ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 55-28 (2022) 73-78

Parallel Motion Execution and Path
Rerouting for a Team of Mobile Robots *

Sofia Hustiu *** Cristian Mahulea* Marius Kloetzer **

* Aragdn Institute of Engineering Research (I34), University of
Zaragoza, Spain, (e-mail: cmahulea@unizar.es)
** Dept. of Automatic Control and Applied Informatics, Technical
University “Gheorghe Asachi” of Iasi, Romania, (e-mail:
sofia.hustiu@academic. tuiasi.ro, marius.kloetzer@academic.tuiasi.ro).

Abstract: This work achieves parallel movements and collision free paths for a team of identical
robots evolving in a known environment while satisfying a global Boolean-based formula over
a set of regions of interest. The movement capabilities of the robots within the grid-based
environment are modeled as a Petri net system. The solution starts from initially known robot
paths given by the approach in (Mahulea et al., 2020b). The main advantages of this work are
two-folded: (i) it reduces the number of waiting states of the robots throughout their paths, (ii) it
considers path rerouting action solved by a MILP problem, without generating new observations
along their paths. The rerouting is triggered when the number of robots that are waiting is
greater than a threshold, or when some stopped robots inhibit the movement of others. Thus,
the proposed method yields parallel movement of robots and path rerouting when needed. The
algorithm is integrated in the open-source toolbox RMTool (Gonzdlez et al., 2015).

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Petri net, Boolean-based specification, Multi-robot system

1. INTRODUCTION

In the field of mobile planning, a large part of interest
is directed towards ensuring collision free movements for
a team of robots, whose members are generally denoted
as Automated Guided Vehicles (AGV) (Reveliotis, 2000).
This topic is also denoted as multi-agent path finding
(MAPF) problem. Depending on the domain, a given
mission needs to be satisfied, e.g., package delivery, rescue
operation etc. The formalism used for mission varies from
Boolean-based specification (Mahulea et al., 2020b) to
high-level specification such as LTL (Schillinger et al.,
2018; Lacerda and Lima, 2019; Hustiu et al., 2021). These
approaches are included in symbolic planning for robot
motion (Belta et al., 2007). An essential part in this field
is expressed by the model used for the environment and
for the team of robots, such as: global team automaton
(Ding et al., 2011), local automaton assigned to each robot
(Schillinger et al., 2018), Petri net (PN) system (Mahulea
et al., 2021) or graph representation (Honig et al., 2018).

Depending on the given mission for multi-robot systems,
the motion of robots can be coordinated (Mahulea et al.,
2020b), or it can be individual, based on independent
tasks (Yu et al., 2021). Our previous work (Mahulea et al.,
2020b) captures the first aspect, by providing movement
plans for a team of robots to ensure a global Boolean-
based specification denoted . The motion capabilities
of the team are captured by a Petri net system called
Robot Motion Petri net (RMPN). The algorithm divides

* This work has been partially supported by CICYT-FEDER
PID2021-125514NB-100 and by UNIZAR UZ2021-TEC-02 projects
in Spain and by PN-III-P2-2.1-PTE-2019-0731 project in Romania.

the solution in two steps, as the specification ¢ imposes
Boolean requirements along robot paths and at their final
destinations. The implementation dwells in solving two
Mixed Linear Integer Programming (MILP) problems, one
for each step. Although the paths are collision free and
the global mission is fulfilled, the movement of the robots
is quite conservative, i.e., the robots reach their final
destination sequentially in scenarios where the paths share
a common cell. Therefore, it is compulsory to improve this
strategy through parallel motion, such that the time to
fulfill the mission is reduced.

