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Abstract: Zeolites are microporous silicates that find an ample variety of applications as 5 

catalysts, adsorbents, and cation exchangers. Stable silica-based zeolites with increased porosity 

are in demand to allow adsorption and processing of large molecules, but challenge our synthetic 

ability. We report a novel, highly stable pure silica zeolite, ZEO-3, with a multidimensional, 

interconnected system of extra-large pores open through windows made by 16 and 14 SiO4 

tetrahedra, which is the least dense polymorph of silica known so far. This zeolite was formed by 10 

an unprecedented one-dimensional to three-dimensional (1D-to-3D) topotactic condensation of a 

chain silicate. With a specific surface area > 1000 square meter per gram, ZEO-3 showed a high 

performance for volatile organic compounds abatement and recovery compared with other 

zeolites and MOFs. 

One-Sentence Summary: ZEO-3, the most porous stable zeolite known so far, shows potential 15 

in volatile organic compounds abatement and recovery. 
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Main Text:  

The size of molecules that can enter, diffuse and react into zeolites are limited by the size of their 

pores (1-4), which are typically described as "of molecular dimensions", actually meaning of the 

size of small molecules (<7 Å). For many applications, small pores enhance reaction and 

sorption selectivity (5), but for other applications, such as processing large molecules from 5 

petroleum or sorption and reaction of organic pollutants, stable zeolites with larger pores are in 

demand (6). Natural and synthetic zeolites possess a fully connected three-dimensional network 

of corner-sharing SiO4 tetrahedra; they are tectosilicates or framework silicates (7), with Si 

occasionally substituted by other atoms. However, some zeolites are obtained in the form of two-

dimensional precursors (phyllosilicates or layered silicates) (7) that only become fully connected 10 

tectosilicate zeolites by condensation of their layers through a calcination procedure that is 

"topotactic" because it does not alter the layer topology (8-10). The condensing layers can be 

obtained by direct synthesis or by disassembly of certain zeolites as in the so-called ADOR 

(assembly-disassembly-organization-reassembly) process (11).  

However, after several decades of extensive and systematic zeolite synthesis studies (12), there 15 

have been no reported examples or predictions of a three-dimensional (3D) zeolite obtained by 

condensation from a one-dimensional (1D) precursor, either directly synthesized or obtained by 

disassembly of another zeolite. We report such a 1D-to-3D topotactic condensation from ZEO-2, 

a directly synthesized complex "zeolitic" chain silicate, into ZEO-3, a fully connected 3D extra-

large pore zeolite (ZEO-n refers to materials discovered and patented by the Anhui ZEO New 20 

Material Technology Co., China). This condensation does not alter the topology of the chain 

silicate, so it is topotactic. The resulting stable zeolite ZEO-3 exhibits very low density, a 

multidimensional system of interconnected extra-large pores (Fig. 1), and the presence in its 

structure of double four-membered ring units (D4R), that is, small cubes of silica. For pure silica 

zeolites, this kind of unit is strained and up to now was believed to need a fluoride anion near its 25 

center to be accessible for crystallization (13) because it has never been seen before in a silica 

zeolite synthesized without the use of F- anions.  
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Fig. 1. The extra-large pore system in ZEO-3. The 3D system of interconnected extra-large 

pore system (left) and the crystallographic pore size of ZEO-3 (right). The van der Waals radius 

of O (2×1.35 Å) has been subtracted.  

 5 

Synthesis and structure of the precursor chain silicate 

We synthesized the complex chain silica zeolite precursor ZEO-2 using 

tricyclohexylmethylphosphonium (C19H36P
+, tCyMP) as an organic structure directing agent 

(OSDA) from a gel of molar composition 1 SiO2 : 0.5 tCyMPOH : 10 H2O heated at 175 ºC (see 

Supplementary Material). The structure of ZEO-2 was successfully solved ab initio by using 10 

eight continuous rotation electron diffraction (cRED) (14) datasets. The pure silicate ZEO-2 

crystals display a needle-like morphology (Fig. S1a) and has a C-centered monoclinic cell with a 

= 23.5465(7) Å, b = 24.7446(7) Å, c = 14.4024(4) Å, β = 115.1974(9)° (Tables S1 and S2, Fig. 

