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Abstract: Ice generation on the surface of wind generator blades can affect the performance of the
generator in several aspects. It can deteriorate sensor performance, reduce efficiency, and cause
mechanical failures. One of the alternatives to minimize these effects is to include passive solutions
based on the modification of the blade surfaces, and in particular to generate superhydrophobic
behavior. Ultra-short laser systems enable improved micromachining of polymer surfaces by reducing
the heat affected zone (HAZ) and improving the quality of the final surface topography. In this
study, a green fs laser is used to micromachine different patterns on the surface of materials with the
same structure that can be found in turbine blades. Convenient optimization of surface topography
via fs laser micromachining enables the transformation of an initially hydrophilic surface into a
superhydrophobic one. Thus, an initial surface finish with a contact angle ca. 69◦ is transformed
via laser treatment into one with contact angle values above 170◦. In addition, it is observed that
the performance of the surface is maintained or even improved with time. These results open the
possibility of using lasers to control turbine blade surface microstructure while avoiding the use of
additional chemical coatings. This can be used as a complementary passive treatment to avoid ice
formation in these large structures.

Keywords: turbine blades; fs lasers; micromachining; superhydrophobicity

1. Introduction

Wind energy is one of the most important renewable energy sources and its implanta-
tion in cold climate regions is increasing. Wind generators become more efficient in these
regions, because of higher air density [1]. Since humidity is also higher, icing becomes a
most relevant problem associated to a significant loss of aerodynamic efficiency. In addi-
tion, ice increases both vibration and fatigue loads on the generator blades, giving rise to
more extensive maintenance requirements and generating serious safety problems. Several
studies have shown that losses associated with ice formation are similar to those related
with the remaining wind turbine maintenance issues. It is thus important to minimize ice
formation while searching for solutions that facilitate the elimination of ice from the surface
of the wind turbine blade [2,3].

Ice protection systems are usually based on two main strategies. These include anti-ice
solutions, which prevent ice accumulation on surfaces, as well as de-icing systems, to
remove ice from surfaces. The latter are classified into two types of systems: active and
passive. Passive methods use the characteristics of the surface, as for instance, generating
a hydrophobic surface. This hydrophobic character has been used for many applications,
as anti-icing, anticorrosion or self-cleaning properties [4–8]. In the case of wind turbine
blades, different coatings have been developed to achieve this property. In many cases,
fluorinated compound coated ZnO and/or SiO2 nanoparticles are embedded within PDMS
substrates [9,10] to enhance a superhydrophobic character to the surface, reducing its free
energy. Alternatively, direct addition of polytetrafluoroethylene (PTFE) nanoparticles to
these coatings has also been employed for the same purpose [11].
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Active anti-icing methods require the input of an external thermal (hot air circulation,
electrical resistance heating) or mechanical (surface acoustic waves, moving systems) energy
sources [12–14] or the use of liquid anti-icing methods. Combinations of these types of
solutions have also been reported [15,16]. When considering real applications, most of
these passive anti-icing solutions exhibit clear difficulties towards their scale-up. The large
size of wind generator blades and the complex ice formation mechanisms, associated to
varying atmospheric conditions, are both responsible for the latter difficulty. In view of the
former considerations, passive methods are often employed in combination with active
ones, in order to reduce the energy required for surface ice removal.

Laser ablation is one of the methods considered to modify the wettability of polymeric
materials [4,17–19]. Wind turbine blade structures contain a central nucleus fabricated with
a glass fiber composite. The latter is protected with gel-coat in order to obtain a smooth,
uniform surface finish. Reinforced polyurethanes are considered as one option to fabricate
this gel-coat, and laser ablation has been proposed to micromachine and/or nanotexture
the surface of polyurethane substrates [19–24].

Because of the characteristic thermal properties of polymers, laser irradiation may
easily induce their undesired thermal decomposition, thus requiring control of heat ac-
cumulation. A similar situation is found when laser treatments are applied to materials
with low thermal conductivity and diffusivity, such as ceramics [25] and glass [26,27]. In
order to avoid this problem, the use of ultra-short pulse lasers (within the fs pulse regime)
working at low pulse repetition frequencies (1–10 kHz) has been proposed.

Usually, when the objective is to obtain superhydrophobic surfaces, laser ablation is
combined with the deposition of a specific coating. The laser treatment generates a given
micro- and/or nanostructure and the selected coating is deposited in order to modify the
chemical properties and enhance the superhydrophobic character of the surface. In fact, the
most commonly employed coatings are based on fluorinated compound derivatives [4,17],
although the actual environmental restrictions impose the need to develop alternatives.

The objective of this work is to modify the wettability of a gel-coat surface, frequently
used in wind turbine blades, using only a laser micromachining process without employing
any additional coating. This could pave the way towards the development of an environ-
mentally friendly technique which would facilitate de-icing in wind generation structures,
significantly improving their efficiency.