Moreover, the robot motions should be collision- and
deadlock- free and for this reason, the problem can be
included in class of Resource Allocation Systems (RAS).
One solution that prevails is based on Banker’s Algorithm
(BA), which was originally designed to avoid deadlocks.
In short, this algorithm simulates the maximum resource
allocation for one process at each step, before taking a
decision in regards to the actual sharing of resources.
Thus, the processes finish one at a time, but an iterative
implementation can be done by considering only one
operation/movement in a process per step. It is required to
know beforehand the number of resources in the system,
and the system needs to be in a safe state at each step
(meaning that all processes can finish in a finite time)
(Lawley et al., 1998). Although BA has several benefits for
deadlock avoidance, only a few works use this method for
mobile planning a team of robots, considering each process
as the path of one robot. The papers (Kalinovcic et al.,
2011; Bobanac and Bogdan, 2008) propose improvements
of Banker’s Algorithm, based on graph representation, by
allowing the robots to be in unsafe states for a reduced

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.10.326

74 Sofa Hustiu et al. / [FAC PapersOnLine 55-28 (2022) 7378

time and only in some particular conditions to reduce the
redundant waiting time of the robots. A different approach
is captured in (Song et al., 2021) considering dynamical
release of resources throughout the running processes in
the system. The advantages of a PN system while the
BA is implemented are included in (Tricas et al., 2000),
emphasized in flexible manufacturing systems.

The current work overcomes the conservatism of our
previous approach (Mahulea et al., 2020b), by returning
high-level path planning with parallel movement of the
robots. In this sense, we intend to maximize the number
of robots which move in one global step, based on their
known paths. The main idea of the overall solution is to
iteratively check what robots can safely advance in their
next position. The robots must ensure a global Boolean-
based specification, while exploiting the advantages of a
PN model in a partitioned environment. An important
novelty of our approach lies in considering path rerouting
action without generating new observations along the
paths, action triggered by the number of robots waiting in
the same step. In addition, the rerouting of paths is also
triggered when a blocking along the paths may occur due
to the parallel movement and waiting of the robots. For
example, this situation appears when some robots reach
their final states, but block the path of other robots. The
rerouting is made for the entire team, by solving one MILP
problem which has as inputs the current and the final
markings of the PN system. This will shorten the time
(counted in global steps) necessary to fulfill the mission.

2. PRELIMINARIES

Environment and motion planning. Let us consider a
known 2D rectangular environment, denoted F, in which
a team R = {r1,7a,...,7 g} of identical and omnidirec-
tional mobile robots evolves. The notation used for the
number of robots throughout the paper is denoted as:
r = |R|. The environment includes several disjoint regions
of interest (ROIs) denoted Y = {y1,¥2,...,yjy|}. To ease
the movement of the robots based on the model of the
environment, F is partitioned into regions (or cells). For
simplicity of exposition, we here assume a grid decomposi-
tion of the environment, where each ROI is equal with one
or with a union of multiple cells. The set of cells is denoted
by P = {p1,p2,...,p|p}- The classification of cells is given
by the function h: P — Y U@, with h(p;) = 0 for the cells
which do not belong to any ROI, and h(p;) = y; for the
cells which are included in the y; region. Since regions in Y’
are disjoint, each cell can correlate to maximum one ROI.

Example 1. Let us consider the environment E from
Fig. 1. E is divided into 6 identical cells, with 3 ROIs
Y1,Y2,y3. T'wo robots rq, 9 are initially located in pq, ps.
For example, the cell pg corresponds to the third ROI,
therefore it is labeled as: h(pg) = y3. On the other hand,
cell p3 does not belong to any region, hence h(ps) = (. B

Definition 2. A Robot Motion Petri Net system (RMPN)
model is represented by the 4-tuple Q@ = (N, myg,Y,h)
(Mahulea et al., 2020a), where:

e N = (P, T, Pre, Post) represents a Petri net model.
e my represents the initial marking, where mg[p] cap-
tures the initial number of tokens in place p, Vp € P
(in this model, one token corresponds to one robot).

b

p1

fgfe-

D2

Fig. 1. Environment with 2 robots and 3 regions of interest

e Y U () represents the set of output symbols, where)
denotes the free space.
e h: P — Y U represents the observation map. O

The RMPN considered in Fig. 1 has mq = [1,1,0,0,0,0]7.
By increasing or decreasing the number of robots in
team, only myg is modified. More details about RMPN
systems are described in (Mahulea et al., 2020a), here
being mentioned only some essential features. Thus, the
RMPN has fixed topology with respect to the number of
robots, while capturing team evolution based on various
mathematical properties of PNs (Ezpeleta et al., 1998).
By construction, an RMPN is a state machine Petri net.

