
Cities 132 (2023) 104079

Available online 11 November 2022
0264-2751/© 2022 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Parametric, semiparametric and nonparametric models of urban growth 

Rafael González-Val 
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A B S T R A C T   

This paper discusses parametric, nonparametric, and semiparametric models of urban growth. To illustrate 
differences across approaches, we test Gibrat’s law in the long run, using the three methods and three different 
datasets: Spanish capital cities and regions (1900–2011, annual data) and US MSAs (1900–2000, decennial data). 
Our results reveal that the estimation of the relationship between growth and initial size can significantly vary 
across methods. We suggest and encourage the use of semiparametric methods in future research of urban 
growth.   

1. Introduction 

Urban growth models have a long tradition. Many theories have been 
proposed to try to explain why some cities (or regions) attract more 
people than others. Following Davis and Weinstein (2002), these theo
retical explanations can be grouped into three main theories: the exis
tence of increasing returns to scale, the importance of locational 
fundamentals, and the absence of both (random growth). 

Each of these theories has different implications for the under
standing of city growth. The existence of increasing returns suggests the 
presence of endogenous mechanisms in city growth that can lead to 
multiple equilibria, depending on initial conditions of income or popu
lation. Seminal articles discussing the endogenous character of city 
growth and proposing theoretical models of urban growth are Fujita 
(1976), Eaton and Eckstein (1997), and Black and Henderson (1999), 
among many others. In contrast, a body of literature argues that city 
growth is mainly driven by exogenous geographical characteristics (i.e., 
locational fundamentals). According to this theory, the presence of a 
natural harbour, a specific climate or access to the sea, among many 
other physical characteristics, can determine cities’ populations. The 
third theory postulates that urban growth is a random variable. In that 
case, the growth process of cities tends to be multiplicative and inde
pendent of their initial size, a proposition that became known in urban 
economics as Gibrat’s law. 

What all these theories have in common is that when it comes to 
empirically testing them, most studies rely on linear growth models. In 

other words, although the theory allows for nonlinear behaviours of 
some variables, the empirical models usually do not. Some authors have 
tried to overcome this limitation by using polynomial specifications (e. 
g., Black & Henderson, 2003; Wheeler, 2003) or threshold regression 
models (Bosker et al., 2007; Davis & Weinstein, 2008; González-Val & 
Olmo, 2015). 

In testing Gibrat’s law, this strand of the literature has adopted 
nonparametric methods since the early 2000s (Eeckhout, 2004; Ioan
nides & Overman, 2003). Numerous empirical studies have tested its 
validity for city-size distributions, arriving at a majority consensus, 
although not absolute, that explains the growth of cities relatively well 
and tends to hold in the long term. 

This paper examines the properties of these two traditional methods: 
linear and nonlinear growth regressions. Then, we propose using of a 
new methodology – the semiparametric method – which combines the 
better of the two traditional approaches. To illustrate the usefulness of 
this approach, we conduct an empirical examination of Gibrat’s law in 
the long term using three datasets. Although we focus on Gibrat’s law, 
the semiparametric model allows for the linear inclusion of city control 
variables and, thus, can be extended to other models testing increasing 
returns or locational fundamentals. 

The remainder of the paper is organised as follows. In Section 2, we 
describe the different methodologies. Section 3 presents the population 
data used. Section 4 shows the main results, and Section 5 concludes. 
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2. Methodology 

Let Popit denote the population of city i at time t. We define the 
relative size of the ith city, sit, as the quotient derived from dividing the 
city’s population by the total population of the country, sit = Popit/ 
Country populationt.1 Let Growthit be the logarithmic growth rate of the 
relative size of city i at time t, Growthit = ln sit − ln sit− 1. Then, we can 
define git as the normalised growth rate (subtracting the mean and 
dividing by the standard deviation).2 This normalisation is a common 
practice in the literature (e.g., Desmet & Rappaport, 2017; Devadoss & 
Luckstead, 2015; Eeckhout, 2004; Giesen & Südekum, 2011; González- 
Val, 2010; Ioannides & Overman, 2003; Luckstead & Devadoss, 2014). 
In a long-term context of increasing populations over time, normalising 
with the contemporaneous average growth and standard deviation 
avoids some periods overpowering others on account of absolute pop
ulation growth.3 In the end, we are not interested in whether cities grow 
more or less in gross terms; normalised growth rates allow us to focus on 
whether cities’ growth is higher or lower than the contemporary average 
growth. Moreover, as we will explain below, the normalisation makes 
the visual interpretation of the results easier. 

A first way to test the relationship between growth and initial rela
tive size is to run a simple linear growth regression (equivalent to a 
standard unconditional β-convergence regression): 

git = μ+ βlnsit− 1 + uit, (1)  

where uit is a random variable representing the random shocks that the 
growth rate may suffer, which we shall suppose are identically and 
independently distributed for all cities, with E(uit) = 0 and Var(uit) = σ2 

∀ i, t. It is well established in the literature (Favaro & Pumain, 2011; 
Sutton, 1997) that results are strongly dependent on the assumptions 
made about uit and the constant term because inadequate specifications 
can potentially invalidate the results. Under the pure form of Gibrat’s 
law, city growth is a stochastic variable (Eeckhout, 2004; Gabaix, 1999), 
so note that the only explicative variable in Eq. (1) is initial city size. 

