑛+1𝑖 =
(𝑟ℎ𝑢)𝑛+1𝑖

(𝑟ℎ)𝑛+1𝑖

,

𝑛+1
𝑖 =

(𝑟ℎ𝑣)𝑛+1𝑖

(𝑟ℎ)𝑛+1𝑖

.

(49)

4. Test cases and sensitivity analysis

The model has been first applied to synthetic test cases where the
behaviour of the model can be analysed in detail and its correct oper-
ation can be validated. None of these test cases involve experimental
data, field data or a practical application involving real values with a
calibration process. The last case shows the application of the model to
lava flow in a real volcano eruption.

4.1. Case 1: Radially-symmetrical paraboloid: heat transfer at rest

Having made the effort to formulate the governing equations as
a system of conservation laws and having developed a well balanced
finite volume method, we are interested in evaluating the ability of
the proposed model to preserve equilibrium. In particular, the divided
procedure to compute the fourth conserved variable, ℎ𝑇∇, and later
to update the temperature, 𝑇 with the thermal source term must be
validated. Therefore, the following test case is carried out to prove
the thermal behaviour of the system in a case with exact solution. A
paraboloid well filled with fluid at rest is cooled down until it reaches
the air temperature. An analytical solution of the problem is calculated
and compared with the numerical results of the model.

4.1.1. Reference solution
In this test case, a radially-symmetrical paraboloid is used to create

a topography that leads to a non-homogeneous distribution of fluid
depths following the radial function:

𝑧𝑏(𝜉) =

{

𝛼𝜉2 𝜉 ≤ 𝑅
𝑧0 otherwise

(50)

where 𝛼 = 𝑧0∕𝑅2, and 𝜉, as radial coordinate, is
=
√

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2.
During a given period of time, a thermal power, 𝑄̇ [W/m2], is

removed from the system provoking a decrease of temperature. For this
case, a cooling function for heat transfer is chosen as follows:

𝑄̇ = −𝛾(𝑇 − 𝑇𝐴) (51)

where 𝛾 is a chosen parameter and 𝑇𝐴 is air temperature. The cooling
law used here is a theoretical law that does not respond to any natural
5

v

phenomenon, but to an intention to validate the model. Therefore, this
function will provoke changes on temperature that, following Eq. (17),
lead to:
𝜕𝑇
𝜕𝑡

= −
𝛾(𝑇 − 𝑇𝐴)
𝜌ℎ𝐶𝑝

= −
𝛾(𝑇 − 𝑇𝐴)
𝑚(𝜉)𝐶𝑝

(52)

here 𝑚(𝜉) = 𝜌ℎ is a value that, although being a function of the
araboloid radius, 𝜉, remains constant in time due to mass conserva-
ion. Therefore, by integrating Eq. (52) between the initial condition
nd an arbitrary state,
𝑇

𝑇0

1
(𝑇 − 𝑇𝐴)

d𝑇 = ∫

𝑡

𝑡0
−

𝛾
𝑚(𝜉)𝐶𝑝

d𝑡 (53)

rovides a time function for temperature, assuming 𝑡0=0:

(𝜉, 𝑡) = 𝑇𝐴 + (𝑇0 − 𝑇𝐴)𝑒
−

𝛾
𝑚(𝜉)𝐶𝑝

(𝑡)
(54)

nd, by introducing (54) into the density definition (Eq. (2)), an anal-
gous expression for density can be written:

(𝜉, 𝑡) = 𝜌𝐴 +𝐾(𝑇0 − 𝑇𝐴)𝑒
−

𝛾
𝑚(𝜉)𝐶𝑝

(𝑡)
(55)

These two expressions, (54) and (55), will be used as reference
solutions to compare with the numerical results. For that purpose, the
analytical functions are projected into a square grid, [𝑖, 𝑗], that provides
spatial distributions: 𝑇𝑖𝑗 (𝑡) and 𝜌𝑖𝑗 (𝑡), where both depend on 𝑚𝑖𝑗 , as:

𝑖𝑗 (𝑡) = 𝑇𝐴 + (𝑇0 − 𝑇𝐴)𝑒
−

𝛾
𝑚𝑖𝑗𝐶𝑝

(𝑡)

𝑖𝑗 (𝑡) = 𝜌𝐴 +𝐾(𝑇0 − 𝑇𝐴)𝑒
−

𝛾
𝑚𝑖𝑗𝐶𝑝

(𝑡)
(56)

On the other hand, mass and volume evolution must be also con-
sidered to ensure the proper behaviour of the model. Considering the
topography function as in (50), the initial condition is defined as:

𝑡 = 𝑡0 = 0

𝑇 = 𝑇0
𝜌0 = 𝜌𝐴 +𝐾(𝑇0 − 𝑇𝐴)

ℎ0 = 𝑧0 − 𝑧𝑏(𝜉) = 𝑧0 − 𝛼𝜉2

(57)

and, thus, 𝑚(𝜉) will remain constant in time:

𝑚(𝜉) = 𝑚0(𝜉) = 𝜌0ℎ0 =
[

𝜌𝐴 +𝐾(𝑇0 − 𝑇𝐴)
]

(𝑧0 − 𝛼𝜉2) (58)

Analytically, the total mass can be computed as:

