000124031 001__ 124031
000124031 005__ 20241125101130.0
000124031 0247_ $$2doi$$a10.1016/j.fuel.2022.126533
000124031 0248_ $$2sideral$$a132618
000124031 037__ $$aART-2023-132618
000124031 041__ $$aeng
000124031 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000124031 245__ $$aComparing different syngas for blast furnace ironmaking by using the extended operating line methodology
000124031 260__ $$c2023
000124031 5060_ $$aAccess copy available to the general public$$fUnrestricted
000124031 5203_ $$aThis paper assesses the injection of different syngas in air-blown blast furnaces, oxygen blast furnaces, and advanced oxygen blast furnaces. The selected types of syngas come from biomass gasification, plastic gasification, CO2 electrolysis, and reverse water–gas shift reaction. An Aspen Plus model, based on the new extended operating line methodology, was used for the simulation. This methodology is a generalization of the conventional Rist diagram, to extend its application to cases in which the injected gases have large contents of CO2 and H2O, and also to cases in which injections take place at the middle or upper zone of the blast furnace. The base cases were elaborated and validated with data from literature, with a discrepancy below 3.5%. A total of 7 key performance indicators were defined for the study (mass flow of syngas, coke replacement ratio, gas utilization, percentage of direct reduction, blast furnace gas temperature, flame temperature, and net CO2 emissions). In practice, the amount of syngas that can be injected is limited to 92 – 264 kgsyngas/tHM because of the drop in the flame temperature. The lowest net CO2 emissions are achieved in oxygen blast furnace with injection of syngas from reverse water–gas shift reaction.
000124031 536__ $$9info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 887077-DISIPO
000124031 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000124031 590__ $$a6.7$$b2023
000124031 592__ $$a1.451$$b2023
000124031 591__ $$aENGINEERING, CHEMICAL$$b23 / 170 = 0.135$$c2023$$dQ1$$eT1
000124031 591__ $$aENERGY & FUELS$$b46 / 171 = 0.269$$c2023$$dQ2$$eT1
000124031 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000124031 593__ $$aOrganic Chemistry$$c2023$$dQ1
000124031 593__ $$aFuel Technology$$c2023$$dQ1
000124031 593__ $$aChemical Engineering (miscellaneous)$$c2023$$dQ1
000124031 594__ $$a12.8$$b2023
000124031 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000124031 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000124031 773__ $$g333, Part 2 (2023), 126533 [13 pp.]$$pFuel$$tFuel$$x0016-2361
000124031 8564_ $$s3464719$$uhttps://zaguan.unizar.es/record/124031/files/texto_completo.pdf$$yVersión publicada
000124031 8564_ $$s2513470$$uhttps://zaguan.unizar.es/record/124031/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000124031 909CO $$ooai:zaguan.unizar.es:124031$$particulos$$pdriver
000124031 951__ $$a2024-11-22-11:58:40
000124031 980__ $$aARTICLE