Let us call this model a pure Gibrat’s parametric regression. If β =
0 and uit is an iid error term, Gibrat’s law holds and we find that growth 
is independent of the initial size, with an average growth rate μ, whereas 
a significant β (positive or negative) would indicate a rejection of 
Gibrat’s law. The literature has modified this pure Gibrat’s parametric 
regression in two main ways. First, adding more explicative variables 
and controls. Second, changing the parametric model to a nonpara
metric one (but still unconditional). We examine both of these in detail. 

The first way to modify the pure Gibrat’s model in Eq. (1) is to keep 
the parametric specification but adding additional explicative variables 
besides the initial city size. In his survey of Gibrat’s law in the firm size 
literature, Sutton (1997) explained how in the 1980s there was a rise of 
new literature with two main themes: econometric issues (e.g., the 
specification of an appropriate functional relationship or the problem of 
heteroscedasticity) and the criticism with the “only stochastic” models. 
Both themes can also justify the modification of the pure Gibrat’s model 
for city sizes. 

First, as explained above, inadequate specifications regarding the 
error and constant terms can lead to biased results (Favaro & Pumain, 
2011), so authors deal with these problems by incorporating an autor
egressive error term correction for serial correlation (Chesher, 1979) or 

by using dynamic panel data methods and unit-root tests (Pesaran, 
2007) and, thus, modifying the baseline model of Eq. (1). These methods 
are based on the following equation (Favaro & Pumain, 2011): 

git = μ+ βlnsit− 1 +ϕi + δt + uit, (2)  

where ϕi are city fixed effects and δt are time fixed effects. Note that the 
interpretation of this model is different from the pure Gibrat’s model; in 
case β = 0 and the error term is iid, the conclusion would be that growth 
is independent of city size, but allowing for differences in the mean 
growth across cities, captured by the city fixed effects ϕi. 

Second, although Gibrat’s law is based on pure stochastic growth of 
cities, we might be interested in controlling for deterministic compo
nents of growth to separate both determinants and obtain more accurate 
estimates of the random part of growth. Skouras (2009) highlighted that 
there is substantial empirical evidence that some extremely persistent 
city characteristics are correlated with growth rates, including physical 
geographical attributes (i.e. first nature causes in the NEG terminology) 
such as coastal proximity, weather, or availability of natural resources, 
as well as human-made amenities (second nature causes), such as mar
ket potential, population education levels, and city infrastructure 
(Glaeser et al., 1995; Black & Henderson, 2003; Gabaix & Ioannides, 
2004). Let xit

T be the vector of these city-specific characteristics such as 
weather variables, location features (e.g., access to the sea), or any other 
city characteristic that may influence population growth; then, the 
model specification changes to: 

git = μ+ βlnsit− 1 + xT
it θ+ϕi + δt + uit. (3) 

This growth equation is similar to those used in many studies on 
urban growth; see, for instance, Glaeser et al. (1995), Glaeser and Sha
piro (2003), or Black and Henderson (2003). Moreover, the literature 
provides a theoretical economic background for this kind of linear 
growth model of city population growth; see the model of urban growth 
put forward by Glaeser et al. (1995) and further explicated by Glaeser 
and Shapiro (2003). Again, Gibrat’s law is tested with the β coefficient, 
but the independence between growth and the initial population is 
conditional not only to the city and time effects but also to the non- 
random distributed vector of city-characteristics xit. 

However, one possible concern that remains in all these parametric 
models (Eqs. (1), (2) and (3)) is that the relationship (conditional or 
unconditional) between growth and size is restricted to be linear. As 
mentioned above, some authors (Eeckhout, 2004; Ioannides & Over
man, 2003) suggested the use of nonparametric models to deal with this 
issue, while other authors (Wheeler, 2003) adopted an alternative so
lution, proposing parametric growth regressions but including poly
nomial specifications of the initial size: 

git = μ+
∑k

j=1
βj(lnsit− 1)

j
+ xT

it θ+ϕi + δt + uit. (4) 

Eq. (4) allows for different polynomial functions; we consider values 
of k from 1 to 3 in order to capture any nonlinearity in the relationship 
between growth and initial size.4 In the case of k = 2, we fit a quadratic 
function, while a cubic term (k = 3) is included in some specifications to 
control for possible increasing growth at high levels of relative size. 
However, although the βj coefficients can help to detect nonlinearities in 
the relationship between both variables, a parametric growth regression 
is not the best way to address such nonlinear relationships. 