2. Materials and Methods

Experiments were performed on samples that reproduce the structure used in the
fabrication of wind turbine blades, fabricated by the company Ingeniería de Compuestos,
S.L. (Murcia, Spain). The central part is a 4-mm-thick plate of a fiber glass composite
material. The external surface is gel-coat. In the smooth surface, the coating has a thickness
of 450 ± 10 µm. As observed in Figure 1, the gel-coat is reinforced with ceramic particles.
Some of them are alumina platelets that can reach in-plane dimensions close to 10 µm. The
presence of smaller Al and Mg silicate particles is also confirmed.

Laser treatments were performed using a Carbide model (CB3-40W+CBM03-2H-3H,
Light Conversion, Vilnius, Lithuania) fs laser in its second harmonic. This linearly polarized
green beam output is coupled with a galvanometric mirror configuration controlled by
software (Direct Machining Control, Vilnius, Lithuania). This laser system is provided with
a pulse on demand mechanism, known as pulse peak divider (PPD). The pulse frequency,
f, can be adjusted between 1 Hz and 1 MHz, using an appropriate combination of the
resonator frequency and the PPD value. During the laser treatments, 249 fs pulses were
emitted at 515 nm at a maximum average output power of 12.4 W. The laser beam has a
Gaussian beam profile with a diameter 2r0 = 50 µm, using the 1/e2 criterium [28].

The scanning geometry was established as a cross configuration with a set distance
between lines, dlines. The distance between pulses in one line, dpulses, was fixed by selecting
the laser scanning speed, vlaser, for a given value of f. Previous reports [29,30] suggested
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that when dpulses/r0 < 0.9, the energy along the beam scanned line could be considered
constant and takes the following value at its center:

Fcenter = 1.588
π r0

2 dpulses
Fpulse, (1)

where Fpulse is the average fluence associated with a single pulse. The total energy deposited
in a given area during scanning along a line, 〈F1D〉, can be calculated as:

〈F1D〉 =
π r0

2 dpulses
Fpulse = N1D Fpulse. (2)

N1D, the ratio between 〈F1D〉 and Fpulse, can be considered as the effective number of pulses
in a given position.
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Figure 1. FESEM image with EBS detector of the original sample surface employed in this work.
Gray particles correspond to ceramic phases.

Surface topography was characterized using confocal microscopy (2300 Plµ Sensofar,
Terrassa, Spain). Surface morphology was also analyzed with a field-emission scanning
electron microscope (FESEM, MERLIN Carl Zeiss GmbH, Oberkochen, Germany) using
secondary electron (SE), in-lens, and backscattered (ESB) detectors. The electron beam
acceleration voltage was set to 5 kV. Chemical surface characterization was performed
using energy dispersive X-ray spectroscopy (EDS, INCA350 Oxford Instruments).

Contact angle measurements were performed in a home-made system using a mi-
cropipette (model Multipette® E3x, Eppendorf AG, Hamburg, Germany), coupled with a
camera (model UI-3080CP Rev.2, IDS, Obersulm, Germany) and a teleobjective (Thorlabs,
Germany). 6 µL droplets were deposited on the surfaces and their shape was recorded
after 1 min. Contact angle values were obtained from the photographs using the free
software ImageJ with installed LBADSA (Low Bond Axisymmetric Drop Shape Analysis)
plugin [31].

Raman spectroscopy was also used for structural investigation before and after laser
machining. The apparatus used in this work was a Jasco NRS 3100 equipped with two lasers
at 785 and 532 nm, two diffraction gratings (600 and 1800 gr/mm), and three objectives
(×5, ×20 and ×100) and a motorized stage with step accuracy of 1 µm with spatial resolu-
tion of 8 µm3 and spectra resolution of 1 cm−1. Samples were measured with the following
instrument set up: Laser 532 nm, grating 600 gr/mm, and objective X100.
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3. Results and Discussion
3.1. Definition of the Laser Ablation Parameters

Initial laser treatments were carried out in order to define the main ablation parameters
that characterize the laser interaction with this material. A set of lines were patterned with
dlines = 200 µm in an area of 6 × 6 mm2. This dlines value was selected in order to avoid a
significant thermal interaction between two consecutive lines during the laser treatment.
Thermal incubation was also minimized [27] by working with low frequency values, in this
case 10 kHz, and vlaser = 150 mm/s, yielding dpulses = 15 µm. The criterium of working
with a uniform Gaussian energy distribution along the line is fulfilled by applying these
processing parameters, where dpulses/r0 = 0.6 < 0.9. The selected energy per pulse was set
at Epulse = 48.5 µJ/pulse, reaching a total average fluence value of 〈F1D〉 = 6.5 J/cm2.