The movement of robots is given by the sequence of
adjacent cells that they need to follow throughout their
paths. T'wo cells are adjacent if they have a common edge,
e.g., p1,p2 from Fig. 1. In this sense, we are interested in
finding a sequence of places towards team destination. This
can be accomplished by searching a set of fired transitions
which are enabled. A transition ¢ is enabled if the markings
of all its input places are greater or equal with the weight
of the arc entering to t. If ¢ is enabled, it may fire such that
a number of Pre|p;,t] tokens are consumed from all input
places p; and a number of Post[p,, t] tokens are produced
in all output places p;. If the sequence of fired transitions
outputs a new marking m reached from the marking m,
then the fundamental (state) equation (1) is satisfied:

m=m+C o, (1)

where, C' is the token flow matrix, C' = Post — Pre, and
oc N|>TO| is the firing count vector, containing on its j**
element the cumulative amount of firings of ¢; in o. In
the field of mobile planning, the firing of a transition is
translated into a control law applied for a robot to move
from one place to another by designing suitable vector
fields (Belta and Habets, 2006). Sec. 4 exploits the use
of firing count vector by minimizing the number of fired
transitions, subject to the optimization problem: min 17 -
(Silva et al., 1996). Based on o and on the properties of
the state machine, the robot paths are returned.

Boolean-based specifications. The team of robots is
required to satisfy a given global formula over set Y.
The formula specifies the visit or the avoidance of several
regions of interest (ROIs). We consider the next notations:

e Set Y, for expressing the intermediate requirements,
where ROIs are denoted by capital letters. Elements
of Vi, specify the ROIs to be visited/avoided along
trajectories, excluding robots’ final positions.

e Set Yy for illustrating the final requirements, ROIs
being denoted by lowercase letters. Elements of Y
specify the ROIs to be visited /avoided at team’s final
position.

Sofa Hustiu et al. / IFAC PapersOnLine 55-28 (2022) 73-78 75

We will express the global Boolean-based formula as a
Conjunctive Normal Form (CNF) (King et al., 2003), by
= @; AN+ A p,, where each term ¢; is a disjunction of
terms from Yj,, or Y. For example, formula ¢ = y; A Ys
indicates the visit of region y, along the trajectory and the
stop of at least one robot in region y;.

Previous approach. In our previous work (Mahulea
et al., 2020b), we proposed a solution to the next problem:
having a team of robots evolving in the environment F,
and a given global Boolean-based formula ¢, find collision
free paths for the robots to fulfill the mission. The solution
of this approach lies in solving two MILP problems based
on the team model RMPN: for intermediate, respectively
for final requirements within formula ¢. In addition, both
MILPs consider a fixed number of intermediate markings
(equal to the number of robots) to avoid collisions in the
robot paths. The conservatism of this approach lies in
sequential reaching of the goal cells when the paths share
common resources (defined below). The results display
the unnecessary waiting of some robots until one team
member reaches its destination. Therefore, the current
work proposes a solution in terms of parallel motion of
the robots.

Assumptions and additional definitions. We consider
the assumptions from (Mahulea et al., 2020Db).

(a) The restriction my[p] < 1,Vp € P is satisfied, meaning
that all the robots are initially deployed in different
partition cells (places of RMPN).

(b) Each disjunction ¢; from the Boolean specification can
contain only terms from Y, or Y;.

(c) Each disjunction ¢; for the intermediate, respectively
final requirements, can be satisfied by a single deployment
of the r robots. In other words, there exist at least one
marking of RMPN to fulfill the requirements for set Y,
respectively Yy.

(d) Each disjunction for the intermediate requirements can
either include the visit of several ROIs, or it can specify
the avoidance of some ROIs.

Alongside with these assumptions, we use the following
terminology in this paper:

(i) An obstacle place denotes a place in RMPN correspond-
ing to a ROI which should be avoided, as imposed by the
intermediate or final requirements in ¢.