Therefore, nonparametric growth regressions have become popular 
in the field. Among others, Ioannides and Overman (2004) have high
lighted the advantages of the nonparametric approach over the standard 
parametric approach. Mainly, nonparametric methods do not impose 
any structure on underlying relationships that may be nonlinear and 

1 From a long-term temporal perspective of steady state distributions, it is 
necessary to use a relative measure of size (Gabaix & Ioannides, 2004), espe
cially when we consider all the growth rates jointly in a pool.  

2 All the analysis was repeated using non-normalised growth rates and results 
were similar. These results are available from the author upon request.  

3 From the statistical point of view, Gabaix (1999) used Geometric Brownian 
Motion to describe city size processes but, even under the Geometric Brownian 
Motion assumption, the sample mean and standard deviation can be time 
varying (Ioannides & Overman, 2003, p. 133; Anderson & Ge, 2005, p. 769). 

4 Wheeler (2003) considered polynomials of initial size up to k = 5, but here 
for illustrative purposes we set at most k = 3. 
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may change over time (no need to restrict the relationship to being 
stationary); this is especially important when long periods are 
considered. 

The kernel regression version of the pure Gibrat’s model (Eq. (1)) 
consists of taking the following specification (Eeckhout, 2004; Giesen & 
Südekum, 2011; Ioannides & Overman, 2003): 

gi = m(lnsi)+ εi, (5)  

where gi is again the normalised growth rate at time t and lnsi the log
arithm of the ith city’s initial relative size (at time t − 1). The difference 
with the model in Eq. (1) is that here, instead of making assumptions 
about the functional relationship m, m(lns) is estimated as a local mean 
around point lns and is smoothed using a kernel, which is a symmetrical, 
weighting, and continuous function in lns. Thus, this nonparametric 
estimate lets growth vary with the initial population over the entire 
distribution. This specification has two relevant implications. First, note 
that temporal subscripts are omitted; this kernel regression can be run 
for a cross-section of growth rates (Eeckhout, 2004), as well as for a pool 
of growth rates from different periods (Giesen & Südekum, 2011; 
González-Val, 2010; Ioannides & Overman, 2003), and no temporal 
controls are included in any case. Note that, even when several periods 
are considered jointly in a pool, the panel dimension of the data is not 
exploited. Second, as in the model in Eq. (1), this kernel regression es
timates the unconditional relationship between growth and size. Not only 
are temporal controls omitted but also fixed effects and any other con
trol variables. 

To estimate m(lns), usually the Nadaraya-Watson method is typically 
used as it appears in Härdle (1990, Chapter 3), considering a kernel (in 
our case, an Epanechnikov) and a bandwidth h that determines the scale 
of the smoothing of the kernel density estimation.5 The result of esti
mating Eq. (5) is a graph showing how estimated growth varies with 
size. As the growth rates are normalised, if the growth was independent 
of the initial population, the nonparametric estimate would be a straight 
line on the zero value and values different from zero would involve 
deviations from the mean.6 

It is obvious that both approaches, parametric (Eqs. (1), (2), (3) and 
(4)) and nonparametric (Eq. (5)) growth regressions, have their draw
backs. To overcome the limitations of traditional approaches, Durlauf 
(2001) suggested the use of semiparametric methods. This alternative 
approach allows us to tackle the possible nonlinear effect of initial size 
on urban growth in a flexible way because the model is a mixture of both 
parametric and nonparametric growth regressions. For instance, the 
standard correlation index and the coefficients from parametric re
gressions give us only an aggregate average relationship between 
growth and size, and this relationship is restricted by the fact that it must 
remain unchanged throughout the entire distribution of city sizes. In 
contrast, the semiparametric estimate allows growth to vary with city 
size over the entire distribution (as in the nonparametric approach, Eq. 
(5)) but allows for the linear effects of other conditioning variables, such 
as city and time fixed effects and any other control variable we may 
include. 

Therefore, the estimated semiparametric relationship between 
growth and size can be more accurate than that obtained using para
metric models (because the relationship is allowed to vary over the 
distribution of sizes) and nonparametric models (because additional 
linear control variables are included). Nevertheless, to our knowledge, 
this empirical approach remains unexplored in the urban growth liter
ature. In the related literature, Barrios and Strobl (2009), Lessmann 

(2014), and Díez-Minguela et al. (2020) have applied this methodology 
to the study of regional inequalities, and Basile (2008) used a semi
parametric spatial Durbin model to analyse regional economic growth in 
Europe. 

We perform the semiparametric analysis using Baltagi and Li’s 
(2002) fixed-effects semiparametric regression estimator. Keeping the 
previous notation, a panel-data semiparametric model is: 

git = m(lnsit− 1)+ xT
it θ+ϕi + δt + uit, (6)  

where m(.) is a smooth and continuous, possibly nonlinear, unknown 
function of lnsit− 1. Like the parametric growth model (Eq. (3)), xit can 
include any time-variant city characteristic at the city level. The model 
has a parametric (xit

Tθ + ϕi + δt) and a nonparametric (m(lnsit− 1)) part. 
Baltagi and Li’s approach is a two-step methodology. First, having 
estimated θ and δ, the fixed effects ϕi are fitted to estimate the error 
component residual: 

ûit = git − xT
it θ̂ − ϕ̂i − δ̂t = m(lnsit− 1)+ εit.