(𝑡) = ∫

𝑅

0
𝜌ℎ2𝜋𝜉d𝜉 (59)

nd, due to mass conservation, it can be evaluated from the initial
ondition

(𝑡) = 𝑀0 = ∫

𝑅

0
𝜌0ℎ02𝜋𝜉d𝜉 = ∫

𝑅

0
𝜌0(𝑧0 − 𝛼𝜉2)2𝜋𝜉d𝜉 (60)

That finally reads:

(𝑡) = 𝑀0 = 𝜋𝜌0𝑅
2
(

𝑧0 −
𝛼𝑅2

2

)

(61)

Unlike mass, the volume will decrease during a cooling event and
the reference curve can be also calculated for this case:

𝑉 (𝑡) =
𝑀0

∫ 𝑅
0 𝜌(𝜉, 𝑡)d𝑡

→ 𝑉 (𝑡) =
𝑀0

∑

𝑖𝑗 𝜌𝑖𝑗 (𝑡)
(62)

Summarizing, a paraboloid topography can be used to describe a
on-homogeneous topography leading to an spatial distribution of fluid
epths, which will provoke an spatial distribution of temperatures if
cooling test in carried out over it. Reference expressions can be

omputed for the temporal and spatial evolution of temperature and
olume and compared with the numerical results.
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Table 1
Characteristics of the computational meshes used for Case 1 and RMSE on temperature and volume for the
three analysed meshes.
Mesh Mean cell area N. cells RMSE𝑇 ,𝑡=20𝑠 RMSE𝑇 ,𝑡=200𝑠 RMSE𝑇 ,𝑡=500𝑠 RMSE𝑉

M1 0.02 m2 39923 0.9055 0.0717 0.0021 0.1392
M2 0.08 m2 9928 1.7072 0.1586 0.0036 0.5608
M3 0.32 m2 2432 4.1641 0.2511 0.0064 2.2669
Fig. 2. Case 1: Initial condition of fluid surface elevation.

4.1.2. Test case description
For this case, a paraboloid of R = 11 m, a reference elevation of z0

= 20 m and a coordinate origin 𝑥0 = 0 and 𝑦0 = 0 are chosen. These
parameters are used to create a raster of 1 × 1 m, which is used to
map the topography into three different unstructured computational
meshes as summarized in Table 1. The reason is the interest in building
a model able to work with unstructured triangular meshes well suited
for irregular terrain.

The density expression (55) has been used with 𝜌𝐴 = 1000 kg/m3,
𝐾 = −1 and 𝑇𝐴 = 0 ◦C. Additionally, the initial temperature has been
set to 𝑇0 = 200 ◦C, 𝛾=200 and 𝐶𝑝=1 J/(kgK).

All the boundaries are set as closed boundaries and the initial
condition is a horizontal fluid surface elevation at rest, as seen in Fig. 2.
A null viscosity is set to the fluid, together with an extremely high yield
stress (in Eq. (7): 𝐴𝜏=0; 𝐵𝜏=200; 𝐶𝜏=1), which avoids movement and
focuses the case on heat transfer.

4.1.3. Numerical and reference results
The cooling test is simulated up to 𝑡=500 s with the three compu-

tational meshes. However, for the sake of clarity, only the comparison
between the reference solution and the computational results is plotted
in Fig. 3. The RMSE for the rest of the meshes is computed and shown in
Table 1 for temperature and volume. The errors are computed following

𝑅𝑀𝑆𝐸𝑇 =

√

∑

(𝑇𝑖𝑗 (𝑡) − 𝑇𝑖(𝑡))2

𝑁𝑖
𝑅𝑀𝑆𝐸𝑉 =

√

∑

(𝑉 (𝑡𝑛) − 𝑉 𝑛)2

𝑁𝑛
(63)

for temperature and volume, respectively. In the temperature ex-
pression, 𝑁𝑖 stands for the number of points in the x-profile where
temperature is measured and 𝑇𝑖𝑗 and 𝑇𝑖 for temperatures at profile
points of the analytical and numerical solution, respectively, for a given
time, 𝑡. For the volume error, computed along the simulation, 𝑁𝑛 is the
number of time steps where the volume of the numerical simulation,
𝑉 𝑛, and the analytical solution, 𝑉 (𝑡𝑛), have been compared for a given
time, 𝑡𝑛. The reason why the RMSEs at different times differ so much is
because the solution itself is time variable, with more marked gradient
at the beginning and tendency to become smooth as time progresses.
6

More specifically, in Fig. 3(a), the comparison of the temporal
evolution between the reference solution, computed following (62), and
the numerical results obtained with the model can be seen. The volume
exhibits an asymptotic behaviour, as it shows a steeper slope at the
beginning, provoked by a heat transfer that depends on the temperature
difference with the atmosphere, and a tendency to a constant volume at
the end, where the heat transfer is almost non-existent. This behaviour
is properly reproduced by the model and presents a good agreement
with the reference solution.

On the other hand, in Fig. 3(b), the temperature profile along the 𝑥
axis is contrasted between the reference and the computational mesh
M1 for different times. The initial condition can be seen with uniform
𝑇 = 200 ◦C. After 10 s, the boundaries of the well are colder due to
their small fluid depths, which provokes a higher influence of the heat
transfer, while the centre is still hot with the highest depths. This effect
continues along time slowing down, so that the temperature gradient at
the well centre between 20 and 50 s is almost the same as the gradient
between 100 and 200 s. This gradient temperature, that is smaller at
the end, is the cause of the previously seen asymptotic behaviour of the
volume. At the end, the temperature is 0 ◦C in the whole domain, heat
transfer stops and the volume remains constant. In the same Fig. 3(b),
a better agreement between the reference solution, plotted with solid
lines, and the numerical results, presented with pointed lines, can be
noticed as the mesh gets refined.

