000123957 001__ 123957
000123957 005__ 20240319081028.0
000123957 0247_ $$2doi$$a10.3390/polym14245554
000123957 0248_ $$2sideral$$a132444
000123957 037__ $$aART-2022-132444
000123957 041__ $$aeng
000123957 100__ $$aRivera-Sahún, Joaquín
000123957 245__ $$aUse of green fs lasers to generate a superhydrophobic behavior in the surface of wind turbine blades
000123957 260__ $$c2022
000123957 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123957 5203_ $$aIce generation on the surface of wind generator blades can affect the performance of the generator in several aspects. It can deteriorate sensor performance, reduce efficiency, and cause mechanical failures. One of the alternatives to minimize these effects is to include passive solutions based on the modification of the blade surfaces, and in particular to generate superhydrophobic behavior. Ultra-short laser systems enable improved micromachining of polymer surfaces by reducing the heat affected zone (HAZ) and improving the quality of the final surface topography. In this study, a green fs laser is used to micromachine different patterns on the surface of materials with the same structure that can be found in turbine blades. Convenient optimization of surface topography via fs laser micromachining enables the transformation of an initially hydrophilic surface into a superhydrophobic one. Thus, an initial surface finish with a contact angle ca. 69° is transformed via laser treatment into one with contact angle values above 170°. In addition, it is observed that the performance of the surface is maintained or even improved with time. These results open the possibility of using lasers to control turbine blade surface microstructure while avoiding the use of additional chemical coatings. This can be used as a complementary passive treatment to avoid ice formation in these large structures.
000123957 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T54-20R$$9info:eu-repo/grantAgreement/EC/H2020/899352/EU/Sustainable Smart De-Icing by Surface Engineering of Acoustic Waves/SOUNDofICE$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 899352-SOUNDofICE$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2020-113034RB-I00
000123957 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000123957 590__ $$a5.0$$b2022
000123957 592__ $$a0.72$$b2022
000123957 591__ $$aPOLYMER SCIENCE$$b16 / 85 = 0.188$$c2022$$dQ1$$eT1
000123957 593__ $$aPolymers and Plastics$$c2022$$dQ1
000123957 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000123957 594__ $$a6.6$$b2022
000123957 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123957 700__ $$aPorta-Velilla, Luis$$uUniversidad de Zaragoza
000123957 700__ $$0(orcid)0000-0002-0500-1745$$ade la Fuente, Germán F.
000123957 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, Luis A.$$uUniversidad de Zaragoza
000123957 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000123957 773__ $$g14, 24 (2022), 5554 [17 pp.]$$pPolymers (Basel)$$tPolymers$$x2073-4360
000123957 8564_ $$s11416159$$uhttps://zaguan.unizar.es/record/123957/files/texto_completo.pdf$$yVersión publicada
000123957 8564_ $$s2807608$$uhttps://zaguan.unizar.es/record/123957/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123957 909CO $$ooai:zaguan.unizar.es:123957$$particulos$$pdriver
000123957 951__ $$a2024-03-18-16:54:10
000123957 980__ $$aARTICLE