θ and δ are estimated after taking the first difference of the model in Eq. 
(6), applying a procedure similar to that whereby variables can be 
partialled out of an OLS regression. Then, the curve m(.) can be fit by 
regressing ûit on lnsit− 1 by using some standard nonparametric regres
sion estimator.7 Note that in the nonparametric part of the model, the 
curve m(.) is fitted to the linear prediction of the residuals, ûit, instead of 
to the gross growth rates (git). Therefore, contrary to Eq. (5), here we 
estimate the conditional independence between growth and initial size: 
how growth varies with city size but excluding time effects and the effect 
on the growth of observed and unobserved characteristics that can vary 
at the city level. 

Finally, it can also be discussed whether models in Eqs. (4) and (6) 
really are so different, because if we increase the order of polynomials k 
to a large enough number, the estimates from Eq. (4) should be suffi
ciently close to those obtained from Eq. (6) (Newey, 1997). However, as 
Libois & Verardi (2013) explain, although the most efficient and unbi
ased estimator could be the fixed-effects estimator with the appropriate 
polynomial specification (model (4)), this specification is generally 
unknown. Therefore, as the true data-generating process is unknown, 
one might rely in high values of k arguing that a sufficiently flexible 
polynomial fit would be preferable to a semiparametric one. However, 
Libois & Verardi (2013) show that this is not the case, providing some 
empirical examples. Not only semi-parametric models provide a better 
fit for complex data-generating process than high order polynomial 
specifications; they can also help identify the relevant parametric form 
and help applied researchers avoid some trial and error. 

3. Data 

We aim to apply the different methods explained in the previous 
section to study urban growth from a long-term temporal perspective. 
The three models can also be applied to cross-sectional data (although 
the semiparametric model would require a slight change in the model 
specification8), but here we favour the use of panel data models. Panel 
data can model both the common and individual behaviours of groups, 
containing more information, more variability and more efficiency than 
pure time-series data or cross-sectional data. 

Thus, we need long time series of city sizes. Although the nonpara
metric kernel regression model in Eq. (5) is estimated based on pooled 
data, Eqs. (1), (2), (3) and (4) and Eq. (6) are panel data models that 
require a high frequency in the time dimension. Therefore, ideally, our 

5 Although some authors set a fixed value of the bandwidth (e.g., h = 0.5 in 
Eeckhout (2004)), here the bandwidth is set using a rule-of-thumb.  

6 Here we only focus on the relationship between mean growth and initial 
size, although strictly speaking, random growth implies that the growth rate has 
a distribution function with both mean and variance independent of the initial 
size (Gabaix & Ioannides, 2004). 

7 The semiparametric models are estimated using the ‘xtsemipar’ Stata 
package. See Libois & Verardi (2013) for more details.  

8 A semiparametric model can be estimated for cross-sectional data using 
Robinson’s (1988) approach. 
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data set should contain yearly observations to fully exploit the advan
tages of the models. However, long time series of year-by-year city 
populations are hard to obtain, and studies about city sizes are usually 
based on decennial census data. 

As far as we know, only a few studies consider long-term annual city 
populations. Sharma (2003) used a sample of 100 Indian cities for the 
1901–1991 period; Bosker et al. (2008) constructed a dataset of 62 West- 
German cities for the 1925–1999 period; Ronsse and Standaert (2017) 
constructed a dataset of 2681 Belgian municipalities for the 1880–1970 
period; and González-Val and Silvestre (2020) built a dataset of 49 
capital cities in Spain from 1900 to 2011. Sharma (2003), Bosker et al. 
(2008), and González-Val and Silvestre (2020) consider only the largest 
cities, while Ronsse and Standaert’s (2017) sample includes all Belgian 
municipalities. 

In this paper, we use González-Val and Silvestre’s (2020) dataset. It 
consists of annual data for the 49 capital cities in Spain for the 
1900–2011 period. Yearly data was estimated using information from 
the decennial censuses and historical reports of deaths and births. The 
geographical unit of reference is the municipality. Municipalities are the 
smallest spatial units (local governments); they are the administratively 
defined ‘legal’ cities. They are the lowest spatial subdivision in Spain; in 
terms of the current European Union’s standard classification of Euro
pean regions, municipalities are the LAU 2/NUTS 5 regions. Table 1 
summarises the descriptive statistics of the samples at census dates.9 As 
shown in Panel A, the number of capitals, 49, remained unchanged 
throughout the period considered; thus, the number of cities is fixed.10 

Each city is the administrative capital of one NUTS 3 region, and city 
population data account for changes in municipal boundaries over time. 