Figure 2a shows the topography of the surface. The width of the machined region
at the sample surface is approximately 27 µm in the initially processed horizontal lines.
For the vertical lines, the width increases up to 32 µm. In both line orientations, the depth
of the machined volume is low, approximately 3 µm. This increase in the ablated region
size during the second scan was observed in all the treatments and it is due to the change
in absorption of the sample surface during the two scans, a phenomenon described as
incubation. The horizontal scan was performed over the original surface. The vertical scan
was performed over a surface with the roughness generated by the previous laser scan,
increasing the energy absorption and making the laser treatment more effective.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

with dlines = 200 μm in an area of 6 × 6 mm2. This dlines value was selected in order to avoid 
a significant thermal interaction between two consecutive lines during the laser treatment. 
Thermal incubation was also minimized [27] by working with low frequency values, in 
this case 10 kHz, and vlaser = 150 mm/s, yielding dpulses = 15 μm. The criterium of working 
with a uniform Gaussian energy distribution along the line is fulfilled by applying these 
processing parameters, where dpulses/r0 = 0.6 < 0.9. The selected energy per pulse was set at 
Epulse = 48.5 μJ/pulse, reaching a total average fluence value of 〈𝐹ଵୈ〉 = 6.5 J/cm2. 

Figure 2a shows the topography of the surface. The width of the machined region at 
the sample surface is approximately 27 μm in the initially processed horizontal lines. For 
the vertical lines, the width increases up to 32 μm. In both line orientations, the depth of 
the machined volume is low, approximately 3 μm. This increase in the ablated region size 
during the second scan was observed in all the treatments and it is due to the change in 
absorption of the sample surface during the two scans, a phenomenon described as incu-
bation. The horizontal scan was performed over the original surface. The vertical scan was 
performed over a surface with the roughness generated by the previous laser scan, in-
creasing the energy absorption and making the laser treatment more effective.  

 

 
(a) (b) 

Figure 2. (a) Topography of the surface after laser machining for dlines = 200 μm. (b) Evolution of the 
contact angle values with the reduction of dlines. The horizontal blue line indicates the value of 68° 
measured in the original surface, before laser microachining. Insets show the images obtained for 
measuring the contact angle in the original surface, and with dlines = 200 μm and dlines = 35 μm. 

After measuring the contact angle values, it was observed (Figure 2b) that the hydro-
phobicity of the surface improves and the contact angle increases from values ca. 68° to 
about 97°. 

Similar microstructures were generated reducing the distance between lines from 200 
to 35 μm. Line to line overlap begins with this latter condition. As observed in Figure 2b, 
the contact angle increases while the distance between machined lines is reduced, reach-
ing a value of 119° for dlines = 35 μm. The insets show the shape of the water droplet in the 
contact angle measurements. More detailed images can be observed in the Supplementary 
Material. 

3.2. Changes in Surface Color 
Figure 3 shows the aspect of the sample surface after these laser treatments. The sur-

face now appears darkened, as reported in previous works for the achievement of laser-
induced marking effects [22,32]. Usually, the marking treatments were performed using a 
near infrared laser and a laser sensitive additive, such as BiOCl [22] or Bi2O3 [32]. In these 

Figure 2. (a) Topography of the surface after laser machining for dlines = 200 µm. (b) Evolution of the
contact angle values with the reduction of dlines. The horizontal blue line indicates the value of 68◦

measured in the original surface, before laser microachining. Insets show the images obtained for
measuring the contact angle in the original surface, and with dlines = 200 µm and dlines = 35 µm.

After measuring the contact angle values, it was observed (Figure 2b) that the hy-
drophobicity of the surface improves and the contact angle increases from values ca. 68◦ to
about 97◦.

Similar microstructures were generated reducing the distance between lines from
200 to 35 µm. Line to line overlap begins with this latter condition. As observed in
Figure 2b, the contact angle increases while the distance between machined lines is re-
duced, reaching a value of 119◦ for dlines = 35 µm. The insets show the shape of the water
droplet in the contact angle measurements. More detailed images can be observed in the
Supplementary Material.
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3.2. Changes in Surface Color

Figure 3 shows the aspect of the sample surface after these laser treatments. The surface
now appears darkened, as reported in previous works for the achievement of laser-induced
marking effects [22,32]. Usually, the marking treatments were performed using a near
infrared laser and a laser sensitive additive, such as BiOCl [22] or Bi2O3 [32]. In these cases,
the laser process induces formation of laser-heated micron size areas where polyurethane
is decomposed by carbonization associated to the pyrolysis of the polymer chains.
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Figure 3. Photograph of the sample surface subjected to study, where laser treatments were carried
out in air.