(ii) A step is defined as a global period of time in which
at least one robot moves to an adjacent cell.

(iii) A resource is defined by a cell included in the path,
while a common resource is represented by a cell that is
crossed by more than one robot along the paths.

(iv) The collision of robots is defined by the presence of at
least two robots in the same cell at the same time (step).
The situation of two robots swapping places is eliminated,
as it will be observed in Section 4.

(v) A process is represented by the path of one robot ex-
pressed as the sequence of cells, which is later denoted with
Traj. It is assumed that these (initial) paths are known,
being returned by the solution proposed in (Mahulea et al.,
2020b).

3. PROBLEM DEFINITION

Problem. The current work exploits the motion planning
problem as follows: given a set of paths denoted Paths for
a team of r identical robots, their evolution being mod-
eled as a RMPN system, compute collision free parallel
movements of the robots to fulfill a global Boolean-based
specification.

Ezxample 3. Let us recall the scenario illustrated in Fig. 1,
and consider the following Boolean-based mission for the
team of two robots:

e=y1 Ny2 A Y3 (2)

This specifications requires to avoid region ys during
robots movement, while the regions y; and y, are required
to be visited at final positions. The method captured in
(Mahulea et al., 2020b) returns two paths, by assigning
the goal region y; to r2 and ys to r1. The paths of robots
are indicated next, with the notation ((r;,p;), (Ti+1,P%)),
meaning robot r; is in cell p; and r;y; is in cell pg, both
at the same step. In the initial step (step 0), the assigned
resources for r1,ry are represented by p1, ps.

Paths = {
step 0: ((r1,p1), (r2,p2)) step 1: ((r1,p1), (r2,p3))
step 2: ((r1,p1), (72, p4)) step 3: ((r1,p1), (r2,ps))
step 4: ((r1,p2), (r2,ps5)) step 5: ((r1,p3), (r2,ps5))
step 6: ((r1,pa), (r2,ps5)) ¥

(3)

As it can be seen, the robots move sequentially: 1 starts
to move after ro reaches its destination cell ps. Due to
this delay, the mission is accomplished in 6 steps (recall
assumption (ii) for the meaning of step). We propose to
overcome the conservatism of this approach, by minimizing
the number of steps to fulfill the team’s mission. In this
sense, our solution captures the collision free parallel move-
ment of the robots following their paths, while rerouting
them when needed. The rerouting is acquired by solving a
MILP, based on the known current (1) and final (my)
markings in the RMPN model. By applying the strategy
to be detailed in Alg. 1, the robots can reach their final
destination in 4 steps. Their movements are described by:

Paths’ = {
step 0: ((r1,p1), (r2,p2)) step 1: ((r1,p1), (2, p3))
step 2: ((r1,p2), (r2,p4)) step 3: {(r1,p3), (r2,ps5))
step 4: ((r1,p4), (r2,p5)) } @

4. ALGORITHM FOR PARALLEL MOVEMENT

As mentioned before, the current work is engaged in
reducing the number of steps to satisfy the team mission.
This can be achieved by a parallel movement of the robots.
Let us denote with Traj = {Traji,Trajs,...,Traj.}
the set of robot paths, Traj; being the trajectory of the
robot r; € R. The path Traj; is given as the sequence
of cells that robot r; should follow to reach its goal cell.
For example, the path of r; is expressed as: Traj; =
[p1, D2, D3, pa]. Although the procedure in (Mahulea et al.,
2020Db) is effective in sense of collision-free paths, there are
multiple waiting moments of robots in some cells when
there are many common resources along the path, thus
leading to a larger number of steps. To overcome this,

76 Sofa Hustiu et al. / IFAC PapersOnLine 55-28 (2022) 73-78

Algorithm 1: Parallel movement of robots

Input : Q= (N, my,Y,h),ms, Paths, N
Output: Paths’ /* Strategic robot’s
movement */