For illustrative purposes, we also use the regional data provided in 
the González-Val and Silvestre (2020) dataset. For the same period, 
annual information about the 49 Spanish provinces (NUTS 3 regions) is 
available (Panel B in Table 1). The two provinces corresponding to the 
Canary Islands are joined together (due to the census reporting criteria 
during the first decades of the twentieth century), and the Spanish en
claves of Ceuta and Melilla in northern Africa are excluded. In com
parison to capital cities, provinces comprise the country’s total land area 
and, therefore, the entire population. Therefore, we expect to observe 
important differences in population growth between cities and regions. 

Finally, as a robustness check, we also considerer decennial census 
data of the United States (US) Metropolitan Statistical Areas (MSAs) 
from 1900 to 2000 (Panel C in Table 1). The database is similar to that 
employed by Sánchez-Vidal et al. (2014) to test sequential city growth in 
the US. In line with Ioannides and Overman (2003), for the period from 
1900 to 1950, data from Bogue’s (1953) Standard Metropolitan Areas is 
used. These are based on the definition of Standard Metropolitan Areas 
for 1950, used to reconstruct the population for the period 1900 to 1940. 
The series is completed for the period 1950 to 2000 by taking data from 
the US Census Bureau. Although the Spanish samples have a fixed 
number of elements (49), in the US, the number of MSAs increases over 
time from 94 in 1900 to 274 in 2000. 

As most studies use decennial census data, the US MSA dataset will 
help us to show that even if the frequency in the time dimension is low 
(ten years between censuses), if the period considered is long enough, 
the semiparametric approach can still provide more interesting results 
than parametric or nonparametric growth regressions. 

Note that our data sets only include population data. Although the 
specification of some of the models includes a vector of observed city 
characteristics (xit) that can influence city growth, in our empirical ex
ercise we only include city and time fixed effects for two reasons. First, 
city time-invariant characteristics that are usually included in the urban 

growth models using dummy variables (such as climate, access to port or 
river, belonging to one of the main industrial belts in the case of US 
cities, etc.) cannot be included because of the city fixed effects. Never
theless, this is not a problem because the effect of these time-invariant 
characteristics will be absorbed by the fixed effects. Second, in the 
case of time-variant characteristics, data availability is a problem 
because annual information (or decennial for the US case) of any eco
nomic or demographic variable for the whole twentieth century is 
difficult to find. Our results will show below that by only including city 
and time fixed effects, results significantly differ across methodologies, 
so for illustrative purposes and to allow comparisons between the results 
using the different data sets, additional control variables are omitted. 

4. Results 

In this section, we perform an analysis of Gibrat’s law using the 
different models described above. Before starting, we must acknowledge 

Table 1 
Descriptive statistics.  

A. Spanish capital cities. 1900–2011 (yearly data) 

Year Cities Mean Standard deviation Minimum Maximum 

1900  49  65,664.8  110,879.8 7736  576,538 
1910  49  72,817.9  123,931.8 8144  659,775 
1920  49  85,821  155,040.9 8167  848,383 
1930  49  107,635.7  210,762.5  10,588  1,137,943 
1940  49  132,657.7  239,583.7  13,441  1,326,674 
1950  49  155,533  290,974.9  17,297  1,645,215 
1960  49  188,433.2  380,485  19,589  2,259,931 
1970  49  241,565.1  499,939.5  23,030  3,146,071 
1981  49  276,811.8  506,634.6  28,225  3,188,297 
1991  49  287,243.6  489,878.5  31,068  3,084,673 
2001  49  277,107.5  461,329.9  31,158  2,938,723 
2011  49  300,962.6  499,881.1  35,660  3,198,645   

B. Spanish regions (NUTS 3). 1900–2011 (yearly data) 

Year Provinces Mean Standard deviation Minimum Maximum 

1900  49  379,477.7  183,176.7  96,385  1,054,541 
1910  49  406,671.6  201,741.8  97,181  1,141,733 
1920  49  434,757.2  237,776.2  98,668  1,349,282 
1930  49  480,895.2  305,922.9  104,176  1,800,638 
1940  49  528,121.9  348,645.2  112,876  1,931,875 
1950  49  570,954.2  407,671.8  118,012  2,232,119 
1960  49  621,034.7  526,897  138,934  2,877,966 
1970  49  690,284  743,043.7  114,956  3,929,194 
1981  49  767,683.6  909,249.6  98,803  4,726,986 
1991  49  800,035.7  945,652.3  94,130  4,935,642 
2001  49  830,805.2  1,007,302  90,717  5,423,384 
2011  49  952,062.8  1,184,318  94,610  6,421,874   

C. US MSAs. 1900–2000 (decennial data) 

Year Cities Mean Standard deviation Minimum Maximum 

1900  94  312,626.7  682,220.7  52,577  5,597,481 
1910  117  343,491.2  833,460.6  50,731  7,757,308 
1920  124  408,940.5  987,907.7  54,664  9,386,725 
1930  130  498,633  1,225,093  50,872  11,896,737 
1940  133  529,359.6  1,294,329  51,782  12,760,857 
1950  135  635,803.3  1,467,167  56,141  14,191,901 
1960  220  555,444.7  1,399,082  51,616  15,620,434 
1970  226  640,225.3  1,538,806  53,766  16,206,841 
1980  274  643,653.5  1,618,349  58,460  18,905,705 
1990  274  719,220.9  1,776,348  56,735  19,549,649 
2000  274  819,336.3  1,974,707  57,813  21,199,865 

Notes: Descriptive statistics in census years. 