In order to go into more detail about the origin of this phenomenology, additional
experiments were performed increasing the level of 〈F1D〉. Figure 4 shows the aspect
of the bottom of a machined region after processing with Epulse = 48.5 µJ/pulse and
vlaser = 9 mm/s, conditions that lead to 〈F1D〉 = 107.7 J/cm2, 16.7 times higher than those
used in the processing of the sample presented in Figures 2 and 3. Observation with an in-
lens detector, as shown in Figure 4a, suggests that irradiation with a fs green laser induces
very limited thermal effects on the polymeric material. Spherical nanoparticles are not
associated with molten material. The white contrast on the EBS image of the same region
(Figure 4b) suggests that the latter are part of the ceramic reinforcement of the material.
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Additional experiments were repeated performing a laser treatment in an Ar atmo-
sphere instead of air. A similar change in color was observed (see Figure S1), indicating that
surface darkening is not generated by oxidation of hydrocarbons of the polymer chains,
although these could take place during the laser treatment in air. Raman spectra were
recorded at the bottom of the machined grooves in both laser-treated regions and the results
are compared with the original surface in Figure 5. In all the cases, the band associated
with Al2O3 at 631 cm−1 is clearly observed. Polymer bands in the laser treated regions are
broader, suggesting partial decomposition of the polymer, but the typical broad diffusion
band in the 1000–2000 cm−1 range, usually assigned to amorphous carbon, is not so evi-
dent. This is also an indication that laser irradiation has induced only a limited thermal
accumulation effect. Spectra in both treatments show similar trends, indicating that the
atmosphere under which laser irradiation was performed is not determinant. The green fs
laser irradiation results in a direct photo-induced chemical decomposition of the polymer.
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Figure 5. Raman spectra recorded on the original surface and on the bottom of a laser machined
groove on samples processed in air and in Ar with Epulse = 48.5 µJ/pulse, vlaser = 9 mm/s and
dlines = 65 µm.

3.3. Optimising Contact Angle Values

From the analysis of the previous results, it was decided to work directly on air but
modifying the laser conditions, in order to increase the volume of material that is eliminated
during the laser treatment. The approach followed a reduction of the laser beam scanning
speed. This was combined with an optimization of the distance between machined lines.

Figure 6 shows the evolution of the contact angle for different laser scanning speeds.
A reduction of vlaser, reduces dpulses and increases 〈F1D〉. With the laser parameters used
in this study, 〈F1D〉 ranges from 〈F1D〉 = 6.5 J/cm2 with vlaser = 150 mm/s to
〈F1D〉 = 194.0 J/cm2 with vlaser = 5 mm/s. These data show a condition in which su-
perhydrophobic contact angle values (163◦) have been reached: vlaser = 5 mm/s and
dlines = 75 µm. Another interesting aspect is that this surface also exhibits a lower rolling
angle, observed below 20◦.
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Figure 6. Evolution of contact angle values for different distances between machined lines and
different laser scanning speeds.

The topography of the sample that exhibits this superhydrophobic behavior is pre-
sented in Figure 7a. The same phenomena that were explained for the topography of the
sample presented in Figure 2 are also observed in this case. Machining is more effective in
the last vertical scan. Figure 7b shows a vertical linear profile that measures the depth of the
grooves machined in the horizontal direction. These laser machining conditions produce
grooves that reach a depth of approximately 120 ± 10 µm. In the horizontal direction
profiles, vertical grooves with depths up to 180 µm were measured.
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Several processing parameters were explored around these conditions, which pro-
duced a surface with contact angles above 150◦. Figure 8 shows a set of 21 experimental
conditions that also exhibit this behavior, using laser pulses with Epulse = 48.5 µJ/pulse in
all cases. Contact angles above 150◦ were achieved when the distance between lines was in
the range between 50 and 80 µm. Smaller dlines values, in the range between 25 and 50 µm,
were also explored. In these cases, it was observed that consecutive machined lines start to
overlap, and the measured contact angles decrease to values below 150◦.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

μm, were also explored. In these cases, it was observed that consecutive machined lines 
start to overlap, and the measured contact angles decrease to values below 150°. 

 
Figure 8. Different combinations of dlines and vlaser (Epulse = 48.5 μJ/pulse) that have generated a surface 
with contact angles above 150°. 

Three additional series of samples were processed in order to analyze in more detail 
the geometric parameters that facilitate obtaining surfaces with high contact angle values. 
Initial series correspond to a set of surface microstructures performed decreasing dlines 
from 200 μm to 40 μm with the rest of laser parameters fixed: Epulse = 48.5 μJ/pulse, vlaser = 
9 mm/s and 〈𝐹ଵD〉 = 108 J/cm2. As shown in Figure 9, the generated square lattice is very 
well defined with machined lines that have a uniform width of 45 ± 4 μm. The width of 
these lines is similar in all the samples until dlines = 50 μm, geometry where the machined 
regions start to overlap in some positions. This overlap starts earlier than expected due to 
the irregularities that the alumina particles generate in the machining process, as indicated 
later. The depth reaches a value of 44 ± 5 μm in the horizontal lines, and it increases to 63 
± 4 μm in the vertical ones. When the machined lines overlap, dlines < 50 μm (Figure 9d), 
the difference between the two orientations leads to a geometry with a high anisotropy. 

  

Figure 8. Different combinations of dlines and vlaser (Epulse = 48.5 µJ/pulse) that have generated a
surface with contact angles above 150◦.