For the sake of clarity, only M1 has been plotted in Fig. 3. Coarser
meshes could produce less accurate results in terms of temperature
profile, leading even to a loss of symmetry if the mesh geometry marks
the directions improperly.

Finally, in order to get a quantitative comparison, the RMSE is
computed for the temperature profile and for temporal evolution of the
volume for the three meshes. Table 1 summarizes these values, showing
an acceptable agreement even with mesh M3 and better with M1 and
M2. In all the meshes, the final solution presents better agreement than
the early states. This effect is due to the trivial nature of the final
solution, that provokes the higher accuracy even for the coarsest mesh.
However, early states are more challenging for the model, presenting
much better results with finer meshes.

4.2. Case 2: Dam-break over quiescent fluid at different temperature

A dam break over a quiescent fluid in a reservoir at a different
temperature is carried out in order to analyse the effect of including the
density within the system of equations in unsteady flow and allowing
its variability to modify the wave propagation. The results of the model
with the density included in the solver (as in system (21)), defined as
density formulation 1 (DF1), are compared with a classical shallow water
model with a passive transport of temperature and density, named
density formulation 2 (DF2). Both models are used to simulate exactly
the same test cases with the same computational mesh.

Two configurations are simulated using the same mesh, depth initial
condition, and initial temperature values with the fluid in the column
at 𝑇= 1000 ◦C, and the reservoir fluid initially at 𝑇= 0 ◦C. In sub-
Case C2.1 the descending fluid column has initially a density of 𝜌 =
2000 kg∕m3 and 𝐾=1 whereas in sub-case C2.2 the descending fluid
column has initially a density of 𝜌 = 3000 kg∕m3 and 𝐾=2. The density
at the reservoir is 1000 kg/m3 in both cases.
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Fig. 3. Case 1: Comparison between the numerical results with mesh M1 and the reference solution in terms of temporal evolution of fluid volume (a) and temperature profile
along 𝑥 axis for different times (b).
Fig. 4. Case 2: longitudinal profile of surface elevation (a) and top view of the temperature initial condition (b) for the dam break over quiescent reservoir test case.
4.2.1. Test case description
The topography and fluid surface initial conditions of the test case

can be seen in Fig. 4(a), multiplied by a 20x scale factor for the sake
of clarity. A top view of the temperature initial condition can be seen
in Fig. 4(b).

Friction is modelled using the Manning formula (6) with a value
𝑛𝑏=0.025 sm1∕3. No heat losses are considered. An unstructured mesh is
built with 37,863 triangular elements, boundaries are considered closed
and the simulation runs up to 𝑡=480 s.

4.2.2. Numerical results
Fig. 5 shows the 𝑥 profile of the fluid surface for both models

at different times. It can be seen that the two models DF1 and DF2
provide exactly the same results until 𝑡=240 s. This is provoked by the
fact that the moving wave presents at the beginning a homogeneous
temperature distribution and, thus, in DF1 there are no waves gener-
ated by any density discontinuity and its results are the same as in a
classical hydrodynamical model. However, when the dam-break wave
reaches the quiescent reservoir, which is at a different temperature and
7

density, discontinuities generate different waves and provoke different
behaviour, as seen in Fig. 5 for 𝑡 = 480 s. Since density changes affect
the model when this variable is included into the solver (DF1), sub-
cases C2.1 and C2.2 provide different results because the generated
waves are different. However, the figure also shows how this variation
of the initial condition does not generate any change in a classical
shallow water model (DF2), as the density is only transported as a
passive scalar.

This behaviour can be also seen when densities and velocities are
analysed. Once the wave has reached the quiescent reservoir, the
resultant velocity field is different depending on the model and the
base density, as seen in Fig. 6. In the (a) image of the figure, the
different density discontinuities between sub-case C2.1 and sub-case
C2.2 can be seen. As each of the cases is resolved with the two different
formulations, four different curves of density are shaped. However,
velocities have a different behaviour as seen in Fig. 6(b). As DF2 is
independent of density, it provides the same results for both cases,
while DF1, besides being faster in both cases, the velocity wave depends
on the fluid density.



Advances in Engineering Software 175 (2023) 103340I. Echeverribar et al.
Fig. 5. Case 2: Flow free surface along 𝑥 axis before and after the dam-break wave reaches the quiescent reservoir.
Fig. 6. Case 2: Longitudinal profile along 𝑥 axis of (left) density and (right) x-velocity at 𝑡 = 480 s in the dam-break over quiescent reservoir test case.
Table 2
Case 3: Chosen parameters to create raster for the mound topography.
𝑅 5000.0 m 𝐴 50.0 𝑥0 0.0 m
𝑧0 0.0 𝐵 −0.0028 𝑦0 0.0 m

4.3. Case 3: Dam-break over a terrain mound with heat transfer

4.3.1. Test case description
In order to assess the model sensitivity to heat losses and fluid

behaviour simultaneously, an initial water column with a cylindrical
shape at the top of a mound is released, provoking a radial expansion
of the fluid slick. The differences between an adiabatic case (without
heat transfer) and a cooling case are considered in order to see the
effects on the flow progress.