1 Compute Traj based on Paths;

2 Compute the order of assigning resources p; € P
to processes in Traj;

3 Update Q by removing the obstacle places;

4 Paths’ = step 0 in Paths;

5 while (mg # my) do

6 RobotsToMove = (;

7 for r; € R do

8 Let p; be the second place in Traj; /* it
is r;’s turn to enter p; */
9 if p; should be assigned next to 7; AND no
robot in p; then
10 RobotsToMove = RobotsToM ove U
{ri};

11 end

12 end

13 Add a new step in Paths’ moving

RobotsToM ove to their next places while the
other will keep their position;

14 Update Traj by removing first places of all

r; € RobotsToM ove;

15 Update my;

16 if (|R\ RobotsToMove| > N) OR

(|[RobotsToMove| == 0) then
17 Reroute the paths by solving MILP (5) for
mg and my;
18 Compute Traj based on rerouted paths;
19 Compute the order of assigning resources
p; € P to processes in Traj;
20 end
21 end

subsection 4.1 includes an algorithm for increasing parallel
execution along the paths from Traj and by rerouting the
robots when there are multiple waitings at the same step.

4.1 Owverall solution

The main idea of the solution is to change the initial
movements captured by Paths by forcing the robots to
move in parallel if possible. For this, we assume the system
as a RAS, both terms process and resource being defined in
the previous section. The problem can be seen as assigning
resources to the processes in order to avoid deadlocks
and collisions, while finishing all processes means to reach
the final cells by all robots. The strategy relies on the
notion of safe state from BA, which is transferred into
the current approach. The proposed algorithm ensures a
solution under the previously defined assumptions. First,
the order of using each resource by the processes is
computed based on Paths. This computation considers
also back and forth scenarios for robot paths (at least
one resource is utilized multiple times during the process).
Notice that this order will ensure that all processes will
finish as proved in (Mahulea et al., 2020b). Then, at any
step, if a robot is not moving according to Paths but the
next cell in which it should enter is free and this resource is
assigned next to that robot, then this movement is shifted

to the actual step in Paths’. Furthermore, if a number of
N or more robots are waiting for resources in one step,
then the paths for all r robots are recomputed.

Alg. 1 captures the overall steps for the robot motion,
starting from Paths obtained by applying the approach
in (Mahulea et al., 2020b). Beside this input, a threshold
N is defined by the user, to impose rerouting whenever at
least IV robots are waiting in a step. Several actions are
needed before computing the parallel execution of robots:
compute the trajectories for the robots in Traj (line 1);
compute the order in which robots will cross through cells
(line 2); remove the places that shouldn’t be crossed along
the trajectories (line 3), and initialize the starting cells of
the robots in the initial step - step 0 (line 4).

Line 6 initializes the variable RobotsToMove to empty
set, containing the set of robots moving in the actual
step. The loop in lines 7 to 12 checks for each robot if
it can move in the actual step. This occurs if the next
place is free and it is the robot’s turn to cross that place.
Once the set of moving robots is computed, the parallel
motion of robots is captured by lines 13-15. The last part
of the algorithm determines the necessity to reroute paths.
The MILP responsible for rerouting (described in the sub-
section 4.2) is enforced, with the updated mg based on
robot’s current position (lines 17-19). The robot paths are
recomputed when the number of waiting robots reaches
the threshold N, or when no robot is able to move in
the current step. The latter examination avoids deadlocks,
which would otherwise be possible if the order in which
robots reach their final cells is modified (by a previous
rerouting) and some robots block the paths of others.