Three additional series of samples were processed in order to analyze in more detail
the geometric parameters that facilitate obtaining surfaces with high contact angle values.
Initial series correspond to a set of surface microstructures performed decreasing dlines
from 200 µm to 40 µm with the rest of laser parameters fixed: Epulse = 48.5 µJ/pulse,
vlaser = 9 mm/s and 〈F1D〉 = 108 J/cm2. As shown in Figure 9, the generated square lattice
is very well defined with machined lines that have a uniform width of 45 ± 4 µm. The
width of these lines is similar in all the samples until dlines = 50 µm, geometry where
the machined regions start to overlap in some positions. This overlap starts earlier than
expected due to the irregularities that the alumina particles generate in the machining
process, as indicated later. The depth reaches a value of 44 ± 5 µm in the horizontal lines,
and it increases to 63 ± 4 µm in the vertical ones. When the machined lines overlap,
dlines < 50 µm (Figure 9d), the difference between the two orientations leads to a geometry
with a high anisotropy.

Figure 10a shows the evolution of the contact angle values in this series of samples. It
increases while dlines is reduced, until the grooves start to overlap. This phenomenology
suggests that a superhydrophobic surface can be achieved in this material by controlling
the size of the pillars of the original surface that remains between the machined grooves,
together with their depths. The inset presented in Figure 10a shows the profile measured
in the sample processed with dlines = 65 µm. It can be approximated with a trapezoidal
profile in both directions. A scheme of the different profiles can be observed in Figure 10b.
Before overlapping, the profiles have the trapezoidal profile, maintaining the size of b
and h and modifying the size of the pillar, c. When the machined lines overlap (case
of dlines = 40 µm), the profile exhibits a triangular geometry, reducing the depth of the
resulting machined grooves.



Polymers 2022, 14, 5554 9 of 17

Polymers 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

μm, were also explored. In these cases, it was observed that consecutive machined lines 
start to overlap, and the measured contact angles decrease to values below 150°. 

 
Figure 8. Different combinations of dlines and vlaser (Epulse = 48.5 μJ/pulse) that have generated a surface 
with contact angles above 150°. 

Three additional series of samples were processed in order to analyze in more detail 
the geometric parameters that facilitate obtaining surfaces with high contact angle values. 
Initial series correspond to a set of surface microstructures performed decreasing dlines 
from 200 μm to 40 μm with the rest of laser parameters fixed: Epulse = 48.5 μJ/pulse, vlaser = 
9 mm/s and 〈𝐹ଵD〉 = 108 J/cm2. As shown in Figure 9, the generated square lattice is very 
well defined with machined lines that have a uniform width of 45 ± 4 μm. The width of 
these lines is similar in all the samples until dlines = 50 μm, geometry where the machined 
regions start to overlap in some positions. This overlap starts earlier than expected due to 
the irregularities that the alumina particles generate in the machining process, as indicated 
later. The depth reaches a value of 44 ± 5 μm in the horizontal lines, and it increases to 63 
± 4 μm in the vertical ones. When the machined lines overlap, dlines < 50 μm (Figure 9d), 
the difference between the two orientations leads to a geometry with a high anisotropy. 

  

Polymers 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

  
Figure 9. FESEM images of the surface of the samples with different dlines values: (a) 200 μm, (b) 80 
μm, (c) 55 μm and (d) 40 μm. The rest of the laser processing parameters were fixed: Epulse = 48.5 
μJ/pulse, vlaser = 9 mm/s and 〈𝐹ଵୈ〉 = 108 J/cm2. 

Figure 10a shows the evolution of the contact angle values in this series of samples. 
It increases while dlines is reduced, until the grooves start to overlap. This phenomenology 
suggests that a superhydrophobic surface can be achieved in this material by controlling 
the size of the pillars of the original surface that remains between the machined grooves, 
together with their depths. The inset presented in Figure 10a shows the profile measured 
in the sample processed with dlines = 65 μm. It can be approximated with a trapezoidal 
profile in both directions. A scheme of the different profiles can be observed in Figure 10b. 
Before overlapping, the profiles have the trapezoidal profile, maintaining the size of b and 
h and modifying the size of the pillar, c. When the machined lines overlap (case of dlines = 
40 μm), the profile exhibits a triangular geometry, reducing the depth of the resulting 
machined grooves. 

 
 

(a) (b) 

Figure 10. (a) Evolution of the contact angle values with the reduction of dlines. The horizontal line 
indicates 150°. The rest of the laser processing parameters were fixed as follows: Epulse = 48.5 μJ/pulse, 
vlaser = 9 mm/s and 〈𝐹ଵୈ〉 = 108 J/cm2. The inset shows the profile observed in the sample processed 
with dlines = 65 μm. (b) Scheme of the different types of profiles observed for two cases where grooves 
do not overlap (dlines = 100 μm, dlines = 65 μm) and for a last one (dlines = 40 μm), where they overlap. 
Black lines show one of the previous profiles in order to show the reduction in h. 