The topography is created following a cone function as

𝑧(𝑥, 𝑦) =

{

𝐴 cos2 (𝐵2𝜋𝜉) 𝜉 ≤ 𝑅
𝑧0 otherwise

(64)

where 𝜉 =
√

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2. The function (64) is used with
parameters of Table 2 to create a raster with 𝛥x=1.0 m. An unstructured
mesh is used with 316,479 triangular elements with a terrain elevation
mapped from the raster that can be seen in Fig. 7(a). It is important
to note that the 3D representation of the terrain is 𝑧 scaled by 50x
for the sake of clarity in visualization. The initial condition along the
longitudinal 𝑥 profile can be seen in Fig. 7(b). All the boundaries are
closed.

For this case, friction is modelled with the Bingham law (see
Eq. (7)). For yield stress, parameters are: 𝐴𝜏=1, 𝐵𝜏=2000 and 𝐶𝜏=−0.3.
Viscosity is computed with: 𝐴𝜇=0.08 and 𝐵𝜇=1200, following Eqs. (8)
for yield stress and (9) for viscosity. The fluid is assumed to have the
following parameters relating temperature and density according to (2):
𝐾 = 1, 𝑇0 = 0 ◦C, and 𝜌0 = 800 kg/m3. The parameters used for this
test case are theoretical to allow a clear analysis in an extreme case.

Two different heat exchange situations are considered that give
rise to two different test sub-cases: case 3.1, adiabatic case without
8

heat losses (𝑄̇=0 W/m2) and case 3.2, with negative heat transfer
(𝑄̇=−100.0 W/m2) cooling the fluid to air temperature (0 ◦C). The
simulation runs up to 𝑡=10 h and the extension of the longitudinal
profile of fluid surface is analysed and compared. Finally, in order to
assess the method convergence a sensitivity analysis is performed over
different computational meshes with a varying refinement.

4.3.2. Numerical results
Fig. 8 shows the longitudinal profile of surface level (a) and fluid

depth (b) along the 𝑥 axis for different times in both cases, the adiabatic
and the cooling test case. All of them together with the initial fluid con-
dition. Gravity governs the first hour of simulation provoking almost
the same behaviour in both cases. However, the maximum extension
of the cooling case (3.2) is reached at 𝑡=1 h and does not change for
the rest of simulation. The adiabatic front (3.1) extends slightly further
than the previous one, but it also reaches its maximum before the
simulation ends, as profiles at 𝑡=5 h and 𝑡=10 h are almost the same.

For the last states, the non-homogeneous spatial distribution of
depth provokes different intensity of heat transfer and, thus, develops
a non-homogeneous spatial distribution of temperature, specially on
the wave front. Additionally, due to the high effect of the source
term depending on the depth, following (17), thin zones in the front
cool down up to lower temperatures faster than the slick core, which
presents higher fluid depths and preserves the initial temperature more
time.

The method convergence is assessed through a sensitivity analysis
that has been carried out simulating the sub-case 3.1 with different grid
refinements. The used meshes, whose characteristics are summarized in
Table 3, are selected varying the mean area of the triangular elements
as they are unstructured (A). In the absence of an analytical solution,
the numerical results obtained with a very fine mesh are considered as
a reference (A=500m2). The comparison is performed for 𝑡 = 72 s.

The comparison of fluid depth is done by mapping the reference
solution obtained by the reference mesh over the different meshes
(from 1 to 6) generating a reference solution (ℎ𝑖,𝑟𝑒𝑓 ) for each mesh at
a given time, 𝑛. Then, fluid depth numerical results (ℎ ) are compared
𝑖
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Fig. 7. Case 3: initial condition of fluid surface elevation.
Fig. 8. Case 3: Longitudinal evolution of fluid depth along 𝑥 axis for the adiabatic (-×-) and cooling (-◦-) cases at different times.
Table 3
Case 3: Mean area of elements (A) and number of cells (NC) of computational meshes
used for sensitivity analysis performed for sub-case 3.1.

Mesh Reference M1 M2 M3 M4 M5 M6

A 500 1000 2000 4000 8000 16000 32000
NC 316479 163816 81761 40991 20575 10144 5124

cell by cell for each mesh through the Root Mean Square Error (RMSE)
weighted with cell area (𝐴𝑖):

𝑅𝑀𝑆𝐸𝑛
𝑀 =

√

√

√

√

∑

𝑖(ℎ
𝑛
𝑖 − ℎ𝑛𝑖,𝑟𝑒𝑓 )𝐴𝑖
∑

𝑖 𝐴𝑖
(65)

where subindex 𝑀 stands for the analysed mesh. The analysis is carried
out for 𝑡 = 72 s and the obtained RMSE depending on the number of
cells can be seen in Fig. 9. Together with the RMSE of the compu-
tational results, the slope of a 1st order scheme error convergence is
plotted in order to compare the behaviour of the solution. Results are
consistent with the fact that the numerical method is of first order.

