000123994 001__ 123994
000123994 005__ 20241125101129.0
000123994 0247_ $$2doi$$a10.1016/j.jelechem.2022.117114
000123994 0248_ $$2sideral$$a132526
000123994 037__ $$aART-2023-132526
000123994 041__ $$aeng
000123994 100__ $$aAnsón-Casaos, A.
000123994 245__ $$aStability of a pyrimidine-based dye-sensitized TiO2 photoanode in sacrificial electrolytes
000123994 260__ $$c2023
000123994 5060_ $$aAccess copy available to the general public$$fUnrestricted
000123994 5203_ $$aDye sensitization of semiconductor metal oxides aims to extend the light absorption range into the visible region, of particular interest for their use as photoanodes in photoelectrochemical (PEC) water splitting. Organic dyes, however, suffer from limited chemical stability when they are exposed to constant potential and irradiation in aqueous media. Thus, in this work, we evaluate a novel metal-free donor-π-acceptor (D-π-A) dye (AT-Pyri), demonstrating significant sensitization of film photoanodes based on TiO2 nanoparticles. Among a series of tested sacrificial agents, the addition of triethanolamine (TEOA) to the sodium sulphate electrolyte prevents the degradation of AT-Pyri even after several hours of operation. Combining two sacrificial agents (methanol and TEOA) results in a synergetic improvement of the PEC water-splitting activity. Notably, the stabilization of the AT-Pyri photoanode is accompanied by a substantial increase in the photocurrent over the reference TiO2 photoanode, while the associated spikes in transient photocurrent measurements disappear.
000123994 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E47-20R$$9info:eu-repo/grantAgreement/ES/DGA/T03-20R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104272RB-C52/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-104307GB-I00-AEI-10.13039-501100011033
000123994 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000123994 590__ $$a4.1$$b2023
000123994 592__ $$a0.755$$b2023
000123994 591__ $$aCHEMISTRY, ANALYTICAL$$b25 / 106 = 0.236$$c2023$$dQ1$$eT1
000123994 593__ $$aAnalytical Chemistry$$c2023$$dQ1
000123994 591__ $$aELECTROCHEMISTRY$$b17 / 45 = 0.378$$c2023$$dQ2$$eT2
000123994 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000123994 593__ $$aElectrochemistry$$c2023$$dQ2
000123994 594__ $$a7.8$$b2023
000123994 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000123994 700__ $$aMartínez-Barón, C.
000123994 700__ $$aAngoy-Benabarre, S.
000123994 700__ $$aHernández-Ferrer, J.
000123994 700__ $$aBenito, A.M.
000123994 700__ $$aMaser, W.K.
000123994 700__ $$0(orcid)0000-0001-7193-1732$$aBlesa, M.J.$$uUniversidad de Zaragoza
000123994 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000123994 773__ $$g929 (2023), 117114 [8 pp.]$$pJ. electroanal. chem.$$tJOURNAL OF ELECTROANALYTICAL CHEMISTRY$$x1572-6657
000123994 8564_ $$s2025574$$uhttps://zaguan.unizar.es/record/123994/files/texto_completo.pdf$$yVersión publicada
000123994 8564_ $$s2514617$$uhttps://zaguan.unizar.es/record/123994/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000123994 909CO $$ooai:zaguan.unizar.es:123994$$particulos$$pdriver
000123994 951__ $$a2024-11-22-11:58:29
000123994 980__ $$aARTICLE