9 For the Spanish data, the censuses were conducted in years ending in zero, 
between 1900 and 1970, and one, from 1981 onwards.  
10 For the Canary Islands, only one of the two capitals is included (Santa Cruz 

de Tenerife). 
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that this is not a model selection exercise; the true data generating 
process is unknown, not all the models are nested, estimation methods 
are different across models, and standard information criteria cannot be 
applied.11 We aim to illustrate how semiparametric methods can pro
vide new insights into the workings of urban growth compared to the 
other empirical models (both parametric and nonparametric) used by 
authors to date. 

Table 2 shows the results of the OLS estimation of the different 
versions of the parametric growth model. The first column reports the 
pure Gibrat’s model in Eq. (1), a simple bivariate regression, finding a 
negative but not significant impact of initial relative size on the growth 
of Spanish and US cities (Panels A and C) and a positive and significant 
effect of size on growth in the case of the Spanish regions (Panel B). 
Column (1) in Table 2 is equivalent to the parametric growth regression 
estimated by Eaton and Eckstein (1997), and Fig. 1(a), (c), and (e) shows 
these estimated lines, along with the data points. Apparently, these 
initial unconditional linear regressions are not far from the real behav
iour of the data; the cloud of dots is around the zero value for the Spanish 

and US cities, while in the case of regions, the increasing relationship 
seems obvious. 

However, the inclusion of city/region and time fixed effects changes 
the results. In column (2), we show the results of the estimation of the 
model in Eq. (2); note that while the estimated coefficient for the 
Spanish cities (Panel A) remains negative and not significant, that of the 
regions’ sample (Panel B) has now changed to not significant, and the 
effect of initial size on growth is significant and negative for the US 
cities. Fig. 1(b), (d), and (f) represents these estimates. Again, the slope 
of the fitted line is the estimated coefficient for the initial size as shown 
in column (2) and represents the linear relationship between growth and 
size after keeping all other variables (namely, the city/region and time 
fixed effects) constant. 

In columns (3) and (4), the results of the estimation of the poly
nomial specifications (Eq. (4)) are displayed. In column (3), we include 
both the initial relative size and its square term to capture any nonlin
earity in its relationship to population growth. The estimated co
efficients are significant only in the case of the Spanish cities (Panel A), 
whereas, for the Spanish regions and US MSAs (Panels B and C, 
respectively), neither of the two coefficients is significant. For the 
Spanish cities, we found that both initial size and its square are negative 
and significant, supporting a quadratic function: a decreasing concave 
relationship between growth and city size. 

Nevertheless, when we consider a third-degree polynomial function 
(column 4), we obtain robust evidence of a nonlinear relationship be
tween growth and size. For the Spanish regions (Panel B) and US cities 
(Panel C), the three coefficients are negative and significant, while in the 
case of the Spanish capital cities, the only coefficient significant (and 
negative) is that of the initial size; both the square and the cubic term are 
not significant. 

Overall, the results from these regressions do not seem quite robust 
since there are important changes in the significance of the parameters 
depending on whether fixed effects or any polynomial function is 
included in the specification. Why? A look at the low values of R2 

(especially for the Spanish cities, Panel A) suggests that we are probably 
omitting important variables that can influence growth. As mentioned 
above, we choose to keep the specifications as simple as possible (the 
vector xit

T of city characteristics is not included in any case) to allow 
comparisons in the results across the different datasets.12 However, 
changes in the significance of the parameters of the different polynomial 
functions estimated tell another story: they indicate the presence of 
some kind of nonlinearity in the three cases that a linear regression is not 
able to properly capture. 

Therefore, we next estimate kernel growth regressions (Eq. (5)) using 
a pool of all growth-initial size pairs. As mentioned above, nowadays, 
this is the common approach in this literature (e.g., Eeckhout, 2004; 
Giesen & Südekum, 2011; González-Val, 2010; Ioannides & Overman, 
2003; Luckstead & Devadoss, 2014). Fig. 2 shows the results for the 
three samples. For each dataset, we show two sets of graphs. The left 
graphs (Fig. 2(a), (c), and (e)) display the fitted curve and the data points 
to allow comparisons with the corresponding panels in Fig. 1(a), (c), and 
(e) (the y-axis scale is the same as that in Fig. 1), while the right graphs 
(Fig. 2(b), (d), and (f)) zoom in to values of growth close to zero to 
highlight nonlinear patterns. The estimated nonlinear relationship is 
different in each case; we obtain an inverted U-shaped curve for the 
Spanish capitals (Fig. 2(b)), a clearly increasing relationship between 
size and growth for the Spanish regions (Fig. 2(d) also shows a small 
decrease in growth for the largest top-populated provinces) and random 
growth for the US MSAs (Fig. 2(f), with an estimated growth not 
different from zero for most of the distribution of city sizes (only the 
largest MSAs show significant negative growth). Some of these patterns 
do not seem to match well with the clouds of dots in the graphs in Fig. 2 

Table 2 
Parametric growth regressions.  