4.4. Case 4: Cumbre Vieja lava flow

La Palma island is the most north-westerly island of the Canary
Islands (Spain). It is a volcanic ocean island with an area of 708 Km2

and a total population of 85,840 inhabitants (at the end of 2020).
9

All its geography is a result of the volcanic formation of the island,
leading to a maximum peak height of 2400 m above the sea level. The
southern part of La Palma is formed by the Cumbre Vieja, a volcanic
ridge formed by numerous volcanic cones built of lava. After 50 years
of inactivity, a fissure eruption took place in Cumbre Vieja, started on
19 September 2021, preceded by and earthquake swarm 8 days before.
In the following week, more than 22,000 earthquakes were recorded.
The eruption caused the evacuation of over 7000 people and destroyed
more than 2000 buildings. Fig. 10 represents the data captured by the
Copernicus Sentinel-2 mission on 30 September and processed in true
colour, using the shortwave infrared channel to highlight the lava flow
from the volcano erupting and its pathway to the spill into the Atlantic
Ocean.

Fig. 11(a) shows the discrete domain considered together with some
representative locations. The spatial discretization is done by means
of a computational mesh consisting of 108,167 triangular elements,
locally refined along the lava trajectory (Fig. 11(b)). The main goal
of this test case is to calibrate the properties of the fluid considered
(density, viscosity and yield stress) by comparing the extension of the
simulated lava with the observations of the Copernicus satellite [30]
at different times during the first 11 days after the beginning of the
eruption, until the lava reached the Atlantic Ocean. During this period,
two main lava sources (Fig. 11) were the main contributors to the
lava effusive flow. The observed areas of consecutive lava patches have
been compared, obtaining an average volume for every time interval
that has made it possible to estimate the effusive lava flow (Fig. 12).
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Fig. 9. Case 3: Computed RMSE as a function of the number of cells square root.
Fig. 10. Infrared image of the lava flow from the volcano erupting (Copernicus Sentinel data 2021, processed by European Space Agency (ESA)).
The temperature for the first source is set at 1100◦C, whereas a hotter
lava temperature from 1150◦C to 1350◦C is considered for the second
source, as it is released from a lower region within the volcano cone
due to the partial collapse of the northern wall.

4.4.1. Numerical results
For the application of the viscous model with variable temperature

to a lava flow, the heat transfer is expressed as [31]

 = 𝑄̇
𝜌ℎ𝐶𝑝

=
𝑄̇𝑟𝑎𝑑 + 𝑄̇𝑐𝑜𝑛𝑣

𝜌ℎ𝐶𝑝
(66)

The radiative heat transfer between the fluid and the air is computed
by the Stefan–Boltzmann equation

𝑄̇ = 𝜖𝜎
(

𝑇 4 − 𝑇 4 )

(67)
10

𝑟𝑎𝑑 𝑎𝑖𝑟
where 𝜖 is the fluid surface emissivity (assumed as 0.55 [32] for a lava
flow), 𝜎=5.67 ⋅10−8 W/(m2K−4) is the Stefan–Boltzmann constant and
𝑇𝑎𝑖𝑟 is the air temperature.

On the other hand, the process of air convection is computed as a
function of the difference between the fluid temperature, 𝑇 , and the air
temperature, 𝑇𝑎𝑖𝑟 [K], and a convection coefficient, ℎ𝑐 ,

𝑄̇𝑐𝑜𝑛𝑣 = ℎ𝑐
(

𝑇 − 𝑇𝑎𝑖𝑟
)

(68)

in terms of the convective heat transfer coefficient ℎ𝑐 [Wm−2K] that
introduces the effect of air movement. It can be related to the Nusselt
number, in order to establish how relevant is the convection heat
transfer compared to the heat conduction:

𝑁𝑢 =
ℎ𝑐𝐿 (

𝑇 − 𝑇
)

(69)

𝑘 𝑎𝑖𝑟
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Fig. 11. (a) 3D representation of the bed level of the considered domain; (b) detail of the triangular unstructured computational mesh.

Fig. 12. Estimated effusive discharge for both lava sources.
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Table 4
Density, yield stress and viscosity parameters.
𝐾[kg/m3 K] 𝐴𝜏 [Pa] 𝐵𝜏 [Pa] 𝐶𝜏 [K−1] 𝐴𝜇[Pa s] 𝐵𝜇[K−1]

−0.1 0 2.5⋅106 4.29 ⋅10−3 2.0⋅107 5.02 ⋅10−3

Table 5
Obtained areas and 𝐹 values for several times of the simulation.
𝑡[h] 40 76 165 184 208 236

𝐴𝑛𝑢𝑚[Km2] 1.400 2.139 2.288 2.512 2.910 3.231
𝐴𝑜𝑏𝑠[Km2] 1.586 1.776 2.409 3.114 3.131 3.860
𝐴𝑛𝑢𝑚 ∩ 𝐴𝑜𝑏𝑠[Km2] 1.158 1.486 1.704 1.970 1.925 2.319
𝐴𝑛𝑢𝑚 ∪ 𝐴𝑜𝑏𝑠[Km2] 1.825 2.426 2.993 3.207 3.639 4.299
𝐹 0.634 0.613 0.569 0.614 0.529 0.539

Table 6
Computational times and GPU speed-up factor.

CPU (1 core) CPU (16 cores) GPU-1 GPU-2

Comp. time (h) 477.19 33.37 6.88 1.65
Speed-up – 14.3 69.4 289.2

being 𝐿 [m] a characteristic length and 𝑘 [W m/K] the thermal conduc-
tivity. A value of ℎ𝑐 = 25 W/(m2K) is assumed in this work [32].