4.2 Optimization problem to reroute paths

To accomplish parallel movement, the rerouting of paths is
made for all robots. The MILP (5) ensures that the robots
can finish their trajectories in a sequential order thus
avoiding collisions and deadlocks. However, the implemen-
tation using the strategy in previous subsection ensures
the parallel movement of the robots based on the solution
of MILP. The unknown variables consist in the initial
my,; and final m,; markings, joined by the firing count
vector denoted as o;, for each robot r; € R. The unknown
vectors o; are also used in the cost function, to minimize
the weighted sum of the r firing count vectors. Compared
with our previous approaches in designing MILPs for robot
movement strategies - where o gathers the firing sequence
for the entire team -, herein the robots’ executions are
accounted individually, based on the mentioned unknowns.
By minimizing this cost function, it is not possible for
two robots to swap their places, hence assumption (iv) is
fulfilled. The MILP (5) has the following constraints:

e Constraints (a) represent the state equation (1) for a
sequence of markings m;,i = 1,...,r. A sequence of
markings is used in order to avoid the collisions.

e Constraints (b) impose the presence of maximum one
robot in each place, considering the final positions of
the previous (i — 1) robots and the initial positions of
the next (r — i) robots.

e Constraints (¢) and (d) ensure the gathering of the
initial mg; and final m,; markings for all robots

Sofa Hustiu et al. / IFAC PapersOnLine 55-28 (2022) 73-78 77

r; € R, in accordance with the initial my and final
m markings of RMPN team model.

e Constraints (e) complement the previous constraints,
by ensuring mg; is the marking for a single robot.

e Constraints (f) specify the type of unknown variables.

.
min 173" i -0y

s.t. mz—mozjl—f—C' o;, i=12. (a)

Post - a‘z+2ml+ Z mo; <1, i=1,2...r (b)
j=1 Jj=i+l

izlmo,i =my ()

imi =my (d)

%l:Tl mo,; =1, i=12. (e)

m01€N>0,ml€R|§0‘,m€N>o,z 1,2.. (f)

Remark. The limitations of our proposed algorithm are
two-folded: the selected number of waiting robots N does
not provide any monotony with respect to the number of
global steps in the team path planning (see Table 1); in
some scenarios, our solution may return the same robot
motion as in the previous work (Mahulea et al., 2020b).

5. NUMERICAL RESULTS

The proposed algorithm was implemented and integrated
in the open-source toolbox RMTool - MATLAB (Gonzélez
et al., 2015). The simulation results are obtained on a
computer with i7 - 8* gen. CPU @ 2.20GHz and 8GB
RAM, and rerouting MILP (5) was solved with CPLEX.

Ezample 4. Let us recall the example considered through-
out the previous sections, with the Boolean-based formula
from (2). The mission enforces the robots to reach regions
y1,Y2, while avoiding ys. The solution returned by the
current method is given in eq. (4), for N = 1. Thus, the
number of steps to fulfill the Boolean-based mission was
reduced compared with the approach from (Mahulea et al.,
2020b), the total steps herein being equal with 4, instead
of 6. It can be observed that in the first step only ro is
moving: its next cell (p3) is free, so it can advance; at the
same step, r1’s next cell is po which is still occupied by
ro. For this small example, the running time of Alg. 1 is
insignificant, being close to 0 seconds. |

Ezample 5. To better examine the quality of our solution,
let us consider the relevant example in which all the robots
should pass through a common free passage to reach their
destination. Fig. 2 illustrates a grid-based environment
with 5 x 5 cells, including 8 ROIs and 4 robots placed
in cells p1, ps, P16, P21 (first column from the left). The
Boolean-based specification is the following: ¢ = —Y; A
Yo A=Y3 A-Y Ays Ay Ayz Ays, which means the avoidance
of the first 4 regions along trajectories and visiting the last
4 regions at destination cells.

For this example, the running time to obtain the robot
trajectories as in (Mahulea et al., 2020b) is 0.1 seconds.
The mission is accomplished in 24 steps with the previous
approach, in comparison with 11 steps given by the current
approach. The parallel movement of the robots along the
paths does not require a perceptible additional running

Pio P2

3 i 73 , R
g " -
3 i
el

L Py Py Pio

il Ve 7 Vs

By g Py Py Ps
2 h . .