S2). ZEO-2 is a complex 1D chain silicate decorated with silanol and silanolate groups (Fig. 2A) 

that hold the structure together through numerous hydrogen bonds between adjacent chains (Fig. 15 

2, B and C), with the tCyMP cations located in the interchain space (Fig. S5). The cations were 

occluded intact, as demonstrated by 13C and 31P nuclear magnetic resonance (NMR) (Fig. S6) 

and amount to 8.85 OSDA per unit cell according to C analysis (25.0 wt%). Hydrogen bonds 

were observed in the 1H magic-angle spinning (MAS) NMR spectrum as a broad resonance 

around 15.1 parts per million (ppm) (Fig. S7), indicating a moderate-to-strong hydrogen bond 20 

(15) corresponding to O···O distances (16) of ~ 2.51 Å, in good agreement with the 

crystallographic distances of 2.47 to 2.52 Å.  
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The 1D pure silica chains in ZEO-2 are aligned along the [001] direction (Fig. 2A) and 

surrounded by four identical chains in the ab plane (Fig. 2C). At the edge of the ZEO-2 chain, 

four silanols or silanolates form a single four-membered ring (S4R) that faced, slightly displaced, 

an identical S4R from the next chain, with hydrogen bonding along the [110] and [1-10] 

directions connecting adjacent chains (Fig. 2B). The high resolution of the 29Si MAS NMR 5 

spectrum of ZEO-2 (Fig. 2D), reveals four Q3 Si sites (-94.2, -95.8, -98.6, and -100.4 ppm) 

spanning a chemical shift range unprecedented for Q3 in zeolites, which are more typically 

centered at around ~-102±1 ppm). However, the values are well within the general Q3 range in 

silicates (17). The spectrum also shows seven Q4 Si sites (from -106.8 to -116.8 ppm) and is thus 

in good agreement with the crystallographic results (4 Q3 and 5 Q4 all with the same multiplicity 10 

plus 2 Q4 with half multiplicity, see Table S5). 29Si{1H} cross polarization (CP) MAS NMR 

spectroscopy proved the existence of those four Q3 Si sites in ZEO-2 (Fig. 2D top). 

 

Condensation of 1D chains to 3D-extralarge pore zeolite 

Upon calcination in air to remove the OSDA (600 0C, 3-hour ramp, 6-hour plateau), silanol 15 

groups in adjacent chains condensed into Si-O-Si bridges with H2O elimination, resulting in the 

pure silica zeolite ZEO-3 (Fig. 3, A-C), which maintained the needle-like morphology (Fig. 

S1b). The condensation occurred between 370 and 390 0C (Fig. S8), coincident with the removal 

of organics (Fig. S15). Phosphorus residues were eliminated by washing with water within an 

autoclave at 100 ºC for 1 day, or by reduction with H2 (a mixture of H2/N2 with 10/90 volume 20 

ratio) from the as-made ZEO-2 sample at 600oC with a 2-hour ramp and a 6-hour plateau. The 

structure of ZEO-3 was also solved ab initio by cRED with five datasets (Tables S2 and S3, Fig. 

S3). The unit cell of ZEO-3 shrank to a = 21.5046(8) Å, b = 21.2757(8) Å, c = 14.4638(4) Å, β = 

108.7196(1)° but maintained the same symmetry as ZEO-2, as well as the topology of the chain. 