In addition to the correct estimation of the effusive flow, one
of the main challenges when modelling the lava flow is the correct
characterization of its physical properties. The lava density, viscosity,
and yield stress present a strong dependency on the temperature which
varies in a wide range throughout the descent of the lava. This variation
in lava properties also affects the velocity of the lava propagation front.
Hence, it is essential to carry out a correct characterization of the fluid
properties. In this section, the calibration obtained for the parameters
of the Eqs. (2), (8) and (9) is shown. This calibration is based on the fit
of the distribution of the numerical lava layer to the extension of the
observed field data, with the aim of reproducing the transitory lava
flow as accurately as possible. Table 4 shows the density, yield stress
and viscosity calibrated parameters for the present case. Figs. 13 and
14 show the results for the numerical lava flow overlapped with the
satellite observations at 𝑡 = 40 h and 𝑡 = 76 h, respectively.

In order to find out the overall goodness of the fit, the feature
greement statistics performance measure proposed by [33] is used
or all the available satellite data. This is a commonly used technique
or validating extents produced by numerical flow models. It defines a
imensionless variable 𝐹 (0 ≤ 𝐹 ≤ 1) that accounts for the intersection

and union areas between the observed data (𝐴𝑜𝑏𝑠) and the numerical
data (𝐴𝑛𝑢𝑚) as follows:

𝐹 =
𝐴𝑛𝑢𝑚 ∩ 𝐴𝑜𝑏𝑠
𝐴𝑛𝑢𝑚 ∪ 𝐴𝑜𝑏𝑠

(70)

Note that 𝐹 = 1 stands for a perfect numerical and observed data
atch and 𝐹 = 0 represents null coincidence. Table 5 shows the

btained 𝐹 values for several times of the simulation.
Not only accurate but also fast numerical models are essential for

azard assessment and flow forecasting [34]. Therefore, the speed-up
actor, defined as the ratio between the simulation time in CPU with a
ingle core and the simulation time of a multi-core or GPU simulation,
s shown in Table 6. The CPU simulations have been performed using
n 16-core Intel Core i7-10700F at 2.90 GHz processor with 64 Gb of
AM, whereas NVIDIA GeForce GTX Titan Black (GPU-1) and NVIDIA
100 Tensor Core (GPU-2) devices have been used to run the GPU
imulations.

. Conclusions

In this work, a new formulation of a shallow water model for
iscous flow influenced by temperature has been presented coupled
12

o an energy equation in terms of temperature variations. This model a
llows not only to transport temperature as a passive value, but also to
eproduce its influence on the momentum equations. A generic model
f temperature-dependent flows has been developed that can be applied
o a wide variety of fluids.

The resulting hyperbolic system represents a decisive advantage for
eveloping robust and efficient numerical models capable of dealing
ith realistic large-scale and long-term geophysical events, despite the

implifications assumed in the coupling process in the equations. The
ugmented Riemann solver formulated has been designed to ensure
ass conservative, well balanced numerical solutions even in presence

f irregular beds and wet-dry fronts.
A test case for the cooling of a quiescent fluid, with reference

olution, has been carried out to analyse the conservation of energy
s a function of the action of this source term. It has been useful to see
he ability of the numerical approximation to reproduce a basic thermal
volution in presence of variable depth.

Moreover, in order to analyse the influence of the inclusion of
ensity within the solver, a test case of a dam break on a slope
erminating in a reservoir with fluid at rest has been performed. It has
een demonstrated that, if temperature is only transported as a passive
calar, waves generated by density discontinuities are not generated
nd the results can be different. Even using the simplest Manning
riction law, very different results are observed at the moment when
he dam break wave reaches the reservoir and there is a difference in
ensities. Thus, when trying to reproduce properly flows with strong
ensity variations, this density must be introduced within the conserved
ariables vector, fluxes and numerical solver.

A detachment of a fluid column over a mound has been simulated
nder different heat transfer scenarios: adiabatic (no heat exchange)
nd cooling. The numerical solutions reproduce correctly the influence
f the heat transfer on the front advance. This behaviour is observed in
eal flows such as oil spills or advancing lava flows, where the initial
nertia forces, combined with high initial temperatures, allow the fluid
o advance rapidly in the first instants and then, as the fluid cools, to
dvance more slowly as the viscosity and density increase.

Finally, the model has been applied to the first stage (11 days) of
real world event consisting of the recent eruption of Cumbre Vieja

olcano, located in La Palma Island (Canary Islands, Spain).
Using data from Copernicus satellite the effluent discharge has been

stimated and the propagation front has been tracked. As the lava
ensity, viscosity, and yield stress affect the lava velocity propagation
ront, the parameters related to these fluid properties have been cal-
brated by fitting the numerical and observed lava patches all over
he considered domain, taking into account their dependency with
he temperature. This has required several runs of the model under
ifferent hypothesis. The numerical results have demonstrated that the
odel is robust and fast, making possible the simulation of all scenarios

n an affordable time. In general, a good correspondence has been
bserved between the numerical results and the satellite observations,
oth in lava extension and in the propagation velocity of the lava front.