A. Spanish capital cities, 1900–2011 (yearly data)  

(1) (2) (3) (4) 

ln(Relative size) − 0.019 − 0.361 − 3.781*** − 3.909**  
(0.038) (0.237) (0.643) (1.645) 

ln(Relative size) 2   − 0.296*** − 0.321    
(0.060) (0.371) 

ln(Relative size) 3    − 0.002     
(0.025) 

City fixed effects N Y Y Y 
Time fixed effects N Y Y Y 
Observations 5439 5439 5439 5439 
R2 0.000 0.067 0.086 0.086   

B. Spanish regions (NUTS 3), 1900–2011 (yearly data)  

(1) (2) (3) (4) 

ln(Relative size) 0.635*** 0.142 − 0.943 − 11.982***  
(0.086) (0.268) (1.216) (3.648) 

ln(Relative size) 2   − 0.125 − 2.924***    
(0.136) (0.975) 

ln(Relative size) 3    − 0.224***     
(0.080) 

Region fixed effects N Y Y Y 
Time fixed effects N Y Y Y 
Observations 5439 5439 5439 5439 
R2 0.193 0.394 0.396 0.412   

C. US MSAs, 1900–2000 (decennial data)  

(1) (2) (3) (4) 

ln(Relative size) − 0.029 − 0.563*** − 0.833 − 8.069***  
(0.036) (0.132) (0.971) (2.357) 

ln(Relative size) 2   − 0.022 − 1.319***    
(0.078) (0.433) 

ln(Relative size) 3    − 0.075***     
(0.026) 

City fixed effects N Y Y Y 
Time fixed effects N Y Y Y 
Observations 1727 1727 1727 1727 
R2 0.001 0.578 0.578 0.583 

Notes: All models include a constant. Coefficient (robust standard errors). 
Standard errors clustered by city/region. Significant at the *10 %, **5 %, ***1 % 
level. 

11 The fit provided by parametric and nonparametric models can be compared, 
but using non-standard methods. Nevertheless, a model selection analysis is 
beyond the scope of this paper. 

12 Furthermore, in the Spanish case, it is not easy to find annual city time- 
variant variables for the whole twentieth century. 
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(a), (c), and (e), but note that in Fig. 2(b), (d), and (f), the y-axis scale is 
more reduced, and take into account that the clouds contain 5439 dots 
for the Spanish cities/regions and 1727 observations for the US case. 
Thus, many dots are concentrated in a very narrow range of values, 
making the visual inspection of the graphs, including data points, 
difficult. 

In summary, the standard nonparametric method leads us to 
conclude that Gibrat’s law is rejected for both Spanish cities and regions 
(we observe a convergence pattern in cities, while regions exhibit clear 
divergence), but random growth holds for the US MSAs (except for the 
largest cities). However, as explained above, these kernel regressions 
estimate the unconditional relationship for a pool of all growth-initial 

size pairs, so omitted variable bias could be present. Moreover, we 
learned from the estimated linear models in Table 2 and from Fig. 1(b), 
(d), and (f) that the inclusion of fixed effects significantly altered the 
results. 

City fixed effects are relevant because they represent the individual 
city-specific growth, thus allowing for heterogeneity in growth rates 
across cities, and time fixed effects are even more important because 
they capture the influence of some temporal events on growth, such as 
pandemics (e.g., Spanish flu) or wars (e.g., Spanish Civil War, WWI and 
WWII). Moreover, the mainstream in the literature argues that random 
growth (or Gibrat’s law) corresponds to the steady state (a long-run 
average), but to reach that situation, temporal episodes of different 

(a) Spanish cities (unconditional relationship)   (b) Spanish cities (relationship conditional to FE)

(c) Spanish regions (unconditional relationship)   (d) Spanish regions (relationship conditional to FE)

(e) US MSAs (unconditional relationship)    (f) US MSAs (relationship conditional to FE)
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Fig. 1. Growth versus initial relative size.  
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growth patterns across some cities are possible: ‘the casual impression of 
the authors is that in some decades, large cities grow faster than small cities, 
but in other decades, small cities grow faster’ (Gabaix & Ioannides, 2004, p. 
2353). These temporal trends are also captured by the time fixed effects. 

The semiparametric approach allows us to include the fixed effects 
and, at the same time, perform a nonparametric estimate of the rela
tionship between growth and size. The model in Eq. (6) has two parts: 
the linear part of the model, which in our case includes only city/region 
and time fixed effects, and the nonparametric part. Thus, the model has 

two outcomes: a table with the linear estimates (not shown in our case 
because it only includes the fixed effects) and a graph displaying the 
nonlinear relationship between the linear fitted residuals of growth and 
initial relative size. 