Fig. 2. Grid environment with 4 robots and 8 ROIs

time, especially if no rerouting is triggered. The order
in which the robots reach their final cell is captured in
Table 1. For the imposed threshold N = 2 (computing
new paths whenever at least 2 robots are waiting in their
current cells), the paths are rerouted 2 times based on
MILP (5), yielding a total number of steps equal with 10.
Fig. 2 captures the paths of robots with dashed lines (rq
- red, ro - blue, r3 - pink, 74 - green). In addition, the
figure illustrates the current positions of the robots and
their movement intention (colored arrows) immediately
before the path rerouting actions were triggered. The per-
formances of running time for path rerouting are captured
in mean y and standard deviation std given in Table 1. B

Table 1 captures quantitative results obtained for scenarios
with common resources and increased complexity in terms
of number of cells and team size. The running time
seized in the table is computed for solving the considered
optimization problem for each approach, as follows: the
MILPs in the previous work (Mahulea et al., 2020Db)
computes robot paths for satisfying the Boolean-based
formula based on a global model of the team. The MILP
in the current work reroutes the robots when needed:
Case I rerouting only when a final state is occupied but
should be crossed by another robot and Case II rerouting
when N robots are waiting. In both cases the final cells
are maintained for the team, while collision-free paths are
ensured.

Note that path rerouting is Not Applicable (NA) for
the previous work, since this action is part of current
contributions. The first set of lines shows the results
for Example 5. The second set of lines gives simulation
results for the scenario included in (Mahulea et al., 2020Db)
(grid with 20 x 10 cells). A movie depicting the robot
movements in these scenarios can be inspected in the
animated simulation from this link. The third set of lines
from Table 1 considers a grid-based environment with 20 x
20 cells and r = 20. In this scenario, the parallel movement
for N = r includes two rerouting actions triggered by the
inability of some robots to move due to other robots that
already reached their final destinations and blocked some
passages. When a trigger of N = 10 is imposed for the
parallel movement, the robots reach their destination in 77
steps. All these results demonstrate the benefits of having
a parallel robot motion with the possibility of rerouting,
especially for large teams of mobile robots.

6. CONCLUSION

The current paper focused on reducing the conservative-
ness of our previous work (Mahulea et al., 2020b) by
imposing a collision free parallel movement of the robots.

Sofa Hustiu et al. / [FAC PapersOnLine 55-28 (2022) 7378

Table 1. Numerical data comparison: previous approach vs. current approach

. . Numerical Previous Case I or Case II (here
Environment scenario Case I
performances approach N =[r/2])
Number of steps 24 11 10
Number of path rerouting NA 0 2 times
Running time [sec] 0.1 0.1 0.1 + (u=7-10"3,std = 1-1072)

Grid-based 5 x 5,
with r =4 robots

Order of robots to
reach their final cell
Assigned final regions
for tupla (r1,r2,73,74)

r3,T1,7T4,72

(y5,Y7, Y6, Ys)

r2,T1,73,T4 T2,T1,73,T4

(vs,v7,Y6,Ys) (v6,vs,Ys,y7)

Grid-based 10 x 20, Number of steps . 155 39 %3
with r — 10 robots Number of path rerouting NA 0 6 times
"= Running time [sec] 3.2 3.2 324+ (p=1-10"2,std = 1-1072)
Grid-based 20 x 20, Number of steps ‘ 352 '.78 7
with r — 20 robots Number of path rerouting NA 2 times 14 times
- Running time [sec] 12 12 0 12 4+ (u=9-1073,std = 3-1073)

The proposed algorithm releases dynamically the common
resources visualized as common cells along the paths. This
decreases the number of steps in which the team fulfills its
mission. In addition, an improvement is made by applying
a path rerouting approach whenever the number of robots
waiting in the current cells reaches a given threshold or
when no robot can move in the current step. The path
rerouting is solved based on a MILP formulation, which
requires the current and final markings of RMPN model.
Future work envisions algorithms suitable for incomplete
inputs, such as partially known paths.

REFERENCES

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins,
E., and Pappas, G.J. (2007). Symbolic planning and
control of robot motion [grand challenges of robotics].
IEEE Robotics & Automation Magazine, 14(1), 61-70.

Belta, C. and Habets, L.C. (2006). Controlling a class of
nonlinear systems on rectangles. IEEE Transactions on
Automatic Control, 51(11), 1749-1759.