The results and conclusions obtained in this work support the
eed to develop accurate and efficient simulation models capable of
redicting the path of viscous flows. The fluid properties are highly
ependent on temperature, so its continuous monitoring is highly rec-
mmended. The efficiency of this type of distributed numerical models
ith hundreds of thousands or even millions of cells is based on the use
f GPU devices for massive parallelization, obtaining speed-up factors
289x for the test cases presented in this work.
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Fig. 13. Lava depth (upper), velocity (centre) and temperature (lower) over domain topography in grey scale at 𝑡 = 40 h after the eruption. Comparison with satellite observations
of the lava extension is also shown (dashed line).
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Appendix. Riemann solver for thermally-driven flows

In this section, a novel fully-coupled Riemann solver (RS) for
thermally-driven compressible shallow flows is presented, based on
13
the augmented RS previously developed for compressible mud/debris
flows [23,35]. For the system of Eqs. (21), the approximate Jacobian
matrix of the conservative fluxes expressed in the local framework of
the 𝑘th cell edge can be defined as

𝐉𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0
1
2
𝑔ℎ̃

(

1 + 𝑟̃
)

− 𝑢̃2𝑛 2𝑢̃𝑛 0 −1
2
𝑔𝑟̃ℎ̃

−𝑢̃𝑛𝑣𝑡 𝑣𝑡 −𝑢̃𝑛 0
−𝑢̃𝑛𝑇∇∕𝑟̃ 𝑇∇∕𝑟̃ 0 𝑢̃𝑛

⎞

⎟

⎟

⎟

⎟

⎠

𝑘

(71)

and must satisfies

𝛿𝐅(𝐔̂)𝑘 = 𝐉𝑘 𝛿𝐔̂𝑘 (72)

where 𝛿𝐅(𝐔̂)𝑘 = 𝐅(𝐔̂𝑛
𝑗 )−𝐅(𝐔̂𝑛

𝑖 ) and 𝛿𝐔̂𝑘 = 𝐔̂𝑛
𝑗 − 𝐔̂𝑛

𝑖 denotes the increment
on the local conservative fluxes and variables between cells 𝛺 and 𝛺 ,
𝑖 𝑗
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𝑟̃

̃

𝑢̃

Fig. 14. Lava depth (upper), velocity (centre) and temperature (lower) over domain topography in grey scale at 𝑡 = 76 h after the eruption. Comparison with satellite observations
of the lava extension is also shown (dashed line).
allowing to define the wall-average values of the local variables as

=
𝑟𝑖ℎ𝑖 + 𝑟𝑗ℎ𝑗
ℎ𝑖 + ℎ𝑗

ℎ =
ℎ𝑖 + ℎ𝑗

2

𝑇∇ = 𝑟̃
𝑇∇
𝑖 ℎ𝑖

√

𝑟𝑗ℎ𝑗 + 𝑇∇
𝑗 ℎ𝑗

√

𝑟𝑖ℎ𝑖

𝑟𝑖ℎ𝑖
√

𝑟𝑗ℎ𝑗 + 𝑟𝑗ℎ𝑗
√

𝑟𝑖ℎ𝑖
,

𝑛 =
𝑢𝑛,𝑖

√

𝑟𝑖ℎ𝑖 + 𝑢𝑛,𝑗
√

𝑟𝑗ℎ𝑗
√

𝑟𝑖ℎ𝑖 +
√

𝑟𝑗ℎ𝑗

𝑣𝑡 =
𝑣𝑡,𝑖

√

𝑟𝑖ℎ𝑖 + 𝑣𝑡,𝑗
√

𝑟𝑗ℎ𝑗
√

𝑟𝑖ℎ𝑖 +
√

𝑟𝑗ℎ𝑗

(73)

Analogous to the procedure detailed in [23] and due to the hyper-
bolic nature of the system, 4 real eigenvalues 𝜆𝑚 with 𝑚 = 1,… , 4 can
14
be obtained for the Jacobian matrix 𝐉𝑘 as

𝜆1,𝑘 = (𝑢̃𝑛 − 𝑐)𝑘, 𝜆2,𝑘 = (𝑢̃𝑛)𝑘, 𝜆3,𝑘 = (𝑢̃𝑛 + 𝑐)𝑘, 𝜆4,𝑘 = (𝑢̃𝑛)𝑘.

(74)

being 𝑐𝑘 the linearized flow celerity, defined as 𝑐𝑘 =
(

√

1
2 𝑔ℎ̃𝑚̃

)

𝑘
,

where 𝑚̃𝑘 = (1 + 𝑟̃ − 𝑇∇)𝑘.
The 4 associated eigenvectors 𝐞̃𝑚 compound the orthogonal basis of

𝐉𝑘 and are gathered into matrix 𝐏̃𝑘 = (𝐞̃1, 𝐞̃2, 𝐞̃3, 𝐞̃4)𝑘 that reads

𝐏̃𝑘 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 1 𝑟̃
𝜆1 0 𝜆3 𝑟̃𝑢̃𝑛
𝑣𝑡 𝑐 𝑣𝑡 𝑟̃𝑣𝑡

𝑇∇∕𝑟̃ 0 𝑇∇∕𝑟̃ 1 + 𝑟̃

⎞

⎟

⎟

⎟

⎟

⎠𝑘

(75)

which satisfies

𝐉𝑘 = (𝐏̃𝜦̃𝐏̃−1)𝑘 𝜦̃𝑘 =
⎛

⎜

⎜

𝜆1 0
⋱

̃

⎞

⎟

⎟

(76)

⎝ 0 𝜆4 ⎠𝑘
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Fig. 15. Approximate solution for the local plane RP at the 𝑘th cell edge.

being 𝐏̃−1
𝑘 the inverse matrix of 𝐏̃𝑘.