Figure 9. FESEM images of the surface of the samples with different dlines values: (a) 200 µm,
(b) 80 µm, (c) 55 µm and (d) 40 µm. The rest of the laser processing parameters were fixed:
Epulse = 48.5 µJ/pulse, vlaser = 9 mm/s and 〈F1D〉 = 108 J/cm2.
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Figure 10. (a) Evolution of the contact angle values with the reduction of dlines. The hori-
zontal line indicates 150◦. The rest of the laser processing parameters were fixed as follows:
Epulse = 48.5 µJ/pulse, vlaser = 9 mm/s and 〈F1D〉 = 108 J/cm2. The inset shows the profile ob-
served in the sample processed with dlines = 65 µm. (b) Scheme of the different types of profiles
observed for two cases where grooves do not overlap (dlines = 100 µm, dlines = 65 µm) and for a last
one (dlines = 40 µm), where they overlap. Black lines show one of the previous profiles in order to
show the reduction in h.
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Two additional series were processed modifying the energy per pulse or the laser
scanning speed. In the first case, due to the gaussian energy distribution in the laser beam,
b and h increase when Epulse increases, maintaining c + b = 65 µm. In the second case, Epulse
is constant, and it is expected that b and c will be similar in all cases, increasing the depth
of the machined region when the laser scanning speed is reduced.

Figure 11 shows the surface microstructure changes when different regions of the
sample were processed with vlaser = 9 mm/s and dlines = 65 µm and the energy per pulse
was modified from 13.6 µJ/pulse (〈F1D〉 = 30.1 J/cm2) to 48.4 J/pulse (〈F1D〉 = 107.7 J/cm2).
An additional sample was processed with Epulse = 8.8 µJ/pulse, 〈F1D〉 = 19.4 J/cm2, but this
level of energy was too low to obtain uniform machining along the lines, as observed in
Figure S2. Table 1 collects the evolution in the width and depth of the machined regions that
can be derived from these FESEM micrographs. It reflects the gaussian energy distribution
in the direction perpendicular to the laser scan [29,30]. The values for c and b are similar in
the horizontal and vertical directions in all cases. By contrast, differences are observed in
the depth of the machined regions. For low Epulse values, hh/hv = 1 and this ratio increases
up to 1.4 for the high Epulse values.

Debris are generated during the laser process and are deposited on the sample surface.
In order to explore if these particles modify the surface wetting properties, additional
samples were prepared, and they were cleaned in an ultrasonic bath during a 10 s period.
The latter treatment eliminates the debris, and upon drying it was observed that contact
angles were similar both before and after cleaning.

It was also observed that the depth of the machined region is nearly proportional to
〈F1D〉 . Figure 12a shows this dependence in the case of hv. Combining these measurements
with the contact angle values, it can be deduced that a minimum depth of approximately
22 µm is required to reach a contact angle above 150◦ (Figure 12b).

Table 1. Differences in the microstructures generated with treatments using different Epulse values
and maintaining vlaser = 9 mm/s and dlines = 65 µm. Definitions for bh, ch, bv and cv are presented in
Figure 11a. Values for hh and hv correspond to machined groove depths.

Epulse
(µJ/pulse)

bh
(µm)

ch
(µm)

hh
(µm)

bv
(µm)

cv
(µm)

hv
(µm)

Contact
Angle

48.5 45 ± 1 20 ± 1 63 ± 3 45 ± 1 21 ± 1 44 ± 2 160◦ ± 5◦

38.7 44 ± 1 22 ± 1 48 ± 2 44 ± 1 22 ± 1 34 ± 3 155◦ ± 5◦

31.0 41 ± 1 24 ± 1 38 ± 1 42 ± 1 22 ± 1 30 ± 2 153◦ ± 5◦

24.3 39 ± 1 26 ± 1 26 ± 2 39 ± 2 26 ± 1 27 ± 2 151◦ ± 3◦

18.9 34 ± 1 30 ± 1 21 ± 1 34 ± 1 31 ± 1 21 ± 1 149◦ ± 2◦

13.6 28 ± 2 35 ± 2 12 ± 1 28 ± 2 37 ± 1 12 ± 1 140◦ ± 3◦
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It was also observed that the depth of the machined region is nearly proportional to 
<F1D>. Figure 12a shows this dependence in the case of hv. Combining these measurements 
with the contact angle values, it can be deduced that a minimum depth of approximately 
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Finally, FESEM micrographs show that when low Epulse values are used and the 
groove depth is low, laser irradiation only machines the polymeric material without af-
fecting the ceramic particles that are clearly observed in the micrographs, generating ad-
ditional inhomogeneities in the borders of the non-machined regions. 

Figure 11. FESEM images of the surface of the samples with different Epulse values: (a) 13.6 µJ/pulse,
(b) 18.9 µJ/pulse, (c) 24.3 µJ/pulse, (d) 31.0 µJ/pulse, (e) 38.7 µJ/pulse, and (f) 48.5 µJ/pulse. The
rest of the laser processing parameters were fixed as follows: vlaser = 9 mm/s and dlines = 65 µm.
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Finally, FESEM micrographs show that when low Epulse values are used and the groove
depth is low, laser irradiation only machines the polymeric material without affecting
the ceramic particles that are clearly observed in the micrographs, generating additional
inhomogeneities in the borders of the non-machined regions.