Bobanac, V. and Bogdan, S. (2008). Routing and schedul-
ing in multi-AGV systems based on dynamic banker al-
gorithm. In 16th Mediterranean Conference on Conitrol
and Automation, 1168-1173. IEEE.

Ding, X.C., Kloetzer, M., Chen, Y., and Belta, C. (2011).
Automatic deployment of robotic teams. IEEE Robotics
& Automation Magazine, 18(3), 75-86.

Ezpeleta, J., Garcia-Vallés, F., and Colom, J.M. (1998).
A class of well structured Petri nets for flexible man-
ufacturing systems. In International Conference on
Application and Theory of Petri Nets, 64—-83. Springer.

Gonzélez, R., Mahulea, C., and Kloetzer, M. (2015). A
matlab-based interactive simulator for mobile robotics.
In CASE’2015: Int. Conf. on Autom. Science and Eng.

Honig, W., Kiesel, S., Tinka, A., Durham, J., and Ayanian,
N. (2018). Conflict-based search with optimal task
assignment. In Int. Joint Conf. on Autonomous Agents
and Multiagent Systems.

Hustiu, S., Hustiu, I., Kloetzer, M., and Mahulea, C.
(2021). LTL task decomposition for 3D high-level path
planning. Journal of Control Engineering and Applied
Informatics, 23(3), 76-87.

Kalinovcic, L., Petrovic, T., Bogdan, S., and Bobanac, V.
(2011). Modified Banker’s algorithm for scheduling in
multi-AGV systems. In International Conference on
Automation Science and Engineering, 351-356. IEEE.

King, J., Pretty, R.K., and Gosine, R.G. (2003). Coordi-
nated execution of tasks in a multiagent environment.
IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 33(5), 615-619.

Lacerda, B. and Lima, P.U. (2019). Petri net based multi-
robot task coordination from temporal logic specifica-
tions. Robotics and Autonomous Systems, 122, 103289.

Lawley, M., Reveliotis, S., and Ferreira, P. (1998). The
application and evaluation of banker’s algorithm for
deadlock-free buffer space allocation in flexible man-
ufacturing systems. International Journal of Flexible
Manufacturing Systems, 10(1), 73-100.

Mahulea, C., Gonzéalez, R., Montijano, E., and Silva, M.
(2021). Path planning of multirobot systems using
Petri net models. results and open problems. Rew.
Iberoamericana de Autom. e Infor. Ind., 18(1), 19-31.

Mahulea, C., Kloetzer, M., and Gonzdlez, R. (2020a). Path
Planning of Cooperative Mobile Robots Using Discrete
Event Models. John Wiley & Sons.

Mahulea, C., Kloetzer, M., and Lesage, J.J. (2020b).
Multi-robot path planning with boolean specifications
and collision avoidance. IFAC-PapersOnLine, 53(4),
101-108.

Reveliotis, S.A. (2000). Conflict resolution in AGV sys-
tems. IIE Transactions, 32(7), 647-659.

Schillinger, P., Biirger, M., and Dimarogonas, D.V. (2018).
Simultaneous task allocation and planning for temporal

logic goals in heterogeneous multi-robot systems. The
Int. Journal of Robotics Research, 37(7), 818-838.
Silva, M., Teruel, E., and Colom, J.M. (1996). Linear

algebraic and linear programming techniques for the
analysis of place/transition net systems. In Advanced
Course on Petri Nets, 309-373. Springer.

Song, D., Li, Y., and Song, T. (2021). Modified Banker’s
algorithm with dynamically release resources. In Inter-
national Conference on Communications, Information
System and Computer Engineering, 566-569. IEEE.

Tricas, F., Colom, J.M., and Ezpeleta, J. (2000). Some
improvements to the Banker’s algorithm based on the
process structure. In Int. Conf. on Robotics and Au-
tomation, volume 3, 2853-2858.

Yu, D., Hu, X., Liang, K., and Ying, J. (2021). A parallel
algorithm for multi-AGV systems. Journal of Ambient
Intelligence and Humanized Computing, 1-15.