The conservative variable increment 𝛿𝐔̂𝑘 is projected on the eigen-
vector basis in order to obtain the wave strengths 𝛼𝑚,𝑘 as

(𝛼1, … , 𝛼4)𝑇𝑘 = 𝐏̃−1
𝑘 𝛿𝐔̂𝑘 ⟶ 𝛿𝐔̂𝑘 =

4
∑

𝑚=1
(𝛼𝑚𝐞̃𝑚)𝑘 (77)

where 𝛼𝑚 are

𝛼1 =
1

2𝑐𝑚̃
[

𝛿(𝑟ℎ)
(

(1 + 𝑟̃)𝑐 + 𝑚̃𝑢̃𝑛
)

− 𝑚̃𝛿(𝑟ℎ𝑢𝑛) − 𝑟̃𝑐𝛿(ℎ𝑇∇)
]

(78a)

𝛼2 =
1
𝑐
[

𝛿(𝑟ℎ𝑣𝑡) − 𝑣𝑡𝛿(𝑟ℎ)
]

(78b)

𝛼3 =
1

2𝑐𝑚̃
[

𝛿(𝑟ℎ)
(

(1 + 𝑟̃)𝑐 − 𝑚̃𝑢̃𝑛
)

+ 𝑚̃𝛿(𝑟ℎ𝑢) − 𝑟̃𝑐𝛿(ℎ𝑇∇)
]

(78c)

𝛼4 =
1
𝑚̃

[

𝛿(ℎ̃𝑇∇) − ℎ𝑇∇

𝑟̃
𝛿(𝑟ℎ)

]

(78d)

The bed slope and basal resistance momentum source terms are
integrated into the numerical flux at the cell edges. The momentum
edge-contributions 𝐇(𝐔̂)𝐤 and 𝐓(𝐔̂)𝐤 in (35) and (36) can be projected
on the eigenvector basis in order to obtain the corresponding source
strengths as

(𝛽1, … , 𝛽4)𝑇𝑘 = 𝐏̃−1
𝑘 𝐇(𝐔̂)𝑘 ⟶ 𝐇(𝐔̂)𝑘 =

4
∑

𝑚=1
(𝛽𝑚𝐞̃𝑚)𝑘 (79a)

(𝜎1, … , 𝜎4)𝑇𝑘 = 𝐏̃−1
𝑘 𝐓(𝐔̂)𝑘 ⟶ 𝐓(𝐔̂)𝑘 =

4
∑

𝑚=1
(𝜎𝑚𝐞̃𝑚)𝑘 (79b)

and the source strengths reads

𝛽1 =
𝑔𝑟̃ℎ̃ 𝛥𝑧𝑏

2 𝑐
𝛽2 = 0

𝛽3 = −
𝑔𝑟̃ℎ̃ 𝛥𝑧𝑏

2 𝑐
𝛽4 = 0

𝜎1 =
𝜏𝑏 (𝑛𝑢𝑥𝛥𝑥 + 𝑛𝑢𝑦𝛥𝑦)

2 𝜌0 𝑐
𝜎2 = 0

𝜎3 = −
𝜏𝑏 (𝑛𝑢𝑥𝛥𝑥 + 𝑛𝑢𝑦𝛥𝑦)

2 𝜌0 𝑐
𝜎4 = 0

One result of Roe’s linearization is that the approximate Riemann
solution consists of only discontinuities and hence is governed by the
wave celerities in 𝜆𝑚,𝑘. Therefore, the approximate solution 𝐔̂(𝑥̂, 𝑡)
consists of four regions connected by 5 waves, one of them a contact
wave with null celerity accounting for the integrated source term at the
edge position 𝑥̂ = 0 (see Fig. 15).

According to the Godunov-type method, it is sufficient to provide
the approximate solution at the intercell position 𝑥̂ = 0 in order
to obtain the augmented numerical fluxes  ↓ throughout the edge.
15

𝑘

Therefore, the definition of the numerical fluxes at the left and right
sides,  ↓−

𝑘 and  ↓+
𝑘 respectively, of the 𝑘th cell edge is written as

 ↓−
𝑘 = 𝐅(𝐔̂𝑛

𝑖 ) +
∑

𝑚−

[

(𝜆𝑚𝛼𝑚 − 𝛽𝑚 − 𝜎𝑚) 𝐞̃𝑚
]𝑛
𝑘

 ↓+
𝑘 = 𝐅(𝐔̂𝑛

𝑗 ) −
∑

𝑚+

[

(𝜆𝑚𝛼𝑚 − 𝛽𝑚 − 𝜎𝑚) 𝐞̃𝑚
]𝑛
𝑘

(80)

where the subscript 𝑚− and 𝑚+ under the sums indicates waves trav-
elling inward and outward the 𝑖 cell.

Note that, when momentum source terms are incorporated into the
Riemann solver, it is no longer possible to define a unique value of the
numerical flux at both sides of the cell edge. The relation between the
approximate fluxes  ↓−

𝑘 and  ↓+
𝑘 can be analysed using the Rankine–

Hugoniot (RH) relation at 𝑥̂ = 0, which includes the steady contact
wave accounting for the momentum sources. The corresponding flux
jump is given by

 ↓+
𝑘 −  ↓−

𝑘 =
4
∑

𝑚=1

[

(𝛽𝑚 + 𝜎𝑚) 𝐞̃𝑚
]𝑛
𝑘 = 𝐇(𝐔̂)𝑘 + 𝐓(𝐔̂)𝑘 (81)
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