A new series of samples was fabricated using Epulse = 48.5 µJ/pulse and dlines = 65 µm
and increasing the laser scanning speed from 9 mm/s to 45 mm/s. In this case, pulse
overlap within a line was decreased, reducing the 〈F1D〉 values. In this series, it was
expected that c and b would be similar in all cases and that only the depth of the machined
grooves would evolve, modifying the roughness of the surface. FESEM micrographs of the
samples processed with the new vlaser values are presented in Figure 13. The micrograph
of the sample processed with vlaser = 9 mm/s is shown in Figure 11f. The values of b
and c are similar in all cases and correspond to the values of the sample processed with
Epulse = 48.5 µJ/pulse, included in Table 1. Further comparison of the evolution of hv and of
the contact angle is presented in Figure 12. The evolution of hv suggests that this magnitude
is determined mainly by 〈F1D〉 and that the minimum depth required to obtain contact
angles above 150◦ is approximately 22 µm. It is important to define this value in order to
minimize the changes in the surface roughness, as well as their potential influence on the
aerodynamic performance of the wind turbine [33]. The average roughness value measured
on these surfaces with hv ≈ 22 µm is below 10 µm.
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In the second state, called composite state, air is entrapped in the troughs of the rough 
surface. The contact angle value, 𝜃୰େ, can be calculated using the Cassie–Baxter model 
[37,38]. The liquid does not entirely wet the micromachined surface because air is trapped 
in the grooves generated during the laser process. Following the ideas proposed by this 
model, larger contact angles are reached if the interface area between the solid and the 
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Table 2 shows the values of A and r calculated using Equations (4) and (6) and the 
geometrical parameters defined in each of the microtextured surfaces of the two series. In 

Figure 13. FESEM micrographs obtained on the sample’s surfaces treated with different vlaser values:
(a) 18 mm/s, (b) 27 mm/s, (c) 36 mm/s, and (d) 45 mm/s. The rest of the laser processing parameters
are the same in all cases: Epulse = 48.5 µJ/pulse and dlines = 65 µm.

The effect of surface structure on wetting properties has been extensively studied [34,35],
following the ideas proposed by Wenzel [36] and by Cassie and Baxter [37]. Usually, when
a water droplet is deposited on a rough surface, two wetting states can take place. In the
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noncomposite state, the liquid penetrates into the troughs of the rough surface and the
contact angle value, θrW, can be described by the Wenzel equation [36]:

cosθrW = r cosθ (3)

where θ is the contact angle determined on the flat surface and r is the roughness factor,
defined as the ratio of the surface area to the geometrically projected one. In the case of the
geometry presented in Figure 10b, it can be calculated as:

r =

(
(dlines + ch)

√
hh

2 + (bh/2)2
)
+

(
(dlines + cv)

√
hv2 + (bv/2)2

)
+ chcv

dlines
2 (4)

In the second state, called composite state, air is entrapped in the troughs of the
rough surface. The contact angle value, θrC, can be calculated using the Cassie–Baxter
model [37,38]. The liquid does not entirely wet the micromachined surface because air is
trapped in the grooves generated during the laser process. Following the ideas proposed
by this model, larger contact angles are reached if the interface area between the solid and
the liquid is low, increasing the region where water is in contact with air.

cosθrC = A(cosθ + 1)− 1 (5)

where A is defined as the solid–liquid contact area fraction of the substrate [17].

A =
ch cv

dlines
2 (6)

Table 2 shows the values of A and r calculated using Equations (4) and (6) and the
geometrical parameters defined in each of the microtextured surfaces of the two series.
In the case of the first series, the modification of the machined region width is reflected
in the evolution of A, and the changes in h are reflected in r. In the case of the second
series, A is the same for all the samples, and the change in h modifies the value of the
roughness factor. Figure 14 shows the evolution of the contact angle cosine as a function
of the estimated values of r and A. In the case of r (Figure 14a), two different regions are
observed. One corresponding to cosθrW <−0.8, where θrW < 143◦ and h < 19 µm (Figure 12),
is described more appropriately by the Wenzel model. In the second series, A is the same
for the five different conditions (blue points in Figure 14b, A = 0.10). By contrast, the contact
angle evolves, being similar only in the two surfaces processed with vlaser = 9 mm/s and
18 mm/s. This result suggests that the contact angle depends on the surface roughness for
low h values and this dependence is lost when this depth increases. In consequence, when
cosθrC > −0.8, where θrW > 143◦ and h > 19 µm, the behavior approaches the Cassie–Baxter
model, showing the influence of A in the behavior of the sample (Figure 14b).

Table 2. Values of A (Cassie-Baxter model) and r (Wenzel model) in the two series of laser processed
samples modifying Epulse or vlaser.

Epulse
(µJ/pulse) 13.6 18.9 24.3 31.0 38.7 48.5

A 0.31 0.22 0.16 0.12 0.11 0.10
r 1.19 1.44 1.58 1.79 2.04 2.49

vlaser
(mm/s) 45 36 27 18 9

A 0.10 0.10 0.10 0.10 0.10
r 1.09 1.13 1.24 1.61 2.49
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In consequence, we can estimate that the surface roughness plays an important role
when the depth of the machined grooves is below 19 µm. Obviously, the laser treatment
strongly modifies the surface characteristics. The thermodynamic properties of the ma-
chined grooves are completely different from those areas that have not been modified
by irradiation. This limits the applicability of these models. These limitations have also
been reported in several works [39,40]. However, the conclusion that a minimum depth
is required to entrap air in the troughs of the rough surface is valid. So is the fact that the
latter conditions are needed in order to achieve superhydrophobic behavior.