Whereas a 17% contraction of the structure occurred along a- and b- axis, the c-axis underwent 25 

only a marginal expansion of 0.4%. To obtain more accurate atomic positions, the structures of 

ZEO-2 and ZEO-3, including the position of the disordered tCyMP in ZEO-2, were subsequently 

Rietveld refined against synchrotron powder X-ray diffraction data (SPXRD, Figs. S4 and S5, 

Tables S4 to S10). All the unit cell data given above correspond to the refined structures. The 

final refined unit-cell compositions of ZEO-2 and ZEO-3 were [Si80O176H24]|(C19H36P)8 and 30 

Si80O160, respectively (see Supporting Material for details). 
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Fig. 2. The structure of the chain silicate ZEO-2. Only O atoms related to the subsequent 

condensation reaction are shown (small red spheres). Silicon atoms are shown as blue (always 

Q4) or black (Q3 in ZEO-2 converting into Q4 in ZEO-3). (A) A chain of ZEO-2 is hydrogen 

bonded (B) to four adjacent chains (C). (D) The 29Si MAS NMR spectrum (bottom) shows 

resolution of Q3 and Q4 silicon sites (4 and 7 sites, respectively). The close proximity of Q3 sites 5 

to H atoms is revealed in the 29Si{1H} CP MAS NMR spectrum by their relative intensity 

enhanced by polarization transfer from close protons at short contact time (top, 1.5 ms).  

 

Fig. 3. The 1D-to-3D topotactic condensation into the extra-large pore framework silicate 

ZEO-3. (A) During calcination of ZEO-2, condensation of Q3 sites through dehydroxylation 10 

connects two S4Rs to make a D4R, through which each chain is bonded to four adjacent chains, 

resulting in the extra-large pore ZEO-3 with 14MR (B) and 16MR (C) channels. (D) The 

corresponding 29Si MAS NMR spectra (bottom) is dominated by Q4 sites with almost no Q3 

defects and hence little intensity enhancement in the 29Si{1H} CP MAS NMR under short 

(middle, 1.5 ms) or long contact times (top, 6 ms).  15 

 

During thermal treatment, neighboring S4Rs in ZEO-2 connect to each other to form a D4R (Fig. 

3A) by condensation of the terminal Si-OH groups, yielding the fully-connected framework of 

ZEO-3 (Fig. 3, B and C). The condensed solid is a true, non-interrupted, three-dimensional extra-

large pore zeolite. The channel system of ZEO-3 is 3D with 16×14×14 membered-ring (MR) 20 

channels (Fig. 3, B and C) and full connectivity between channels (Fig. 1). The fulfillment of the 

condensation process is demonstrated by the 29Si MAS NMR spectrum of ZEO-3, which reveals 

total condensation: all Si atoms are Q4 sites (Fig. 3D, bottom) with a negligible amount of Q3 

that could be assigned to connectivity defects, as proved by the very low intensity enhancement 

by cross polarization (Fig. 3D middle and top) and FT-IR spectra from self-supported pellets 25 

(Fig. S16). 

The structural models obtained were fully corroborated by spherical aberration (Cs)-corrected 

scanning transmission electron microscopy (STEM, Figs. 4 and S10) where a faint signal 

corresponding to the tCyMP (C and P) was also identified between the chains of ZEO-2 (Fig. 

4A) in the place that after condensation will become 14MR pores in ZEO-3. The visualization of 30 

ZEO-2 along [001] could not be obtained since it was hampered by the larger thickness (since 

this is the long needle direction) and the existence in the structure of atoms at different z levels 

that are displaced from one another along x and y. The 14 and 16 MR pores of ZEO-3 are clearly 
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visible (Fig. 4, B and C) together with the smaller 4, 5 and 6R in both materials (Figs. 4 and Fig. 

S10). 

 

Fig. 4 Cs-corrected STEM visualization of the 1D silicate chain ZEO-2 and 3D zeolite ZEO-

3. (A) ZEO-2 along [110] projection, and ZEO-3 showing the extra-large (B) 14MR along the 5 

[110] and (C) 16MR along the [001] projections. All other rings (4Rs, 5Rs and 6Rs) are clearly 

visible. To facilitate image interpretation, the schematic models (Si atoms in blue and O atoms in 

red) have been superimposed and the simulated STEM images are also included in the right 

bottom inset. 