Fig. 3 shows the semiparametric estimates of growth. Recall that now 
the y-axis variable is the linear prediction of the residuals (ûit) in Eq. (6) 
instead of the gross growth rates. In other words, we filter growth rates, 
excluding all variation due to city/region and time fixed effects. Results 
are quite different from those obtained using the unconditional 

(a) Spanish cities        (b) Spanish cities (zoom) 

(c) Spanish regions       (d) Spanish regions (zoom) 

(e) US MSAs        (f) US MSAs (zoom)
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Fig. 2. Nonparametric estimates of growth.  
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nonparametric method in Fig. 2 or the equivalent parametric growth 
model including fixed effects (column 2 in Table 2). In the case of 
Spanish cities, we still conclude that Gibrat’s law does not hold (esti
mates are different from zero), but the inverted U-shaped curve has 
disappeared, although the convergence pattern remains: cities with 
small relative sizes have higher growth rates, while most of the medium- 
sized and large cities show lower than average growth rates. 

For the Spanish regions, the change in the relationship is striking. 
While in Fig. 2(d) the pattern was clearly divergence across regions, 
Fig. 3 shows that after adding the fixed effects, growth is not different 

from zero for most of the relative sizes. Only for the smallest and largest 
units do we observe higher and lower than average growth, respectively, 
pointing to some convergence for these extreme values of the distribu
tion of relative sizes. Finally, for the US MSAs, the results do not change 
much because random growth still holds for most of the distribution. 
The difference is that in Fig. 2(f), it is the largest cities that show de
viations from average growth, but in Fig. 3, the smallest cities show 
higher growth than the mean. 

Overall, considering the three datasets, the semiparametric estimates 
give more support to Gibrat’s law (random growth) than the simple 
nonparametric kernel regression, which means that including the in
fluence of city/region and time fixed effects on growth helps us to 
discover the true underlying relationship between growth and initial 
size. 

Moreover, the fit provided by the semiparametric and the parametric 
models can be different for all variables, including those in the linear 
part of the model, not only for the variable estimated in the nonpara
metric part of the model (namely, the initial relative size). In our case, 
the linear part only includes the time fixed effects although Eq. (6) al
lows for the inclusion of any observed city characteristics (xit). Fig. 4 
shows that even in this simple scenario in which only time fixed effects 
are included, strong differences can be observed between the co
efficients estimates obtained by the semiparametric (linear part of the 
model) and the parametric models. It compares the estimated co
efficients for all the time fixed effects and the corresponding 95 % 
confidence bands using the parametric version of the polynomial model 
in Eq.(4) (column 4 in Table 2) and the semiparametric model. Esti
mated values using these two methods are significantly different for the 
last years in the sample for both the Spanish regions and US MSAs, and 
for most of the years in the case of the Spanish cities. 

5. Conclusions 

This paper examines two traditional methods in the study of urban 
growth (parametric and nonparametric models) and proposes using a 
different methodology, a semiparametric model, which is a mixture of 
the other two. This approach takes the best of parametric and 
nonparametric models: it allows the linear inclusion of control variables 
and fixed effects and, for our variable of interest, performs a nonpara
metric estimate of the influence of this regressor on the dependent 
variable. 

To illustrate the usefulness of this new approach, we test Gibrat’s law 
in the long run, using the three methods and three different datasets: 
Spanish capital cities and regions (1900–2011, annual data) and US 
MSAs (1900–2000, decennial data). Our results reveal that the estima
tion of the relationship between growth and initial size significantly 
changes across methods. Although we only include city and time fixed 
effects in the linear part of the model, our results show important dif
ferences with the results obtained using unconditional nonparametric 
regressions, the latter being the approach popularised in the empirical 
literature in the last decades. Nevertheless, we must be cautious in 
interpretating of the results because the models are not nested and it is 
not easy to interpret which part of the differences in model specifica
tions results in the differences in the estimates. 

However, as far as we know, to date, these methods have been almost 
unused in the urban growth literature. We hope this paper helps to 
disseminate the advantages of this technique, and we strongly 
encourage the use of semiparametric methods in future research. Our 
results contribute to the literature addressing Gibrat’s law for city sizes 
but also have potential applications to the literature on firm size, in 
which Gibrat’s law has a long tradition (Sutton, 1997). Furthermore, the 
semiparametric method described here can be used with any panel or 
cross-sectional data model of urban growth. For instance, in the past, 
influential studies have investigated the effect of market potential (Black 
& Henderson, 2003) or manufacturing (Glaeser et al., 1995) on urban 
growth using linear regression models, and these results and those from 
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R. González-Val                                                                                                                                                                                                                                 



Cities 132 (2023) 104079

9

many other studies could be improved by using semiparametric re
gressions because agglomeration economies and nonlinear effects can be 
better captured by a semiparametric model than by a standard para
metric growth regression. We truly believe that urban growth literature 
can benefit in the future from the use of this tool. 
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