3.4. Time Evolution of Contact Angle Values

When similar laser treatments were performed in metallic surfaces, it was observed
that wetting properties evolved with time due to the chemical absorption of organic com-
pounds form air moisture [6,41]. Time evolution was also analyzed in order to determine if
a similar process is followed by these organic surfaces. The contact angle in 15 surfaces
that exhibited a superhydrophobic behavior was measured the day after the samples were
processed, one month later and after six months. During these time periods, samples
were covered with lens cleaning tissues and placed into a plastic PE bag. The bag was
stored in the laboratory at room temperature, in the period between the months of July and
November. Table 3 shows the measured contact angles for all these samples. The initial
ten samples correspond the conditions arranged in the two horizontal lines presented in
Figure 8. The last five surfaces were processed with dlines = 72 µm, vlaser = 9 mm/s and
reducing the energy per pulse of the laser from 48.5 µJ/pulse to 24.3 µJ/pulse. Most of
them exhibit an increase in contact angle values after the first month. This improvement is
maintained or even increased when the static contact angles are measured after six months.
It is important to mention the two cases where a contact angle was measured above 175◦,
because these two surfaces exhibit rolling angles lower than 10◦.

Table 3. Time evolution for static contact angle values measured in 15 different laser treated surface
areas characterized as superhydrophobic.

Epulse
(µJ/pulse)

vlaser
(mm/s)

dlines
(µm)

Contact Angle
1 Day

Contact Angle
1 Month

Contact Angle
6 Months

48.5 5 75 159◦ 167◦ 167◦

48.5 5 72 161◦ 172◦ 168◦

48.5 5 69 160◦ 173◦ 168◦
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Table 3. Cont.

Epulse
(µJ/pulse)

vlaser
(mm/s)

dlines
(µm)

Contact Angle
1 Day

Contact Angle
1 Month

Contact Angle
6 Months

48.5 5 66 161◦ 167◦ 170◦

48.5 5 63 159◦ 157◦ 164◦

48.5 9 75 158◦ 167◦ 170◦

48.5 9 72 159◦ 159◦ 175◦

48.5 9 69 158◦ 173◦ 172◦

48.5 9 66 158◦ 165◦ >175◦

48.5 9 63 158◦ 169◦ >175◦

43.5 9 72 157◦ 171◦ 171◦

38.6 9 72 156◦ 167◦ 158◦

35.7 9 72 153◦ 166◦ 159◦

31.0 9 72 151◦ 157◦ 159◦

24.3 9 72 152◦ 157◦ 160◦

4. Conclusions

Fs green laser systems can be used to machine composite materials that are covered
with a gel coat layer, usually employed in wind generator blades. After an adequate
selection of laser processing parameters aiming to minimize heat accumulation, it is possible
to obtain a well-defined micropattern on the surface of the material with minimal thermal
effects in the regions where the laser beam has not irradiated the surface.

Combining an adequate selection of the interlinear distance, dlines, and the laser
scanning speed, vlaser, it is possible to modify the surface wettability. Static contact angle
values above 150◦ may be achieved by applying processing parameters which result in an
adequate selection of the generated micropillars and the depth of the machined grooves.

During the laser treatment, a change in the surface color is generated even when
laser irradiation is carried out in an Ar atmosphere. This suggests that the laser-triggered
decomposition of the polymer is not associated to thermal effects, nor to oxidation.

The analysis of the results suggests that the minimum depth of the machined grooves
required to reach static contact angles above 150◦ is approximately 22 µm. It is important
to work with this minimum depth in order to minimize surface roughness modification.

It was also been observed that contact angle values evolve with time, increasing in
some cases by more than 10◦ after one month. Further evolution has also been measured
during a period of six months. In some cases, the obtained surfaces reach rolling angles
lower than 10◦. This phenomenon requires further investigation, in order to determine the
evolution of the surface chemical properties as a function of time.

The surface properties herein reported have been achieved without any additional
modification of the surface. They pave the way to include superhydrophobic surface
character engineering in anti-icing strategies which may contribute to avoid wind generator
performance degradation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym14245554/s1, Supplementary Table S1: Examples of
different topographies obtained with several laser treatments and the corresponding contact angle
measurements. Figure S1. Photograph of the sample surface after performing the same laser treatment
in air and in Ar. Experiments were carried out with Epulse = 48.5 µJ/pulse, vlaser = 9 mm/s and and
dlines = 65 µm. Sample dimensions are 4 cm × 4 cm and the laser treated regions are 1.5 cm × 1.5 cm.
Figure S2. FESEM images of the processed sample surface with Epulse = 8.8 µJ/pulse. Other laser
processing parameters included vlaser = 9 mm/s and dlines = 65 µm.
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