 10 

The σ expansion of zeolite Beta polymorphs 

The details of the topology are shown in Fig. 5 and Tables S11 and S12. The ZEO-2 chain is 

topologically identical to the one found in polymorph B of zeolite Beta, although in that zeolite it 

is not an isolated chain but is embedded in the 3D framework. We use here the acronym BEB to 

refer to that polymorph, although this is not an accepted zeolite topology code. The chain in BEB 15 

and ZEO-3 is built by a large composite building unit (CBU, Fig. 5A) that is alternately rotated 

by +90º and -90º (dotted arrows in Fig. 5B). If the rotation were performed always in the same 

sense (that is, always by either +90º or -90º, dotted arrows in Fig. 5C) a chiral chain would 

result, which is in fact embedded in the chiral BEA polymorph of zeolite Beta (space group 

P4122 or P4322). Thus, condensation of such a chain in a way similar to the condensation of 20 

ZEO-2 would result in a new chiral 16×14×14MR hypothetical zeolite. ZEO-3 (Fig. 5D) and this 

hypothetical chiral zeolite (Fig. 5E) correspond to the σ expansion of polymorphs BEB (Fig. 5F) 

and BEA (Fig. 5G), respectively, of zeolite Beta (18, 19). A minimization of both structures 

using the GULP coded suggests the energies of both ZEO-3 and σ-BEA are close to the energy-

density relationship normally encountered in zeolites (Fig. S17 and Table S14). Since ZEO-3 has 25 

been realized, we believe the hypothetical extra-large pore σ-BEA zeolite might be a reasonable 

target for future studies. 
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Fig. 5. Topology of ZEO-3 and a hypothetical chiral extra-large pore zeolite. (A) The 

individual and the large unit CBUs made from them. (B) ZEO-2 chain and (C) BEA chain built 

by attaching successive large units, viewed along two different directions. The tiling structures of 

(D) ZEO-3, (E) the σ-expanded BEA, and polymorphs (F) BEB and (G) BEA of zeolite Beta. 5 

Dotted arrows indicate topologically identical large units (units 1, 2, 3, 4) rotated by alternating 

+90o, -90o, +90o, -90o in B, or non alternating +90o, +90o, +90o, +90o, or -90o, -90o, -90o, -90o in 

C. In D, E, F and G, the dotted lines separate neighbouring ZEO-2 or BEA chains; in D and E, 

the newly formed D4Rs between neighbouring ZEO-2 or BEA chains are highlighted in green; in 

F and G, no D4Rs exist as S4R are shared between neighbouring ZEO-2 or BEA chains.  10 

 

Properties of ZEO-3 

ZEO-3 is a stable, fully-connected silicate zeolite containing 3D interconnected pores opened 

only through extra-large windows. The crystallographic pore sizes of ZEO-3 are 10.36×8.51 Å 
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and 9.79×8.00 Å for the 16MR and 14MR, respectively (Fig. 1). The 3D extra-large pore nature 

of ZEO-3 resulted in a very low framework density (FD) value (12.76 tetrahedral atoms, T-

atoms, per 1000 Å3). Compared with the other known stable, low density (alumino)silicate 

zeolites, including FAU, EMT, *BEA, BEC, ISV and IWV, and the recently reported PST-2, 

PST-32 (20), and ZEO-1 (6), this value is the lowest and puts ZEO-3 as the crystalline silica 5 

polymorph with the most open framework (Table S13). The calculated density of ZEO-3 is just 

1.27 g/cm3, less than half that of quartz (2.65 g/cm3) and near the density of water.  

In fact, ZEO-3 breaks the observed tendency between the framework density and the size of the 

smallest rings in the zeolite structure (21). For an average smallest ring of 4.25, the predicted 

minimum FD (21) is 13 T-atom per 1000 Å3, which is greater than the value for ZEO-3. 10 

Compared with the real values of non-interrupted zeolites containing 4- and 5-rings, ZEO-3 is 

well below the lowest calculated FD of ISV and IWV (15.0; experimental values of 15.4 and 

15.7, respectively).  

The observed N2 and Ar adsorption/desorption isotherms (type Ia) of ZEO-3 revealed high 

specific surface areas of 989 and 1032 m2/g (Figs. S11 and S12), respectively. The non-local 15 

density functional theory (NLDFT) method applied to the Ar adsorption data calculated mean 

pore sizes of 10.8 and 8.8 Å (Fig. S13) that match well with the crystallographic results. The 

extra-large pores of ZEO-3 allowed the diffusion and adsorption of large molecules, like Nile 

Blue (Fig. S14), suggesting potential for the removal of large organic pollutants from waste 

liquid streams.  20 

 

Fig. 6. Application of 3D extra-large pore zeolite ZEO-3 in volatile organic compounds 

(VOCs) removal. VOCs adsorption isotherms (A), breakthrough adsorption (B), and desorption 

curves (C) on ZEO-3 (red) and Beta (black) zeolite. 

 25 

Adsorption has been considered as an energy-saving candidate for volatile organic compounds 

(VOCs) abatement and recovery (22). The development of sorbents with high adsorption 

capacity, water vapor resistance, and easy regeneration is critical for a successful adsorption 

technology (23). Zeolites are among the best adsorbents for VOCs given their unique 

microporosity, high adsorption capacity, and non-flammability (23, 24). The adsorption 30 

equilibrium capacities of toluene and water vapor on ZEO-3 were larger than those on Beta, 
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which has smaller pores (Fig. 6A). ZEO-3 exhibited much longer breakthrough time (better 

dynamic capacity) than Beta zeolites with little interference from water (Fig. 6B). The main 

desorption peak of toluene occurred at a lower temperature for ZEO-3 than for Beta (Fig. 6C) 

making its thermal regeneration easier. Thus, ZEO-3 outperforms Beta, a reference zeolite for 

this application (25, 26), in terms of adsorption capacity and regeneration potential. Comparison 5 

of ZEO-3 with commercial zirconium 1,4-dicarboxybenzene UiO-66, one of the most stable 

MOFs (27), suggested a similar performance for the fresh materials (Fig. S18). However, after 

recycling the performance of ZEO-3 was maintained whereas that of UiO-66 was compromised. 

At the end of five adsorption cycles the PXRD pattern of UiO-66 revealed it had been destroyed 

while ZEO-3 remained stable (Fig. S19). Additionally, the desorption temperature for UiO-66 10 

was significantly higher than that of ZEO-3 (Fig. S20) indicating a poorer regeneration ability. 

Phosphorous-free ZEO-3 had a high thermal (11000C 100C/min, 1-hour plateau) and 

hydrothermal stability (7600C, 10% H2O, 3 hours) that may ease its application in real conditions 

(Fig. S9). It is also possible to introduce active sites (such as Ti) into ZEO-3 through a one-pot 

synthesis method (Figs. S21-S22). Ultraviolet-visible spectra reveal that Ti-ZEO-3 exhibits both 15 

tetra- (~210 nm) and hexa-coordinated (~270 nm) Ti species (Fig. S23). Catalytic properties of 

Ti-ZEO-3 will be investigated in a future work.  

 

Concluding remarks 

Finally, the fact that ZEO-3 presents structural features that sharply depart from previous 20 

observations (silica D4R units without F and FD lower than predicted) deserves some 

consideration. Those previous observations refer to materials directly synthesized by 

hydrothermal crystallization. The successful synthesis of ZEO-3 demonstrates that materials that 

may be considered not accessible by direct synthesis can be obtained by post-synthesis 

transformations, as it has also been observed for zeolites obtained by the ADOR process, which 25 

afforded "unfeasible" zeolites (28) or the hybrid guest-host pure silica STW, which was also 

predicted unfeasible by direct synthesis (29). This observation allows to foresee new materials 

developed by 1D-to-3D topotactic condensation as it has been the case for the ADOR process. It 

is worth to mention that the final step in the ADOR process is a 2D-to-3D condensation similar 

to the 1D-to-3D process reported here but which, however, produces a systematic reduction in 30 

pore size with regard to the parent material. 
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